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1 Introduction and motivation

The quantum Hall effect (QHE) is a fascinating phenomenon in gapped (2+1)-dimensional

systems with broken parity symmetry. When electrons are confined in a heterojunction at

low temperature and strong magnetic fields, the response to an applied electric field displays

a striking behavior: the conductivity in the direction of the electric field vanishes, while the

transverse conductivity is quantized and given by (e2/h)ν, where ν is the filling fraction,

defined as the ratio of the charge density to the magnetic flux. In the integer quantum
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Hall effect (IQHE) ν ∈ Z, whereas ν is a rational number in the fractional quantum Hall

effect (FQHE).

Since its discovery more than thirty years ago, the QHE has been the subject of intense

research. Nevertheless, some aspects of the FQHE involve strongly-coupled dynamics and

are still not fully understood.1 The holographic AdS/CFT duality has proven to be a

powerful tool in the study of quantum matter in the strongly-coupled regime, since it

provides answers to difficult field theory questions by using classical gravitational theories

in higher dimensions. Therefore, it is quite natural to explore the possibility of constructing

holographic models of the (F)QHE and to extract properties that are very difficult to obtain

via weakly-coupled many-body field theory.

In recent years, two types of holographic models of the QHE have been proposed. The

first class consists of bottom-up models in Einstein-Maxwell-axio-dilaton theories [3–7].

These models are endowed with an SL(2,Z) duality and, as a consequence, they capture

some observed features of QH physics. However, it is very difficult to engineer these types

of models to have a mass gap; [8] is so far the only example of a gapped model in this class.

The second approach to holographically realize the QHE makes use of top-down D-

brane constructions [9–11], in which a (2+1)-dimensional gauge theory with fermions in the

fundamental representation is modeled by a suitable Dp-Dq brane intersection. The limit

in which the Dq-brane is treated as a probe in the Dp-brane background corresponds in the

field theory dual to the so-called quenched approximation in which loops of fundamental

fermions are neglected. In this approach, the worldvolume theory of the probe brane

encodes the physics of the fermions. Generically, the probe brane crosses the horizon,

yielding a black hole embedding, which is dual to a gapless metallic state. The quantum

Hall state is realized holographically as a Minkowski embedding, in which the brane ends

smoothly above the black hole horizon. The distance from the horizon at which the probe

caps off determines the mass gap.

In this paper we will follow the top-down probe-brane approach and construct quantum

Hall states in the ABJM theory with unquenched massless flavors. The unflavored ABJM

model is a U(N)×U(N) Chern-Simons gauge theory in 2+1 dimensions with levels (k,−k)

and bifundamental matter fields [12]. In string theory, the ABJM theory is realized as

the low-energy limit of multiple M2-branes at a C4/Zk singularity. When N and k are

large, this theory admits a supergravity description, preserving 24 supersymmetries, in

terms of a AdS4 × CP3 geometry with fluxes in type IIA ten-dimensional supergravity.

Due to its high degree of supersymmetry, the ABJM theory is one of the models where the

AdS/CFT correspondence has been tested with great precision. Since the boundary theory

is conformally invariant and the bulk metric therefore has an AdS factor, the gauge/gravity

dictionary is firmly established.

The ABJM model can be generalized by adding flavors, i.e., fields transforming in the

fundamental representations (N, 1) and (1, N) of the U(N) × U(N) gauge group, which

we will refer to as “quarks” in analogy with the terminology of holographic QCD. In the

1In particular, FQH states have fractionally charged quasiparticles with fractional statistics [1, 2]. This

implies that, unlike IQH states, FQH states do not belong to the universality class of weakly or non-

interacting electrons and are inherently strongly correlated.
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holographic setup, these flavors are due to D6-branes extended in AdS4 and wrapping an

RP3 cycle inside CP3 [13, 14]. This configuration preserves N = 3 supersymmetry. The

quenched approximation of these holographic quarks, where the D6-branes are treated as

probes, has been studied in [15–19].

However, it is possible to go beyond the quenched approximation and include the

backreaction of the D6-branes; there are simple analytic geometries which encode the

dynamics of the flavors in the Veneziano limit [20]. Here we will employ the solution found

in [21, 22] by smearing the D6-branes.2 This smearing technique is applicable when the

number Nf of flavor branes is large and can be continuously distributed in the internal

space, which changes the flavor group from U(Nf ) to U(1)Nf . For massless flavors the

result is simply a metric which differs from the unflavored one merely by constant squashing

factors. The construction was generalized in [24] to the backreaction of massive flavors.

These squashing factors depend on Nf and encode the effects of dynamical flavor loops.

In this paper, we want to engineer quantum Hall states in the flavored ABJM the-

ory. Such Hall states are only possible if parity is broken, which can be accomplished by

turning on an appropriate internal flux on the D6-brane worldvolume. However, treating

the backreaction of this internal flux is quite challenging. For now, we will start with a

single quenched massive quark in the background of Nf unquenched massless quarks, a

system analyzed in [22, 25]. We then will turn on a parity-breaking internal flux on the

worldvolume of this probe D6-brane.

In the presence of this internal flux, the Wess-Zumino term of the probe action contains

the term
∫
Ĉ1 ∧ F 3, where Ĉ1 is the pullback of the RR potential one-form. In the ABJM

background C1 has only internal components. Therefore, after integrating over the internal

directions, we are left with an axionic term F ∧F along AdS4, which indeed breaks parity

and corresponds to a Chern-Simons term on the boundary.

Even in the probe limit, choosing a consistent ansatz for this internal flux, which must

also be quantized appropriately, is not obvious. We can, however, take a cue from the

ABJ model [26], i.e., the U(N + M)k × U(N)−k Chern-Simons matter theory, which can

be engineered in string theory by adding fractional D2-branes to the ABJM setup. The

corresponding gravity dual can be obtained from the ABJM solution by turning on a flat

Neveu-Schwarz B2 field proportional to the Kähler form of CP3. The pullback of this

parity-breaking B2 on a probe D6-brane can alternately be viewed as a worldvolume gauge

field flux. Inspired by this example, we will generalize this ABJ solution into an ansatz

for the case with no background B2 field and only a probe worldvolume flux, but with

backreacted massless flavors.

Equipped with this ansatz for the internal gauge flux, we will show that, indeed, there

are quantum Hall states in this setup. From the QH perspective, one can regard the effects

of the massless, backreacted quarks as representing intrinsic disorder due to the quantum

fluctuations of the massive quark. We will compute the contribution of these fluctuations

to the conductivities in the form of an integral extended in the holographic direction, from

the tip of the brane to the AdS boundary.

2See [23] and references therein for a review.
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Surprisingly, we will find a very special family of explicit, supersymmetric, gapped

QH solutions at zero temperature. These BPS solutions have nonzero charge density and

equal electric and magnetic fields, and we can compute the Hall conductivity, including the

effects of quark loops, analytically.

The rest of this paper is organized as follows. In section 2 we review the ABJM

background with flavor. Then, in section 3, we consider the embedding of a probe D6-brane

with internal flux. We first present in section 3.1 the ansatz for the internal components

of the worldvolume gauge field that will be used throughout the paper and discuss the

corresponding flux quantization condition. In section 3.2 we generalize these results to

nonvanishing background electric and magnetic fields, as well as to nonzero charge density

and currents. We compute the corresponding longitudinal and transverse conductivities in

section 4.

In section 5 we analyze the residual SO+(1, 1) boost invariance of our system at zero

temperature. An analytic supersymmetric solution of the equations of motion at zero

temperature is presented in section 6. Section 7 is devoted to the analysis of quark-

antiquark bound states, i.e., mesons. In particular, we study the effect of the broken parity

on the mass spectrum. In section 8 we summarize our results and discuss possible future

directions.

The paper is completed with several appendices. In appendix A we provide details of

our background geometry and discuss the quantization condition of the worldvolume flux

obtained by comparison with the ABJ solution. Appendix B contains a detailed analysis of

the equations of motion of the probe. The kappa symmetry of the embeddings is analyzed

in appendix C. Finally, the equations governing the fluctuations of the probe are the subject

of appendix D, where we also estimate the meson masses using a WKB approximation.

2 The ABJM background with flavor

In this section we will review, following [21, 22, 25, 27], the background geometry corre-

sponding to the ABJM model with unquenched massless flavors in the smeared approx-

imation. Additional details of this supergravity solution are given in appendix A. The

ten-dimensional metric, in string frame, has the form

ds2 = L2 ds2
BH4

+ ds2
6 , (2.1)

where L is the radius of curvature, ds2
BH4

is the metric of a planar black hole in the four-

dimensional Anti-de Sitter space, given by

ds2
BH4

= −r2h(r)dt2 +
dr2

r2h(r)
+ r2

[
dx2 + dy2

]
, (2.2)

and ds2
6 is the metric of the compact internal six-dimensional manifold. The blackening

factor h(r) is given by

h(r) = 1−
r3
h

r3
, (2.3)
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where the horizon radius rh is related to the temperature T by T = 3 rh
4π . The internal metric

ds2
6 in (2.1) is a deformation of the Fubini-Study metric of CP3, realized as an S2-bundle over

S4. Let ds2
S4 be the standard metric for the unit round four-sphere and let zi (i = 1, 2, 3)

be three Cartesian coordinates parameterizing the unit two-sphere (
∑

i(z
i)2 = 1). Then,

ds2
6 can be written as:

ds2
6 =

L2

b2

[
q ds2

S4 +
(
dzi + εijk Aj zk

)2 ]
, (2.4)

where Ai are the components of the non-Abelian one-form connection corresponding to

an SU(2) instanton. In appendix A we give a more explicit representation of the ds2
6 line

element in terms of alternative coordinates.

The parameters b and q in (2.4) are constant squashing factors which encode the effect

of the massless flavors in the backreacted metric. Indeed, when q = b = 1 the metric (2.4) is

just the canonical Fubini-Study metric of the CP3 manifold with radius 2L in the so-called

twistor representation. In this case (2.1) is the metric of the unflavored ABJM model at

nonzero temperature. When the effect of the delocalized D6-brane sources is taken into

account, the resulting metric is deformed as in (2.4). It was shown in [21] that at zero

temperature the particular deformation written in (2.4) preserves N = 1 SUSY.

The parameter b in (2.4) represents the relative squashing of the CP3 part of the

metric with respect to the AdS4 part due to the flavor, while q parameterizes an internal

deformation which preserves the S4-S2 split of the twistor representation of CP3. The

explicit expressions for the coefficients q and b found in [21] are given below. They depend

on the number of colors N and flavors Nf , as well as on the ’t Hooft coupling λ = N/k,

through the combination

ε̂ ≡
3Nf

4k
=

3

4

Nf

N
λ , (2.5)

where the factor 3/4 is introduced for convenience. It is also useful to define the quantity

η as:

η = 1 + ε̂ , η ∈ [1,∞) . (2.6)

In terms of the deformation parameter ε̂, the squashing factors q and b are:

q = 3 +
3

2
ε̂− 2

√
1 + ε̂+

9

16
ε̂2 ,

b =
2q

q + 1
. (2.7)

As functions of ε̂, the squashing parameters q and b are monotonically increasing functions,

which approach the values q ≈ 5/3 and b ≈ 5/4 as ε̂ → ∞. Another way to encode the

loop effects of the massless sea quarks is to define the screening factor σ:

σ =

√
(4− 3b)(2− b)b3

2(b− 1)η + b
. (2.8)

Without flavors, σ = 1, and as ε̂ → ∞, σ → 0. The AdS radius L can then be expressed

in terms of λ and the screening factor:

L2 = π
√

2λσ . (2.9)

– 5 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
9

The complete solution of type IIA supergravity with sources is endowed with RR two-

and four-forms F2 and F4, as well as with a constant dilaton φ:

F2 =
k

2

[
E1 ∧ E2 − η

(
Sα ∧ S3 + S1 ∧ S2

) ]
, (2.10)

F4 =
3k

4

(η + q)b

2− q
L2 ΩBH4 , (2.11)

e−φ =
b

4

η + q

2− q
k

L
. (2.12)

Explicit expressions for the one-forms Ei, Sα, and Si are given in appendix A. ΩBH4 is the

volume-form of the four-dimensional black hole (2.2).

It is worth mentioning at this point that the background summarized in this section has

been generalized in [24] to the case in which the quarks are massive (at zero temperature).

As we increase the mass of the quarks, these generalized solutions interpolate between the

geometry reviewed above (for zero quark mass) and the unflavored ABJM background (for

infinitely massive quarks).

3 D6-brane probes with flux

We are interested in dynamics of a massive quark holographically dual to a probe D6-brane

with internal flux in the flavored ABJM background. The D6-brane extends along r and the

three Minkowski directions and, wraps on the internal manifold a three-cycle topologically

equivalent to RP3 = S3/Z2. This three-cycle will be parameterized by three angles α, β,

and ψ, and will be characterized by an embedding function θ(r). With this embedding,

the D6-brane then has an induced metric given by (for details see appendix A):

ds2
7

L2
= r2

[
−h(r) dt2 + dx2 + dy2

]
+

1

r2

(
1

h(r)
+
r2 θ′ 2

b2

)
dr2

+
1

b2

[
q dα2 + q sin2 αdβ2 + sin2 θ ( dψ + cosαdβ )2

]
, (3.1)

where 0 ≤ α < π, 0 ≤ β, ψ < 2π, and θ = θ(r) determines the profile of the probe brane.

Notice that the second line in (3.1) is the line element of a squashed RP3.

For a supersymmetric configuration at zero temperature, it is possible to use kappa

symmetry to find an explicit solution for θ(r) (see the analysis in [21] and in appendix C).

But, in general we will have to numerically solve the equations of motion to find θ(r).

The thermodynamic properties of D6-branes embedded in this way were studied in

detail in [22]. Here we will generalize some of these results by including worldvolume

gauge fields. In particular, we will turn on a nontrivial flux on the internal cycle. In the

rest of this section we will determine the form of this internal worldvolume flux which gives

rise to a consistent solution of the brane equations of motion.

3.1 Internal flux

Since we are primarily interested in gapped, QH states, let us focus on Minkowski (MN)

embeddings of the probe, in which the brane ends smoothly at a radial position r∗ above

– 6 –
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the horizon, i.e., r∗ > rh. The D6-brane can cap off smoothly if, at the tip of the brane

r = r∗, the angle θ reaches its minimal value θ = 0 where an S1 ⊂ RP3 shrinks to zero. At

the tip, the last term of (3.1) vanishes and the induced metric takes the form:

ds2
7

L2

∣∣∣
r=r∗

= r2
[
− h∗dt2 + dx2 + dy2

]
+
q

b2

[
dα2 + sin2 α dβ2

]
, (3.2)

where h∗ = h(r = r∗). From (3.2), we see that at the tip of the brane the coordinates α

and β span a non-collapsing S2
∗. As in other probe-brane QH models [9, 10], we want to

turn on a flux of the worldvolume gauge field F on this non-shrinking sphere.

Of course, this flux must be quantized appropriately. We will adopt the following

quantization condition:

1

2πα′

∫
S2∗
F =

2πM

k
, M ∈ Z . (3.3)

Notice that, compared with the ordinary flux quantization condition of the worldvolume

gauge field, we are considering in (3.3) M/k fractional units of flux. In appendix A we verify

that (3.3) is the correct prescription for the flux quantization by studying the background

without massless flavors, i.e., Nf = 0. In this case one can induce an internal F flux through

S2
∗ by switching on a flat Neveu-Schwarz B2 field proportional to the Kähler form of CP3.

Then, the quantization condition (3.3) follows from the fractional holonomy of B2 along the

CP1 cycle of CP3. In this setup the integer M is the number of fractional D2-branes and

this configuration is dual to the ABJ model [26] with gauge group U(N +M)k ×U(N)−k.

We also check in appendix A that M can be identified with the Page charge for fractional

D2-branes.

Let us now write a concrete ansatz for the internal gauge field F . We will represent F

in terms of a potential one-form A given by:

A = L2 a(r) (dψ + cosαdβ) , (3.4)

where the L2 factor is introduced for convenience and a = a(r) is a function of the radial

coordinate which determines the varying flux on the (α, β) two-sphere. The field strength

F = dA corresponding to (3.4) is simply:

F = L2
[
a′(r) dr ∧ (dψ + cosαdβ)− a(r) sinαdα ∧ dβ

]
, (3.5)

which restricted to S2
∗ becomes:

F
∣∣
S2∗

= −L2 a∗ sinαdα ∧ dβ , (3.6)

where a∗ ≡ a(r = r∗) is the value of the flux function at the tip. It follows that∫
S2∗
F = −4π L2 a∗ , (3.7)

and the condition (3.3) quantizes the values of a∗ in the following way:

a∗ = −πM
kL2

, M ∈ Z . (3.8)

– 7 –
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Let us denote the value of the flux function at the tip as:

a∗ = −Q . (3.9)

To write the quantization condition (3.8) in terms of physical quantities, recall that the

AdS radius L can be written as in (2.9). Plugging this into (3.8), we find the following

quantization condition for Q:

Q =

√
λ√

2σ

M

N
, M ∈ Z . (3.10)

Using the ansatz (3.5) for the internal flux, we can try to find a solution for a MN

embedding of the probe D6-brane. In appendix B we check that (3.5), together with

embedding ansatz corresponding to the induced metric (3.1), is a consistent truncation of

the equations of motion of the probe.

At zero temperature, we have found an analytic solution for θ(r) and the flux function

a = a(r) which preserves two of the four supercharges of the N = 1 superconformal

background. The explicit calculations are performed in appendix C with the use of kappa

symmetry. Here we just quote the result for θ(r) and a(r):

cos θ(r) =
(r∗
r

)b
(3.11)

a(r) = −Q (cos θ(r))
1
q = −Q

(r∗
r

)2−b
. (3.12)

However, to realize the quantum Hall states we are interested in, we need to generalize

our ansatz for the gauge field to include electric and magnetic fields, as well as the compo-

nents dual to the charge density and current. We analyze this more general set up in the

next subsection.

3.2 Background fields and currents

If we want a more general ansatz that includes background electric and magnetic fields and

the associated charged current, we need to consider other components of the worldvolume

gauge field. In the standard way, a magnetic field B and an electric field E are added by

turning on the radial zero modes of Fxy and F0x. The charge density is holographically

related to Fr0, the longitudinal and Hall currents come from Frx and Fry. We therefore

take the worldvolume gauge field to have the form:

A = L2
[
a0(r) dt + (Et+ ax(r)) dx+ (B x+ ay(r)) dy + a(r) (dψ + cosαdβ)

]
. (3.13)

We can continue to use the induced metric ansatz given by (3.1), characterized by the

embedding function θ = θ(r).

Interestingly, due to our choice in (3.13) of the internal components of the gauge

field, the dependence of the action on the internal angles of the RP3 cycle factorizes and

consequently, we can consistently take the functions θ, a, a0, ax, and ay to depend only on

– 8 –
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the radial variable. After integrating over the internal angles α, β, and ψ, the DBI action

of the D6-brane for our ansatz can be written as:

SDBI =

∫
d3x dtLDBI , (3.14)

where the DBI Lagrangian density LDBI can be compactly written as:

LDBI = −8π2 L7 TD6 e
−φ

b4

√
(B2 + r4)h− E2

√
q2 + b4 a2

√
h

√
∆ , (3.15)

where TD6 is the D6-brane tension and the quantity ∆ is defined to be

∆ = b4r2ha′ 2 + sin2 θ

[
b2 + r2h θ′ 2

+
b2h

E2 − (B2 + r4)h

[
(Ba′0 + Ea′y)

2 + r4(a′ 20 − ha′ 2x − ha′ 2y )
]]
. (3.16)

The Wess-Zumino term of the action is:

SWZ = TD6

∫
M7

(
Ĉ7 + Ĉ5 ∧ F +

1

2
Ĉ3 ∧ F ∧ F +

1

6
Ĉ1 ∧ F ∧ F ∧ F

)
, (3.17)

where, Ĉ7, Ĉ5, Ĉ3, and Ĉ1 are the pullbacks to the D6-brane of the RR gauge fields.

All of these terms, except for Ĉ5 ∧ F , give non-vanishing contributions to the equations

of motion.3

In the holographic setup, the charge density is encoded in the bulk by the radial electric

displacement field D̃(r), which is given by the derivative of the DBI Lagrangian density

with respect to the radial component of the physical electric field. From the ansatz (3.13),

and taking into account the physical gauge field Aphys = A/(2πα′), we find:

D̃ =
∂LDBI

∂A′0,phys
=

2πα′

L2

∂LDBI

∂a′0
. (3.18)

We will set α′ = 1 from now on. In order to write D̃(r) in a compact fashion, let us define

a function g(r) as:

g(r) =
q + η

2b(2− q)
r4 h

3
2 sin2 θ

√
q2 + b4 a2√

(B2 + r4)h − E2
√

∆
. (3.19)

Then, one can show that:

D̃(r) =
Nσ2

4π
d̃(r) , (3.20)

where σ is the screening factor defined in (2.8) and d̃(r) is the function:

d̃(r) ≡ g

h

[(
1 +

B2

r4

)
a′0 +

BE

r4
a′y

]
. (3.21)

3One subtlety is that when the backreaction of the flavors is included, the RR field strength F2 is not

closed, implying that there is no well-defined RR potential C1. However, the equations of motion derived

from (3.17) only contain F2 and therefore can be generalized to the unquenched case; see appendix B

for details.
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The total charge density is obtained by taking the boundary value of D̃(r), which is pro-

portional to:

d = lim
r→∞

d̃(r) . (3.22)

Similarly, the physical currents along the x and y directions are given by:

Jx =
2πα′

L2

∂LDBI

∂a′x
, J̃y =

2πα′

L2

∂LDBI

∂a′y
. (3.23)

One can readily prove that:

Jx =
Nσ2

4π
jx , J̃y =

Nσ2

4π
j̃y , (3.24)

where jx turns out to be:

jx = −g a′x , (3.25)

and j̃y(r) is:

j̃y(r) ≡ g

[
−
(

1− E2

r4h

)
a′y +

BE

r4h
a′0

]
. (3.26)

The equations of motion for the probe are worked out in detail in appendix B. In

particular, Jx is constant in r (see (B.29)) and represents the longitudinal current parallel

to the electric field. On the other hand, J̃y(r) depends on the holographic variable. The

transverse current Jy is obtained as the value of J̃y(r) at the UV boundary r →∞ which,

according to (3.23), is determined from the limit:

jy = lim
r→∞

j̃y(r) . (3.27)

The radial dependence of d̃ and j̃y is determined by the a0 and ay equations of

motion, (B.28) and (B.30). With the definitions introduced above, they can be simply

written as:

∂r d̃ = B(η cos θ a′ − a sin θ θ′) (3.28)

∂r j̃y = E(η cos θ a′ − a sin θ θ′) . (3.29)

In the unflavored case η = 1, these two equations (3.28) and (3.29) can be integrated

once because their right-hand side is proportional to ∂r(a cos θ). Indeed, for the unflavored

background a0(r) and ay(r) are cyclic and can be eliminated by performing the appropriate

Legendre transformation.

This is not the case, however, when η 6= 1. We can formally integrate (3.28) and (3.29),

defining the integral I(r) as:

I(r) ≡
∫ ∞
r

(
η cos θ(r̄) a′(r̄)− a(r̄) sin θ(r̄) θ′(r̄)

)
dr̄ (3.30)

= − cos θ(r) a(r) + (η − 1)

∫ ∞
r

cos θ(r̄) a′(r̄) dr̄ , (3.31)
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where we have integrated by parts to obtain the second line. Clearly,

lim
r→∞

I(r) = 0 , (3.32)

and equations (3.28) and (3.29) can be written as

d̃(r) = d−B I(r) , j̃y(r) = jy − E I(r) . (3.33)

Since a0 and ay are no longer cyclic, we need a new strategy to solve the equations of

motion. Interestingly, there is still one conserved quantity associated with the equations of

motion for A0 and Ay. Eq. (B.33) can be recast as the radial independence of the quantity:

Π ≡ E d̃(r)−B j̃y(r) . (3.34)

Indeed, the equation ∂r Π = 0 follows immediately from (3.28) and (3.29). This implies

that Π can be written in terms of quantities evaluated at the boundary:

Π = E d−B jy . (3.35)

One can now try to write a′0, a′y, and a′x in terms of the embedding function θ(r) and

the flux function a(r). Let us work this out in detail. First, we notice that one can invert

eqs. (3.21) and (3.26) and write a′0 and a′y in terms of d̃ and j̃y:

a′0 =
h
(

1− E2

r4 h

)
d̃+ EB

r4
j̃y

g
(

1 + B2

r4
− E2

r4 h

) , a′y =

EB
r4
d̃−

(
1 + B2

r4

)
j̃y

g
(

1 + B2

r4
− E2

r4 h

) . (3.36)

Notice that (3.36) are not actually solutions for a′0 and a′y since g on the right-hand side is

written in terms of these same fields. However, one can write an expression of g in terms

of θ and a. Let us define X as:

X≡h
(

1+
B2

r4
− E2

r4 h

)[(
q+η

2b2(2−q)

)2

r4h(q2 +b4 a2) sin2 θ+hd̃ 2−j2
x−j̃ 2

y

]
−

(
hBd̃−Ej̃y

)2

r4
.

(3.37)

Then, after some calculation, we obtain:

g =
sin θ

√
X(

1 + B2

r4
− E2

r4 h

)√
b2 r2 h a′ 2 + sin2 θ (1 + r2

b2
h θ′ 2)

. (3.38)

Therefore, we have for a′0, a′x, and a′y:

a′0 =

√
b2 r2 h a′ 2 + sin2 θ (1 + r2

b2
h θ′ 2)

sin θ
√
X

[
h

(
1− E2

r4 h

)
d̃+

EB

r4
j̃y

]
,

a′x = −

√
b2 r2 h a′ 2 + sin2 θ (1 + r2

b2
h θ′ 2)

sin θ
√
X

(
1 +

B2

r4
− E2

r4 h

)
jx ,

a′y =

√
b2 r2 h a′ 2 + sin2 θ (1 + r2

b2
h θ′ 2)

sin θ
√
X

[
EB

r4
d̃−

(
1 +

B2

r4

)
j̃y

]
. (3.39)
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The right-hand sides of (3.39) contain the radial functions d̃ and j̃y, which in turn can

be written as in (3.33) in terms of the constants d and jy, and the integral I(r) defined

in (3.30).

In principle, we could use (3.39) to eliminate a′0, a′x, and a′y from the equations of

motion and to reduce the system to an effective problem for the functions θ(r) and a(r).

However, when η 6= 1, the functions d̃(r) and j̃y depend non-locally on θ(r) and a(r) and

the corresponding reduced equations of motion would be a system of integro-differential

equations for θ(r) and a(r), which does not seem to be very easy to solve in practice. In the

case in which there are no flavors backreacting on the geometry, i.e., when η = q = b = 1,

the integral I(r) is just I = − cos θ a and we can write d̃ and j̃y simply as d̃ = d+B cos θ a

and j̃y = jy +E cos θ a. Thus, in this quenched case one can eliminate the gauge fields a0,

ax, and ay and reduce the problem to a system of two coupled, second-order differential

equations for θ(r) and a(r).

3.3 Minkowski embeddings

Having obtained the equations of motion for the D6-brane probe, the next step is to try

to solve them. Although, as we will discuss in section 6, there are special analytic BPS

solutions, in general we will have to resort to numerics.

Probe brane solutions are categorized into two classes by their IR behavior. The generic

solution is a black hole embedding, in which the brane falls into the horizon; these corre-

spond holographically to gapless, compressible states. In certain special circumstances, the

brane can end smoothly at some r = r∗ when a wrapped cycle shrinks to zero size; these

are Minkowski (MN) embeddings. MN solutions with broken parity correspond to gapped,

quantum Hall states.

As discussed above in section 3.1, for a D6-brane probe in the flavored ABJM back-

ground, MN embeddings occur when θ(r∗) = 0 for some r∗. In order to have a physical,

finite-energy solution, the embedding θ(r) and the worldvolume gauge field F must be

regular at the tip; that is, the induced metric (3.1) must be smooth, and a′, a′0, a′x, a′y
must all be finite. Given that the function g (3.38) vanishes at the tip of the brane, the

regularity of a′0 and a′y at the tip, combined with (3.21) and (3.26), implies that

d̃(r∗) = jx = j̃y(r∗) = 0 . (3.40)

We can interpret this condition to mean that there are no sources at the tip, which is

physically sensible as the D6-brane could not support such a source. Suppose that d̃(r∗) 6=
0; this radial displacement field would have to be sourced, for example, by fundamental

strings stretching from the horizon. Due to the shrinking cycle, the effective radial tension

of the D6-brane vanishes at the tip, so these strings would then pull the D6-brane into the

horizon, resulting in a black hole embedding.

The filling fraction ν is defined by

ν = 2π
Dphys

Bphys
, (3.41)
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where the physical magnetic field Bphys is related to B by

Bphys =
L2

2π
B =

√
λ

2
σ B . (3.42)

Combining (3.40) with (3.33) gives d = BI(r∗), and the filling fraction for MN solutions is

therefore

ν =
Nσ√

2λ

d

B
=

Nσ√
2λ

I(r∗) , (3.43)

or, more explicitly using (3.31),

ν =
M

2

[
1 + (η − 1)

∫ ∞
r∗

cos θ(r)
a′(r)

Q
dr

]
, (3.44)

where M is the quantization integer and Q is minus the flow function at the tip (see (3.9)).

Note that, (3.44) shows explicitly that, for a QH state with nonzero charge density, a

nonzero flux is required. Moreover, ν is the sum of two contributions. The first term

in (3.44) is proportional to the flux at the tip. The second term is only nonzero in the

unquenched case η 6= 1 and contains an integral from the tip to the boundary. In terms of

Nf and k, ν takes the form:

ν =
M

2

[
1 +

3Nf

4k

∫ ∞
r∗

cos θ(r)
a′(r)

Q
dr

]
. (3.45)

It follows that ν is a half-integer in the quenched case but gets corrections due to the

massless sea quark loops in the unquenched Veneziano limit.

Numerically integrating the equations of motion, we have verified that there are MN

solutions obeying the tip regularity conditions (3.40). At this point, we will be content

with evidence for MN solutions with nonzero charge density d and magnetic field B. We

will defer a more thorough study of the possible MN solutions to the future.

4 Conductivities

We are interested in analyzing the longitudinal and transverse conductivity of our config-

urations. In order to relate these quantities with the variables we have employed, let us

point out that the physical electric field Ephys is related to the quantity E used above as:

Ephys =
L2

2π
E =

√
λ

2
σ E . (4.1)

The longitudinal and transverse conductivities σxx and σxy are defined in terms of Jx,

Jy ≡ J̃y(r →∞) and Ephys as:

σxx =
Jx

Ephys
, σxy =

Jy
Ephys

. (4.2)

The conductivities can be written as

σxx =
Nσ

2π
√

2λ

jx
E
, σxy =

Nσ

2π
√

2λ

jy
E
. (4.3)

In the next two subsections we obtain formulas for σxx and σxy for the two types of

embeddings (Minkowski and black hole) of the D6-brane probe.
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4.1 Quantum Hall states

Let us now suppose that we have a Minkowski (MN) embedding. To compute the conduc-

tivities, we will adapt the method of [9, 10] but with some new twists. In particular, we

use the invariance of Π under the holographic flow. The conductivity comes directly from

the condition (3.40) that there are no charge sources at the tip r = r∗. Since jx in (3.25)

must be equal to zero,

σxx = 0 . (4.4)

Furthermore, (3.40) implies that Π vanishes at r = r∗ and, since it is radially invariant,

Π = 0 at all values of r. From (3.35), we see that this is equivalent to E d = B jy; the Hall

conductivity is then:

σxy =
Nσ

2π
√

2λ

jy
E

=
Nσ

2π
√

2λ

d

B
. (4.5)

From (3.43), we find that

σxy =
ν

2π
, (4.6)

which is exactly what one would expect for a QH state.

4.2 Gapless states

Let us now consider black hole embeddings, in which the D6-brane crosses the horizon at

r = rh. These embeddings correspond to gapless states. To compute the conductivity, we

employ the pseudohorizon argument of [28] to eq. (3.39). Let r = rp be the position of the

pseudohorizon, which is determined by the conditions:

hp (r4
p +B2) = E2

j2
x + j̃2

y(rp) =

(
q + η

2b2(2− q)

)2

hp r
4
p sin2 θp

(
q2 + b4 a2

p

)
+ hp d̃(rp)

2

E j̃y(rp) = B hp d̃(rp) , (4.7)

where hp ≡ h(rp), θp ≡ θ(rp), and ap ≡ a(rp). It follows that the currents in x- and

y-directions are given by:

jx =
√
hp

[(
1− B2hp

E2

)
d̃ 2(rp) +

(
q + η

2b2(2− q)

)2

r4
p (q2 + b4 a2

p) sin2 θp

] 1
2

jy =
B hp
E

d+ E

[
1− B2hp

E2

]
I(rp) . (4.8)

Notice that the previous expression involves the value of the integral I extended between

the rp and the boundary. Therefore, the conductivities are:

σxx =
Nσ

2π
√

2λ

√
hp

E

[(
1− B2hp

E2

)
d̃ 2(rp) +

(
q + η

2b2(2− q)

)2

r4
p (q2 + b4 a2

p) sin2 θp

] 1
2

σxy =
Nσ

2π
√

2λ

[
B hp
E2

d+

[
1− B2hp

E2

]
I(rp)

]
. (4.9)
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For small electric field, rp is close to the horizon radius rh. At first order in E2 we can

estimate rp as:

rp ≈ rh

(
1 +

E2

3(r4
h +B2)

)
. (4.10)

With this result we can write hp approximately as:

hp ≈
E2

r4
h +B2

. (4.11)

Applying these results to (4.9), we obtain the linear conductivities:

σxx ≈
Nσ

2π
√

2λ

r2
h

r4
h +B2

[
d̃2
h +

(
q + η

2b2(2− q)

)2

(r4
h +B2) (q2 + b4 a2

h) sin2 θh

] 1
2

(4.12)

σxy ≈
Nσ

2π
√

2λ

[
B d̃h

r4
h +B2

+ Ih

]
, (4.13)

where Ih ≡ I(rh) is defined in (3.31).

These conductivities are analogous to the conductivities found in the metallic phases

of other similar probe brane models, for example [9, 10, 29]. One important difference is

that here, the unquenched sea quarks reduce the conductivity by the screening factor σ.

The longitudinal conductivity (4.12) receives contributions from two sources: the first

term under the square root is due to the charge density at the horizon d̃h, and the other

term can be interpreted as being due to thermal pair production. At vanishing magnetic

field and nonzero charge density, σxx diverges as r−2
h . Charge carriers can only scatter off

the thermal bath, and at zero temperature, momentum conservation implies an infinite

DC conductivity. For nonzero B, σxx vanishes in the zero-temperature limit, as implied by

Lorentz invariance.

The Hall conductivity (4.13) is the sum of two terms, which appear to correspond to

the contributions of two types of charge carriers: the charges at the horizon d̃h, which are

sensitive to the heat bath and contribute to σxx, and the charges BIh = d− d̃h, which are

smeared radially along the D6-brane and do not interact with the dissipative heat bath at

all. In the limit where d/B → Ih, i.e., d̃ → 0, the Hall conductivity smoothly approach

the results found above for the MN embedding (4.6). Varying the d/B from zero to Ih and

plotting the conductivity on the (σxy, σxx)-plane is expected to reproduce the behavior,

seen also in [10], qualitatively similar to the semi-circle law experimentally observed in QH

systems [30].

5 Boost invariance at zero temperature

At zero temperature and before adding an electric field, the system is Lorentz invariant.

In probe brane constructions, the zero-temperature limit of a black hole embedding is

often problematic. However, Minkowski embeddings are perfectly well defined in the zero-

temperature limit since the brane never reaches the black hole horizon. One important

feature of this model and others in its class [9–11], is that MN embeddings can occur at

nonzero charge density.

– 15 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
9

Turning on an electric field in the x-direction breaks rotation invariance, and the full

Lorentz symmetry is reduced to a (1+1)-dimensional subgroup: boosts in the y-direction

form a set of SO+(1, 1) transformations which rotate the electromagnetic field and the

currents. When h = 1, the equations of motion studied in section 3.2 and appendix B are

not modified under these transformations.

In terms of the boundary variables, a boost with rapidity γ acts as(
E

B

)
→ Mγ

(
E

B

)
,

(
d

jy

)
→ Mγ

(
d

jy

)
. (5.1)

where Mγ is the symmetric matrix:

Mγ ≡

cosh γ sinh γ

sinh γ cosh γ

 . (5.2)

The transverse conductivity σxy is invariant under the boost because it is determined only

by the flux (4.6).

The boundary electromagnetic fields and currents are packaged holographically in the

bulk worldvolume field strength F . From the transformation properties of F due to a boost

in the bulk, one can reproduce the transformation (5.1) of E and B and see that the radial

components of F transform as(
Fr0
Fry

)
=

(
a′0
a′y

)
→ M−γ

(
a′0
a′y

)
; (5.3)

therefore, the symmetry acts contravariantly on (a′0, a
′
y). Using eqs. (3.21) and (3.26), one

can demonstrate that the functions d̃ and j̃y also rotate via Mγ , namely:(
d̃

j̃y

)
→ Mγ

(
d̃

j̃y

)
(5.4)

which matches, for r = ∞, the transformation (5.1) of d and jy. One can also check that

the quantity Π defined in (3.34) is invariant.

Apart from the boosts, the equations of motion are also invariant under the two types

of discrete operations, which are the elements of O(1, 1) not connected to the identity. The

first of these operations is the electric field inversion PE , which acts as:

PE :

(
E

B

)
→

(
−E
B

)
,

(
a′0
a′y

)
→

(
a′0
−a′y

)
,

(
d̃

j̃y

)
→

(
d̃

−j̃y

)
. (5.5)

Under PE , the function Π changes its sign, i.e., Π behaves as a pseudoscalar. However, the

conductivity σxy is left invariant. Similarly, the equations of motion are invariant under a

magnetic field inversion PB, defined as:

PB :

(
E

B

)
→

(
E

−B

)
,

(
a′0
a′y

)
→

(
−a′0
a′y

)
,

(
d̃

j̃y

)
→

(
−d̃
j̃y

)
. (5.6)

Under this transformation, Π again changes its sign and σxy is again invariant.
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We can use the O(1, 1) symmetry to classify the different configurations in terms of

the sign of the following quadratic forms

Q1 ≡ E2 −B2 , Q2 ≡ d 2 − j 2
y , Q3 ≡ B d− E jy , (5.7)

which are left invariant by the O(1, 1) transformations. We will call solutions with Q1 > 0

“electric-like” , and those with Q1 < 0 “magnetic-like”. We can also have solutions with

Q1 = 0, which we call “null” solutions. Notice that an electric-like (magnetic-like) solution

can be connected continuously to a solution with B = 0 (E = 0) and, an electric-like

solution cannot be transformed into a magnetic-like one. We could similarly classify the

solutions according to the sign of Q2 and Q3.

For MN embeddings, however, Q2 and Q3 are not independent but are rather propor-

tional to Q1. The regularity at the tip (3.40) implies d/B = jy/E = I(r∗). From these

relations, we find

Q2 = Q3I(r∗) = −Q1I(r∗)
2 . (5.8)

In the next section we will find an analytic solution to the equations of motion for which

the three Qi invariants vanish. Intuitively, one would think that these null solutions have

a large degree of symmetry. In particular, they are related to the E = B = a′0 = a′y = 0

solution by the infinite boost M−∞. Indeed, we will prove that these are BPS solutions

preserving a fraction of the supersymmetry of the background.

6 The BPS solution

In this section we find a simple, exact MN solution of the zero-temperature equations

of motion (B.28)–(B.32). This solution preserves one supercharge, or one quarter of the

supersymmetry of the background. Accordingly, we will refer to this solution as the BPS

solution.

Let us first consider the probe D6-brane in the absence of electric and magnetic fields

and with a′0 = a′y = 0. At zero temperature, we found a SUSY solution in section 3.1

for which the embedding function θ(r) and the flux function a(r) satisfy the system of

first-order BPS equations (C.16) and (C.24) derived in appendix C:

r θ′ = b cot θ ,
a′

a
= − b

q r
. (6.1)

We now generalize this supersymmetric solution to include electric and magnetic fields,

as well as charge density and current, provided they satisfy a BPS condition:

E = B , a′0 = −a′y . (6.2)

In addition, we take a′x = 0. Notice that, since h = 1, (6.2) implies (B.33) is trivially

satisfied with the constant on the right-hand side equal to zero. Moreover, the equations

of motion for a0 (B.28) and ay (B.30) become equivalent. The quantity ∆ defined in (3.16)

greatly simplifies and satisfies: √
q2 + b4 a2

√
∆

∣∣∣∣∣
BPS

=
q

b
. (6.3)

As we saw in section 4.1, for MN embeddings Π = 0. Combining this fact with (6.2), yields

d̃(r) = j̃y(r), and in particular, d = jy.
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Using these results it is straightforward to verify that the equations (B.32) and (B.31)

for θ(r) and a(r) become:

∂r
[
r4 sin2 θ θ′

]
− b2 r2 cot θ − (3− 2b) b r2 sin θ cos θ = 0 ,

∂r
[
r4 a′

]
+
b

q

(
3− b

q

)
r2 a = 0 . (6.4)

Note that these equations are just the same as in the E = B = a′0 = a′y = 0 case. One

can also check that the second-order equations (6.4) are satisfied if the first-order ones

in (6.1) are fulfilled. So, the solutions for θ(r) and a(r) are just as in section 3.1 (see (3.11)

and (3.12)):

cos θ =
(r∗
r

)b
(6.5)

a = −Q
(r∗
r

) b
q

= −Q (cos θ)
1
q . (6.6)

It remains to solve for a0. Its equation of motion (B.28) simplifies to:

∂r
[
r2 sin2 θ a′0

]
= −2B

(2− q) b3

q2

a cos θ

r
. (6.7)

Plugging in the solutions (6.5) for θ(r) and (6.6) for a(r), it is now straightforward to

integrate (6.7). Using the relation q = b/(2− b), we get:

a′0 =
1

r2

1

1−
(
r∗
r

)2b

[
2b2(2− q)
q(q + η)

d− (4− 3b)(2− b)bQB
(r∗
r

)2
]
, (6.8)

The regularity condition of a′0 at the tip of the brane fixes a relation between d, Q, and B:

d =
(q + η)(2− b)

2
QB . (6.9)

From the first equality of (3.43), the filling fraction ν for this SUSY solution is then:

ν =
Nσ√

2λ

d

B
= (q + η)(2− b) M

4
. (6.10)

As we found in (3.44) for general MN solutions, the filling fraction is proportional to the

internal flux. In addition, (6.10) can be rewritten as

ν =

[
1 +

3Nf

8k

(
1− γm

) ] M
2
, (6.11)

where γm = b− 1 is anomalous dimension of the quark mass (see [21, 25]). Notice that γm
depends on Nf/k and controls the coefficient of the contribution of the quarks loops to ν.

For the BPS solution, the integral I(r) can be explicitly performed using the expres-

sions (6.5) and (6.6) for θ(r) and a(r). In particular,

I(r∗) = Q+ (η − 1)

∫ ∞
r∗

cos θa′ dr =
q + η

q + 1
Q . (6.12)
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As a cross-check, we can compute the filling fraction using the second equality in (3.43):

ν =
Nσ√

2λ
I(r∗) =

q + η

q + 1

M

2
, (6.13)

which using the relation q = b/(2− b) (see (2.7)) matches (6.10).

We can also use the integrated formula for I(r) to write explicit expressions for d̃

and j̃y:

d̃(r) = j̃y(r) = d− (q + η)(2− b)
2

QB
(r∗
r

)2
, (6.14)

Note that, in particular, d = jy. Notice that the non-constant terms in d̃ and j̃y behave

as r−2, with no flavor corrections, which is probably a consequence of the non-anomalous

dimensions of these currents.

6.1 Nonzero temperature generalization

Let us now consider the system at T > 0 (i.e., when h 6= 1). It is possible to find a

truncation of the general system of equations which defines a solution that can be regarded

as the T > 0 generalization of the BPS system studied above. This truncation occurs when

the following relations are satisfied:

E = B , a′0 = −h a′y . (6.15)

Notice that eq. (B.33) continues to be trivially satisfied. Moreover, eqs. (B.28) and (B.30)

still reduce to a single equation which is now:

q+η

2b(2−q)
∂r


√
q2+b4 a2

√(
1− 1

h

)
B2+r4

√
∆

sin2 θ a′0

−B(η cos θ a′−a sin θ θ′)=0 (6.16)

and where ∆ takes the value:

∆ = b4r2ha′ 2 + sin2 θ

[
b2 + r2h θ′ 2 + b2

(1

h
− 1
)
a′ 20

]
. (6.17)

The equations for the flux function a(r) and the embedding function θ(r) can likewise be

straightforwardly derived.

7 Spectrum of mesons

The addition of flux in the internal directions induces the breaking of parity symmetry in

the Minkowski worldvolume directions. In this section we explore the effect of this parity

violation on the mass spectrum of quark-antiquark bound states which, in an abuse of lan-

guage, we will refer to as mesons. The standard method to find the meson spectrum in the

holographic correspondence is to analyze the normalizable fluctuations of the worldvolume

gauge and scalar fields of the flavor brane.4 Here we will restrict ourselves to analyzing the

4See [15, 16, 18] for the calculation of the meson spectrum in the unflavored ABJM model.
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fluctuations of the gauge field A around the zero-temperature supersymmetric configura-

tion with only the internal components of A are switched on. Accordingly, let us take the

worldvolume gauge field as:

A = A(0) + δA , (7.1)

where δA is assumed to be small and the unperturbed gauge potential is given by:

A(0) = L2 a(r) (dψ + cosαdβ) , (7.2)

with a(r) being the flux function for the SUSY embedding (6.6). We will also assume that

the embedding function θ(r) does not fluctuate and is given by (6.5). We will denote by f

the first-order correction to the worldvolume field strength (i.e., f = dδA). We will assume

that f has only components along the AdS directions. Its components are:

fmn = ∂mδAn − ∂nδAm , (7.3)

where the indices m and n run over the AdS directions. One can verify that these modes

are a consistent truncation of the full set of fluctuations of the probe. In appendix D we

obtain the equations of motion for δA by computing the first variation of the equations of

motion for the probe. These equations can be written as the Euler-Lagrange equations for

the following second-order effective Lagrangian density:

L(2) =−1

4

r2

(2−b)b2
(

1+(2−b)2 b2Q2(cos θ)
2
q

)
fmnfmn−

Q

4b L4
(4− 3b)

(
cos θ)

2
b f̃mnfmn ,

(7.4)

where the indices in fmn are raised with the inverse of the open string metric Gmn:

Gxµ xν =
ηµν

r2 L2
, Grr =

r2

L2

sin2 θ

1 + (2− b)2 b2Q2 (cos θ)
2
q

, (7.5)

and the dual field f̃mn is defined as:

f̃ mn =
1

2
εmnpq fpq . (7.6)

Notice that the Lagrangian density (7.4) is that of axion electrodynamics in AdS4, with

the axion depending on the holographic direction, showing explicitly the breaking of parity

in AdS when the flux is turned on. The equation of motion derived from L(2) is:

∂m

[
r2
(

1 + (2− b)2 b2Q2 (cos θ)
2
q

)
Gmp Gnq fpq

]
− Λ

L4
f̃ rn = 0 , (7.7)

where Λ = Λ(r) is the function written in (D.9). To solve (7.7) let us first choose the

gauge in which δAr = 0, and let us separate variables in the remaining components of δA

as follows:

δAµ = ξµ e
ikν xν R(r) , (µ = 0, 1, 2) , (7.8)

where ξµ is a constant polarization vector. The gauge condition δAr = 0, together

with (7.7), imposes the following transversality condition on ξµ:

k · ξ = ηµν kµ ξν = 0 . (7.9)
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When they are normalizable, these fluctuations are dual to vector mesons, whose mass m

is given by:

m2 = −ηµν kµ kν . (7.10)

In order to find the equation for R(r), let us choose, without loss of generality, the

Minkowski momentun kµ as:

kµ = (ω, k, 0) , (7.11)

i.e., we choose our coordinates in such a way that the momentum is oriented along the

x-direction. Notice that the mass is just m =
√
ω2 − k2. The polarization transverse

to (7.11) is:

ξµ =

(
− k
ω
ξ1 , ξ1 , ξ2

)
, (7.12)

where ξ1 and ξ2 are undetermined. Let us next consider the following complex combinations

of ξ1 and ξ2:

χ± =

√
1− k2

ω2
ξ1 ± iξ2 . (7.13)

Then, as shown in appendix D, we can solve the fluctuation equation (7.7) by taking

χ+ 6= 0, χ− = 0 or χ+ = 0, χ− 6= 0 provided the radial function in the ansatz (7.8) satisfies

the following ordinary differential equation:

OR± ± mΛR± = 0 , (7.14)

where O is the second-order differential operator defined in (D.9) and R+ = R+(r) (R− =

R−(r)) is the radial function for the solution with χ+ 6= 0 (χ− 6= 0). Notice that the χ+ and

χ− modes are two helicity states which correspond to two different circular polarizations

of the vector meson in the x− y plane. They are exchanged by the parity transformation

ξ2 → −ξ2, as is obvious from their definition (7.13).

To find the mass spectrum of the mesons we must determine the values of m for which

there exists a normalizable solution to (7.14). In general this must be done numerically by

using the shooting technique, although, we can make analytic estimates using the WKB

approximation, which we describe in detail in appendix D. The result is a tower of solutions

with increasing masses which depend on the flux. These masses depend on the location of

the tip r∗, which can be related to the mass of the quarks mq as:

mq =

√
λ

2
σ r∗ . (7.15)

In figure 1 we illustrate the dependence on the flux of the mass of the lightest state, for

the quenched background with Nf = 0. The spectra of the two helicity states are different.

The mass splitting obviously vanishes at Q = 0 and changes with the amount of flux.

For Nf = 0 it is possible to compute analytically the meson mass splitting at first order

in Q. Indeed, the fluctuation equation at first order in Q for the unflavored background is:

∂r
[

(r2 − r2
∗)∂r R±

]
+
m2

r2
R± ± 2mQ

r2
∗
r3
R± = O(Q2). (7.16)
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N
0.0
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m

m q
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λ M

N

2

4

6

λ / 2

m

m q

Figure 1. Meson masses in the quenched background as a function of the flux integer M for the

lightest meson with excitation integer n = 0 (left) and for n = 3 (right). The upper blue (lower

black) curve corresponds to the mode χ− (χ+). The intermediate red curve is the average of the

two curves, and the dashed black curve is the WKB estimate (7.24). The two straight lines on the

left panel are the first-order results written in (7.21).

For Q = 0, eq. (7.16) can be solved analytically in terms of hypergeometric functions. Let

Rn(r) be the normalizable regular solutions of (7.16) for Q = 0; they are given by:

Rn(r) =
(r∗
r

)2n+1
F

(
−n− 1

2
,−n; 1; 1− r2

r2
∗

)
, n = 0, 1, . . . . (7.17)

The corresponding mass levels are:

mn

r∗
=
√

2(n+ 1)(2n+ 1) , n = 0, 1, . . . . (7.18)

Let us now solve (7.16) at first order in Q. We write:

R±,n(r) = Rn(r)±QδRn(r) +O(Q2) , (7.19)

where the two signs are in correspondence with the ones in (7.16). The mass levels asso-

ciated to R±,n will be denoted by m±,n. The lightest regular normalizable modes at first

order in Q are given by:

R±,0(r) =
r∗
r
±Q

[
c

r
+

1√
2

(r∗
r

)2
(

1− r

r∗
log
(

1 +
r∗
r

))]
+O(Q2) , (7.20)

with c being an integration constant. The masses for these modes are:

m±,0
r∗

=
√

2∓ 3

4
Q+O(Q2) . (7.21)

In figure 1 we plot these first-order results and we compare them with the numerical

calculations. The first-order correction in the flux can similarly be obtained for the modes

with n ≥ 1, and the general form for the mass splitting is:

m−,n −m+,n

r∗
=

(2n+ 1)(3 + 4n)

2 (n+ 1)π

 Γ
(
n+ 1

2

)
Γ
(
n+ 1

)
2

Q+O(Q2) . (7.22)

– 22 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
9

It follows from this expression that the first-order mass splitting becomes 4Q/π + O(Q2)

as n→∞.

As shown in figure 1, the mass averaged over the two helicities is well approximated

by the WKB method:
m+,n +m−,n

2
≈ mWKB . (7.23)

Let us write the WKB estimate of this helicity average in the unflavored background. By

using the values of the WKB masses written in appendix D, we have:

m+,n +m−,n
2

≈ r∗

F
(
− 1

2 ,
1
2 ; 1;−Q2

) √2(n+ 1)(2n+ 1) . (7.24)

8 Discussion

In this paper, we initiated a study of D6-brane probes with parity-breaking flux in the

ABJM background with unquenched massless flavors. Minkowski embeddings of these

probe branes holographically described massive fermions in quantum Hall states. The

filling fraction was a half-integer in the quenched case, but received corrections when the

dynamics of the sea of massless flavors is included. The conductivities, both in the gapped

Minkowski embeddings and in the metallic black hole ones, depended on the parity-breaking

flux but also contained a contribution from the dynamical flavors. This was interpreted as

an effect of the intrinsic disorder due to quantum fluctuations of the fundamental degrees

of freedom.

Despite the complexity of the equations of motion we managed to obtain an explicit,

analytic family of supersymmetric solutions with nonzero charge density, electric, and

magnetic fields. For these gapped QH solutions, we obtained an analytic expression for the

Hall conductivity, which includes the effects of quark loops. We also analyzed the residual

SO+(1, 1) boost invariance of the system at zero temperature; this is a powerful tool for

generating non-supersymmetric solutions with general electric and magnetic fields starting

from solutions with either E=0 or B=0. We also explored the effect of the parity violation

on the computation of the meson spectrum. We restricted our analysis to the fluctuations

of the gauge field around the zero-temperature supersymmetric configuration in which only

the internal gauge field components were switched on.

There remain many open topics for further investigation. Although, we presented here

a set of analytic, BPS solutions for a very specific set of parameters, more general solutions

with nonzero temperature and arbitrary d, Q, E, and B still need to be studied, probably

numerically. A thorough analysis of the thermodynamics and phase structure is needed

to provide a complete understanding of this model. For example, we anticipate a phase

transition as the temperature is increased from the MN to the black hole embeddings.5

5For a massless probe brane embedding, this phase transition is related to the breaking of chiral symmetry

(note that in 2+1 dimensions this is superseded by parity breaking). See e.g. [31–34] for the holographic

realization of (inverse) magnetic catalysis and [25, 35, 36] for the study of the effect of the dynamical flavors

on magnetic catalysis.
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The effects of internal flux and the sea of massless quarks are particularly interesting.

It is tempting to view the probe D6-brane with internal flux as a blown-up version of

(excess) fractional D2-branes; see [11]. And, we would also like to understand how the

BPS solutions fit in to the complete picture.

Because there are so many possible parameters to vary, it makes sense to start by

isolating one or two. A good first step could be to analyze, along the lines of [22], the

thermodynamics of the D6-brane probe with only the internal flux, presented in section 3.2.

In the absence of massless flavors, this system is essentially a probe D6-brane in the ABJ

background, but with zero worldvolume gauge field. This is another system which deserves

a detailed thermodynamic study.

Another interesting problem for the future is the study of flavor branes with internal

flux in the ABJM background with unquenched massive quarks presented in [24]. The

geometry found in [24] is a running solution flowing between two AdS spaces, in which

the control parameter is the mass of the sea quarks. One expects to find conductivities

depending on the mass of the dynamical quarks, which interpolate between the values found

here (for massless sea quarks) and the unflavored values (for infinitely massive quarks).

In this paper we considered brane probes with electric and magnetic fields in their

worldvolume and we have neglected the backreaction of these electromagnetic fields. Com-

puting this backreaction is a very complicated task. One possible intermediate step could

be considering the geometry dual to the non-commutative ABJM model, which was found

in [37] by applying a TsT duality transformation. By adding internal flux to the probe

branes we should be able to find Hall states similar to those found here [38].

We initiated a very limited fluctuation analysis in section 7, and a more thorough study

is needed. One goal would be to compute the full meson dispersion about the BPS solution

of section 6. The lightest neutral excitations of QH fluids are magneto-rotons, collective

excitations whose minimum energy is at nonzero momentum. They have been detected in

experiments, for example [39], and they have also been found in other holographic probe-

brane QH models [40, 41]. Naturally, we would like to know if the spectrum of the model

presented here also includes rotons.

Homogeneity-breaking instabilities seem to be a general feature of black hole embed-

dings in related brane models [42–48], which are examples of the general type of instability

described in [49]. Symmetry-breaking instabilities of this type have also been found in a va-

riety of other holographic models [50–56]. In some cases, examples of spatially-modulated

ground states have been found explicitly; for example, see [42, 44, 45, 51, 54, 55, 57–65].

A thorough analysis of the quasi-normal mode spectrum is needed to determine whether

such instabilities exist in this model. If so, the ABJM system, due to its symmetries and

other special properties, might afford an ideal laboratory to study inhomogeneous phases.

Another interesting area to explore is alternative quantization of the D6-brane world-

volume gauge field. In a four-dimensional bulk, the gauge field can take Dirichlet, Neu-

mann, or mixed boundary conditions in the UV, and these choices correspond to different

boundary CFTs dual to strongly coupled anyon fluids in dynamical gauge fields. In partic-

ular, by changing the quantization as in [66–68], this ABJM system could be turned from

a quantum Hall fluid into an anyon superfluid.
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A Details of the background geometry

In this appendix we specify the coordinate system we employ to represent the metric and

forms of the background. Let us begin with the four-sphere part of the internal metric (2.4).

Let ωi (i = 1, 2, 3) be the SU(2) left-invariant one-forms which satisfy dωi = 1
2 εijk ω

j ∧ωk.
Together with a new coordinate α, the ωi’s can be used to parameterize the metric of the

four-sphere S4 as:

ds2
S4 = dα2 +

sin2 α

4

[
(ω1)2 + (ω2)2 + (ω3)2

]
, (A.1)

where 0 ≤ α < π. The SU(2) instanton one-forms Ai which fiber the S2 over the S4 in (2.4)

can be written in these coordinates as:

Ai = − sin2
(α

2

)
ωi . (A.2)

Let us next parametrize the zi coordinates of the S2 by means of two angles θ and ϕ

(0 ≤ θ < π, 0 ≤ ϕ < 2π), namely:

z1 = sin θ cosϕ , z2 = sin θ sinϕ , z3 = cos θ . (A.3)

Then, one can easily prove that the S2 part of the metric (2.4) can be written as:(
dxi + εijk Aj zk

)2
= (E1)2 + (E2)2 , (A.4)

where E1 and E2 are the following one-forms:

E1 = dθ + sin2
(α

2

) [
sinϕω1 − cosϕω2

]
E2 = sin θ

[
dϕ− sin2

(α
2

)
ω3
]

+ sin2
(α

2

)
cos θ

[
cosϕω1 + sinϕω2

]
. (A.5)
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In order to write the explicit expression for F2, we first define three new one-forms Si

(i = 1, 2, 3) as the following rotated version of the ωi’s:

S1 = sinϕω1 − cosϕω2

S2 = sin θ ω3 − cos θ
(
cosϕω1 + sinϕω2

)
S3 = − cos θ ω3 − sin θ

(
cosϕω1 + sinϕω2

)
. (A.6)

Next, we define the one-forms Sα and Si as:

Sα = dα , Si =
sinα

2
Si , (i = 1, 2, 3) , (A.7)

in terms of which the metric of the four-sphere is just ds2
S4 = (Sα)2 +

∑
i(Si)2.

With these definitions, the ansatz for the RR two-form F2 for the flavored background is

F2 =
k

2

[
E1 ∧ E2 − η

(
Sα ∧ S3 + S1 ∧ S2

) ]
. (A.8)

Note that the two-form F2 is not closed when η 6= 1; dF2 is proportional to the charge

distribution three-form of the flavor D6-branes. The RR four-form F4 is:

F4 =
3k

4

(η + q)b

2− q
L2 ΩBH4 , (A.9)

where ΩBH4 is the volume-form of the four-dimensional black hole (2.2). The solution is

completed by a constant dilaton φ given by

e−φ =
b

4

η + q

2− q
k

L
. (A.10)

Let us now spell out the embedding of the D6-brane probe in the background geometry.

We first represent the SU(2) left-invariant one-forms ωi in terms of three angles θ̂, ϕ̂, and

ψ̂ as:

ω1 = cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dϕ̂

ω2 = sin ψ̂ dθ̂ − cos ψ̂ sin θ̂ dϕ̂

ω3 = dψ̂ + cos θ̂ dϕ̂ . (A.11)

In these coordinates our embedding is defined by the conditions:

θ̂ , ϕ̂ = constant , (A.12)

with the coordinate θ defined in (A.3) being a function of the radial coordinate r. The

relation of the coordinates defined here with those used in (3.1) to write the internal part

of the induced metric is as follows: the angle α here is equal to the one introduced in (A.1),

while β and ψ are given by

β =
ψ̂

2
, ψ = ϕ− ψ̂

2
. (A.13)

It is now easy to check that the pullback of the metric (2.1) to the worldvolume is, indeed,

the line element written in (3.1).
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A.1 Matching the unflavored ABJ model

Let us now explore our prescription (3.3) in the case of the unflavored model. The main

point is that, when Nf = 0, the worldvolume gauge field for the supersymmetric con-

figurations can be understood as induced by a flat NSNS B2 field of the bulk, which is

proportional to the Kähler form J of CP3. When the coefficient multiplying J is appro-

priately quantized, the corresponding supergravity solution is the dual of the ABJ theory

with gauge group U(N + M)k × U(N)−k. We will see that the rank difference M can be

identified with the quantization integer in (3.3).

Let us begin our analysis by writing the Kähler form of CP3 in our variables:

J =
1

4

(
E1 ∧ E2 −

(
Sα ∧ S3 + S1 ∧ S2

) )
. (A.14)

The pullback of J to the probe brane worldvolume is:

Ĵ =
θ′ sin θ

4
dr ∧

[
dψ + cosαdβ

]
+

cos θ sinα

4
dα ∧ dβ , (A.15)

and, as claimed, it has the form written in (3.5) if we identify the flux function a(r) with:

a(r) = −Q cos θ(r) , (A.16)

where Q is a constant. Actually, one can check that the worldvolume gauge field F (3.5)

for this unflavored case can be written in terms of the pullback of J as:

F = 4L2Q Ĵ . (A.17)

We will see below in appendix C that the relation (A.16) between the flux and embedding

functions is dictated by supersymmetry when Nf = 0. Notice also that the flux function

at the tip is just Q, as in (3.9).

In the DBI+WZ action for D-branes, the worldvolume gauge field F is always combined

additively with the pullback of B2. It follows that, in this case, the worldvolume flux can

alternatively be thought of as induced by the following NSNS B2 field:

B2 = 4QL2 J . (A.18)

Notice that B2 is a closed two-form, and it has the same form as in the proposed gravity

dual of the ABJ model [26] with gauge group U(N + M)k × U(N)−k, where Q is related

to M . Actually, the integer M is determined by the discrete holonomy of B2 on the CP1

cycle of the CP3 space, which is inherited from the holonomy of the three-dimensional

three-form potential of the eleven dimensional supergravity along the torsion cycle of the

S7/Zk. Let us compute explicitly the integral of the two-form (A.18) along the CP1. In

our coordinates (see [21]) the CP1 is obtained by keeping the coordinates of the S4 cycle

fixed. Therefore, the pullback of J is just:

J|CP1 =
1

4
sin θ dθ ∧ dϕ , (A.19)
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and thus the integral of J along the CP1 is:∫
CP1

J = π . (A.20)

It follows from (A.18) that: ∫
CP1

B2 = 4π L2Q . (A.21)

Let us now use our quantization condition (3.8) and the identification (3.9) to write the

period of B2 in terms of k and the quantization integer M . We get:∫
CP1

B2 = (2π)2 M

k
, (A.22)

which is the fractional holonomy proposed in [26] for the gravity dual of the U(N +M)k×
U(N)−k theory.

The coefficient Q can also be fixed by looking at the Page charge Q4 for fractional D2-

branes (D4-branes wrapped on a CP1 two-cycle), which is given by the following integral

over the CP2 dual to the CP1 where the D4-branes are wrapped:

Q4 =
1

(2π)3

∫
CP2

[F4 +B2 ∧ F2] . (A.23)

We require that Q4 is equal to our quantization integer M , which can then be interpreted

as the number of fractional D2-branes. Taking into account (A.18) and that F2 = 2k J for

this unflavored case, we get:

Q4 =
k L2Q

π3

∫
CP2

J ∧ J . (A.24)

To compute this integral we use the fact that the equation of the CP2 cycle in our coordi-

nates is ϕ = θ = π/2 (see appendix A in [21]), which implies:

J ∧ J|CP2 =
1

16
sin2 α

2
sinα dα ∧ ω1 ∧ ω2 ∧ ω3 . (A.25)

Then, it follows that: ∫
CP2

J ∧ J = π2 . (A.26)

Therefore,

Q4 =
k L2Q

π
, (A.27)

and the quantization condition Q4 = M coincides with the one obtained in (3.8) for

a∗ = −Q.
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B Probe brane equation of motion

Let us consider a Dp-brane probe propagating in a background of type II supergravity. Let

gij denote the components of the induced metric on the worldvolume:

gij = gmn ∂iX
m ∂j X

n , (B.1)

where the Xn are coordinates of the ten-dimensional space and gmn is the target space

metric of the background. In what follows m,n, . . . will denote indices of the target space,

whereas i, j, . . . will represent worldvolume indices. Let us denote by M the following

matrix:

M = g + F , (B.2)

where F = dA is the worldvolume gauge field. Then, the action of a Dp-brane probe can

be written as:

SDp = SDBI + SWZ , (B.3)

where the DBI and WZ terms are:

SDBI = −TDp

∫
Mp+1

dp+1ξ e−φ
√
−detM , SWZ = TDp

∫
Mp+1

eF ∧ C , (B.4)

with TDp being the Dp-brane tension (from now on in this appendix we will take TDp = 1)

and C =
∑

r Cr is the sum of RR potentials. In order to write the equations of motion

derived from this action following the analysis of section 2 of [69], let us consider the inverse

M−1 = [M ij ] of the matrix M = [Mij ] and let us decompose M−1 in its symmetric and

antisymmetric parts as:

M−1 = G−1 + J , (B.5)

where J = [J ij ] is the antisymmetric component of M−1 and G−1 = [Gij ] is the inverse

open string metric. Then, the equation of motion of the gauge field component Aj is [69]:

∂j

(
e−φ
√
−detM J ji

)
= ji , (B.6)

where the source current for the gauge field ji is given by:

ji ≡ δSWZ

δAi
. (B.7)

Moreover, the equation for the scalar field Xm becomes [69]:

−∂i
(
e−φ
√
−detM Gij ∂j Xn gnm

)
+
√
−detM

(e−φ
2
Gji ∂iXn ∂j X

p gnp,m − e−φ ∂m φ
)

= jm , (B.8)

where the source for the scalar Xm is:

jm ≡
δSWZ

δXm
. (B.9)
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B.1 Currents for the D6-brane

Let us write the form of the currents for the case of a D6-brane probe. In this case, the

WZ term of the action is:

SWZ =

∫
M7

(
Ĉ7 + Ĉ5 ∧ F +

1

2
Ĉ3 ∧ F ∧ F +

1

6
Ĉ1 ∧ F ∧ F ∧ F

)
. (B.10)

Let us perform a general variation of the worldvolume gauge field F → F + d(δA), under

which SWZ varies as:

δSWZ =

∫
M7

(
Ĉ5 + Ĉ3 ∧ F +

1

2
Ĉ1 ∧ F ∧ F

)
∧ d(δA) . (B.11)

In order to compute the current associated to the worldvolume gauge field, we use the fact

that, for any odd-dimensional form O, one has

O ∧ d(δA) = dO ∧ δA− d(O ∧ δA) . (B.12)

The total derivative generates a boundary term which vanishes since we are assuming that

A is fixed at the boundary in the variational process.6 Taking into account that, with our

notation F4 = −dC3, we get:

δSWZ =

∫
M7

(
F̂6 − F̂4 ∧ F +

1

2
F̂2 ∧ F ∧ F

)
∧ δA . (B.13)

Then, the gauge current along the worldvolume direction i is given by the expression:

ji d7ξ =

(
F̂6 − F̂4 ∧ F +

1

2
F̂2 ∧ F ∧ F

)
∧ dξi . (B.14)

In order to compute the source current jm for Xm, we should vary in (B.10) the scalars

which enter the pullback of the RR potentials. It turns out that the final expression can

be written in a rather simple form, which we will now spell out. Let V = V m ∂
∂Xm be any

vector field in target space. The interior product of V with a p-form ω is a (p − 1)-form

ιV ω defined as follows. Let ω be:

ω =
1

p!
ωn1,...,np dX

n1 ∧ · · · ∧ dXnp . (B.15)

Then, ιV ω is given by:

ιV ω =
1

(p− 1)!
V m ωm,m1,...,mp−1 dX

m1 ∧ · · · ∧ dXmp−1 . (B.16)

Let ιmω denote the interior product of ω and the vector ∂/∂Xm:

ιmω ≡ ι ∂
∂Xm

ω . (B.17)

6Note that, although we have chosen Dirichlet boundary conditions for A here, A can, in fact, have

arbitrary mixed boundary conditions, corresponding to alternative quantization, as discussed in [66].
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Then, the current jm, corresponding to the scalar Xm, can be written as:

jm d
7ξ = ι̂mF8 + ι̂mF6 ∧ F −

1

2
ι̂mF4 ∧ F ∧ F +

1

6
ι̂mF2 ∧ F ∧ F ∧ F , (B.18)

where the hat denotes the pullback of the different ιmFr to the worldvolume. In (B.18)

F8 and F6 are defined as Hodge duals of F2 and F4, respectively, i.e., F8 = − ∗ F2 and

F6 = − ∗ F4.

Notice that we have derived the expressions of ji and jm from the action (B.10), where

we have assumed the existence of the RR potentials Cr. In the case of backreacting flavor

some Bianchi identities are violated and, as a consequence, some of the RR potentials do

not exist. However, the currents ji and jm (and the corresponding equations of motion)

only depend on the RR field strengths and their pullbacks, and then they can be generalized

to the case in which we include the backreaction. This is the point of view we will adopt

in what follows.

B.2 The equations of motion for our ansatz

We now write explicitly the equations of motion for the D6-brane with a gauge potential

A as the one written in (3.13). We will also assume that the embedding is defined by

the conditions (A.12) with θ = θ(r) being a function of r to be determined. The set of

worldvolume coordinates we will employ is:

ξi = (t, x, y, r, α, β, ψ) , (B.19)

where α, β, and ψ are the angles defined in (A.1) and (A.13). First of all, let us write

the non-zero components of the worldvolume gauge field strength F corresponding to the

potential (3.13):

Ft x = L2E , Fx y = L2B ,

Fr t = L2 a′0 , Fr x = L2 a′x , Fr y = L2 a′y ,

Fr ψ = L2 a′ , Fr β = L2 a′ cosα , Fαβ = −L2 a sinα , (B.20)

where the prime denotes the derivative with respect to the radial variable. Notice that,

in our ansatz, isotropy in the x − y plane is explicitly broken by the electric field in the

x-direction.

We will start by computing the different components of the currents appearing in (B.6)

and (B.8). It is straightforward to prove that F̂6 = 0, and it therefore does not contribute

to ji and jm. The non-vanishing components of the gauge current ji are:

jt =
kL4

2
B sinα (η cos θ a′ − a sin θ θ′) ,

jy =
kL4

2
E sinα (η cos θ a′ − a sin θ θ′) ,

jψ =
kL4

2
sinα

(
3b

2

η + q

2− q
r2 a− η (B a′0 + E a′y) cos θ

)
. (B.21)
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We now work out the current for the three transverse scalars. First we compute the interior

products of F8 with the tangent vectors along the three scalar directions m = θ, θ̂, ϕ̂.

We find:

ι̂θF8 = −(3− 2b)(q + η)q

8b3(2− q)
kL6 sinα r2 sin(2θ) d7ξ . (B.22)

Moreover, the product of F8 with the other two tangent vectors gives a result proportional

to ι̂θF8:

ι̂θ̂F8 = − sin2
(α

2

)
sin(β − ψ) ι̂θF8 , ι̂ϕ̂F8 = sin θ̂ sin2

(α
2

)
cos(β − ψ) ι̂θF8 . (B.23)

We already mentioned that F6 does not contribute since its pullback is zero. It is also

immediate to check that F4 does not have components along the transverse scalars and

will not contribute to jm. The contribution of F2 to jθ is determined by:

1

6
ι̂θF2 ∧ F ∧ F ∧ F =

kL6

2
sinαa sin θ (B a′0 + E a′y) d

7ξ , (B.24)

while the result for the other scalars are:

ι̂θ̂F2 ∧ F ∧ F ∧ F = − sin2
(α

2

)
sin(β − ψ) ι̂θF2 ∧ F ∧ F ∧ F ,

ι̂ϕ̂F2 ∧ F ∧ F ∧ F = sin θ̂ sin2
(α

2

)
cos(β − ψ) ι̂θF2 ∧ F ∧ F ∧ F . (B.25)

Notice that the proportionality factors in (B.23) and (B.25) are the same. Thus, the current

for the scalar θ becomes:

jθ = −kL
6

2
sinα sin θ

(
(3− 2b)(q + η)q

2 b3(2− q)
r2 cos θ − a (B a′0 + E a′y)

)
. (B.26)

Moreover, the other two components of jm are:

jθ̂ = − sin2
(α

2

)
sin(β − ψ) jθ , jϕ̂ = sin θ̂ sin2

(α
2

)
cos(β − ψ) jθ . (B.27)

Let us now finally write the equations of motion for the different gauge field components

and scalars. We have to compute the different components of the antisymmetric tensor

J ij , as well as the elements of the inverse open string metric Gij . This calculation is

straightforward (although rather tedious in some cases) and we limit ourselves to give the

final result for the equations. The equation of At is:

q + η

2b(2− q)
∂r

[ √
h
√
q2 + b4 a2

√
∆
√

(B2 + r4)h− E2
sin2 θ

[
B(B a′0 + E a′y) + r4 a′0

]]
−B(η cos θ a′ − a sin θ θ′) = 0 , (B.28)

where ∆ is the quantity defined in (3.16). The equation for Ax can be integrated once (ax
is a cyclic variable) to give the following equation for a′x:

r4 h
3
2 sin2 θ

√
q2 + b4 a2 a′x√

∆
√

(B2 + r4)h− E2
= constant . (B.29)

– 32 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
9

The equation for Ay is also non-trivial and given by:

q + η

2b(2− q)
∂r

[ √
h
√
q2 + b4 a2

√
∆
√

(B2 + r4)h− E2
sin2 θ

[
E(B a′0 + E a′y) − r4 h a′y

]]
−E(η cos θ a′ − a sin θ θ′) = 0 . (B.30)

It is easy to demonstrate that the equations for Ar, Aα, and Aβ are trivially satisfied by

our ansatz. The only non-trivial equation for the gauge field that remains to write is the

one corresponding to Aψ, which is:

∂r

[
r2
√
h
√
q2 + b4 a2

√
(B2 + r4)h− E2

√
∆

a′

]
−
√

∆
√

(B2 + r4)h− E2

√
h
√
q2 + b4 a2

a

+3r2a− 2(2− q) η
b(q + η)

(B a′0 + E a′y) cos θ = 0 . (B.31)

Finally, one can prove that the three equations for the transverse scalars θ, θ̂, and ϕ̂ are

the same, namely:

∂r

[
r2 sin2 θ

√
h
√
q2 + b4 a2

√
(B2 + r4)h− E2

√
∆

θ′

]

−
√
q2 + b4 a2

√
(B2 + r4)h− E2

√
h
√

∆

[
∆− b4 r2 h a′ 2

]
cot θ

−(3− 2b) q r2 sin θ cos θ +
2b3(2− q)
q + η

a sin θ (B a′0 + E a′y) = 0 . (B.32)

eq. (B.29) allows us to eliminate a′x, after which we have four second-order, coupled differen-

tial equations (B.28)–(B.32) for four radial functions of a0, ay, a, and θ. Solving this system

in general is a quite formidable task. For this reason it is worth to look for simplifications

and partial integrations. Notice that (B.28) and (B.30) present some electric-magnetic

symmetry. Actually, by combining these equations one easily finds the following constant

of motion:
r4
√
h
√
q2 + b4 a2

√
∆
√

(B2 + r4)h− E2
sin2 θ

[
E a′0 + hB a′y

]
= constant , (B.33)

which could be used to eliminate a′0 or a′y from the system of equations. Moreover, in the

unflavored case (η = b = q = 1), the last two terms in (B.28) and (B.30) can be combined

to construct the radial derivative of a cos θ, which leads to two constants of motion. In this

unflavored case, a0 and ay are cyclic variables and can be eliminated.

C Kappa symmetry analysis

The kappa symmetry matrix for a Dp-brane in the type IIA theory is given by:

dp+1 ζ Γκ =
1√

−det(g + F )
eF ∧X , (C.1)
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where g is the induced metric, ζα (α = 0, . . . , p) are a set of worldvolume coordinates and

X is the polyform matrix:

X =
∑
n

γ2n+1

(
Γ11

)n+1
, (C.2)

with γ2n+1 being the (2n + 1)-form whose components are the antisymmetrized products

of the induced Dirac matrices γµ:

γ2n+1 =
1

(2n+ 1)!
γµ1···µ2n+1 dζ

µ1 ∧ · · · ∧ dζµ2n+1 . (C.3)

In particular, we are interested in the case of a D6-brane with a flux across a (non-compact)

four-cycle. The corresponding kappa symmetry matrix takes the form:

d7ζΓκ =
1√

−det(g + F )

[
γ(7) +F ∧γ(5)Γ11 +

1

2
F ∧F ∧γ(3) +

1

6
F ∧F ∧F ∧γ(1)Γ11

]
. (C.4)

Let us now study the conditions imposed by kappa symmetry in the case in which the

embedding is determined by the conditions (A.12), the worldvolume gauge field takes the

form (3.13) with ax = 0, and the background is the zero-temperature supergravity solution

of [21]. We begin by computing the pullbacks of the left-invariant SU(2) one-forms ωi

of (A.11) in the α, β, and ψ variables:

ω̂1 = ω̂2 = 0 , ω̂3 = 2dβ , (C.5)

whereas those of Si and Ei are:

Ŝα = dα , Ŝ1 = 0 , Ŝ2 = sinα sin θ dβ , Ŝ3 = − sinα cos θ dβ ,

Ê1 = θ′ dr , Ê2 = sin θ (dψ + cosαdβ) . (C.6)

The pullbacks of the frame one-forms used in appendix B of [21] are:

êµ = Lr dxµ , ê3 =
L

r
dr , ê4 =

√
q

b
L dα ,

ê5 = 0 , ê6 = L

√
q

b
sinα sin θ dβ , ê7 = −L

√
q

b
sinα cos θ dβ ,

ê8 =
L

b
θ′ dr , ê9 =

L

b
sin θ (dψ + cosαdβ) . (C.7)

The corresponding induced gamma matrices become:

γxµ = Lr Γµ , γr =
L

r

(
Γ3 +

r

b
θ′ Γ8

)
, γα = L

√
q

b
Γ4 ,

γβ = L

√
q

b
sinα sin θ

[
Γ6 − cot θ Γ7 +

cotα
√
q

Γ9

]
, γψ =

L sin θ

b
Γ9 . (C.8)

Let us next compute the different contributions on the right-hand side of (C.4). First

of all we notice that:

γ(7) = d7 ζ γ∗ , (C.9)
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where γ∗ is the antisymmetrized product of all induced gamma matrices, namely:

γ∗ = γt x y r αβ ψ . (C.10)

In terms of flat 10d matrices, γ∗ can be written as:

γ∗ =
q

b3
L7 r2 sinα sin2 θ Γ012

(
Γ3 +

r θ′

b
Γ8

)
Γ4

(
Γ6 − cot θ Γ7

)
Γ9 . (C.11)

With our notation, the supersymmetric embeddings are those that satisfy Γκ ε = −ε, where

ε is a Killing spinor of the background. To implement this relation we impose that ε satisfies

the projection corresponding to a D2-brane, i.e.,

Γ012 ε = −ε . (C.12)

We also impose that ε satisfies the generic projections found in appendix B of [21] for a

generic ABJM-like geometry (eqs. (B.4) and (B.14) in [21]):

Γ47 ε = Γ56 ε = Γ89 ε , Γ3458 ε = − ε . (C.13)

From these projections it follows that:

Γ3469 ε = −Γ8479 ε = ε , Γ3479 ε = Γ8469ε = −Γ38 ε . (C.14)

Using (C.12) and (C.13), γ∗ ε reduces to:

γ∗ ε = − q

b3
L7 r2 sinα sin2 θ

[
1 +

r θ′

b
cot θ +

(
cot θ − r θ′

b

)
Γ38

]
ε . (C.15)

From the condition that γ∗ acts diagonally on ε (i.e., γ∗ acts on ε as a matrix propor-

tional to the unit matrix), we get the following equation for the embedding angle:

r θ′ = b cot θ . (C.16)

Moreover, when (C.16) and the projections (C.12) and (C.13) hold, γ(7) acts on ε as:

γ(7) ε = −d7 ζ
q

b3
L7 r2 sinα ε . (C.17)

Let us now study the terms in (C.4) that are linear in the worldvolume gauge field F . Let

us write these terms as:

F ∧ γ(5)Γ11 = d7ζ
[

Γflux + ΓMin
]
, (C.18)

where Γflux contains the contributions of the components of F along the internal direc-

tions and ΓMin is the contribution of the components of F with legs along the Minkowski

spacetime. It is readily verified that:

Γflux = γt x y Γ11

[
γαβ Fr ψ − γαψ Fr β + γrψ Fαβ

]
. (C.19)
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The antisymmetric products of induced gamma matrices appearing on (C.19) can be

straightforwardly computed from (C.8):

γαβ =
q

b2
L2 sinα sin θ

[
Γ46 − cot θ Γ47 +

cotα
√
q

Γ49

]
,

γαψ =

√
q

b2
L2 sin θ Γ49 ,

γrψ =
L2

b

sin θ

r

[
Γ39 +

r θ′

b
Γ89

]
, (C.20)

On the other hand, ΓMin is given by:

ΓMin = L2
(
E γyr − a′0 γxy +B γtr − a′y γtx

)
γαβψ Γ11 . (C.21)

The products of the induced Dirac matrices needed to compute ΓMin are:

γyr = L2
[
Γ23 +

r

b
θ′ Γ28

]
, γxy = L2 r2 Γ12 ,

γtr = L2
[
Γ03 +

r

b
θ′ Γ08

]
, γtx = L2 r2 Γ01 ,

γαβγ = L3 q

b3
sinα sin2 θ

(
Γ469 − cot θ Γ479

)
. (C.22)

A quick inspection of the different terms appearing in Γfluxε and ΓMinε reveals that, after

using the projections (C.12) and (C.13), all terms contain products of Γ matrices and there

are no terms containing the unit matrix. Therefore, to implement the condition Γκ ε = −ε
we should require that Γfluxε = ΓMinε = 0. By combining (C.19) and (C.20) we find that

the product of Γ’s contained in Γflux ε is:

1

L4

[
γαβFrψ − γαψFrβ + γrψFαβ

]
ε =

sinα sin θ

b

(q
b
a′ +

a

r

)
Γ46ε

− sinα

b2

(
q cos θa′ + sin θθ′a

)
Γ47ε. (C.23)

After using the equation (C.16) satisfied by the angle θ(r), we find that Γfluxε = 0 if the

flux function a(r) satisfies the following first-order equation:

a′

a
= − b

q r
. (C.24)

When E = B = 0 and a′0 = a′y = 0, eqs. (C.16) and (C.24) guarantee that the embedding

preserves two of the four supersymmetries of the background. If this is not the case, we

should continue analyzing the remaining terms in Γκ. From (C.21) and (C.22) we get:

1

L7
ΓMinε =

q

b3
sinα sin2 θ

[
E
(

Γ23 +
r

b
θ′Γ28

)
+B

(
Γ03 +

r

b
θ′Γ08

)
− r2a′0Γ12 − r2a′yΓ01

]
×
(

Γ469 − cot θΓ479

)
Γ11ε. (C.25)
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After using the projections (C.13) we can write the action of ΓMin on the Killing spinor

ε as:

1

L7
ΓMin ε =

q

b3
sinα sin2 θ

[
(EΓ2 +BΓ0)

[
1 +

rθ′

b
cot θ +

(
cot θ − rθ′

b

)
Γ38

]
Γ11

+
(
a′0 Γ2 − a′y Γ0

)
r2 (1 + cot θ Γ38) Γ13 Γ11

]
ε . (C.26)

Using the BPS equation for θ (C.16), we can rewrite this last expression as:

1

L7
ΓMin ε =

q

b3
sinα

[
(EΓ2 +BΓ0)Γ11 +

(
a′0Γ2 − a′yΓ0

)
r2 sin2 θ(1 + cot θ Γ38) Γ13Γ11

]
ε .

(C.27)

To ensure that ΓMin ε = 0 we first impose one of the following two extra projections on ε:

Γ02 ε = ±ε . (C.28)

Notice that the conditions (C.28) are compatible with the projections (C.12) and (C.13)

that we have imposed so far. We get

1

L7
ΓMin ε =

q

b3
sinα

[
(E ∓B)Γ2Γ11 +

(
a′0 ± a′y

)
r2 sin2 θ(1 + cot θΓ38) Γ213Γ11

]
ε , (C.29)

and we have that ΓMin ε = 0 if E, B, a′0, and a′y satisfy the following conditions:

E = ±B , a′0 = ∓a′y . (C.30)

The two signs correspond to the two projections in (C.28) (in section 6 we have chosen the

upper signs). Therefore, after imposing these conditions, we have

F ∧ γ(5) ε = 0 . (C.31)

Notice that the extra projection (C.28) is only needed if the worldvolume gauge field has

components along the Minkowski directions. Furthermore, one can check that the BPS

equations (C.16), (C.24), and (C.30) and the projections (C.12), (C.13), and (C.28) imply

that the remaning terms in Γκ act on ε as:

1

2
F ∧ F ∧ γ(3) ε = −d7 ζ

bL7

q
r2 a2 sinα ε ,

1

6
F ∧ F ∧ F ∧ γ(1) Γ11 ε = 0 . (C.32)

It follows that:

d7 ζ Γκ ε|BPS
= − d7 ζ√

−det(g + F )|BPS

b L7

q
r2

(
q2

b4
+ a2

)
sinα ε|BPS

, (C.33)

and one can verify by computing the DBI determinant for the BPS configuration that,

indeed, Γκ ε|BPS
= −ε|BPS

.
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D Fluctuations

To find the equations satisfied by the fluctuations at first order, we just compute the

variation of the gauge field equations (B.6). One can check that the variation of detM is

zero at first order and, as a consequence, the equations for the fluctuations are:

∂j

(
e−φ
√
−detM δJ ji

)
= δji . (D.1)

We will restrict our attention to the case in which the only non-zero components of δA are

those along the Minkowski directions,

δA = cµ(xν , r) dxµ . (D.2)

Notice that in (D.2) we are assuming that the cµ’s do not depend on the internal angles. It

is then easy to verify that, when the index i corresponds to one of those internal directions,

the equation of motion (D.1) is satisfied automatically by the ansatz (D.2). Moreover,

when i = r this equation reduces to the following Lorentz condition:

− ∂0 c0 + ∂1c1 + ∂2c2 = 0 . (D.3)

Finally, when i = µ = 0, 1, 2, eq. (D.1) becomes:

b

q
∂r

(
r2 sin2 θ

√
q2 + b4a2√

b2 sin2 θ + r2(b4 a′2 + sin2 θ θ′ 2)
∂r c

µ

)

+
1

bq

√
q2 + b4a2

r2

√
b2 sin2 θ + r2(b4 a′2 + sin2 θ θ′ 2) ∂ν∂ν c

µ

+
2b2

q

2− q
η + q

(
η cos θ a′ − a sin θθ′) εµαβ ∂α cβ = 0 , (D.4)

where cµ = ηµν cν and, in our conventions, ε012 = 1. To solve these equations, let us

separate variables in cµ(xν , r) as:

cµ(xν , r) = ξµ e
ikν xν R(r) , (µ = 0, 1, 2) , (D.5)

where ξµ is a constant polarization vector. It follows immediately from (D.3) that this

vector satisfies the transversality condition (7.9).

In order to write the fluctuation equation for the radial function R in a compact form,

let us define the differential operator O, which acts on any function of the radial coordinate

R(r) as:

OR ≡ b

q
∂r

[
r2 sin2 θ

√
q2 + b4a2√

b2 sin2 θ + r2(b4 a′2 + sin2 θ θ′ 2)
∂r R

]

+
m2

bq

√
q2 + b4a2

r2

√
b2 sin2 θ + r2(b4 a′2 + sin2 θ θ′ 2) R , (D.6)

where m is the mass of the dual meson (see (7.10)). We also define the function Λ(r) as:

Λ(r) ≡ 2b2

q

2− q
η + q

(
η cos θ a′ − a sin θθ′) . (D.7)
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Then, the fluctuation equation can be written as:

ξµOR+ iεµαβ kα ξβ ΛR = 0 . (D.8)

Moreover, by substituting the values of the functions θ(r) and a(r) which correspond to a

SUSY embedding (6.5) and (6.6), we can greatly simplify the operator O and the function

Λ. We get:

OR = ∂r

[
r2−2b

(
r2b − r2b

∗
)
∂r R

]
+

m2

r2(3−b)

(
r2(2−b) + (2− b)2 b2Q2 r

2(2−b)
∗

)
R ,

Λ = 2b (2− b) (4− 3b)Q
r2
∗
r3
. (D.9)

The three equations in (D.8) are coupled to each other. Let us see how they can be

decoupled and reduced to a single ordinary differential equation. First of all, without loss

of generality we pick the Minkowski momentum as kµ = (ω, k, 0) with the meson mass

being m =
√
ω2 − k2. The transverse polarization has been written in (7.12) in terms of

two unknown constants ξ1 and ξ2. For this parametrization of ξµ one can show that the

equations for µ = 0 and µ = 1 in (D.8) are equivalent and that the remaining two equations

are just:

ξ1OR+ iωξ2 ΛR = 0 ,

ξ2OR− iω
[
1− k2

ω2

]
ξ1 ΛR = 0 . (D.10)

To decouple these equations, let us consider the complex combinations χ± defined in (7.13).

Then, one can straightforwardly show that the system (D.8) can be reduced to the equa-

tions:

χ+

(
OR+mΛR

)
= 0 , χ−

(
OR−mΛR

)
= 0 . (D.11)

Obviously, χ± can be eliminated from (D.11) when they are non-vanishing and the system

can be reduced to two ordinary differential equations for the radial functions R±, which

can be written as:

∂r
[
r2−2b(r2b − r2b

∗ )∂rR±
]

+
[ m2

r2(3−b)

(
r2(2−b) + (2− b)2 b2Q2 r

2(2−b)
∗

)
±mΛ(r)

]
R± = 0 .

(D.12)

To find the mass spectrum we must compute the values of m leading to a normalizable

solution. This can be done numerically by the shooting technique. We present these

numerical results for the two types of modes in figures 1 and 2.

D.1 WKB mass spectrum

When the mass m is large we can neglect the term containing the function Λ in the

fluctuation equation (D.12), and we can estimate the mass levels by using the WKB method

developed in [70]. Indeed, let us consider a differential equation of the form

∂r
(
f(r) ∂r R

)
+m2 h(r)R = 0 , (D.13)
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Figure 2. Meson masses in the unquenched background as a function of the flavor deformation

parameter ε̂ for
√
λM/N = 1 and two values of the excitation integer: n = 0 (left) and n = 3

(right). The upper blue (lower black) curve corresponds to the mode χ− (χ+). The intermediate

red curve is the average of the two curves and the dashed black curve is the WKB estimate (D.20).

where m is the mass parameter and f(r) and h(r) are two arbitrary functions that are

independent of m. We will assume that near r ≈ r∗ and r ≈ ∞ these functions behave as:

f ≈ f1(r − r∗)s1 , h ≈ h1(r − r∗)s2 , as r → r∗ ,

f ≈ f2 r
r1 , h ≈ h2 r

r2 , as r →∞ , (D.14)

where fi, hi, si, and ri are constants. Then, the mass levels for large quantum number n

can be approximately written in terms of these constants as [70]:

m2
WKB =

π2

ξ2
(n+ 1)

(
n+

|s1 − 1|
s2 − s1 + 2

+
|r1 − 1|

r1 − r2 − 2

)
, (n ≥ 0) , (D.15)

where ξ is the following integral:

ξ =

∫ ∞
r∗

dr

√
h(r)

f(r)
. (D.16)

In our case f and h are the functions:

f(r) = r2−2b(r2b − r2b
∗ ) ,

h(r) =
1

r2(3−b)

(
r2(2−b) + (2− b)2 b2Q2 r

2(2−b)
∗

)
. (D.17)

The behavior of these functions at r = r∗ is characterized by the following values of the

coefficients and exponents defined in (D.14):

f1 = 2 b r∗ , s1 = 1 ,

h1 =
1 + (2− b)2 b2Q2

r2
∗

, s2 = 0 . (D.18)
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Similarly, for the behavior at large r we obtain:

f2 = 1 , r1 = 2 ,

h2 = 1 , r2 = −2 . (D.19)

Therefore, the WKB mass spectrum is:

mWKB =
π√

2 ξ(b,Q)

√
(n+ 1)(2n+ 1) , (D.20)

where ξ(b,Q) is the following integral:

ξ(b,Q) ≡ 1

r∗

∫ ∞
1

dz

z2(2−b)

√
z2(2−b) + (2− b)2 b2Q2

√
z2b − 1

. (D.21)

By expanding in series the square root in the numerator and integrating term by term, we

can express ξ(b,Q) as the following series:

ξ(b,Q) = − 1

4 b r∗

∞∑
p=0

(−1)p
[
(2− b) bQ

]2p Γ
(
p− 1

2

)
p!

Γ
(

1+2p(2−b)
2b

)
Γ
(

1+2p(2−b)
2b + 1

2

) . (D.22)

Some particular values of the integral ξ(b,Q) are:

ξ(b = 1, Q) =
π

2r∗
F
(
− 1

2
,
1

2
; 1;−Q2

)
,

ξ(b,Q = 0) =

√
π

r∗

Γ
(

2b+1
2b

)
Γ
(
b+1
2b

) . (D.23)

Interestingly, for b = 1 and Q = 0 (the unflavored model without internal flux) the WKB

formula for the mass levels is exact. Moreover, for large Q we can approximate ξ(b,Q) as:

ξ(b,Q) ≈ (2− b) bQ
r∗

∫ ∞
1

dz

z2(2−b)
√
z2b − 1

=

√
πQ

r∗

(2− b) b
3− b

Γ
(

3+b
2b

)
Γ
(

3
2b

) . (D.24)

It follows that, for fixed quantum number n, the WKB mass levels for large Q decrease as

1/Q according to the equation:

mWKB ≈
√
π r∗√
2Q

3− b
(2− b) b

Γ
(

3
2b

)
Γ
(

3+b
2b

) √(n+ 1)(2n+ 1) . (D.25)

In figure 2 we compare the WKB estimates using (D.20) and the numerical results. The

WKB method, however, is not valid at large values of Q, as it falls off the validity regime

of [70]. Our numerical studies verified this expectation.
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