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1 Introduction

F-theory [1–3] on elliptically fibered Calabi-Yau manifolds has proven to be a success-

ful framework to realize supersymmetric non-abelian gauge theories, in particular Grand

Unified Theories (GUTs) [4–6]. Although GUTs are an appealing framework for super-

symmetric model building,1 it is well known that they can suffer from fast proton decay,

which, however, can be obviated by having additional discrete or continuous symmetries.

In this paper we consider F-theory compactifications that give rise to GUTs with two ad-

ditional U(1)s, which can potentially be used to suppress certain proton decay operators.2

In F-theory abelian gauge factors have their genesis in geometric properties of the com-

pactification manifold, namely in the existence of additional rational sections of the elliptic

fibration. We carry out a systematic procedure to constrain which such fibrations can give

rise to gauge groups G×U(1)2.

It has been known for many years that abelian gauge symmetries in F-theory are char-

acterized by the Mordell-Weil group of the elliptically fibered Calabi-Yau compactification

space [2, 3], which is the group formed by the rational sections of the fibration. In recent

years abelian gauge factors have been much studied in the context of four dimensional GUTs

arising from F-theory compactifications. In local F-theory models U(1)s have a realization

in terms of factored spectral covers as shown in [15–22]. Global models with one U(1) were

studied in [23–32], however phenomenologically one U(1) factor is not sufficient to forbid all

1See [7–9] for some nice reviews of GUT model building in F-theory.
2Discrete symmetries have been studied in local and global F-theory model building in, e.g. [10–14].
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dangerous couplings [33]. It is then well motivated to consider elliptic fibrations with multi-

ple U(1) factors, the constuction of which was initiated in [34–42], with the realization of the

SU(5)×U(1)2 models in these papers primarily based on constructions from toric tops [43].

It is natural to ask whether there is a systematic way to explore the full range of

possible low-energy theories with two additional abelian gauge factors which have an F-

theory realization. One approach to address this question is to apply Tate’s algorithm [44–

46] to elliptic fibrations with two additional rational sections. This is the approach that we

take in this paper and indeed we show that there is a large class of new elliptic fibrations

with phenomenologically interesting properties not seen from the top constructions. While

Tate’s algorithm is a comprehensive method to obtain the form of any elliptic fibration

with two rational sections there is a caveat that it is sometimes difficult in practice to

proceed with the algorithm without making simplifications at the cost of generality.

The starting point for the application of Tate’s algorithm in this context is the re-

alization of the elliptic fiber as a cubic in P2 [34, 35, 38, 39]. Tate’s algorithm involves

the study of the discriminant of this cubic equation, which captures the information about

the singularities of the fiber. The singular fibers of an elliptic surface were classified by

Kodaira [47–49] and Néron [50], and they belong to an ADE-type classification; Tate’s

algorithm is a systematic procedure to determine the type of singular fiber. The ADE

type of the singular fiber determines the non-abelian part of the gauge symmetry. Tate’s

algorithm was applied to the Weierstrass form for an elliptic fibration where there are

generically no U(1)s in [45, 46], and in [32] to the quartic equation in P(1,1,2) which realizes

a single U(1) [28]. The application of the algorithm to the cubic in P2 will constrain the

form of the fibrations which realize a G × U(1)2 symmetry, for some non-abelian gauge

group G, which are phenomenologically interesting for model building.

As a result of Tate’s algorithm we find a collection of elliptic fibrations which realize

the gauge symmetry SU(5)×U(1)2 where the non-abelian symmetry is the minimal simple

Lie group containing the Standard Model gauge group. The fibrations found encompass all

of the SU(5) models with two U(1)s in the literature which we are aware of, and includes

previously unknown models which, in many cases, have exciting phenomenological features,

such as having multiple, differently charged, 10 matter curves. We also determine fibrations

that lead to E6 and SO(10) gauge groups with two U(1)s.

Our results are not restricted to F-theoretic GUT model building, and we hope that

they are also useful in other areas of F-theory, for example in direct constructions of

the Standard Model [51, 52], in the determination of the network of resolutions of elliptic

fibrations [53–57], or in the recent relationship drawn between elliptic fibrations with U(1)s

and genus one fibrations with multisections [58–60].

In section 2 we present a summary where we highlight the fibrations found in the

application of Tate’s algorithm to the cubic equation, up to fibers realizing SU(5). We also

present a table of a particularly nice kind of realizations for Kodaira fibers In and I∗n. In

section 3 we recap the embedding of the elliptic fibration as a cubic hypersurface in a P2

fibration and give details of the resolution and intersection procedures. Section 4 contains

Tate’s algorithm proper, up to the I5, or SU(5), singular fibers. In section 5 the U(1)

charges of the various 10 and 5 matter curves that appear in the models from the SU(5)
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singular fibers are determined. In section 6 Tate’s algorithm is continued from where

it was left off in section 4 and we obtain fibrations that have a non-abelian component

corresponding to an exceptional Lie algebra.

2 Overview and summary

For the reader’s convenience, the key results are summarized in this section. For those

interested simply in the new SU(5) models we refer to section 5.

An elliptic fibration with two additional rational sections, which gives rise to a gauge

theory with two additional U(1)s, can be realized as a hypersurface in a P2 fibration, as

in [34, 35, 38, 39], given by the equation

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (2.1)

where [w : x : y] are projective coordinates on the P2. This fibration has three sections

which have projective coordinates

Σ0 : [0 : 0 : 1] , Σ2 : [0 : 1 : 0] , Σ1 : [0 : s9 : −s7] . (2.2)

The application of Tate’s algorithm involves enhancing the singularity of this elliptic fibra-

tion, where the particular enhancements are determined by the discriminant. As the coef-

ficients of the fibration are sections of holomorphic line bundles over the base, one can look

at an open neighbourhood around the singular locus in the base with coordinate z such that

the singular locus is above z = 0, and consider the expansion in the coordinate z of the si

si =

∞∑
j=0

si,jz
j . (2.3)

Often the pertinent information from the equation (2.1) is just the vanishing orders of the

si in z, which we will refer to through

ni = ordz(si) . (2.4)

A shorthand for the equation will be the tuple of positive integers

(n1, n2, n3, n5, n6, n7, n8, n9) representing the vanishing orders. It will not always be

possible to express a fibration just through a set of vanishing orders, but there will also

be non-trivial relations among the coefficients of the equation. We will refer to fibrations

of this form as non-canonical models. This will be the result of solving in full generality

the polynomials which appear in the discriminant as a necessary condition for enhancing

the singular fiber. In particular the fact that the coefficients of our fibration belong to

a unique factorization domain [46, 61] will be used. Schematically we will refer to these

fibrations via the shorthand notation

Inci :

{
(n1, n2, n3, n5, n6, n7, n8, n9)

[s1,n1 , s2,n2 , s3,n3 , s5,n5 , s6,n6 , s7,n7 , s8,n8 , s9,n9 ]

}
, (2.5)
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where the term in square brackets denotes any specialization of the leading non-vanishing

coefficients in the expansion of the si, and the I represents the Kodaira fiber type.

Often, for ease of reading, a dash will be inserted to indicate that a particular coefficient

is unspecialized. The exponent of the index nc will signal how many non-canonical

enhancements of the discriminant were used in order to obtain the singular fiber, that

is, how many times solving a polynomial in the discriminant did not require just setting

some of the expansion coefficients to zero, but also some additional cancellation.

There is a last piece of notation that needs to be explained before the results can be

presented. Since the elliptic fibration has three sections, it will be seen in section 4, where

the algorithm is studied in detail, that the discriminant will reflect the fact that the sections

can intersect the components of the resolved fiber in multiple different ways. Thus, a

number of (non-)canonical forms for each Kodaira singular fiber will be obtained depending

on which fiber component each of the sections intersects. To represent this, denote by

I
(012)
n the case where all the three sections intersect the same fiber component, and then

introduce separation of the sections by means of the notation I
(0|n1|m2)
n , where the number

of slashes will signal the distance between the fiber components that the corresponding

sections intersect. Consider the two examples:

• Is(01|2)
4,nc2

will represent a Kodaira singular fiber I4, obtained through two non-canonical

enhancements of the discriminant. The sections Σ0, Σ2 will intersect one of the fiber

components, while Σ1 will sit on an adjacent fiber component (i.e. one which intersects

the previous component). Depicting the P1 components of the singular fiber as lines,

and the sections as nodes, the fiber I
s(01|2)
4 can be represented by the diagram

• Is(01||2)
5,nc3

will represent an I5 found upon imposing non-canonical conditions on the

coefficients of our equation three times, such that the fiber component intersected

by Σ0 and Σ1 does not intersect the component that Σ2 intersects. This I
s(01||2)
5 is

represented pictorially as

We refer to section 6 for more details about the notation for representing singular fibers

corresponding to other types of Kodaira singular fibers.

All of the fibers found and determined are presented in the following summary ta-

bles, where the fibers are grouped first by the Kodaira type and then by the degree of

canonicality:

– 4 –
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• In table 1 we list the singular fibers up to vanishing order ordz(∆) = 3. These include

fibers of type I1,I2,I3, II, and III.

• In table 2 we list the singular fibers at vanishing order ordz(∆) = 4. These include

both type I4 and type IV Kodaira fibers.

• In table 3 we list the I5 singular fibers.

For each of the I5 singular fibers obtained through the algorithm the U(1) charges are

calculated and the results are presented in section 5, along with the comparison with the

U(1) charges of the known SU(5) toric tops [30, 34, 36, 38, 43].

Tate-like (that is, canonical) forms for generic Kodaira singular fibers were also de-

termined and they are presented in table 4. Appendix C includes explicit details of the

resolutions of these forms.

3 Setup

In this section the general setup for the discussion of singular elliptic fibrations with a

rank two Mordell-Weil group is provided. First it is explained in more detail that such

a fibration can be embedded into a P2 fibration via a cubic hypersurface equation. This

is done in section 3.1. In section 3.2 the symmetries of this cubic equation are detailed

and it is demonstrated how they lead to a redundancy of singular fiber types. Some

constraints are chosen, listed at the head of section 3.2, to eliminate this redundancy. All

the properties of the construction used in the resolution and study of the singular fibers

found are documented in section 3.3.

3.1 Embedding

By the algebro-geometric construction in [28, 34, 35, 38, 39], an elliptic fibration with rank

two Mordell-Weil group can be embedded into a P2 fibration by the hypersurface equation

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (3.1)

as seen in the previous section. Some explanation of this construction is given in ap-

pendix D. Here [w : x : y] are the projective coordinates of the fibration and the si are

elements of the base coordinate ring, R. It can be seen that this has three marked points,

where w, x, and y take values in the fraction field, K, associated to R. Specifically the

three marked points are

[0 : 0 : 1] , [0 : 1 : 0] , [0 : s9 : −s7] , (3.2)

which we label as Σ0, Σ2, and Σ1 respectively.

We will work in an open neighbourhood in the base, around the singular locus, which

has coordinate z such that the singular locus will occur at the origin of this open neigh-

bourhood. In such a local patch we can specify the si as expansions in z,

si =
∞∑
j=0

si,jz
j . (3.3)

– 5 –
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Singular Fiber Vanishing Orders and Non-canonical Data

I
(012)
1 (1, 1, 0, 1, 0, 0, 0, 0)

I
(012)
2 (2, 1, 0, 1, 0, 0, 0, 0)

I
(01|2)
2 (1, 1, 1, 0, 0, 0, 0, 0)

I
(1|02)
2,nc

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

II
(012)
nc

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ21,−, 2µσ3σ8,−, µσ28,−]

I
ns(012)
3 (3, 2, 0, 2, 0, 0, 0, 0)

I
s(01|2)
3 (2, 1, 1, 1, 0, 0, 0, 0)

I
s(0|1|2)
3 (1, 1, 1, 1, 0, 0, 1, 0)

I
s(012)
3,nc

(3, 1, 0, 1, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

I
s(01|2)
3,nc

(2, 1, 1, 0, 0, 0, 0, 0)

[−, σ1σ2, σ1σ3, σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−,−]

I
s(02|1)
3,nc

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

I
s(0|1|2)
3,nc

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

III
(012)
nc

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ23,−, 2µσ3σ8,−, µσ28,−]

III
(01|2)
nc

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, µσ25, 2µσ5σ7, µσ27,−,−]

III
(02|1)
nc2

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, ξ22ξ4,−, 2ξ2ξ3ξ4, σ1ξ2, ξ23ξ4, σ1ξ3]

Table 1. Singular fibers where ordz(∆) ≤ 3.

We also introduce the simplifying notation

si,k =

∞∑
j=k

si,jz
j−k . (3.4)

3.2 Symmetries and lops

In this section note is made of the symmetries inherent in the cubic equation (2.1), and

a strategy is devised to remove the redundant multiplicity of fiber types that occurs due

to these symmetries. One finds that the following sets of vanishing orders give rise to

fibrations which have codimension one singular fibers that are related by a relabelling of

– 6 –
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Singular Fiber Vanishing Orders and Non-canonical Data

I
ns(012)
4 (4, 2, 0, 2, 0, 0, 0, 0)

I
s(01|2)
4 (3, 2, 1, 1, 0, 0, 0, 0)

I
ns(01||2)
4 (2, 2, 2, 0, 0, 0, 0, 0)

I
s(0|1|2)
4 (2, 1, 1, 1, 0, 0, 1, 0)

I
s(012)
4,nc

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ1σ3,−, σ1σ2 + σ3σ4,−, σ2σ4,−]

I
s(01|2)
4,nc

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ1σ3,−, σ2σ4 + σ3σ5, σ1σ2,−, σ2σ5,−]

I
s(02|1)
4,nc

(3, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

I
s(01||2)
4,nc

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ1σ3, σ1σ2 + σ3σ4, σ2σ4,−,−]

I
s(01||2)
4,nc

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

I
s(1|0|2)
4,nc

(1, 1, 1, 1, 0, 0, 1, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−, σ1σ2, σ1σ3,−,−]

I
s(02|1)
4,nc2

(3, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3ξ1ξ2,−, σ2ξ1ξ2 + σ3ξ1ξ3, ξ2ξ4, ξ1ξ3σ2, ξ3ξ4]

I
s(0|1|2)
4,nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, ξ3σ5, ξ3σ4 + ξ2σ5, ξ3σ4, σ1ξ3, σ1ξ2]

I
s(1|0|2)
4,nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ2ξ1ξ3, σ2ξ1ξ3, σ2ξ1ξ2 + σ3ξ1ξ3, σ3ξ1ξ2, σ1σ2, σ1σ3]

IV s(01|2) (2, 1, 1, 1, 1, 0, 0, 0)

IV s(0|1|2) (1, 1, 1, 1, 1, 0, 1, 0)

IV
ns(012)

nc2

(2, 1, 0, 1, 0, 0, 0, 0)

[−, ξ1ξ3, µξ23 , ξ1ξ2, 2µξ2ξ3,−, µξ22 ,−]

IV
s(01|2)
nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ2ξ5, ξ2ξ4 + ξ3ξ5, ξ3ξ4, µξ
2
2 , 2µξ2ξ3, µξ

2
3 ,−,−]

IV
s(02|1)
nc2

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, ξ4ξ22 ,−, 2ξ2ξ3ξ4, σ1ξ2, ξ4ξ
2
3 , σ1ξ3]

IV
s(0|1|2)
nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, µξ22 , 2µξ2ξ3, µξ23 , ξ2ξ4, ξ3ξ4]

IV
s(012)

nc3

(2, 1, 0, 1, 0, 0, 0, 0)

[δ2δ4, ξ3(δ1δ2 + δ3δ4), δ1δ3ξ
2
3 , ξ2(δ1δ2 + δ3δ4), 2δ1δ3ξ2ξ3,−, δ1δ3ξ22 ,−]

Table 2. Singular fibers where ordz(∆) = 4.
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Singular Fiber Vanishing Orders and Non-canonical Data

I
ns(012)
5 (5, 3, 0, 3, 0, 0, 0, 0)

I
s(01|2)
5 (4, 2, 1, 2, 0, 0, 0, 0)

I
s(01||2)
5 (3, 2, 2, 1, 0, 0, 0, 0)

I
s(0|1|2)
5 (3, 2, 1, 1, 0, 0, 1, 0)

I
s(0|1||2)
5 (2, 2, 2, 1, 0, 0, 1, 0)

I
s(012)
5,nc

(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

I
s(01|2)
5,nc

(3, 2, 1, 1, 0, 0, 0, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3,−,−,−]

I
s(02|1)
5,nc

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

I
s(0|1|2)
5,nc

(2, 1, 1, 1, 0, 0, 1, 0)

[σ1σ3, σ1σ2,−, σ3σ4, σ2σ4,−,−,−]

I
s(1|0|2)
5,nc

(3, 2, 1, 1, 0, 0, 0, 0)

[−,−,−,−, σ1σ2, σ1σ3, σ2σ4, σ3σ4]

I
s(0|1||2)
5,nc

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

I
s(0|1||2)
5,nc

(2, 1, 1, 1, 0, 0, 1, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

I
s(02|1)
5,nc2

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3ξ2,−, σ2ξ2 + σ3ξ3, ξ2ξ4, σ2ξ3, ξ3ξ4]

I
s(01||2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[ξ3ξ4, σ2ξ3, σ3ξ3, ξ2ξ4 + ξ3ξ5, σ2ξ2, σ3ξ2, ξ2ξ5,−]

I
s(01||2)
5,nc2

(2, 2, 2, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ3ξ3, σ2ξ3 + σ3ξ2, σ2ξ2,−,−]

I
s(1|0|2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ3ξ1ξ3,−, σ2σ4 + σ3ξ1ξ2, σ2ξ1ξ3, ξ3ξ4, σ2ξ1ξ2, ξ2ξ4]

I
s(0|1||2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

I
s(0|2||1)
5,nc2

(1, 1, 1, 1, 0, 0, 1, 0)

[ξ3ξ4ξ5ξ6, σ4ξ5ξ6 + σ3ξ3ξ4, σ3σ4, ξ3ξ5ξ7 + ξ4ξ6ξ8, ξ1ξ3ξ5ξ6, σ3ξ1ξ3, ξ7ξ8, ξ1ξ6ξ8]

I
s(0|1||2)
5,nc3

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ3, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

Table 3. Singular fibers where ordz(∆) = 5.
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the coefficients of (2.1)

(n1, n2, n3, n5, n6, n7, n8, n9)↔ (n1, n5, n8, n2, n6, n9, n3, n7)

(n1 + 2, n2 + 1, n3, n5 + 1, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7 + 1, n8, n9 + 1)

(n1 + 1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1), (3.5)

and any composition thereof. In the analysis of Tate’s algorithm for the quartic equation

in P(1,1,2) [32] these kind of symmetries were called lops. The first of these relations will

be referred to as the Z2 symmetry, and the second and third relations, respectively, will be

called lop one and lop two.

These lop relations and the Z2 symmetry generate a family of equivalences by apply-

ing them repeatedly and in different orders. To choose an appropriate element of each

equivalence class the procedure shall be as follows:

• Use the Z2 symmetry to fix n9 ≥ n7.

• Apply lop one to reduce n7 to 0.

• Apply lop two to reduce the least valued of n8 and n9 − n7 to zero.

• Apply the Z2 symmetry.

In this way one can often choose a representative of a particular lop-equivalence class

where n7 = n9 = 0. In the application of Tate’s algorithm enhancements which move a

form out of this lop-equivalence class will not be considered. In this way the redundancies

inherent in the cubic equation (2.1) shall be removed. The remainder of this subsection

shall be devoted to showing that these relations hold.

There is a Z2 symmetry that comes from the interchange

(n1, n2, n3, n5, n6, n7, n8, n9)↔ (n1, n5, n8, n2, n6, n9, n3, n7) . (3.6)

One can see this by observing that the equations for each form,

s1,n1w
3 + s2,n2w

2x+ s3,n3wx
2 + s5,n5w

2y + s6,n6wxy + s7,n7x
2y + s8,n8wy

2 + s9,n9xy
2 = 0 ,

(3.7)

and

s1,n1w
3 + s2,n5w

2x+ s3,n8wx
2 + s5,n2w

2y + s6,n6wxy + s7,n9x
2y + s8,n3wy

2 + s9,n7xy
2 = 0 ,

(3.8)

have identical vanishing orders up to the redefinition x ↔ y. This symmetry can be

removed by only considering forms where, in order of preference,

n7 ≥ n9
n3 ≥ n8
n2 ≥ n5 . (3.9)
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Furthermore there are symmetries that can occur in the partially resolved forms. One

such, which was referred to as lop one above, is an equivalence between the vanishing orders

(n1 + 2, n2 + 1, n3, n5 + 1, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7 + 1, n8, n9 + 1) . (3.10)

To see this consider first the geometry of the l.h.s. after resolving the singularity at the

point x = y = z1 = 0 by the blow up (x, y, z1; ζ1).
3 It is clear that one can always do such

a blow up as the ni are, by definition, non-negative. The partially resolved geometry is

s1,n1+2w
3zn1+2

1 ζn1
1 + s2,n2+1w

2xzn2+1
1 ζn2

1 + s3,n3wx
2zn3

1 ζn3
1 + s5,n5+1w

2yzn5+1
1 ζn5

1

+s6,n6wxyz
n6
1 ζn6

1 + s7,n7x
2yzn7

1 ζn7+1
1 + s7,n7+1x

2yzn7+1
1 ζn7+2

1

+s8,n8wy
2zn8

1 + s9,n9xy
2zn9

1 ζn9+1
1 + s9,n9+1xy

2zn9+1
1 ζn9+2

1 = 0 , (3.11)

with the Stanley-Reiser ideal

{wxy,wζ1, xyz1} . (3.12)

Similarly one can consider the r.h.s. geometry after performing the small resolution

(w, z2; ζ2) to separate the reducible divisor z2. The geometry is

s1,n1w
3zn1

2 ζn1+2
2 + s1,n1+1w

3zn1+1
2 ζn1+3

2 + s1,n1+2w
3zn1+2

2 ζn1+4
2 + s2,n2w

2xzn2
2 ζn2+1

2

+s2,n2+1w
2xzn2+1

2 ζn2+2
2 + s3,n3wx

2zn3
2 ζn3

2 + s5,n5w
2yzn5

2 ζn5+1
2 + s5,n5+1w

2yzn5+1
2 ζn5+2

2

+s6,n6wxyz
n6
2 ζn6

2 + s7,n7+1x
2yzn7+1

2 ζn7
2 + s8,n8wy

2zn8
2 + s9,n9+1xy

2zn9+1
2 ζn9

2 = 0 , (3.13)

with Stanley-Reiser ideal

{wxy,wz2, xyζ2} . (3.14)

Under the identification z1 ↔ ζ2 and ζ1 ↔ z2 it is observed that these equations and

SR ideals are equivalent. Any multiplicity arising from this redundancy in (2.1) can be

removed by combining it with one of the earlier constraints from the Z2 symmetry (3.9),

n7 ≥ n9, so as to choose to consider only forms which have n9 = 0.

There is another relation among the partially resolved geometries, which was referred

to as lop two,

(n1 + 1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1) . (3.15)

Again this is seen by studying the partially resolved geometry explicitly. If (n1 +

1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9) is resolved by the small resolution (y, z1; ζ1) the blown

up geometry is given by the equation

s1,n1+1w
3zn1+1

1 ζn1
1 + s1,n1+2w

3zn1+2
1 ζn1+1

2 + s2,n2+1w
2xzn2+1

1 ζn2
1 + s2,n2+2w

2xzn2+2
1 ζn2+1

1

+s3,n3+1wx
2zn3+1

1 ζn3
1 + s3,n3+2wx

2zn3+2
1 ζn3+1

1 + s5,n5w
2yzn5

1 ζn5
1 + s6,n6wxyz

n6
1 ζn6

1

+s7,n7x
2yzn7

1 ζn7
1 + s8,n8wy

2zn8
1 ζn8+1

1 + s9,n9xy
2zn9

1 ζn9+1
1 = 0 , (3.16)

with SR-ideal

{wxy, yz1, wxζ1} . (3.17)

3The notation of [62] is used to spectify blow ups throughout this paper.
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On the other side if (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1) is resolved by the resolution

(w, x, z2; ζ2) the geometry is then given as the vanishing of the hypersurface polynomial

s1,n1w
3zn1

2 ζn1+1
2 + s2,n2w

2xzn2
2 ζn2+1

2 + s3,n3wx
2zn3

2 ζn3+1
2 + s5,n5w

2yzn5
2 ζn5

2

+ s6,n6wxyz
n6
2 ζn6

2 + s7,n7x
2yzn7

2 ζn7
2 r + s8,n8+1wy

2zn8+1
2 ζn8

2 + s8,n8+2wy
2zn8+2

2 ζn8+1
2

+ s9,n9+1xy
2zn9+1

2 ζn9
2 + s9,n9+2xy

2zn9+2
2 ζn9+1

2 = 0 , (3.18)

with SR-ideal

{wxy,wxz2, ζ2y} . (3.19)

These two geometries describe the same partially resolved space, and can be related by the

interchange

z1 ↔ ζ2 , ζ1 ↔ z2 . (3.20)

3.3 Resolutions, intersections, and the Shioda map

To determine the Kodaira type, including the distribution of the marked points, of the codi-

mension one singularity in the fibration specified by (2.1) one often explicitly constructs

the resolved geometry via a sequence of algebraic resolutions. In the context of elliptic

fibrations such resolutions have been constructed in [26, 53, 56, 57, 62–67]. In this section

we set up the framework to discuss the resolved geometries and the intersection compu-

tations, for example of U(1) charges of matter curves, that are carried out as part of the

analysis of the singular fibers found. In particular details are given about the embedding

of the fibration as a hypersurface in an ambient fivefold, the details of how the intersection

numbers between curves and fibral divisors are computed, and on the construction of the

U(1) charge generators.

Consider the ambient fivefold X5 = P2(O⊕O(α)⊕O(β)) which is the projectivization

of line bundles over a base space B3. The elliptically fibered Calabi-Yau fourfold will be

realized as the hypersurface in this X5 cut out by the cubic equation (2.1). The terms in
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the homogeneous polynomial are then sections of the following line bundles

Section Bundle

w O(σ)

x O(σ + α)

y O(σ + β)

z O(SG)

s1,j O(c1 + α+ β − jSG)

s2,j O(c1 + β − jSG)

s3,j O(c1 − α+ β − jSG)

s5,j O(c1 + α− jSG)

s6,j O(c1 − jSG)

s7,j O(c1 − α− jSG)

s8,j O(c1 + α− β − jSG)

s9,j O(c1 − β − jSG)

(3.21)

Here c1 is a shorthand notation for π∗c1(B3). In practice, the first step in any explicit

determination of a singular fiber is to blow up the P2 fibration to a dP2 fibration by the

substitution w → l1l2w, x → l1x, and y → l2y and taking the proper transform, as was

also the procedure in [34, 35, 38, 39].

The geometry is then specified by the equation

s1l
2
1l

2
2w

3 + s2l
2
1l2w

2x+ s3l
2
1wx

2 + s5l1l
2
2w

2y+ s6l1l2wxy+ s7l1x
2y+ s8l

2
2wy

2 + s9l2xy
2 = 0 ,

(3.22)

in dP2. After these blow ups the fiber coordinates in this equation are sections of the line

bundles

Section Bundle

w O(σ − F1 − F2)

x O(σ + α− F1)

y O(σ + β − F2)

l1 O(F1)

l2 O(F2)

(3.23)

As can be seen from the blow ups which mapped P2 to dP2 the marked point [0 : 0 : 1]

has been mapped to the exceptional divisor l1, similarly for [0 : 1 : 0] and l2. As such the

marked points Σ0, Σ1, and Σ2 have been related to the divisors l1, w, and l2 respectively.

As the marked points form sections they are restricted to intersect, in codimension

one, only a single multiplicity one component of the singular fiber [68].

The dP2 intersection ring is not freely generated due to the projective relations which

hold in dP2. These relations are, using standard projective coordinate notation,

[wl1l2 : xl1 : yl2] , [w : x] , [w : y] . (3.24)
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These correspond to the relations in the intersection ring

σ · (σ + α) · (σ + β) = 0

(σ − F1 − F2) · (σ − F1) = 0

(σ − F1 − F2) · (σ − F2) = 0 . (3.25)

The strategy, as it was in [62, 66], will be to choose a basis of the intersection ring and

repeatedly apply these relations, including any that come from exceptional divisor classes

introduced in the resolution. In this way the intersection numbers between curves and fibral

divisors can be computed. In this paper the resolutions and intersections were carried out

using the Mathematica package Smooth [69].

Given an elliptic fibration with multiple rational sections there remains the construc-

tion of the generators of the U(1) symmetries, that is the generators of the Mordell-Weil

group. The Mordell-Weil group is a finitely generated abelian group [70]

Z⊕ · · · ⊕ Z⊕ G , (3.26)

where G is some finite torsion group.4 There is a map, known as the Shioda map, which

constructs from rational sections the generators of the Mordell-Weil group. This map is

discussed in detail in [28, 73, 74].

The Shioda map associates to each rational section, σi, a divisor s(σi) such that

s(σi) · Fj = 0

s(σi) ·B = 0 , (3.27)

where Fj are the exceptional curves and B is the dual to the class of the base B3. Reduction

on the Fj gives rise to gauge bosons which should be uncharged under the abelian gauge

symmetry. This is ensured by the conditions (3.27).

The charge of a particular matter curve C with respect to the U(1) generator associated

to the rational section σi is given by the intersection number s(σi)·C. The constraints (3.27)

determine the U(1) charges from s(σi) up to an overall scale. We shall always consider

the zero-section to be the rational section associated with the introduction of the l1 in the

blow up to dP2.

As was alluded to in section 3.1 it is not always the case that a fibration that arises from

the algorithm can be specified purely in terms of the vanishing orders of the coefficients.

Sometimes it is necessary to also include some specialization of the coefficients in the

z-expansion of the coefficients of the equation. Consider a discriminant of the form

∆ = (AB − CD)zn +O(zn+1) . (3.28)

An enhancement that would enhance this singularity would be where AB −CD = 0. The

solution of this polynomial cannot in general be specified in terms of the vanishing order of

A, B, C, and D. In appendix A we collect the solutions to several polynomials of this form

4We shall not concern ourselves with G in this paper, but some investigations are [71, 72].
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which come up repeatedly in the application of Tate’s algorithm to (2.1). The solution to

this particular polynomial is

A = σ1σ2

B = σ3σ4

C = σ1σ3

D = σ2σ4 , (3.29)

where the pairs (σ1, σ4) and (σ2, σ3) are coprime. It is not generally possible to perform

some shift of the coordinates in (2.1) to return this solution to an expression involving

just vanishing orders. This is notably different from Tate’s algorithm as carried out on the

Weierstrass equation in [46]; there the equation includes monic terms unaccompanied by

any coefficient, which often allows one to shift the variables to absorb these non-canonical

like solutions into higher vanishing orders of the model.

4 Tate’s algorithm

In this section we will proceed through the algorithm [45, 46], considering the discriminant

of the elliptic fibration order by order in the expansion in terms of the base coordinate z.

By enhancing the fiber of our elliptic fibration, we will see under which conditions on the

sections si the order of the discriminant will enhance and then study the resulting singular

fibers. This will be done systematically up to singular I5 fibers for phenomenological

reasons and in section 6 we will provide details for some of the exceptional singular fibers.

In a step-by-step application of Tate’s algorithm to the elliptic fibration (2.1) we find the

various different types of Kodaira singular fibers decorated with the information of which

sections intersect which components. The discriminant reflects the different ways in which

the sections can intersect the multiplicity one fiber components (as explained in section 3.3),

thus giving rise to an increased number of singular fibers over fibrations with fewer rational

sections. The analysis will be carried out in parallel both for canonical models (determined

only by the vanishing orders of the sections) and for non-canonical models (which require

additional specialization arising from solving polynomials in the discriminant.)

4.1 Starting points

In the following we will assume that the fibration develops a singularity along the locus

z = 0 in the base. A singularity can be characterized by one of the following two criteria:

• The leading order of the discriminant as a series expansion in z must vanish.

• The derivatives of D|z=0 in an affine patch must vanish along the z = 0 locus, where

D is the equation for the fibration.

Since the leading order of the discriminant is a complicated and unenlightening expression,

we will not present it here and instead study the derivatives of the equation of the fibration.

This will turn out to be significantly simpler and we will see that the discriminant will
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enhance upon substitution of the conditions found by the derivative analysis. On the

other hand, throughout our study of higher order singularities we will look only at the

discriminant ignoring the derivative approach.

Let us then study the equation for the elliptic fibration in the affine patch with coordi-

nates (x, y), that is, where we can scale such that w = 1. Along the locus z = 0 we assume

that the fiber becomes singular at the point (x0, y0) and require the derivatives to vanish

D|z=0 = s1,0+s2,0x0+s3,0x
2
0+s5,0y0+s6,0x0y0+s7,0x

2
0y0+s8,0y

2
0+s9,0x0y

2
0 =0

∂xD|z=0 = s2.0 + 2s3,0x0 + s6,0y0 + 2s7,0x0y0 + s9,0y
2
0 = 0

∂yD|z=0 = s5,0 + s6,0x0 + s7,0x
2
0 + 2s8,0y0 + 2s9,0x0y0 = 0 .

(4.1)

We can solve for s2,0 and s5,0 from the last two equations

s2,0 = −2s3,0x0 − y0(s6,0 + 2s7,0x0 + s9,0y0)

s5,0 = −x0(s6,0 + s7,0x0)− 2(s8,0 + s9,0x0)y0 .
(4.2)

Upon substitution in the first equation we can solve for s1,0

s1,0 = s3,0x
2
0 + y0(s8,0y0 + x0(s6,0 + 2s7,0x0 + 2s9,0y0)) . (4.3)

When s1,0, s2,0 and s5,0 satisfy the above requirements the discriminant indeed enhances to

first order. We can bring the equation of the fibration in a canonical form, depending only

on the vanishing orders of the coefficients, by performing the following coordinate shift(
x

y

)
→

(
x− x0w
y − y0w

)
. (4.4)

We see that the singularity now sits at the origin of the affine patch and has generic

coefficients in addition to {s1,0 = s2,0 = s5,0 = 0}. This is an I1 singular fiber, which is the

only fiber at vanishing order ordz(∆) = 1 in Kodaira’s classification. That this is indeed an

I1 fiber can also be seen by performing a linear approximation around the singular point

and noting that we obtain two distinct tangent lines, which shows that this is indeed an

ordinary double point. Since there is only one fiber component, all the three sections will

intersect it, and we will denote the singular fiber

I
(012)
1 : (1, 1, 0, 1, 0, 0, 0, 0) . (4.5)

This does not exhaust the possible ways to solve the three equations in (4.1). Indeed,

we can look at the affine subspace y = 0 and see that we can find additional solutions.

Note that we will not consider here the case x = 0 as this is related by the Z2 symmetry

discussed in section 3.2. The partial derivatives now read

D|z=y=0 = s1,0 + s2,0x0 + s3,0x
2
0 = 0

∂xD|z=y=0 = s2,0 + 2s3,0x0 = 0

∂yD|z=y=0 = s5,0 + s6,0x0 + s7,0x
2
0 = 0 .

(4.6)
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We see that if we require {s1,0 = s2,0 = s3,0 = 0} the three equations are satisfied for

the two solutions of the quadratic equation {s5,0 + s6,0x0 + s7,0x
2
0 = 0}, which are the two

singular points of an I2 Kodaira fiber as the discriminant enhances to vanishing order ∆(z2).

Indeed, looking at the equation of the fiber, we see that this splits in two components

D1 : z = y = 0

D2 : z = s5,0w
2 + s6,0wx+ s7,0x

2 + (s8,0w + s9,0x)y = 0 .
(4.7)

The two components indeed intersect in two different points, thus showing that this is an

I2 singular fiber. One of the sections intersects one component, while the two remaining

sections intersect the other, so we will denote this fiber as

I
(01|2)
2 : (1, 1, 1, 0, 0, 0, 0, 0) . (4.8)

These two fibers represent the starting points for the analysis to be carried out in the

remainder of this section. Given the equation for the fibration, we can ask whether z divides

any of the coefficients si. Then we can conclude, inside our preferred lop-equivalence class,

the following:

• If z - s1 and z - s2 then the fiber over the locus {z = 0} is smooth.

• If z | s1, z | s2 and z | s3 then we can carry on the analysis as in the next section and

check whether the singularity is simply I
(01|2)
2 or some other enhanced kind.

• If z | s1, z | s2 and z | s5 we will instead start our analysis from an I
(012)
1 singular

fiber. It is important to notice that in this part of the algorithm we will not let z | s3
as this case is covered in the previous branch.

4.2 Enhancements from ordz(∆) = 1

From the previous section we have found exactly one starting point for the algorithm which

has a discriminant linear in z: (1, 1, 0, 1, 0, 0, 0, 0). In this section we shall study the various

ways that this I1 singular fiber can enhance. The discriminant of the (1, 1, 0, 1, 0, 0, 0, 0)

fibration is

∆ = s1,1s3,0s8,0(s
2
6,0 − 4s3,0s8,0)(s

2
7,0s8,0 − s6,0s7,0s9,0 + s3,0s

2
9,0)z +O(z2) , (4.9)

up to numerical factors. The discriminant factors into five distinct terms which will enhance

the discriminant, and thus the singular fiber, when they vanish. As this set of vanishing

orders is specifying a fibration where z - s3 then we cannot consider the situation where

s3,0 = 0. Equivalently, because of the Z2 symmetry explained in section 3.2, we cannot

consider s8,0 vanishing.

First let us consider the simple case where s1,1 = 0, which is equivalent to stating that

z2 | s1. Then z2 | ∆ and the singular fiber type, determined by resolving the singularity

explicitly as explained in section 3.3, is I2. The three rational sections all intersect one of

the two components of the I2 fiber

I
(012)
2 : (2, 1, 0, 1, 0, 0, 0, 0) , (4.10)

listed in table 1.
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Figure 1. The type I2 and type III singular fibers with the possible locations of the three marked

points denoted by the blue nodes. Respectively these are I
(ijk)
2 , I

(i|jk)
2 , II(ijk) and II(i|jk) fibers.

The discriminant can also be enhanced in order by allowing z to divide either of the

two polynomials in (4.9). Let us first consider the situation where s26,0− 4s3,0s8,0 vanishes.

The solution to this equation over this unique factorization domain is given in appendix A

and states that

s6,0 = µσ3σ8

s3,0 = µσ23

s8,0 = µσ28 . (4.11)

The discriminant then enhances so that z2 | ∆. To determine the type of singular fiber

here let us consider the equation of the single component of the I1 fiber which is being

enhanced

(s3,0x
2 + s6,0xy + s8,0y

2) + xy(s7,0x+ s9,0y) = 0 . (4.12)

If s26,0 − 4s3,0s8,0 = 0 then the quadratic part of the equation factors into a square which

does not divide the cubic terms; this is exactly the form of the equation for a cusp, which

is a type II fiber. Therefore we have observed the fiber

II(012)nc :

{
(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ23,−, 2µσ3σ8,−, µσ28,−]

}
. (4.13)

from table 1.

Finally we can consider the singular fiber that occurs when the second polynomial in

∆ vanishes: s27,0s8,0 − s6,0s7,0s9,0 + s3,0s
2
9,0 = 0. Appendix A lists four generic solutions of

this polynomial, three canonical and one non-canonical, which are:

s7,0 = s9,0 = 0

s7,0 = s3,0 = 0

s8,0 = s9,0 = 0

s7,0 = σ1σ2 , s9,0 = σ1σ3 , s8,0 = σ3σ4 , s3,0 = σ2σ5 , s6,0 = σ2σ4 + σ3σ5 . (4.14)

Any of the three canonical solutions will remove us from our preferred lop-equivalence class

and so we do not consider them as they will give rise to a redundancy of singular fiber
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Figure 2. The type I3 singular fibers with the locations of the three marked points denoted by

the blue nodes. Respectively these are I
(ijk)
3 , I

(ij|k)
3 and I

(i|j|k)
3 fibers.

types. The only solution to consider therefore is the non-canonical one. The fiber found

at this locus is another I2 fiber, which can be written as

I2,nc :

{
(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

}
. (4.15)

Table 1 is then complete up to second order, once we also include the I
(01|2)
2 which was

found in the previous section as one of the alternate starting points in the z | s3 branch.

4.3 Enhancements from ordz(∆) = 2

We will now consider the enhancement of the four previously found fibrations which have

a discriminant with vanishing order two in z. In this section we shall include the details

only of those enhancements that have some non-standard behaviour.

The fibrations (2, 1, 0, 1, 0, 0, 0, 0) and (1, 1, 1, 0, 0, 0, 0, 0) can contain, respectively, in

their discriminants polynomials with five and seven terms. These are not polynomials that

are discussed in appendix A as their solutions are not known in full generality. In lieu

of a complete solution we consider non-generic but canonical type solutions which allow

us to obtain singular fibers of a particular type which would be unobtainable without

determining a full, generic solution to these polynomials. The subbranches which follow

from enhancements where it has been necessary to consider a non-generic solution will also

therefore be non-generic, however all remaining branches are determined in full generality.

4.3.1 Polynomial enhancement in the z - s3 branch

The discriminant of the equation for the (2, 1, 0, 1, 0, 0, 0, 0) singular fiber contains the

polynomial

P = s8,0s
2
2,1 − s5,1s6,0s2,1 + s1,2s

2
6,0 + s3,0

(
s25,1 − 4s1,2s8,0

)
. (4.16)

As the most general solution for this five-term polynomial is not known we propose here two

specific solutions. The first is a canonical solution obtained by setting s1,2 = s2,1 = s5,1 = 0.

As a consequence z3 | ∆ and we find an I
ns(012)
3 singular fiber

I
ns(012)
3 : (3, 2, 0, 2, 0, 0, 0, 0) . (4.17)
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Recalling the split/non-split monodromy distinction in Tate’s algorithm, we see only two

components in this singular fiber. One of the fiber curves decomposes when the component

of the discriminant, s26,0 − 4s3,0s8,0 has the form of a perfect, non-zero square.

The second non-general solution to the five-term polynomial we consider here is found

by canonically setting s1,2 = 0, and then the five term polynomial reduces to

P |(s1,2=0) = s22,1s8,0 − s2,1s6,0s5,1 + s25,1s3,0 . (4.18)

We notice that we cannot set s3,0 to zero because we are in the z - s3 part of the algorithm

(and by Z2 symmetry we cannot set to zero s8,0 either). Moreover we just considered the

canonical solution given by setting s2,1 = s5,1 = 0. We are then left with imposing the

non-canonical solution given in appendix A

s2,1 = σ1σ2 , s5,1 = σ1σ3 , s8,0 = σ3σ4 , s3,0 = σ2σ5 , s6,0 = σ2σ4 + σ3σ5 . (4.19)

The resulting singular fiber is then an I
s(012)
3,nc

I
s(012)
3,nc :

{
(3, 1, 0, 1, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

}
. (4.20)

4.3.2 Polynomial enhancement in the z | s3 branch

The other relevant details we will provide concern enhancements from the singular I
(01|2)
2

which has vanishing orders (1, 1, 1, 0, 0, 0, 0, 0). The discriminant contains a seven-term

polynomial

P = s23,1s
2
5,0 + s7,0(s

2
2,1s5,0 − s1,1s2,1s6,0 + s21,1s7,0)+

+ s3,1(−s2,1s5,0s6,0 + s1,1(s
2
6,0 − 2s5,0s7,0)) .

(4.21)

Since a generic solution is not known for this polynomial, we again take advantage of a

simple canonical solution given by s1,1 = s2,1 = s3,1 = 0. We see that z4 | ∆ and we

observe a singular I
ns(01||2)
4

I
ns(01||2)
4 : (2, 2, 2, 0, 0, 0, 0, 0) . (4.22)

As in the previous case, we notice that the component of the discriminant s26,0 − 4s5,0s7,0
provides the condition for the split/non-split distinction. If this quantity is a perfect,

non-zero square, then applying the solution given in appendix A we have a split I
s(01||2)
4,nc

I
s(01||2)
4,nc :

{
(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ1σ3, σ1σ2 + σ3σ4, σ2σ4,−,−]

}
. (4.23)

As in the previous subsection, we notice that if we only require s1,1 = 0 the seven term

polynomial reduces to the usual three-term one

P |(s1,2=0) = s5,0(s
2
3,1s5,0 − s3,1s6,0s2,1 + s22,1s7,0) . (4.24)
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Figure 3. The I4 singular fibers and the decorations detailing where the rational sections can

intersect. The fibers shown are I
(ijk)
4 , I

(ij|k)
4 , I

(ij||k)
4 and I

(i|j|k)
4 fibers.

The solution involving setting s5,0 to zero in addition to s1,2 would give the fibration defined

by the vanishing orders (2, 1, 1, 1, 0, 0, 0, 0) which is an I
s(01|2)
3 fiber

I
s(01|2)
3 : (2, 1, 1, 1, 0, 0, 0, 0) . (4.25)

We can also apply the non-canonical solution of appendix A to the three-term component

s2,1 = σ1σ2 , s3,1 = σ1σ3 , s7,0 = σ3σ4 , s5,0 = σ2σ5 , s6,0 = σ2σ4 + σ3σ5 . (4.26)

Upon substitution we find an I
s(01|2)
3,nc singular fiber

I
s(01|2)
3,nc :

{
(2, 1, 1, 0, 0, 0, 0, 0)

[−, σ1σ2, σ1σ3, σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−,−]

}
. (4.27)

4.4 Enhancements from ordz(∆) = 3

We now proceed to consider enhancements of the discriminant starting from the fibers

with ordz(∆) = 3, listed in table 1, and we report here the cases that deserve mention due

to some peculiarity. In particular we will consider distinctions between split and non-split

singular fibers and an instance where we will need to consider the structure of the algorithm

in order not to reproduce singular fibers already obtained.

4.4.1 Split/non-split distinction

We recall that in the previous section we found an I
ns(012)
3 singular fiber and we now

determine the enhancements of this fiber. The discriminant takes the form

∆ = s1,3s3,0s8,0(s
2
6,0 − 4s3,0s8,0)(s

2
7,0s8,0 − s6,0s7,0s9,0 + s3,0s

2
9,0)z

3 +O(z4) . (4.28)

The simple enhancement s1,3 = 0 will produce an I
ns(012)
4 singular fiber

I
ns(012)
4 : (4, 2, 0, 2, 0, 0, 0, 0) . (4.29)

As already observed, the discriminant component s26,0 − 4s3,0s8,0 indicates that when this

quantity is a perfect, non-zero square, we obtain the split version of the singular fiber.

Applying the solution in appendix A we then find the singular I
s(012)
4,nc

I
s(012)
4,nc :

{
(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ1σ3,−, σ1σ2 + σ3σ4,−, σ2σ4,−]

}
. (4.30)
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Figure 4. The IV fibers. We denote by the blue nodes the components of the fiber which are

intersected by the sections. In the order, the fiber shown are IV (ijk), IV (i|jk) and IV (i|j|k) fibers.

Another instance where the split/non-split distinction arises is in the case of type IV

fibers. Consider the singular III
(012)
nc listed in table 1. This has discriminant

∆ = µ6σ3σ8(s5,1σ3 − s2,1σ8)(s9,0σ3 − s7,0σ8)z3 +O(z4) . (4.31)

We remark that this was obtained in the algorithm by an application of the non-canonical

solution to s26,0 − 4s3,0s8,0 = 0 and therefore σ3 and σ8 are coprime. Enhancing the dis-

criminant by solving non-canonically the first of the two-term polynomials requires setting

s5,1 = ξ1ξ2, σ3 = ξ3, s2,1 = ξ1ξ3, σ8 = ξ2 . (4.32)

Where coprimality of (σ3, σ8) was used in order to set ξ4 = 1. The singular fiber corre-

sponding to this enhancement is a type IV
ns(012)
nc2

IV
ns(012)
nc2

:

{
(2, 1, 0, 1, 0, 0, 0, 0)

[−, ξ1ξ3, µξ23 , ξ1ξ2, 2µξ2ξ3,−, µξ22 ,−]

}
. (4.33)

Then the discriminant indicates the quantity that needs to be a perfect square in order for

the fiber to become a split type IV
s(012)
nc3

. This is ξ21 − 4µs1,2, and applying the solution in

appendix A we find

IV
s(012)
nc3

:

{
(2, 1, 0, 1, 0, 0, 0, 0)

[δ2δ4, ξ3(δ1δ2 + δ3δ4), δ1δ3ξ
2
3 , ξ2(δ1δ2 + δ3δ4), 2δ1δ3ξ2ξ3,−, δ1δ3ξ22 ,−]

}
.

(4.34)

4.4.2 Commutative enhancement structure of the algorithm

We consider enhancements from the III
(1|02)
nc2

fiber type. This was found by applying twice

the solutions in appendix A. Schematically

I
(012)
1 −→ I

(1|02)
2,nc −→ III

(1|02)
nc2

. (4.35)

Noting that in the last step a coprimality condition had to be imposed, the discriminant

of this singular fiber takes the form

∆ = (s31,1ξ
6
2ξ

6
3ξ

6
4)z3 +O(z4) . (4.36)
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Figure 5. The I5 singular fibers. The possible intersections of the sections with the singular fibers

are denoted by the positions of the blue nodes. The fibers shown in the first row are I
(ijk)
5 , I

(ij|k)
5

and I
(ij||k)
5 , whereas the fibers shown in the second row are, respectively, I

(i|j|k)
5 and I

(i|j||k)
5 .

We see that requiring the vanishing of any of the ξi would imply setting to zero two

among s7,0, s9,0, s3,0, s8,0, but we are not allowing the vanishing of any of the those sections

to remain in our lop equivalence class or because we are in the z - s3 branch of the

algorithm. Moreover, we have considered the case s1,1 = 0 in another part of the algorithm

(specifically in going I
(012)
1 → I

(012)
2 ). We can therefore conclude that all the enhancements

would just reproduce singular fibers found in other parts of the algorithm. The order in

which the enhancements are carried out is of no importance, but it is crucial, in particular

with non-canonical fibers, to keep track of which enhancements would reproduce fiber

types already obtained.

4.5 Enhancements from ordz(∆) = 4

In this section we will proceed with the algorithm by again mentioning only enhancements

which require comment. In particular we will deal with the structure of obstructions to full

generality due to the complexity of polynomials in the discriminant, we will encounter the

distinction between split and semi-split fibers for I∗0 and we will provide details for one of

the I5,nc3 , obtained by solving non-canonically polynomials in the discriminant three times.

4.5.1 Obstruction from polynomial enhancement

At vanishing order of the discriminant ordz(∆) = 4 we find again the two obstructions

to full generality encountered at ordz(∆) = 2, i.e. the same five-term and seven-term

polynomials. These come up respectively in the discriminant of the singular fibers I
ns(012)
4

and I
ns(01||2)
4 , and will in fact be present at every even vanishing order in the discriminants

of I
ns(012)
2n and I

ns(01|n2)
2n . We therefore review the singular fibers that we obtain from the

enhancements. More details can be found in section 4.3.
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The discriminant of the singular fiber I
ns(012)
4 : (4, 2, 0, 2, 0, 0, 0, 0) contains a compo-

nent

∆ ⊃ P = s8,0s
2
2,2 − s5,2s6,0s2,2 + s1,4s

2
6,0 + s3,0

(
s25,2 − 4s1,4s8,0

)
. (4.37)

As in section 4.3 we consider two specific solutions. The first one consists of setting

s1,4 = s2,2 = s5,2 = 0. This gives the singular fiber I
ns(012)
5

I
ns(012)
5 : (5, 3, 0, 3, 0, 0, 0, 0) . (4.38)

Upon imposing the perfect square condition s26,0 − 4s3,0s8,0 = p2 we find the singular fiber

I
s(012)
5 . Alternatively, we set s1,4 = 0 and we solve non-canonically, as in appendix A, the

resulting three-term polynomial polynomial

P |(s1,4=0) = s22,2s8,0 − s2,2s6,0s5,2 + s25,2s3,0 . (4.39)

This gives the non-canonical singular fiber I
s(012)
5,nc

I
s(012)
5,nc :

{
(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

}
. (4.40)

The second obstruction that we encounter is, again, the seven-term polynomial in the

discriminant of the singular I
ns(01||2)
4

∆ ⊃ P = s23,2s
2
5,0 + s7,0(s

2
2,2s5,0 − s1,2s2,2s6,0 + s21,2s7,0)+

+ s3,2(−s2,2s5,0s6,0 + s1,2(s
2
6,0 − 2s5,0s7,0)) .

(4.41)

The canonical solution that we consider requires s1,2 = s2,2 = s3,2 = 0. This gives a

singular I
ns(01|||2)
6

I
ns(01|||2)
6 : (3, 3, 3, 0, 0, 0, 0, 0) . (4.42)

The split version I
s(01|||2)
6 is found upon imposing that s26,0− 4s5,0s7,0 is a perfect, non-zero

square. We can also consider the solution where s1,2 = 0 and the three-term polynomial

component of the resulting polynomial is solved non-canonically. This enhancement now

produces an I
s(01||2)
5,nc , but this is just a non-generic specialization of one of the I

s(01||2)
5,nc2

fibers

also found in the algorithm and so we do not consider it further.

4.5.2 Split/semi-split distinction

The split/semi-split distinction arises for singular fibers of Kodaira type I∗0 . The example

we provide concerns the possible enhancement of the canonical type IV s(01|2), which was

found schematically by

I
(01|2)
2 −→ I

s(01|2)
3 −→ IV s(01|2) . (4.43)

The discriminant takes a rather simple form

∆ = s2,1s7,0s8,0z
4 +O(z5) . (4.44)
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The enhancement we will consider here is when s2,1 = 0. As a consequence z2 | s2 and

z6 | ∆. This way we have found the semi-split I
∗ss(01|2)
0

I
∗ss(01|2)
0 : (2, 2, 1, 1, 1, 0, 0, 0) . (4.45)

In order for one of the curves of the I
∗ss(01|2)
0 to split into two separate non-intersecting

components, we need to satisfy a perfect square condition for the quantity s25,1 − 4s1,2s8,0.

Following appendix A we find the split I
∗s(01|2)
0,nc

I
∗s(01|2)
0,nc :

{
(2, 2, 1, 1, 1, 0, 0, 0)

[σ1σ3,−,−, σ1σ2 + σ3σ4,−,−, σ2σ4,−]

}
. (4.46)

4.5.3 A thrice non-canonical I5

In this section we provide details for an I
s(0|1||2)
5,nc3

. This singular fiber is observed in the

algorithm by schematically enhancing

I
(01|2)
2 −→ I

s(0|1|2)
3,nc −→ I

s(0|1|2)
4,nc2

−→ I
s(0|1||2)
5,nc3

. (4.47)

All the three arrows represent non-canonical enhancements. In particular enhancing from

I
(01|2)
2 to I

s(0|1|2)
3,nc requires solving a three-term polynomial present in the discriminant. This

is ∆ ⊃ (s28,0s7,0 − s8,0s6,0s9,0 + s29,0s5,0), which is solved by requiring

s8,0 = σ1σ2, s9,0 = σ1σ3, s7,0 = σ3σ4, s5,0 = σ2σ5, s6,0 = σ2σ4 + σ3σ5 . (4.48)

Note that this solution implies that (σ2, σ3) are coprime. This gives an I
s(0|1|2)
3,nc . Looking at

the discriminant of this singular fiber we see that one of the components is ∆ ⊃ (σ23s1,1 −
σ2σ3s2,1 + σ22s3,1). We apply again the same solution to this three-term polynomial

σ3 = ξ2, σ2 = ξ3, s1,1 = ξ3ξ4, s3,1 = ξ2ξ5, s2,1 = ξ2ξ4 + ξ3ξ5 . (4.49)

Where we used that (σ2, σ3) are coprime to set ξ1 = 1. We have now enhanced the singular

fiber to an I
s(0|1|2)
4,nc2

. To obtain the thrice non-canonical I5 we now consider the two-term

polynomial contained in the discriminant at fourth order: ∆ ⊃ (σ4ξ4 − σ5ξ5). Applying

the non-canonical solution in appendix A

σ4 = δ1δ2, ξ4 = δ3δ4, σ5 = δ1δ3, ξ5 = δ2δ4 . (4.50)

We have now reached the singular fiber I
s(0|1||2)
5,nc3

I
∗s(0|2||1)
5,nc3

:

{
(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ3, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

}
.

(4.51)
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5 U(1) charges of SU(5) fibers

In section 4 a variety of different, canonical and non-canonical, I5 type singular fibers

were found, and are listed in table 3. As elliptic fibrations with SU(5) singular fibers

are phenomenologically interesting in this section the U(1) charges of the matter loci are

determined for the I5 fibers obtained, which lie in the chosen lop-equivalence class. The

U(1) charges are calculated from the intersection number of the matter curve with the

Shioda mapped rational section, as explained in section 3.3. For the canonical I5 singular

fibers we find, as expected, the same results that were found from the study of toric tops.

Details of the relationship between the canonical models and the SU(5) top models and

their charges as found in [38] are given. In the algorithm a number of non-canonical models

which, as far as the authors are aware have not been seen before, were found, some of which

can realize two or three distinctly charged 10 matter curves, potentially a desirable feature,

also some models realize as many as seven differently charged 5 matter curves, which are

of some interest in light of the phenomenological study in [33].

5.1 Canonical I5 models

The U(1) charges of the canonical models are found in table 5. Models with these particular

U(1) charges are well-studied in the literature. In this subsection we provide a short

comparison to the known toric constructions from tops [43] , which were constructed with

two extra sections in [30, 34, 36, 38].

The toric tops as extracted from [38] are also given by vanishing orders of the coeffi-

cients of the cubic polynomial (2.1) and are related to what we called canonical models.

In order to see this we need to perform a series of lop transformations to bring them to

the equivalence class of singular fibers considered in this paper. Section 3.2 contains the

details of the lop transformations. All the tops were found as part of the algorithm and

exhaust the canonical models. The U(1) charges of the matter content matched the results

found here identically for what was called tops 1 and 2, whereas for tops 3 and 4 a different

linear combination of the U(1) charges was used. The details of this linear combination

are given in terms of our choice of U(1) generators.

In table 6 the tops are listed with the numbering and vanishing orders as in appendix

A of [38](polygon 5), the lop equivalent models as found in Tate’s algorithm and details

for the linear combination of the U(1) charges for top 3 and top 4.

5.2 Non-canonical I5 models

Listed in tables 8, 9 and 10 are the U(1) charges of the, respectively once, twice, and thrice,

non-canonical I5 models found in the algorithm. The U(1) charge generators are given by

the Shioda map, as described in section 3.3, where the zero-section of the fibration corre-

sponds to the divisor l1 = 0 after the P2 fibration ambient space has been blown up into

dP2. As opposed to the canonical models the majority of the models tabulated in this sec-

tion were previously unknown. Some of these models appear to have interesting properties

for phenomenology, such as the above noted multiple differently charged 10 and 5 curves.
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Fiber Model Matter Locus Matter

I
s(0|1||2)
5 (2, 2, 2, 1, 0, 0, 1, 0)

s1,2

s6,0

s7,0

s9,0

s6,0s8,1 − s5,1s9,0
s3,2s

2
6,0 − s2,2s6,0s7,0 + s1,2s

2
7,0

53,1 ⊕ 5−3,−1

101,2 ⊕ 10−1,−2

53,−4 ⊕ 5−3,4

53,6 ⊕ 5−3,−6

5−2,1 ⊕ 52,−1

5−2,−4 ⊕ 52,4

I
s(01||2)
5 (3, 2, 2, 1, 0, 0, 0, 0)

s6,0

s7,0

s8,0

s1,3s6,0 − s2,2s5,1
s3,2s6,0 − s2,2s7,0
s6,0s9,0 − s7,0s8,0

10−1,0 ⊕ 101,0

52,−1 ⊕ 5−2,1

5−3,−1 ⊕ 53,1

52,0 ⊕ 5−2,0

5−3,0 ⊕ 53,0

52,1 ⊕ 5−2,−1

I
s(0|1|2)
5 (3, 2, 1, 1, 0, 0, 1, 0)

s3,1

s6,0

s7,0

s9,0

s5,1s9,0 − s6,0s8,1
s3,1s

2
5,1 − s2,2s5,1s6,0 + s1,3s

2
6,0

5−3,1 ⊕ 53,−1

10−1,2 ⊕ 101,−2

52,−4 ⊕ 5−2,4

52,6 ⊕ 5−2,−6

52,1 ⊕ 5−2,−1

5−3,−4 ⊕ 53,4

I
s(01|2)
5 (4, 2, 1, 2, 0, 0, 0, 0)

s3,1

s6,0

s7,0

s8,0

s6,0s9,0 − s7,0s8,0
s1,4s

2
6,0 − s2,2s5,2s6,0 + s22,2s8,0

54,0 ⊕ 5−4,0

10−2,0 ⊕ 102,0

5−1,1 ⊕ 51,−1

54,1 ⊕ 5−4,−1

5−1,−1 ⊕ 51,1

5−1,0 ⊕ 51,0

Table 5. U(1) charges of the canonical I5 models from table 3.

Top Fiber Vanishing Orders Lop-equivalent model U(1) Linear Combination

Top 1 I
s(0|1|2)
5 (2, 2, 2, 0, 0, 1, 0, 0) (3, 2, 1, 1, 0, 0, 1, 0) -

Top 2 I
s(0|1||2)
5 (1, 2, 3, 0, 0, 1, 0, 0) (2, 2, 2, 1, 0, 0, 1, 0) -

Top 3 I
s(01||2)
5 (1, 1, 2, 0, 0, 2, 0, 0) (3, 2, 2, 1, 0, 0, 0, 0)

u1 = −w1

u2 = 1
5(w2 − w1)

Top 4 I
s(01|2)
5 (1, 1, 1, 0, 0, 2, 0, 1) (4, 2, 1, 2, 0, 0, 0, 0)

u1 = −w1

u2 = 1
5(w2 − w1)

Table 6. The lop-equivalent models of the four tops from [38]. The linear combination of the U(1)

charges gives the charges found in table 5, u1 and u2, in terms of the U(1) charges of the top model,

w1 and w2. The reason the charges of tops 3 and 4 differ is because the lop translation involves the

Z2 symmetry, which exchanges two of the marked points.
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Top Model Fiber Vanishing Orders Lop-equivalent Model

Top 1 I
(0|1|2)
4 (1, 1, 2, 0, 0, 1, 0, 0) (2, 1, 1, 1, 0, 0, 1, 0)

Top 2 I
(01||2)
4 (0, 1, 2, 0, 0, 2, 0, 0) (2, 2, 2, 1, 0, 0, 0, 0)

Top 3 I
(01|2)
4 (1, 1, 1, 0, 0, 1, 0, 1) (3, 2, 1, 1, 0, 0, 0, 0)

Top 4 I
(01||2)
4 (0, 1, 2, 0, 0, 1, 0, 1) (2, 2, 2, 1, 0, 0, 0, 0)

Top 5 I
(01|2)
4 (0, 0, 1, 0, 0, 2, 0, 1) (3, 2, 1, 1, 0, 0, 0, 0)

Table 7. The SU(4) tops associated to polygon 5 in appendix B of [38] are related to the canonical

I4 models listed in table 2 by lop-equivalence.

While Tate’s algorithm provides a generic procedure there are some caveats that were

introduced in the application of it studied in this paper. There are situations where we were

not able to solve for the enhancement locus in the discriminant to a reasonable degree of

generality. In these cases we have sometimes, as discussed in section 4, used a less generic

solution where it was obtainable in such a way that it did not lead to obvious irregularities

with the model. In cases where no such solution was obtained we have left that particular

subbranch of the Tate tree unexplored.

Throughout the application of Tate’s algorithm the fibrations have remained inside

the chosen lop-equivalence class and so each each model in these tables then represents an

entire lop-orbit of fibrations. The Z2 symmetry which acts inside this orbit interchanges

two of the three marked points of the fibration, which correspond, in the dP2 hypersurface,

to the exchange of l1 and l2. As the U(1) charges are computed from a Shioda map where

the zero-section is taken to be l1 = 0 the U(1) charges are rewritten as a linear combination

under this symmetry in an identical manner to the linear combinations occurring in the

tops in table 6.

One may point out the surprising paucity of non-minimal matter loci in these models

with highly specialised coefficients. In the fibrations which are at least twice non-canonical

there can occur polynomial enhancement loci where some of the terms in the solutions

(as given in appendix A) are fixed by a coprimality condition coming from a previously

solved polynomial. Were these terms not fixed to unity by the algorithm then they would

contribute non-minimal loci to the fibrations.

In [30, 38] there were listed tops corresponding to an SU(4) non-abelian singularity

with two additional rational sections, and it was noted that one expects multiple 10 matter

curves where these tops are specialized with some non-generic coefficients of the defining

polynomial, and such a model, which realizes multiple 10 curves, was constructed there

from the SU(4) tops. Included in table 7 are the relations (via the lops) between these

SU(4) tops and the SU(4) canonical models which underlie the once non-canonical SU(5)

models obtained in the algorithm. Note that for SU(4) top 4 is lop equivalent to top 2 and

top 5 is lop equivalent top 3, and their U(1) charges, as listed in appendix B of [38], can

be written as a linear combination of the lop-equivalent model.
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Fiber Model Matter Locus Matter

I
s(0|1||2)
5

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

σ1

σ3

σ4

σ2σ4 − σ3σ5

(B.1)

(B.2)

(B.3)

5−3,−6 ⊕ 53,6

52,−6 ⊕ 5−2,6

5−3,4 ⊕ 53,−4

10−1,−2 ⊕ 101,2

5−3,−1 ⊕ 53,1

52,−1 ⊕ 5−2,1

52,4 ⊕ 5−2,−4

I
s(0|1|2)
5

(2, 1, 1, 1, 0, 0, 1, 0)

[σ1σ3, σ1σ2,−, σ3σ4, σ2σ4,−,−,−]

σ2

σ4

s7,0
s9,0

σ4s3,1 − σ1s7,0
σ2s8,1 − σ3s9,0

(B.4)

101,−2 ⊕ 10−1,2

101,3 ⊕ 10−1,−3

5−2,4 ⊕ 52,−4

5−2,−6 ⊕ 52,6

53,−1 ⊕ 5−3,1

53,4 ⊕ 5−3,−4

5−2,−1 ⊕ 52,1

I
s(0|1||2)
5

(2, 1, 1, 1, 0, 0, 1, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

σ2

σ3

σ4

s9,0
σ4s1,2 − σ1s5,1

σ2σ4s8,1 − s5,1s9,0
(B.5)

10−1,−2 ⊕ 101,2

5−3,4 ⊕ 53,−4

10−1,3 ⊕ 101,−3

5−3,−6 ⊕ 53,6

5−3,−1 ⊕ 53,1

52,4 ⊕ 5−2,−4

52,−1 ⊕ 5−2,1

I
s(1|0|2)
5

(3, 2, 1, 1, 0, 0, 0, 0)

[−,−,−,−, σ1σ2, σ1σ3, σ2σ4, σ3σ4]

σ1

σ2

σ3

σ4

s3,1
(B.6)

(B.7)

10−2,2 ⊕ 102,−2

103,2 ⊕ 10−3,−2

5−1,6 ⊕ 51,−6

54,6 ⊕ 5−4,−6

54,1 ⊕ 5−4,−1

5−1,1 ⊕ 51,−1

5−1,−4 ⊕ 51,4

I
s(01|2)
5

(3, 2, 1, 1, 0, 0, 0, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3,−,−,−]

σ1

σ3

σ4

s7,0
s8,0

σ1σ3s9,0 − s7,0s8,0
(B.8)

102,0 ⊕ 10−2,0

10−3,0 ⊕ 103,0

5−4,0 ⊕ 54,0

51,−1 ⊕ 5−1,1

5−4,−1 ⊕ 54,1

51,1 ⊕ 5−1,−1

51,0 ⊕ 5−1,0

I
s(1|02)
5

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

σ1

σ2

σ3

σ4

σ5

σ2σ4 − σ3σ5

(B.9)

(B.10)

50,6 ⊕ 50,−6

51,6 ⊕ 5−1,−6

5−1,1 ⊕ 51,−1

51,1 ⊕ 5−1,−1

5−1,−4 ⊕ 51,4

100,2 ⊕ 100,−2

50,−4 ⊕ 50,4

50,1 ⊕ 50,−1

I
s(012)
5

(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

σ2

σ3

σ4

σ5

σ2σ4 − σ3σ5

σ3s7,0 − σ2s9,0
σ4s7,0 − σ5s9,0

(B.11)

5−1,0 ⊕ 51,0

51,1 ⊕ 5−1,−1

5−1,−1 ⊕ 51,1

51,0 ⊕ 5−1,0

100,0 ⊕ 100,0

50,−1 ⊕ 50,1

50,1 ⊕ 50,−1

50,0 ⊕ 50,0

Table 8. U(1) charges of the once non-canonical I5 models from table 3.
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I
s(01||2)
5

(2, 2, 2, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ3ξ3, σ2ξ3 + σ3ξ2, σ2ξ2,−,−]

ξ2

σ2

σ2ξ3 − σ3ξ2

σ2ξ4 − σ3ξ5

ξ2s8,0 − ξ3s9,0
σ2s8,0 − σ3s9,0

(B.12)

53,−1 ⊕ 5−3,1

5−2,1 ⊕ 52,−1

101,0 ⊕ 10−1,0

53,0 ⊕ 5−3,0

53,1 ⊕ 5−3,−1

5−2,−1 ⊕ 52,1

5−2,0 ⊕ 52,0

I
s(0|1||2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

ξ2

ξ3

ξ4

σ4

(B.13)

(B.14)

(B.15)

52,−6 ⊕ 5−2,6

10−1,−2 ⊕ 101,2

5−3,−6 ⊕ 53,6

10−1,3 ⊕ 101,−3

52,−1 ⊕ 5−2,1

5−3,−1 ⊕ 53,1

52,4 ⊕ 5−2,−4

I
s(01||2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[ξ3ξ4, σ2ξ3, σ3ξ3, ξ2ξ4 + ξ3ξ5, σ2ξ2, σ3ξ2, ξ2ξ5,−]

ξ2

ξ5

σ2

σ3

ξ2ξ5σ2 − σ3s9,0

(B.16)

(B.17)

101,1 ⊕ 10−1,−1

53,1 ⊕ 5−3,−1

5−2,1 ⊕ 52,−1

101,0 ⊕ 10−1,0

5−2,−1 ⊕ 52,1

53,0 ⊕ 5−3,0

5−2,0 ⊕ 52,0

I
s(1|0|2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ3ξ1ξ3,−, σ2σ4 + σ3ξ1ξ2, σ2ξ1ξ3, ξ3ξ4, σ2ξ1ξ2, ξ2ξ4]

ξ1

ξ2

ξ3

ξ4

σ2

ξ3ξ4σ3 − σ2s3,1

(B.18)

(B.19)

103,2 ⊕ 10−3,−2

54,6 ⊕ 5−4,−6

10−2,2 ⊕ 102,−2

5−1,6 ⊕ 51,−6

10−2,−3 ⊕ 102,3

54,1 ⊕ 5−4,−1

5−1,−4 ⊕ 51,4

5−1,1 ⊕ 51,−1

I
s(0|2||1)
5

(1, 1, 1, 1, 0, 0, 1, 0)

[ξ2ξ3ξ5ξ6, ξ3ξ6σ4 + ξ2ξ5σ3, σ3σ4,

ξ2ξ6ξ7 + ξ3ξ4ξ5, ξ1ξ2ξ3ξ6, ξ1ξ2σ3, ξ4ξ7, ξ1ξ3ξ4]

ξ1

ξ3

ξ4

ξ5

ξ6

ξ8

σ3

(B.20)

(B.21)

non-min

103,−1 ⊕ 10−3,1

54,2 ⊕ 5−4,−2

103,4 ⊕ 10−3,−4

103,4 ⊕ 10−3,−4

54,7 ⊕ 5−4,−7

54,−3 ⊕ 5−4,3

5−1,−3 ⊕ 51,3

5−1,2 ⊕ 51,−2

Table 9. U(1) charges of the twice non-canonical I5 models from table 3.
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I
s(0|1||2)
5

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4,

ξ3δ1δ4, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

δ1

δ2

ξ2

σ1

ξ2δ3 − ξ3δ2
(B.22)

(B.23)

(B.24)

101,−3 ⊕ 10−1,3

53,−4 ⊕ 5−3,4

5−2,6 ⊕ 52,−6

53,6 ⊕ 5−3,−6

101,2 ⊕ 10−1,−2

5−2,1 ⊕ 52,−1

53,1 ⊕ 5−3,−1

5−2,−4 ⊕ 52,4

Table 10. U(1) charges of the single thrice non-canonical I5 model from table 3.

6 Exceptional singular fibers

In this section the algorithm is continued up to the exceptional singular fibers. In determin-

ing the exceptional fibers we recall that the sections can only intersect the fiber components

of multiplicity one, which means that there is a very restricted number of singular fibers.

For what concerns the type IV ∗ singular fiber there are three different ways in

which the sections can intersect the multiplicity one components. These are the types

IV ∗(012), IV ∗(01|2) and IV ∗(0|1|2). As can be seen from figure 6 the three multiplicity one

components of the IV ∗ singular fiber appear symmetrically, and so sections separated by

a slash merely indicates that they do not intersect the same multiplicity one component.

Regarding the singular III∗ fibers, the possible ways the sections can intersect the

components restrict the range of singular fibers to III∗(012) and III∗(01|2). The different

singular fibers can be seen in figure 7.

Finally it is clear that the only type II∗ fiber one could find (since there is only one

multiplicity one component) is the II∗(012). This fiber is also shown in figure 7.

It was also possible to obtain the singular fibers corresponding to gauge groups G2 and

F4 which come from, respectively, the non-split singular fiber types I
∗ns(012)
0 and IV ∗ns(012).

Proceeding through these subbranchs of the Tate tree will involve the I∗n fibers corre-

sponding to Dynkin diagrams of D-type in the split case. There fibers are composed of a

chain of multiplicity two nodes with two multiplicity one nodes connected to each end of

the chain. As the rational sections can only intersect the multiplicity one nodes they are

constrained to lie of these outer legs. The notation of these fibers shall be (01) represents

two sections on the same leg, (0|1) represents two section intersecting two of the outer legs

attached to the same end of the chain, and (0||1) will represent two sections sitting on

multiplicity one component separated by the length of the chain.

6.1 Canonical enhancements to exceptional singular fibers

The starting point for the enhancements to the possible canonical exceptional singular

fibers is the I
∗ss(01|2)
0 : (2, 2, 1, 1, 1, 0, 0, 0). Recall that one of the fiber components will

split only if the condition s25,1 − 4s1,2s8,0 = p2 is satisfied for some p. The discriminant at
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Figure 6. The type IV ∗s fibers. The sections, which intersect the components of the IV ∗s fiber

represented by the blue nodes, are seen to intersect only the external, multiplicity one components.

Because of the S3 symmetry we write these as IV ∗s(ijk), IV ∗s(ij|k), and IV ∗s(i|j|k) respectively.

sixth order takes the form

∆ = s27,0s
2
8,0(s

2
5,1 − 4s1,2s8,0)(s1,2s

2
7,0 − s3,1s5,1s7,0 + s23,1s8,0)

2)z6 +O(z7) . (6.1)

First let z | s8 and the resulting fiber is of type I
s(0|2||1)
1 . The discriminant at seventh order

reads

∆ = s35,1s
3
7,0(s3,1s5,1 − s1,2s7,0)2s29,0z7 +O(z8) . (6.2)

Now let z2 | s5 and the first exceptional singular fiber is found; it is of type IV ∗(0|1|2)

IV ∗(0|1|2) : (2, 2, 1, 2, 1, 0, 1, 0) . (6.3)

This subbranch of the tree does not continue because the discriminant now takes the form

∆ = s1,2s7,0s9,0z
8 + O(z9) and the only possible enhancement that remains inside the

lop-equivalence class, the vanishing of s1,2, is a non-minimal enhancement.

Looking back at the I∗0 starting point, the discriminant can instead be enhanced by

letting the three-term polynomial vanish, through the canonical solution s1,2 = s3,1 = 0.

This gives an I
∗s(01||2)
1 singular fiber. The discriminant at seventh order takes the form

∆ = s22,2s
3
5,1s

5
7,0s

2
8,0z

7 +O(z8) . (6.4)

The discriminant is enhanced further by letting s5,1 = 0. This gives the second exceptional

singular fiber, that is a type IV ∗(01|2)

IV ∗(01|2) : (3, 2, 2, 2, 1, 0, 0, 0) . (6.5)

Proceeding in this subbranch, the discriminant now reads

∆ = s42,2s
4
7,0s

4
8,0z

8 +O(z9) . (6.6)

The only enhancement which is possible (as all the others are non-minimal enhancements)

is s2,2 = 0. The canonical excpetional singular fiber that arises from this enhancement is

III∗(01|2)

III∗(01|2) : (3, 3, 2, 2, 1, 0, 0, 0) . (6.7)

Every further enhancement in this subbranch is a non-minimal fibration.
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Figure 7. The type III∗ and II∗ fibers. Shown are the two type III∗(ijk) and III∗(ij|k) fibers

where the sections are distributed over the two multiplicity one components, and the single type

II∗(ijk) fiber, which has all three sections intersecting the single multiplicity one component.

6.2 Non-canonical enhancements to exceptional singular fibers

In this section the remaining exceptional fibers are obtained through non-canonical

enhancements of the discriminant. The starting point is the singular I
ns(012)
3 given by

the vanishing orders (3, 2, 0, 2, 0, 0, 0, 0). The discriminant contains ∆ ⊃ (s26,0 − 4s3,0s8,0).

Following appendix A it can be solved non-canonically to find a non-split I
∗ns(012)
0,nc

associated to gauge group G2

I
∗ns(012)
0,nc :

{
(3, 2, 0, 2, 0, 0, 0, 0)

[−,−, µσ23,−, 2µσ3σ8,−, µσ28,−]

}
. (6.8)

The next exceptional singular fiber is found through the following series of enhancements

I
∗ns(012)
0,nc

{s1,3,s2,2,s5,2=0}
−→ I

∗ns(012)
1,nc

P=0−→ IV
∗ns(012)
nc2

P = (σ28s3,1 − σ3σ8s6,1 + σ23s8,1) .
(6.9)

Where the non-canonical solution to the three-term polynomial was applied to find a

singular IV
∗ns(012)
nc2

with gauge group F4

IV
∗ns(012)
nc2

:

{
(4, 3, 0, 3, 0, 0, 0, 0)

[−,−, µξ22 + ξ2ξ5z,−, 2µξ2ξ3 + (ξ2ξ4 + ξ3ξ5)z,−, µξ23 + ξ3ξ4z,−]

}
.

(6.10)

It was also necessary to specialize terms linear in z in the expansion of the coefficients.

From this singular fiber the remaining two fiber types can be reached through

IV
∗ns(012)
nc2

s1,4=0
−→ III

∗(012)
nc2

Q=0−→ II
∗(012)
nc3

Q = (s5,3ξ2 − s2,3ξ3) .
(6.11)

The singular fibers obtained this way are type III
∗(012)
nc2

III
∗(012)
nc2

:

{
(5, 3, 0, 3, 0, 0, 0, 0)

[−,−, µξ22 + ξ2ξ5z,−, 2µξ2ξ3 + (ξ2ξ4 + ξ3ξ5)z,−, µξ23 + ξ3ξ4z,−]

}
.

(6.12)

and the singular fiber type II
∗(012)
nc3

II
∗(012)
nc3

:

{
(5, 3, 0, 3, 0, 0, 0, 0)

[−, δ1δ3, µδ23 + δ3ξ5z, δ1δ2, 2µδ2δ3 + (δ3ξ4 + δ2ξ5)z,−, µδ22 + δ2ξ4z,−]

}
.

(6.13)
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A Solving polynomial equations over UFDs

In this appendix details are included of how to solve polynomial equations in the sections

si given that they belong to a unique factorization domain [61]. These solutions were

repeatedly used in the algorithm to enhance the vanishing order of the discriminant. For

convenience a part of this section will be a summary of the details given in the appendix

A of [32], however there are polynomials specific to the case of two additional rational

sections and the derivation of the solution for these is provided here. For more details

on polynomial equations over UFDs that arise in the application of Tate’s algorithm the

reader is referred to appendix B of [46].

In [32] solutions were obtained for a three-term polynomial of the form

s21s2 − s1s3s4 + s23s5 = 0 . (A.1)

Four solutions were found, three of which involve setting pairs of terms to zero, which are

what we refer to as canonical solutions of the polynomials, and one other solution which we

refer to as the non-canonical solution. The canonical solutions were found to be the pairs

s1 = s3 = 0

s1 = s5 = 0

s2 = s3 = 0 .

(A.2)

The non-canonical solution is when

s1 = σ1σ2

s2 = σ3σ4

s3 = σ1σ3

s4 = σ2σ4 + σ3σ5

s5 = σ2σ5 ,

(A.3)

where σ2 and σ3 are coprime over this UFD.

The non-canonical solution of a two-term polynomial was also needed

s1s2 − s3s4 = 0 :


s1 = σ1σ2

s2 = σ3σ4

s3 = σ1σ3

s4 = σ2σ4 .

(A.4)

With this solution σ2 and σ3 are coprime, and so are σ1 and σ4.
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A.1 Two term polynomial

We now look at the polynomial

P = s21 − 4s2s3 . (A.5)

Setting P = 0 imposes the following conditions:

• There is an equality between the irreducible components of s21 and the product of the

irreducibles of s2 and s3.

• Write µ for the irreducible components common to all the three terms.

• Write σ1 for the irreducible components common to s1 and s2.

• Write σ2 for the irreducible components common to s1 and s3.

Note that no conclusion is drawn about irreducibles shared only by s2 and s3. Then the

most general solution takes the form

s21 − 4s2s3 = 0 :


s1 = 2µσ1σ2

s2 = µσ21

s3 = µσ22 .

(A.6)

Since µ is the greatest common divisor of s2 and s3 we have that σ1 and σ2 are coprime.

A.2 Perfect square polynomial

The first perfect square polynomial is given by

s21 − 4s2s3 = p2 . (A.7)

This can be reformulated as

(s1 + p) (s1 − p) = 4s2s3 , (A.8)

which can be solved in general by applying the solution of the two-term polynomial (A.4).

In this case, it reads
s1 − p = 2σ1σ2

s1 + p = 2σ3σ4

s2 = σ1σ3

s3 = σ2σ4 .

(A.9)

From the first two of these equations, one finds the generic form of s1

s1 = σ1σ2 + σ3σ4 . (A.10)

So the general solution to the perfect square condition is

s21 − 4s2s3 = p2 :


s1 = σ1σ2 + σ3σ4

s2 = σ1σ3

s3 = σ2σ4 .

(A.11)

It follows from the solution of (A.4) that σ2 and σ3 are coprime, as are σ1 and σ4.
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A.3 Three term polynomial

The three-term polynomial

P = s21s2s3 − s1s4s5 + s25s6 , (A.12)

appears in the algorithm. By imposing P = 0 it is seen that s1 | s25s6, since it divides the

other two terms in the equation. In the same way s5 | s21s2s3. Decompose s5 = σ1σ2 and

s1 = σ1σ3, where σ1 = (s1, s5) is the greatest common divisor of the two terms, so that σ2
and σ3 have no common irreducibles. Then the equation of the polynomial becomes

σ21(s6σ
2
2 − s4σ2σ3 + s2s3σ

2
3) = 0 . (A.13)

Applying the same reasoning it is now seen that σ3 | s6σ2, but since σ2 and σ3 have no

common irreducibles one can conclude that σ3 | s6. In the same way it can be deduced

that σ2 | s2s3. This can be expressed as

s6 = σ4σ3, s2s3 = κσ2 , (A.14)

where κ is some constant of proportionality. The two-term solution (A.4) can be applied

to the second of these equations to obtain

s2 = σ5σ6, s3 = σ7σ8, κ = σ5σ7, σ2 = σ6σ8 . (A.15)

Then the initial polynomial reduces to

σ21σ3σ6σ8(σ3σ5σ7 + σ4σ6σ8 − s4) = 0 , (A.16)

from which can be solved for s4. Then there is a non-canonical solution

s21s2s3 − s1s4s5 + s25s6 = 0 :



s1 = σ1σ3

s2 = σ5σ6

s3 = σ7σ8

s4 = σ3σ5σ7 + σ4σ6σ8

s5 = σ1σ6σ8

s6 = σ3σ4 ,

(A.17)

where the pairs (σ5, σ8), (σ6, σ7), and (σ3, σ6σ8) are all coprime. There are also four

different canonical solutions

σ1 = 0 : s1 = s5 = 0

σ3 = 0 : s1 = s6 = 0

σ6 = 0 : s2 = s5 = 0

σ8 = 0 : s3 = s5 = 0 .

(A.18)
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B Matter loci of SU(5) models

In this appendix we list the matter loci of the I5 fibers whose U(1) charges are studied in

section 5.
σ2
3s1,2 − σ2σ3s2,2 + σ2

2s3,2 (B.1)

σ2
4s1,2 − σ4σ5s2,2 + σ2

5s3,2 (B.2)

σ1(σ
2
3s5,1 − σ2σ3s6,1 + σ2

2s7,1)− (σ2σ4 − σ3σ5)(σ2s9,1 − σ3s8,1) (B.3)

σ2
3σ4(σ4s3,1 − σ1s7,0) + σ2

2(σ
2
4s1,3 − σ1σ4s5,2 + σ2

1s8,1)− σ2σ3(σ
2
4s2,2 − σ1σ4s6,1 + σ2

1s9,0) (B.4)

σ2
3σ4(σ4s1,2 − σ1s5,1) + σ2

2σ4(σ4s3,2 − σ1s7,1)− σ2σ3(σ
2
4s2,2 − σ1σ4s6,1 + σ2

1s9,0) (B.5)

σ2
1σ

2
2s1,3 − σ1σ2s2,2s5,1 + s3,1s

2
5,1 (B.6)

− σ1σ
2
3σ4s5,1 − σ2σ3(σ

2
4s3,1 − σ1σ4s6,1 + σ2

1s8,1) + σ1σ
2
2(−σ4s7,1 + σ1s9,1) (B.7)

σ2
1σ3(σ

2
3s1,4−σ2σ3s2,3+σ

2
2s3,2)+σ1(σ2σ4−σ3σ5)(σ

2
3s5,2−σ2σ3s6,1+σ

2
2s7,0)+σ3(σ2σ4−σ3σ5)

2s8,0 (B.8)

σ1(σ
2
2s3,1 − σ2σ3s6,1 + σ2

3s8,1)− (σ2σ4 − σ3σ5)(σ2s7,1 − σ3s9,1) (B.9)

(σ2σ4 − σ3σ5)
2s1,4 + σ2σ5s

2
2,2 − (σ2σ4 − σ3σ5)s2,2s5,2 + σ3σ4s

2
5,2 (B.10)

(σ2σ4 − σ3σ5)s1,5 − σ1(σ2σ4 − σ3σ5)(σ2s5,3 − σ3s2,3) + σ2
1(σ

2
3s3,1 − σ2σ3s6,1 + σ2

2s8,1) (B.11)

(ξ3σ2 − ξ2σ3)(ξ
2
2s1,3 − ξ2ξ3s2,3 + ξ23s3,3) + (ξ2ξ4 − ξ3ξ5)(ξ22s5,1 − ξ2ξ3s6,1 + ξ23s7,1) (B.12)

ξ3ξ4σ
2
1 − σ1σ4s5,1 + σ2

4s1,2 (B.13)

ξ22(σ1s5,1 − σ4s1,2) + ξ2ξ3(σ4s2,2 − σ1s6,1) + ξ23(σ1s7,1 − σ4s3,2) (B.14)

ξ22ξ4s5,1 + ξ2ξ3(σ4s8,1 − ξ4s6,1) + ξ23(ξ4s7,1 − σ4s9,1) (B.15)

ξ2(−ξ2σ2s2,2 + ξ2σ3s3,2 + ξ3σ2s6,1 − ξ3σ3s7,1)− ξ23σ2s9,0 (B.16)

ξ32(σ3s1,3 − ξ4s2,2) + ξ22ξ3(ξ5s2,2 − σ3s5,2 + ξ4s6,1) + ξ33ξ5s9,0 − ξ2ξ23(ξ5s6,1 − σ3s8,1 + ξ4s9,0) (B.17)

ξ1ξ
2
2ξ4s3,1 + ξ2ξ3(ξ

2
4σ4 − ξ1ξ4s6,1 + ξ21σ2s7,1) + ξ1ξ

2
3(ξ4s8,1 − ξ1σ2s9,1) (B.18)

(ξ1ξ2σ3−σ2σ4)
2s3,1+ξ3(ξ1ξ2σ3−σ2σ4)(ξ1σ2s2,2−ξ1σ3s6,1+ξ4σ3σ4)+ξ

2
1ξ

2
3(σ

2
2s1,3−σ2σ3s5,2+σ

2
3s8,1) (B.19)

ξ4ξ
3
6ξ

3
8σ4 − ξ3ξ26ξ28(ξ5ξ7σ4 − s1,2 + ξ4s6,1)

+ ξ23ξ6ξ8(ξ4ξ7ξ8σ3 − ξ5ξ6s5,2 + ξ5ξ7s6,1 + ξ4ξ5ξ6s9,1)− ξ23ξ5(ξ27ξ8σ3 − ξ5ξ26s8,2 + ξ5ξ6ξ7s9,1)
(B.20)

ξ33ξ4ξ7σ
3
3 − ξ5ξ36ξ8σ3σ

2
4 + ξ23ξ6(ξ

2
5ξ

2
6s3,2 + σ2

3(s1,2 − ξ4s6,1)− ξ5σ3(ξ7σ3σ4 + ξ6s2,2 − ξ4ξ6s7,1))
+ ξ3ξ

2
6σ4(ξ4ξ8σ

2
3 + ξ5(σ3s6,1 − ξ5ξ6s7,1))

(B.21)

δ1(ξ
2
2s1,2 − ξ2ξ3s2,2 + ξ23s3,2)− δ4(ξ22s5,1 − ξ2ξ3s6,1 + ξ23s7,1) (B.22)

ξ22(σ1s5,1 − δ1σ3s8,1) + ξ23(σ2s7,1 − δ1δ2s9,1) + ξ2ξ3(−σ1s6,1 + δ1δ2s8,1 + δ1δ3s9,1) (B.23)

δ2δ
2
4σ1(δ2ξ3 − δ3ξ2) + δ21(δ

2
2s1,2 − δ2δ3s2,2 + δ23s3,2)− δ1δ4(δ22s5,1 − δ2δ3s6,1 + δ23s7,1) (B.24)

C Resolution of generic singular fibers

In section 2 a table (table 4) of canonical forms for many of the different fiber types as

originally denoted by Kodaira was presented. In this section is is shown by explicitly

constructing the resolution that each of the forms is the stated fiber. Given the set of res-

olutions and the canonical vanishing orders, the resolved geometry is uniquely determined

and the form of the resolved geometry will not be written explicitly. For the Cartan divi-

sors the equations are given after the resolution process and they will intersect according

to the fiber type of the singularity under consideration.
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C.1 I
s(0|n1|m2)
2k+1 (n + m ≤ k)

The generic form for the singular I
s(0|n1|m2)
2k+1 is (2k+1−(n+m), k−n,m, k+1−m, 0, 0, n, 0),

provided that (m + n ≤ k). The resolution process involves several steps. First perform

the following blow ups

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i < min{k − n, k + 1−m} . (C.1)

If n 6= 0 then the following small resolutions can be applied

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n . (C.2)

Similarly if m 6= 0 the small resolutions,

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m , (C.3)

are possible. If both n 6= 0 and m 6= 0 we need to use both sets of resolutions are applied.

The next step depends on the sign of the quantity m − n − 1. We call ζmax the last

exceptional divisor introduced in the initial blow ups, and from now on the index will be

used as max = min{k − n, k + 1−m} If it is positive then the resolutions,

(y, ζmax;χ1), (y, χr;χr+1) 1 ≤ r < m− n− 1 , (C.4)

are used. Whereas if negative then the resolutions are

(x, ζmax; Ω1), (x,Ωr; Ωr+1) 1 ≤ r < −(m− n− 1) . (C.5)

If the term is exactly zero then we do neither set. Finally the process can be completed

with the resolutions

(y, ζs;ψs) 1 ≤ s < max . (C.6)

The Cartan divisors are listed, assuming that n−m− 1 > 0,

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0ζ1δ1 + l1s7,0ζ1ξ1

ζi<max s6,0x

ζmax xs6,0 + s5,k+1−mζmax−1

δj<m l2s6,0 + s7,0ζ1

δm l2ys6,0 + ys7,0ζ1ψ1 + s3,mζ
m
1 δm−1ψ

m−1
1

ξi<n l1s6,0 + s9,0ζ1

ξn l1xs6,0 + ζ1(xs9,0 + s8,0ζ
n−1
1 ξn−1)

χr<m−n−1 xs6,0 + s5,k+1−mζmax−1

χm−n−1
y(xs6,0 + s5,k+1−mζmax−1ψmax−1)+

+ζm−nmax−1ψ
m−n−1
max−1 (xs2,k−n + s1,2k+1−n−mζmax−1ψmax−1)χm−n−2

ψs<max s6,0y

Then the ordered set (z, ξ1, · · · , ξn, ζ1, · · · , ζmax, χ1, · · · , χm−n−1, ψmax, · · · , ψ1δm,

· · · , δ1) gives an I
s(0|n1|m2)
2k+1 fiber, where the divisors are listed in the canonical ordering

for the Dynkin diagram. One gets the analogous result when n−m− 1 < 0.
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C.2 I
s(0|n1|m2)
2k+1 (k < n + m ≤

⌊
2
3
(2k + 1)

⌋
)

The generic form for the singular fibers of type I
s(0|n1|m2)
2k+1 with section separation of the

formm+n ≤
⌊
2
3(2k + 1)

⌋
is given by (2k+1−(m+n),m,m, n, 0, 0, n, 0), where it is assumed

that m ≥ n. In order to resolve the geometry the following set of resolutions is used

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m

(x, δr;χr) 1 ≤ r ≤ m
(x, χm;ψ1), (x, ψs;ψs+1) 1 ≤ s < 2k − 2m− n .

(C.7)

Notice that the first three set of resolutions (together with z) produce 2m+ n+ 1 Cartan

divisors. The fourth set of resolutions is only necessary if 2k − 2m − n > 0. Then the

Cartan divisors in the most general case are

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0δ1 + l1s7,0ξ1

δ1 l2s6,0 + s7,0ξ1ξ
2
2 · · · ξnnχ1

δj<m l2s6,0 + s7,0χj−1χj

δm l2(ys6,0 + s2,mδm−1χm−1) + χm−1(ys7,0 + s3,mδm−1χm−1)χm

ξi<n l1s6,0 + s9,0δ1

ξn l1xs6,0 + xs9,0δ1χ1 + l1s5,nδ
n
1 ξn−1χ

n−1
1 + s8,nδ

n+1
1 ξn−1χ

n
1

χr<m xs6,0

χm ys6,0 + s2,mχm−1

ψs<2k−2m−n ys6,0 + s2,mχm−1

ψ2k−2m−n xys6,0 + xs2,mχm−1 + s1,2k+1−m−nψ2k−2m−n−1χ
n−1
m−1

The ordered set (z, ξ1, · · · , ξn, χ1, · · · , χm−1, ψ2k−2m−n, · · · , ψ1, χm, δm, · · · , δ1) gives

an I
s(0|n1|m2)
2k+1 singular fiber.

C.3 I
s(0|n1|m2)
2k (n + m ≤ k, m < k)

The generic form for the singular fiber of type I
s(0|n1|m2)
2k , where m + n ≤ k, is given by

(2k − (n+m), k − n,m, k −m, 0, 0, n, 0). The analysis follows closely that carried out for

I
s(0|n1|m2)
2k+1 where more details can be found. In order to resolve the geometry perform the

resolutions
(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i < min{k − n, k −m}

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m .

(C.8)

Then the sign of the quantity m − n and then use the according set of small resolutions,

where the index in ζmax again means the last exceptional divisor introduced in the blow
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ups, that is, max = min{k − n, k −m}

(y, ζmax;χ1), (y, χr;χr+1) 1 ≤ r < m− n
(x, ζmax; Ω1), (x,Ωr; Ωr+1) 1 ≤ r < −(m− n) .

(C.9)

Finally the resolution process is completed with

(y, ζs;ψs) 1 ≤ s < max . (C.10)

The Cartan divisors are, assuming m− n > 0,

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0ζ1δ1 + l1s7,0ζ1ξ1

ζi<max s6,0x

ζmax xs6,0 + s5,k−mζmax−1

δj<m l2s6,0 + s7,0ζ1

δm l2ys6,0 + ys7,0ζ1ψ1 + s3,0ζ
m
1 δm−1ψ

m−1
1

ξi<n l1s6,0 + s9,0ζ1

ξn l1xs6,0 + ζ1(xs9,0 + s8,nζ
n−1
1 ξn−1)

χr<m−n xs6,0 + s5,k−mζmax−1

χm−n
y(xs6,0 + s5,k−mζmax−1ψmax−1)+

+ζm−n+1
max−1 ψ

m−n
max−1(xs2,k−n + s1,2k−m−nζmax−1ψmax−1)χm−n−1

ψs<max s6,0y

Then the ordered set (z, ξ1, · · · , ξn, ζ1, · · · , ζmax, χ1, · · · , χm−n−1, ψmax, · · · , ψ1, δm,

· · · , δ1) gives an I
s(0|n1|m2)
2k+1 , and again analogously for m − n < 0. Notice that if m = k

and n = 0 the vanishing orders (k, k, k, 0, 0, 0, 0, 0) specify the singular fibers I
ns(01|n2)
2k as

listed in table 4. The k small resolutions that resolve the singularity are

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < k . (C.11)

The resolved geometry has k+ 1 Cartan divisors, k− 1 of which will split if s26,0− 4s5,0s7,0
is a perfect, non-zero, square.

C.4 I
s(0|n1|m2)
2k (n + m ≤

⌊
4
3
k
⌋
)

The generic form for the singular fibers of type I
s(0|n1|m2)
2k with section separation such that

m+n ≤
⌊
4
3k
⌋

is given by (2k− (m+n),m,m, n, 0, 0, n, 0), where it is assumed that m ≥ n.

In order to resolve the geometry the following set of resolutions is used

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m

(x, δr;χr) 1 ≤ r ≤ m
(x, χm;ψ1), (x, ψs;ψs+1) 1 ≤ s < 2k − 2m− n− 1 .

(C.12)
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Notice that the first three sets of resolutions produce 2m + n + 1 Cartan divisors. The

fourth set of resolutions is then necessary if 2k − 2m− n− 1 6= 0. The Cartan divisors in

the most general case are

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0δ1 + l1s7,0ξ1

δ1 l2s6,0 + s7,0ξ1ξ
2
2 · · · ξnnχ1

δj<m l2s6,0 + s7,0χj−1χj

δm l2(ys6,0 + s2,mδm−1χm−1) + χm−1(ys7,0 + s3,mδm−1χm−1)χm

ξi<n l1s6,0 + s9,0δ1

ξn l1xs6,0 + xs9,0δ1χ1 + l1s5,nδ
n
1 ξn−1χ

n−1
1 + s8,nδ

n+1
1 ξn−1χ

n
1

χr<m xs6,0

χm ys6,0 + s2,mχm−1

ψs<2k−2m−n−1 ys6,0 + s2,mχm−1

ψ2k−2m−n−1 xys6,0 + xs2,mχm−1 + s1,2k−m−nψ2k−2m−n−2χ
n−2
m−1

The ordered set (z, ξ1, · · · , ξn, χ1, · · · , χm−1, ψ2k−2m−n−1, · · · , ψ1, χm, δm, · · · , δ1) gives

an I
s(0|n1|m2)
2k type singular fiber.

C.5 I
ns(012)
2k+1

The generic form for I
ns(012)
2k+1 is (2k + 1, k + 1, 0, k + 1, 0, 0, 0, 0). The geometry is singular

at x = y = z = 0 and it can be resolved by performing a blow up (x, y, z; ζ1). This process

can be repeated k times, with the ith resolution being (x, y, ζi−1; ζi). The Cartan divisors

are then

Exceptional Divisor Fiber Equation

z l1wx(l1xs3,0 + l2ys6,0) + l22wy
2s8,0 + xy(l1xs7,0 + l2ys9,0)ζ1

ζi≤k x2s3,0 + xys6,0 + y2s8,0

It is easily seen by considering the projective relations introduced by the resolutions

the ordered set (z, ζ1, · · · , ζk) of Cartan divisors intersects in an I
ns(012)
2k+1 . Notice that if

s26,0 − 4s3,0s8,0 is a perfect square, each of the fiber components along {ζi = 0} splits into

two, thus giving the split version I
s(012)
2k+1 .

C.6 I
ns(012)
2k

The generic form for I
ns(012)
2k is (2k, k, 0, k, 0, 0, 0, 0). The singular geometry can be blown

up k times with the ith resolution being (x, y, ζi−1; ζi). The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1wx(l1xs3,0 + l2ys6,0) + l22wy
2s8,0 + xy(l1xs7,0 + l2ys9,0)ζ1

ζi<k x2s3,0 + xys6,0 + y2s8,0

ζk x2s3,0 + xys6,0 + y2s8,0 + ζk−1xs2,k + ζk−1ys5,ks1,2kζ
2
k−1
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The ordered set of (k + 1) Cartan divisors (z, ζ1, · · · , ζk) gives an I
ns(012)
2k . If, in addition,

s26,0− 4s3,0s8,0 is a perfect square the (k− 1) Cartan divisors along ζi split into two, giving

an I
s(012)
2k fiber.

C.7 I
∗s(0|1||2)
2k+1

The generic forms for the singular fibers of type I
∗s(0|1||2)
2k+1 are characterized by the vanishing

orders (k+2, k+2, k+1, 1, 1, 0, 1, 0). In order to resolve the geometry perform the resolutions

(x, y, z; ζ1), (z, ζ1; ζ2), (x, z; ζ3), (y, z; ζ4), (y, ζ2; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k .
(C.13)

The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1s7,0ζ3 + l2s9,0ζ4

ζ1 ys5,1

ζ2 s5,1zζ4 + xζ1(xs7,0ζ3 + s9,0ζ4δ1)

ζ3 xs9,0 + z(l1s5,1 + s8,1ζ2)

ζ4 ys7,0

δi≤2k s7,0ζ1 + s5,1ζ4

δ2k+1 y(s7,0ζ1 + s5,1ζ4) + ζk1 ζ
k
4 (s3,k+1ζ1 + s1,k+2ζ4)δ2k

The ordered set of divisors (z, ζ3, ζ2, δ1, · · · , δ2k+1, ζ1, ζ4) specifies an I
∗s(0|1||2)
2k+1 fiber in

the canonical ordering.

C.8 I
∗s(0|1||2)
2k

The generic forms for the singular fibers of type I
∗s(0|1||2)
2k+1 are given by the vanishing orders

(k + 2, k + 1, k + 1, 1, 1, 0, 1, 0). In order to resolve the geometry the following resolutions

are used
(x, y, z; ζ1), (z, ζ1; ζ2), (x, z; ζ3), (y, z; ζ4), (y, ζ2; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k − 1 .
(C.14)

The Cartan divisors are listed, where, as always, all coordinates that are constrained to be

non-zero by the projective relations have been scaled to one,

Exceptional Divisor Fiber Equation

z l1s7,0ζ3 + l2s9,0ζ4

ζ1 ys5,1

ζ2 s5,1zζ4 + xζ1(xs7,0ζ3 + s9,0ζ4δ1)

ζ3 xs9,0 + z(l1s5,1 + s8,1ζ2)

ζ4 ys7,0

δi<2k s7,0ζ1 + s5,1ζ4

δ2k ys7,0ζ1 + ys5,1ζ4 + s2,k+1ζ
k
1 ζ

k
4 δ2k−1

Then the ordered set (z, ζ3, ζ2, δ1, · · · , δ2k, ζ1, ζ4) is an I
∗s(0|1||2)
2k fiber.
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C.9 I
∗s(01||2)
2k+1

The standard forms for the I
∗s(01||2)
2k+1 type of singular fibers are given through the vanishing

orders (k+ 3, k+ 2, k+ 2, 1, 1, 0, 0, 0). In order to resolve the geometry use the resolutions

(x, y, z; ζ1), (y, z; ζ2), (ζ1, ζ2; ζ3), (y, ζ1; ζ4), (y, ζ3; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k .
(C.15)

The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2ζ2(l2ws8,0 + xs9,0ζ1ζ3)

ζ1 s5,1z + s8,0ζ4

ζ2 ys7,0

ζ3 s5,1zζ2 + ζ4(s7,0ζ1 + s8,0ζ2δ1)

ζ4 ys5,1

δi≤2k s7,0ζ4 + s5,1ζ2

δ2k+1 ys5,1ζ2 + ys7,0ζ4 + s2,k+2ζ
k+1
2 ζk4 δ2k

Then the ordered set (z, ζ1, ζ3, δ1, · · · , δ2k+1, ζ2, ζ4) intersects in an I
∗s(01||2)
2k+1 type fiber.

C.10 I
∗s(01||2)
2k

The generic forms for singular fibers of type I
∗s(01||2)
2k are given by the vanishing orders

(k + 2, k + 2, k + 1, 1, 1, 0, 0, 0). The geometry is non-singular after the resolutions

(x, y, z; ζ1), (y, z; ζ2), (ζ1, ζ2; ζ3), (y, ζ1; ζ4), (y, ζ3; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k − 1 .
(C.16)

The Cartan divisors after these resolutions take the form

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2ζ2(l2ws8,0 + xs9,0ζ1ζ3)

ζ1 s5,1z + s8,0ζ4

ζ2 ys7,0

ζ3 s5,1zζ2 + ζ4(s7,0ζ1 + s8,0ζ2δ1)

ζ4 ys5,1

δi<2k s7,0ζ4 + s5,1ζ2

δ2k y(s5,1ζ2 + s7,0ζ4) + ζk2 ζ
k−1
4 (s1,k+2ζ2 + s3,k+1ζ4)δ2k−1

The set of divisors (z, ζ1, ζ3, δ1, · · · , δ2k, ζ2, ζ4) then has the intersection structure of an

I
∗s(01||2)
2k fiber.
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C.11 I
∗ns(01|2)
2k+1

The generic forms for the singular fibers of type I
∗ns(01|2)
2k+1 are given by the vanishing orders

(2k + 3, k + 2, 1, k + 2, 1, 0, 0, 0). In order to resolve the geometry perform the resolutions

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i ≤ k
(y, z; δ1), (y, ζi; δi+1) 1 ≤ i ≤ k + 1

(ζj , δj ; ξj) 1 ≤ j ≤ k + 1

(ζk+1, δk+2;χ) .

(C.17)

The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2δ1(l2ws8,0 + xs9,0ζ1ξ1)

ζi≤k δi+1

δ1 s3,1z + ys7,0δ2

δk+2 x2s3,1 + xs2,k+2δk+1ξk+1 + s1,2k+3δ
2
k+1ξ

2
k+1

ξ1 s3,1zζ1 + (s7,0ζ1 + s8,0δ1)δ2

ξj≤k+1 s3,1ζj−1ζj + s8,0δjδj+1

χ s8,0δk+2 + ζk+1(x
2s3,1 + xs2,k+2ξk+1 + s1,2k+3ξ

2
k+1)

Then the set (z, δ1, ξ1, ζ1, ξ2, ζ2, · · · , ζk, ξk+1, χ, δk+2) is an I
∗ns(01|2)
2k+1 fiber. Notice that

if s22,k+2− 4s1,2k+3s3,1 is a perfect, non zero square then the Cartan divisor δk+2 splits into

two and the fiber is an I
∗s(01|2)
2k+1 .

C.12 I
∗ns(01|2)
2k

The standard forms for the singular fibers of type I
∗ns(01|2)
2k are expressed through the

vanishing orders (2k + 2, k + 2, 1, k + 1, 1, 0, 0, 0). The space is resolved by the following

sequence of resolutions

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i ≤ k
(y, z; δ1), (y, ζi; δi+1) 1 ≤ i ≤ k

(ζj , δj ; ξj) 1 ≤ j ≤ k + 1 .

(C.18)

The Cartan divisors in the resolved geometry are then

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2δ1(l2ws8,0 + xs9,0ζ1ξ1)

ζi≤k δi+1

ζk+1 y2s8,0 + ys5,k+1ζk + s1,2k+2ζ
2
k

δ1 s3,1z + ys7,0δ2

ξ1 s3,1zζ1 + δ2(s8,0δ1 + s7,0ζ1)

ξj≤k s3,1ζj−1ζj + s8,0δjδj+1

ξk+1 s3,1ζkζk+1 + (y2s8,0 + ys5,k+1ζk + s1,2k+2ζ
2
k)δk+1
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The ordered set (z, δ1, ξ1, ζ1, ξ2, ζ2, · · · , ζk, ξk+1, ζk+1) represents an I
∗ns(01|2)
2k fiber. We

note that if s25,k+2 − 4s1,2k+2s8,0 is a perfect, non-zero square then the Cartan divisor ζk+1

splits into two and the fiber is an I
∗s(01|2)
2k fiber.

D Determination of the cubic equation

In this appendix a non-singular elliptic curve with three marked points is constructed

following [75, 76] and it is embedded into the projective space P2. This non-singular elliptic

curve is then fibered over some arbitrary base, B3, to create a non-singular elliptic fibration.

Function Order

P Q R

1 0 0 0

x 1 1 0

y 1 0 1

xy 2 1 1

x2 2 2 0

y2 2 0 2

x2y 3 2 1

xy2 3 1 2

x3 3 3 0

y3 3 0 3

Begin by considering a genus one algebraic curve, X, with three marked divisors P , Q,

and R. The line bundle O(P +Q+R) is identified with the vector space of meromorphic

functions on X, with poles of at worst order one at the points P , Q, and R, and regular

elsewhere. The Riemann-Roch theorem for algebraic curves fixes the dimension of such

vector spaces. Any divisor in an algebraic curve X can be written as a formal sum over the

points of X: D =
∑

P∈X nPP , where nP = 0 for all by finitely many P . The Riemann-Roch

theorem then states that for any such divisor

dim O(D) = deg(D) + 1− g , (D.1)

where deg(D) is the sum over the nP associated to D. Thus it follows that the vector space

O(P +Q+ R) has dimension 3. Let the three generators of this space be denoted by the

functions 1, x, and y. We can determine the pole structure of these functions. Consider

first the vector space O(P ), which has dimension 1 for any P ∈ X, and which must contain

the one dimensional space of constant functions. As it has dimension 1 it can only contain

these holomorphic functions, and therefore there are no functions with a pole of order one

at any single point of X. The pole structure of 1, x, and y can then be determined to be

as given in table D, up to linear combinations.
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Similarly one can consider the vector space O(2(P + Q + R)) which has degree, and

thus dimension, 6. Clearly 1, x, and y are generators of half this space, and the other three

generators can be written as x2, y2 and xy, which have the pole structures given in table D.

Finally consider O(3(P +Q+R)) which has dimension nine. Out of the six generators for

O(2(P+Q+R)) one can construct ten meromorphic functions insideO(3(P+Q+R)), which

must be linearly dependent for the space to be of dimension nine. We write this relation as

A1 +A2x+A3y +A4xy +A5x
2 +A6y

2 +A7x
2y +A8xy

2 +A9x
3 +A10y

3 = 0 . (D.2)

The right-hand side of this equation is the zero function, which does not have poles

anywhere. It must then be the case that the left-hand side must not have any poles for

such a relation to hold. There are two terms with poles of order three at the points Q, R,

which are the x3 and y3 terms respectively. There is no other term which contributes a

pole of these orders and so could be tuned to cancel it off, therefore the only solution is to

set the coefficients, A9 and A10, to zero.

This leaves exactly two terms with a pole of order three at P and, by the same

argument as above, if either of these coefficients vanish then the other must also vanish.

Let us follow this line of argument and demonstrate that it leads to a contradiction. If

A7 = A8 = 0 then it is clear that both A5 = 0 and A6 = 0 as these are the only terms

remaining with a pole of order two in Q, R. Further if these terms are vanishing the

arguments above lead us to conclude that A4 = A3 = A2 = A1 = 0. If this is the case

then this is not a non-trivial relation among these ten meromorphic functions, and so the

relation cannot have either of A7 or A8 vanishing.

After the embedding of the elliptic curve into projective space the relation defines the

curve by a hypersurface equation which we write as

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (D.3)

where [x : y : w] are the coordinates of a P2 and si lie in some base coordinate ring R. This

will be taken as the defining equation of our elliptic fibration.

The cubic equation (D.3) can always be mapped into the form of a Weierstrass model

using Nagell’s algorithm [77, 78]. For the convenience of the reader we write here only the f

and g of the corresponding Weierstrass model. The complete derivation of the Weierstrass

model from the cubic (D.3) is given in [34, 35, 38, 39] and we do not repeat it here. The

Weierstrass equation is

ỹ2 = x̃3 + fx̃+ g , (D.4)

where f and g are given in terms of the coefficients of (2.1) as

f =
1

48
(−s46 + 8s26(s5s7 + s3s8 + s2s0)− 24s6(s2s7s8 + s3s5s9 + s1s7s9)

+ 16(−s25s27 + 3s1s
2
7s8 − s23s

2
8 + s2s3s8s9 − s22s

2
9 + 3s1s3s

2
9 + s5s7(s3s8 + s2s9))) (D.5)

g =
1

864
(s66 − 12s46(s5s7 + s3s8 + s2s9) + 36s36(s2s7s8 + s3s5s9 + s1s7s9)

+ 24s26(2s
2
5s

2
7 + 2s23s

2
8 + s2s3s8s9 + 2s22s

2
9 + s5s7(s3s8 + s2s9)− 3s1(s

2
7s8 + s3s

2
9))
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+ 8(−8s35s
3
7 − 72s1s3s

2
7s

2
8 − 8s33s

3
8 + 27s21s

2
7s

2
9 − 72s1s

2
3s8s

2
9 − 8s32s

3
9

+ 3s22s8(9s
2
7s8 + 4s3s

2
9) + 6s5s7(6s1s

2
7s8 + 2s23s

2
8 + s2s3s8s9 + 2s22s

2
9 − 3s1s3s

2
9)

+ 6s2s9(−3s1s
2
7s8 + 2s23s

2
8 + 6s1s3s

2
9) + 3s25(4s3s

2
7s8 + 4s2s

2
7s9 + 9s23s

2
9))

− 144s6(s
2
2s7s8s9 + s9(s1s5s

2
7 + s23s5s8 + s3s8(s

2
5 − 5s1s8))

+ s2(s5s
2
7s8 + s3s7s

2
8 + s1s7s

2
9))) . (D.6)
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[29] M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and Abelian gauge

symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].

[30] C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple

sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].

[31] V. Braun, T.W. Grimm and J. Keitel, New global F-theory GUTs with U(1) symmetries,

JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].
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