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1 Introduction

What is the fundamental unit of matters and spacetime in Nature? We have not obtained

the answer of this question yet, because the quantum theory of everything has not been

found. Even though the Standard Model for matter fields and their interactions has been

established in our energy level, we have not known more fundamental aspects of it in much

higher energy scale. String theory is expected as a candidate to describe the quantum

feature of gravitational force as well as the origin of matter fields and gauge interactions.

However, it is still very hard to understand the quantum aspects of string theory.

D-branes, the extended objects in string theory, play a central role to understand the

nonperturbative feature of string theory. Indeed they contribute to the quantum aspects

of black hole physics. However, one suspects that counting D-branes’ dynamics is still not

enough to describe the quantum behavior of the black hole physics completely. Exploring

the black holes physics, one has recognized that “exotic branes” should be involved [1–4].

Exotic branes are non-standard objects because the metric of their background geometry

is not a single-valued function. The lack of the single-valuedness is caused by the mixing

of the diffeomorphism and the duality transformations in string theory. The exotic branes

have already been argued in [1–5], and are exhaustively discussed in [6, 7] again.
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Conventionally, the spacetime metric is single-valued if the spacetime is probed by

a point particle. In this case the spacetime geometry is represented by the Riemann(-

Cartan) geometry. However, when the spacetime is probed by a string, the description

of the spacetime geometry should be extended, i.e., the structure of “winding” should

be involved. In other words, the spacetime geometry is reformulated in terms of the

metric G and the NS-NS B-field B. Once information of the winding is involved in the

spacetime geometry, it contains the structure of the string T-duality in a very natural way.

Such a geometry is described by “generalized geometry” [8]. Soon after, string theorists

applied the generalized geometry to flux compactification scenarios (for a comprehensive

review, see [9]). The generalized geometry exhibits not only the conventional Riemann(-

Cartan) geometry, but also “nongeometry” which is not captured by the conventional

metric only. Historically, however, the conventional geometry given only by the metric

has been exhaustively studied even in string theory. The generalized geometry, i.e., the

geometry by the metric and the B-field, has not been argued seriously. This is because

people think that the generalized geometry is a bit far from the conventional geometry

which is familiar with the general theory of relativity. We now encounter difficulties of

the analysis of the black hole quantum mechanics, as far as we concern it only in terms of

the conventional geometry. Thus it is the time to study the generalized geometry in order

to evaluate the quantum aspects of the black hole physics completely. Indeed, the exotic

brane is the typical object of this study.

In this work we focus on the exotic 52
2-brane. This is a typical example of exotic branes.

We begin with the background geometry of a single H-monopole, i.e., a single NS5-brane

smeared along a compact S1-circle. Performing the T-duality transformation followed by

the Buscher rule [10], we obtain the background geometry of a single Kaluza-Klein (KK)

monopole. This geometry is described as the (single-centered) Taub-NUT space. Now we

further compactify one of the three directions of the Taub-NUT space. The KK-monopole

is reduced to the five-brane of codimension two, whilst the original KK-monopole and

the H-monopole are of codimension three. (We often refer to five-branes of codimension

two as defect five-branes [11].) If we take the T-duality transformation along the second

compact direction, we find a new object of codimension two. This is the exotic 52
2-brane.

The background geometry is regarded as a concrete example of T-folds [12] with (globally)

nongeometric structure.

Since we investigate the exotic brane beyond the supergravity descriptions, we are

interested in the string worldsheet description:

Lstring = −1

2
GIJ g

mn ∂mX
I∂nX

J +
1

2
BIJ ε

mn ∂mX
I∂nX

J

+
i

2
GIJ ΩI

−∇+ΩJ
− +

i

2
GIJ ΩI

+∇−ΩJ
+ +

1

4
RIJKL ΩI

+ΩJ
+ΩK
−ΩL
− . (1.1)

Here GIJ is the spacetime metric and BIJ is the NS-NS B-field in ten dimensions, whilst

gmn is the worldsheet metric and εmn is the two-dimensional Levi-Civita tensor normalized

as ε01 = +1 = −ε01. The real fermions ΩI
± are superpartners of the string coordinate

fields XI . The covariant derivatives ∇± carry the affine connection of the target space

geometry. The coefficient RIJKL of the four-fermions term denotes the Riemann curvature

– 2 –



J
H
E
P
0
3
(
2
0
1
4
)
1
2
8

of the target space. Note that the indices I, J run from 6 to 9, which represent the

transverse directions of the five-brane. The indices m,n are the ones of the worldsheet

coordinates. Since we consider the spacetime geometry in the string frame, the longitudinal

directions 012345 of the five-brane are flat. Thus the coordinate fields of these directions

are decoupled from the string worldsheet sigma model (for the spacetime indices, see table 1

in appendix A).

It is worth extending the string worldsheet theory to a gauge theory of specific type

called the gauged linear sigma model (GLSM) [13]. In the case of N = (2, 2) GLSM, its

low energy effective theory in the IR limit can be described as a nonlinear sigma model

(NLSM) or a Landau-Ginzburg theory, both are useful field theories to describe string

worldsheet dynamics. The string worldsheet instanton corrections can be traced by the

soliton configurations of the gauge theory, which can be interpreted as the quantum de-

formations of the Kähler moduli. An N = (4, 4) GLSM is also quite useful to study

NS5-branes and Kaluza-Klein (KK) monopoles [14–16], since the quantum aspects of the

five-branes, i.e., the worldsheet instanton corrections, can be traced by the solitonic de-

scription of the N = (4, 4) gauge theory. We applied the N = (4, 4) GLSM to the classical

description of the exotic 52
2-brane [17], and studied the worldsheet instanton corrections of

the 52
2-brane [18].

In this paper, we develop our previous works [17, 18] in order to investigate other

quantum corrections to the exotic 52
2-brane. We notice that the background geometry of

the exotic 52
2-brane has two independent isometries along the transverse directions. In the

previous works we considered the sigma model in which only one of the two isometries are

gauged. It is natural to think of an extension of the sigma model to the one where both of

the two isometries are gauged. Actually we find a new insight of the sigma model, even in

the lack of the complete understanding of it.

The organization of this paper is as follows: in section 2 we review the N = (4, 4)

GLSMs for multiple H-monopoles and for multiple KK-monopoles. Performing the duality

transformations, we obtain the GLSM for the exotic 52
2-brane. In the IR limit we find the

NLSM whose target space is the background geometry of the exotic 52
2-brane. In section 3

we construct a GLSM with two gauged isometries. This is an extension of the GLSM for

the exotic 52
2-brane [17]. We refer to this model as the Remodeled GLSM. First we mention

the supersymmetry which this model has. Next we investigate the classical feature in the

IR limit. Third we argue the restoration of the supersymmetry which is consistent with the

background geometry of the 52
2-brane. In section 4 we study the quantum corrections to

the Remodeled GLSM. We can argue the worldsheet instanton corrections from the vortex

configurations of the gauge fields. However, we find that the vortex corrections from the

second gauge field do not contribute to the background geometry of the exotic 52
2-brane

even if we choose the most reliable parameter regime. Section 5 is devoted to summary

and discussions. In appendix A we exhibit the conventions of two-dimensional N = (2, 2)

supersymmetry. In appendix B we briefly discuss the Remodeled GLSMs for other defect

five-branes.
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2 Review of GLSMs for five-branes

In this section we briefly review a construction of the worldsheet sigma model whose target

space is the background geometry of the exotic 52
2-brane [17]. As we mentioned before,

the background geometry of the exotic 52
2-brane is obtained via two transverse T-duality

transformations on an NS5-brane. Fortunately, we have already known the GLSM for the

H-monopole, which is the NS5-brane smeared along a compact S1-circle [14]. Performing

the duality transformations [19] to the GLSM for the H-monopole, and taking the IR limit,

we find that the supersymmetric NLSM whose target space is the geometry of the exotic

52
2-brane.

We begin with the following N = (4, 4) supersymmetric GLSM [14]:

LH =
k∑
a=1

∫
d4θ

{ 1

e2
a

(
− ΣaΣa + ΦaΦa

)
+Qae

−2VaQa + Q̃ae
+2VaQ̃a

}
+

∫
d4θ

1

g2

(
−ΘΘ + ΨΨ

)
+

k∑
a=1

{√
2

∫
d2θ

(
Q̃aΦaQa + (sa −Ψ)Φa

)
+ (h.c.)

}
+

k∑
a=1

{√
2

∫
d2θ̃

(
ta −Θ

)
Σa + (h.c.)

}
. (2.1)

AnN = (4, 4) abelian vector multiplet is denoted by anN = (2, 2) abelian vector superfield

Va (or a twisted chiral superfield Σa = 1√
2
D+D−Va) and an N = (2, 2) chiral superfield

Φa. An N = (4, 4) charged hypermultiplet is given by a set of N = (2, 2) chiral superfields

(Qa, Q̃a), where Qa (Q̃a) has charge −1(+1) under the U(1) gauge transformation. The pair

(Ψ,Θ) belongs to an N = (4, 4) neutral hypermultiplet, where Ψ is an N = (2, 2) chiral

superfield, whilst Θ is an N = (2, 2) twisted chiral superfield.1 Each vector multiplet

(Va,Φa) has a set of complex-valued Fayet-Iliopoulos (FI) parameters (sa, ta). The gauge

coupling constant ea has mass dimension one, while the sigma model coupling constant

g is dimensionless. The model (2.1) becomes an N = (4, 4) supersymmetric theory if we

impose suitable representations of SU(2)R symmetry on the component fields of the above

superfields in a consistent way [14]. An explicit assignment of the representations of the

SU(2)R symmetry is discussed in [15].

In the IR limit of the gauge theory (2.1), all the gauge multiplets are integrated out and

all the charged hypermultiplets are solved in terms of the neutral hypermultiplet. The scalar

components of the N = (4, 4) neutral hypermultiplet denote the coordinates of the target

space R3×S1. The low energy effective theory can be interpreted as the string worldsheet

sigma model whose target space denotes the background geometry of multi-centered H-

monopoles of codimension three and the NS-NS B-field.2 The detailed derivation can be

seen in [14–16]. A benefit of the gauge theory (2.1) is that the string worldsheet instanton

corrections can be computed by vortex corrections in the gauge theory framework [14].

Indeed, the alignment of the H-monopoles along the compact S1-circle are affected by the

1See appendix A for the expansion rule of N = (2, 2) superfields in terms of component fields (see

also [17]).
2We only focus on the transverse four directions of five-branes in the string frame.
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vortex corrections. This implies that the string worldsheet instanton corrections yield the

KK-momentum corrections to the background geometry of the H-monopoles.

Applying the duality transformations [19] to the twisted-chiral superfield Θ in (2.1),

we obtain the following gauge theory:

LKK =

k∑
a=1

∫
d4θ

{ 1

e2
a

(
− ΣaΣa + ΦaΦa

)
+Qae

−2VaQa + Q̃ae
+2VaQ̃a

}
+

∫
d4θ

{ 1

g2
ΨΨ +

g2

2

(
Γ + Γ + 2

k∑
a=1

Va

)2}
+

k∑
a=1

{√
2

∫
d2θ

(
Q̃aΦaQa + (sa −Ψ)Φa

)
+ (h.c.)

}
+

k∑
a=1

{√
2

∫
d2θ̃ taΣa + (h.c.)

}
−
√

2 εmn
k∑
a=1

∂m(ϑAa,n) . (2.2)

This is also an N = (4, 4) supersymmetric theory. Now Γ is an N = (2, 2) chiral superfield

dualized from the twisted chiral superfield Θ under the relation

Θ + Θ + 2g2
k∑
a=1

Va = −g2(Γ + Γ) . (2.3)

In the IR limit, the gauge theory (2.2) is reduced to the string worldsheet sigma model

of multi-centered KK-monopoles of codimension three, since the target space of the sigma

model is the multi-centered Taub-NUT space. The detailed derivation can be also seen

in [14–16]. In this model the vortex corrections by the gauge fields are also interpreted as the

string worldsheet instanton corrections. Notice that the geometrical interpretation of the

instanton corrections is now the winding corrections to the Taub-NUT space, rather than

the KK-momentum corrections [15]. This is consistent with “T-duality” of the worldsheet

instanton corrections to the background geometry of the H-monopoles mentioned above.

If we further apply the duality transformation to the chiral superfield Ψ in (2.2), we

obtain the following new GLSM:

LE =
k∑
a=1

∫
d4θ

{ 1

e2
a

(
− ΣaΣa + ΦaΦa

)
+Qa e−2VaQa + Q̃a e+2VaQ̃a

}
+

∫
d4θ

g2

2

{(
Γ + Γ + 2

k∑
a=1

Va

)2
−
(

Ξ + Ξ−
√

2

k∑
a=1

(Ca + Ca)
)2}

+
k∑
a=1

{√
2

∫
d2θ

(
Q̃aΦaQa + sa Φa

)
+ (h.c.)

}
+

k∑
a=1

{√
2

∫
d2θ̃ taΣa + (h.c.)

}
−
√

2

∫
d4θ (Ψ−Ψ)

k∑
a=1

(Ca − Ca)−
√

2 εmn
k∑
a=1

∂m(ϑAa,n) . (2.4)

This is the model which we proposed in [17]. Here Ca is an unconstrained complex superfield

related to the chiral superfield Φa in such a way as Φa = D+D−Ca. Ξ is an N = (2, 2)

– 5 –
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twisted chiral superfield dualized from the chiral superfield Ψ under the relation

Ψ + Ψ−
√

2 g2
k∑
a=1

(Ca + Ca) = −g2(Ξ + Ξ) . (2.5)

The reason why Ψ − Ψ still exists in (2.4) is because the Lagrangian (2.2) involves the

imaginary part of Ψ as well as its real part. Only the real part is explicitly written

by the real part of other superfields Ξ and Ca via (2.5) under the conventional duality

transformation [19], whilst the imaginary part still remains. Such a phenomenon does not

occur in the dualization of (2.1) to (2.2) since the imaginary part of Θ is not involved

in (2.1). However, we should notice that the existence of Ψ − Ψ is not pathological but

inevitable to realize the background geometry of the exotic 52
2-brane in the IR limit.

We analyze the supersymmetric low energy effective theory of the GLSM (2.4) in the IR

limit (for the details, see [17]). Under the supersymmetry condition, the component fields of

the charged hypermultiplets (Qa, Q̃a) are constrained. Solving the constraints, we find that

they are given in terms of the component fields of the neutral hypermultiplet (Ξ,Γ). Since

the gauge coupling constants ea have mass dimension one, the vector multiplets (Va,Φa)

become non-dynamical in the IR limit. If we integrate out all the component fields of the

vector multiplets, we obtain the following low energy effective Lagrangian:

LEb = −1

2
H
{

(∂mr
1)2 + (∂mr

2)2 + (∂mr
3)2
}
− 1

2H
(∂mϑ̃)2

− (ω2)2

2H
(∂mr

2)2 +
ω2

H
(∂mr

2)(∂mϑ̃) + εmn(∂mr
2)(∂ny

2)

− (ω1)2

2H
(∂mr

1)2 − ω1ω2

H
(∂mr

1)(∂mr2) +
ω1

H
(∂mr

1)(∂mϑ̃)

−
√

2 εmn∂m((ϑ− t2)An) , (2.6)

where we have omitted the fermionic part. The explicit forms of the various functionals

in (2.6) are

H =
1

g2
+

k∑
a=1

1√
2Ra

, ωi =

k∑
a=1

ωi,a , (2.7a)

Ra =
√

(r1 − s1,a)2 + (r2 − s2,a)2 + (r3 − t1,a)2 , (2.7b)

ω1,a =
r2 − s2,a√

2Ra(Ra + (r3 − t1,a))
, ω2,a = − r1 − s1,a√

2Ra(Ra + (r3 − t1,a))
, (2.7c)

t2Am =
k∑
a=1

t2,aAm,a =
k∑
a=1

t2,a

{ 1

2RaH

(
∂mϑ̃− ωi∂mri

)
+

1√
2
ωi,a∂mr

i
}
. (2.7d)

We should notice that (2.6) is not the final description of the IR effective theory as the

string worldsheet sigma model for the exotic 52
2-brane of codimension two. There are two

reasons: one is that the target space geometry of (2.6) does possess only one isometry. The

other is that the field r2 before the duality transformation (2.5) still remains caused by the

existence of Ψ−Ψ in (2.4). In order that we find the genuine effective theory, we have to

take the following two steps:

– 6 –
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(i) compactify the r2-direction on S1 with radius R8 (i.e., set the FI parameter s2,a to

2πR8a), and take the infinity limit k →∞.

(ii) integrate out the field r2.

This is followed from the procedure in the supergravity picture [6, 7]. To simplify the

configuration, we set s1,a = 0 = t1,a = t2,a. Performing the step (i), we can reduce the

sums in (2.7a) to

H =
1

g2
+

k∑
a=1

1√
2Ra

k→∞−−−→ H% =
1

g2
+ σ log

Λ

%
= h0 + σ log

µ

%
, (2.8a)

ω1 =

k∑
a=1

ω1,a
k→∞−−−→ 0 , ω2 =

k∑
a=1

ω2,a
k→∞−−−→ ω% = σ arctan

(r3

r1

)
, (2.8b)

σ =
1√

2πR8

, % =
√

(r1)2 + (r3)2 . (2.8c)

Here we introduced the IR cutoff Λ because the dimension of the target space is reduced

from three to two. This IR cutoff Λ has been regularized by the renormalization scale µ,

and h0 is the “bare” quantity which diverges in the IR limit. We refer to this reduction as

the smearing procedure [17]. Performing the step (ii), we finally obtain

LEb = −1

2
H%

{
(∂mr

1)2 + (∂mr
3)2
}
− H%

2K%

{
(∂my

2)2 + (∂mϑ̃)2
}

− ω%
K%

εmn(∂my
2)(∂nϑ̃)−

√
2 εmn∂m(ϑAn) , (2.9)

where K% = (H%)
2 + (ω%)

2. This is the NLSM of the background geometry of the exotic

52
2-brane in the presence of the NS-NS B-field [17]. Compared with the string worldsheet

sigma model (1.1), we can read off the spacetime variables as follows (for the indices, see

table 1):

G66 = G77 = H% , G88 = G99 =
H%

K%
, B89 = − ω%

K%
. (2.10)

We have demonstrated that the GLSM (2.4) becomes the string worldsheet sigma

model of the exotic 52
2-brane in the IR limit. Therefore, as in the similar way as the

GLSM for the H-monopoles and for the KK-monopoles [14, 15], we can interpret that the

GLSM (2.4) is a powerful model to analyze the quantum aspects of the string worldsheet

sigma model of the exotic 52
2-brane. One of the concrete analysis is the worldsheet instanton

corrections to the background geometry of the exotic 52
2-brane in the language of the vortex

corrections to the GLSM [18]. However, we should notice that the GLSM (2.4) is sensitive

only to the quantum corrections to the topological term involving ϑ. This implies that, as

far as (2.4) is concerned, we can pursue the quantum corrections only to the X9-direction.

This is, from the viewpoint of the geometry of the exotic 52
2-brane, the direction along the

winding coordinate against the physical coordinate X̃9 (see table 1).

– 7 –
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It is noticeable that the coordinate fields y2 and ϑ̃ is democratically involved in the

NLSM (2.9). This denotes that the physical coordinates X̃8 and X̃9 in the background

geometry of the exotic 52
2-brane. Then it is natural to discuss quantum corrections to the

X̃8-direction or its T-dualized direction X8. In order to trace the quantum corrections to

such directions, we should remodel the GLSM from (2.4). Concretely, we should introduce

another vector multiplet coupled to the neutral hypermultiplet (Ξ,Γ). In the next section

we will investigate the remodeling of the GLSM (2.4).

Before going to the next section, we have a technical comment on the k sets of

(Va,Φa;Qa, Q̃a) in the GLSMs (2.2) and (2.4). In the spacetime perspective, the infin-

ity limit k → ∞ gives rise to the introduction of an infinite number of five-branes. The

five-branes arrayed in a specific direction generate an isometry [6]. This infinity limit is

required to perform the T-duality transformation. In the GLSM perspective, however, this

infinity limit seems fearful. In the IR limit of the GLSM, we solve the equations of motion

for the infinite number of (Va,Φa;Qa, Q̃a). It is no problem in the classical level. In the

quantum level, however, it is unclear whether we can correctly evaluate the path-integral

measure of the GLSM with U(1)∞ gauge symmetries. Then we would like to think of

another analysis which involves the corresponding computation under the infinity limit

k → ∞. Now we focus on (2.8) discussed above. This is the procedure of the infinity

limit. More explicitly, we set the FI parameter s2,a to 2πR8a and replace the summations

in (2.7a) by the integral under the k → ∞ limit. Under this procedure we can make an-

other isometry along the X8-direction. Fortunately, the expression (2.7a) denotes how to

realize the same result (2.8) even in the k = 1 system. We just integrate 1/R and ωi with

respect to the FI parameter s2 in the k = 1 system. We will mention this procedure more

concretely in the next section.

3 Remodeled GLSM for exotic five-brane

There are two isometries on the background geometry of the exotic 52
2-brane. The GLSM

(2.4) represents only one of the two isometries being gauged. It is natural to think of a

model in which the other isometry is also gauged. In this section we consider an extension

of the GLSM (2.4) by introducing another set of a vector multiplet (V ′,Φ′) and a charged

hypermultiplet (Q′, Q̃′).

It is easy to add the new multiplets (V ′,Φ′;Q′, Q̃′) to the GLSM (2.4). The new

vector superfield V ′ (or Σ′ = 1√
2
D+D−V

′) is coupled to the twisted chiral superfield Ξ in

the twisted F-term. The new chiral superfield Φ′ is coupled to the chiral superfield Γ in the

F-term. The charged chiral superfields (Q′, Q̃′) are coupled to (V ′,Φ′). These couplings are

standard as in the original GLSM (2.1). Now we extend the GLSM (2.4) in the following

form:

LE2 = LE1 + LG , (3.1a)

LE1 =

∫
d4θ

{ 1

e2

(
− ΣΣ + ΦΦ

)
+Q

′
e−2V ′Q′ + Q̃

′
e+2V ′Q̃′

}
+

∫
d4θ

g2

2

{(
Γ + Γ + 2V

)2
−
(

Ξ + Ξ−
√

2(C + C)
)2}
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+
{√

2

∫
d2θ

(
Q̃ΦQ+ sΦ

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ tΣ + (h.c.)

}
−
√

2

∫
d4θ (Ψ−Ψ)(C − C)−

√
2 εmn∂m(ϑAn) , (3.1b)

LG =

∫
d4θ

{ 1

e′2

(
− Σ′Σ′ + Φ′Φ′

)
+Q′ e−2V ′Q′ + Q̃′ e2V ′Q̃′

}
+
{√

2

∫
d2θ

(
Q̃′Φ′Q′ + (s′ − Γ)Φ′

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ (t′ − Ξ)Σ′ + (h.c.)

}
. (3.1c)

Here LE1 is the GLSM (2.4) with k = 1, whilst LG is the additional part to the GLSM

given by the new multiplets (V ′,Φ′;Q′, Q̃′). All the gauge couplings in LG are minimal as

we can see in the original GLSM (2.1). We remark that e′ is the gauge coupling constant

of the additional vector multiplet (V ′,Φ′), and (s′, t′) are the additional complex-valued

FI parameters. In the present paper, we refer to the model (3.1) as the Remodeled GLSM

for the exotic 52
2-brane. The duality transformed models of (3.1) are briefly discussed in

appendix B.

We have a comment on supersymmetry of the Remodeled GLSM (3.1). The Remodeled

GLSM (3.1) has N = (2, 2) supersymmetry rather than N = (4, 4) supersymmetry caused

by a difficulty of the assignment of SU(2)R symmetry: In the Remodeled GLSM (3.1), the

neutral hypermultiplet (Ξ,Γ) is coupled to not only the original vector multiplet (V,Φ)

but also the additional one (V ′,Φ′). The former multiplet assigns the three scalar fields

(r1, r2, r3) in the neutral hypermultiplet to the triplet of an SU(2)R [14, 15], whilst the

latter multiplet also assigns the three scalar fields (r1, r3, γ4) to the triplet of another

SU(2)R (for details, see later discussions). Since it is hard to preserve both the SU(2)R

symmetries simultaneously, N = (4, 4) supersymmetry in LE1 is broken down toN = (2, 2)

supersymmetry when LG is added. Of course the N = (2, 2) supersymmetry is manifest

because the model (3.1) is formulated in terms of N = (2, 2) superfields. If we adopt a

certain condition in the supersymmetric vacua, the N = (4, 4) supersymmetry would be

restored.

In the rest of this section we focus on the bosonic sector and investigate the classical

structure of the Remodeled GLSM (3.1). In the next section we will study the quantum

aspects of the Remodeled GLSM.

3.1 Bosonic Lagrangian

In this subsection we carefully compute the bosonic sector of the Remodeled GLSM (3.1)

because this is more complicated than the GLSM (2.4). First, we expand all the superfields

in the Remodeled GLSM (3.1) in the presence of auxiliary fields. Second, we integrate out

all the auxiliary fields and obtain the bosonic Lagrangian with constraints.
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Following the expansion rule in appendix A, we write down the bosonic sector of (3.1):

LE2b =
1

e2

{1

2
(F01)2 − |∂mσ|2 − 4|∂mMc|2

}
+

1

e′2

{1

2
(F ′

01)2 − |∂mσ′|2 − |∂mφ′|2
}

− 1

2g2

{
(∂mr

1)2 + (∂mr
3)2
}
− g2

2

{
(∂my

2)2 + (Dmγ
4)2
}

−
{
|Dmq|2 + |Dmq̃|2

}
−
{
|Dmq

′|2 + |Dmq̃
′|2
}

−
√

2 εmn∂m
(
(ϑ− t2)An

)
−
√

2(y2 − t′2)F ′
01

− 2|σ|2
(
|q|2 + |q̃|2 + g2

)
− 2|σ′|2

(
|q′|2 + |q̃′|2

)
+ |F |2 + |F̃ |2 + 2

√
2Mc

(
qF̃ + q̃F

)
+ 2
√

2M c

(
qF̃ + q̃F

)
− 2g2|Fc +M c|2 + 4g2

(
|Fc|2 − |Mc|2

)
+ g2|GΓ|2

− i
√

2
{(
φ′GΓ − φ′GΓ

)
+
(
σ′GΞ − σ′GΞ

)}
+ |F ′|2 + |F̃ ′|2 + i

√
2φ′
(
q′F̃ ′ + q̃′F ′)− i

√
2φ′
(
q′F̃ ′ + q̃′F ′)

+
1

2e2
(DV )2 +DV

(
|q|2 − |q̃|2 −

√
2 (r3 − t1)

)
+

1

2e′2
(D′

V )2 +D′
V

{
|q′|2 − |q̃′|2 +

√
2
( r1

g2
+ t′1 − (φc + φc)

)}
+

1

e′2
|D′

Φ|2 + iD′
Φ

{√
2 q′q̃′ −

(
− r3

g2
+ iγ4 −

√
2 s′
)}

− iD′
Φ

{√
2 q′q̃′ −

(
− r3

g2
− iγ4 −

√
2 s′
)}

+
1

e2

∣∣Dc +
√

2 e2 qq̃
∣∣2 − 2e2|qq̃|2 −Dc

(
(r1 − s1) + i(r2 − s2)

)
−Dc

(
(r1 − s1)− i(r2 − s2)

)
− i

2e2

(
Dc +

√
2 e2 qq̃

){
(∂0 − ∂1)Bc++ + i(∂0 + ∂1)Ac= − i(∂2

0 − ∂2
1)φc

}
+

i

2e2

(
Dc +

√
2 e2 qq̃

){
(∂0 − ∂1)Bc++ − i(∂0 + ∂1)Ac= + i(∂2

0 − ∂2
1)φc

}
− g2

2

{
(Bc++ +Bc++)(∂0 − ∂1)y2 − (Ac= +Ac=)(∂0 + ∂1)y2

}
+

i

2
(φc − φc)(∂2

0 − ∂2
1)r2 − g2

2
(Ac= +Ac=)(Bc++ +Bc++)

+
i

2

{
(Bc++ −Bc++)(∂0 − ∂1)r1 − (Ac= −Ac=)(∂0 + ∂1)r1

}
+

1

2
(φc + φc)(∂

2
0 − ∂2

1)r1 +
1

4e2

∣∣∣(∂0 − ∂1)Bc++ − i(∂0 + ∂1)Ac= + i(∂2
0 − ∂2

1)φc

∣∣∣2 . (3.2)

Here the gauge covariant derivatives in the above Lagrangian are

Dmq = ∂mq − iAmq , Dmq̃ = ∂mq̃ + iAmq̃ , Dmγ
4 = ∂mγ

4 +
√

2Am ,

(3.3a)

Dmq
′ = ∂mq

′ − iA′m q
′ , Dmq̃

′ = ∂mq̃
′ + iA′m q̃

′ . (3.3b)

The covariant derivatives in the second line are originated from LG (3.1c). The La-

grangian (3.2) contains the terms involving the scalar field r2 (rather than the derivative

∂mr
2). They are originated from (Ψ−Ψ)(C −C) in LE1 (3.1b). The scalar field r2 is the
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dual field of y2 via the following forms by the duality relation (2.5) [17]:

(∂0 + ∂1)r2 = −g2(∂0 + ∂1)y2 + g2
(
Bc++ +Bc++

)
, (3.4a)

(∂0 − ∂1)r2 = +g2(∂0 − ∂1)y2 + g2
(
Ac= +Ac=

)
. (3.4b)

The Lagrangian (3.2) involves the following auxiliary fields of the superfield formalism:

DV , Dc , D
′
V , D

′
Φ , GΓ , GΞ , F , F̃ , F

′ , F̃ ′ , Fc , Ac= , Bc++ , φc .

Integrating them out, we obtain the bosonic part of the Lagrangian represented only in

terms of dynamical fields:

LE2b =
1

e2

{1

2
(F01)2 − |∂mσ|2 − 4|∂mMc|2

}
+

1

e′2

{1

2
(F ′01)2 − |∂mσ′|2 − |∂mφ′|2

}
− 1

2g2

{
(∂mr

1)2 + (∂mr
3)2
}
− g2

2

{
(∂my

2)2 + (Dmγ
4)2
}

−
{
|Dmq|2 + |Dmq̃|2

}
−
{
|Dmq

′|2 + |Dmq̃
′|2
}

−
√

2 εmn∂m
(
(ϑ− t2)An

)
−
√

2(y2 − t′2)F ′01

− 2
(
|σ|2 + 4|Mc|2

)(
|q|2 + |q̃|2 + g2

)
− 2|φ′|2

(
|q′|2 + |q̃′|2 +

1

g2

)
− e2

2

(
|q|2 − |q̃|2 −

√
2 (r3 − t1)

)2 − e2
∣∣√2 qq̃ −

(
(r1 − s1) + i(r2 − s2)

)∣∣2
− e′2

∣∣∣√2 q′q̃′ −
(
− r3

g2
+ iγ4 −

√
2 s′
)∣∣∣2

+
g2

2
(Ac= +Ac=)(Bc++ +Bc++) . (3.5a)

Notice that the Lagrangian is constrained by the following equation caused by the equation

of motion for the auxiliary field D′V :

0 = |q′|2 − |q̃′|2 +
√

2
(r1

g2
+ t′1 − (φc + φc)

)
. (3.5b)

Due to the duality relation (2.5) and the equations of motion for the auxiliary fields Ac=
and Bc++, the last line in the right-hand side of (3.5a) is expressed in the following way:

g2

2
(Ac= +Ac=)(Bc++ +Bc++)

=− 1

2g2
(∂mr

2)2 +
g2

2
(∂my

2)2 + εmn(∂mr
2)(∂ny

2) . (3.6)

Plugging this into (3.5), we find that the kinetic term of y2 disappears and the kinetic term

of the dual field r2 is revived. Even though this phenomenon looks strange, we should keep

in mind that the dynamical field is y2 rather than r2 in the system. We should integrate

out r2 in the final stage of the analysis [17].
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3.2 Low energy limit

In this subsection we investigate the supersymmetric low energy effective theory in the IR

limit. We are interested in the Higgs branch of the model where scalar fields of the charged

hypermultiplets have non-trivial vacuum expectation values as discussed in [17]. We first

evaluate the supersymmetric vacua from the vanishing condition of the potential terms.

Second, taking the IR limit e, e′ →∞, we remove the kinetic terms of the gauge fields Am
and A′m. Third, we perform the smearing procedure which generates two isometries of the

target space of the sigma model. Finally, integrating out the gauge fields and the dual field

r2, we obtain the NLSM which has only N = (2, 2) supersymmetry.

Solving constraints on charged hypermultiplets. We evaluate the supersymmetric

vacua obtained by the vanishing condition of the potential terms of (3.5). Since we are in-

terested in the Higgs branch, the vanishing condition is given by the following configuration:

0 = σ = Mc , 0 = φ′ , 0 = φc , (3.7a)

0 = |q|2 − |q̃|2 −
√

2(r3 − t1) , 0 =
√

2 qq̃ −
(
(r1 − s1) + i(r2 − s2)

)
, (3.7b)

0 = |q′|2 − |q̃′|2 −
√

2
(
− r1

g2
− t′1

)
, 0 =

√
2 q′q̃′ −

(
− r3

g2
+ iγ4 − (s′1 + is′2)

)
.

(3.7c)

The first line (3.7a) implies that all the scalar fields in the vector multiplet are trivial. The

equations (3.7b) constrain the scalar fields of the charged hypermultiplet (Q, Q̃) by the

scalar fields of the neutral hypermultiplet (Ξ,Γ). The solution is

q = − i

21/4
e−iα

√
R+ (r3 − t1) , q̃ =

i

21/4
e+iα (r1 − s1) + i(r2 − s2)√

R+ (r3 − t1)
, (3.8a)

R =
√

(r1 − s1)2 + (r2 − s2)2 + (r3 − t1)2 . (3.8b)

Plugging this into the kinetic terms of the scalar fields (q, q̃), we obtain

−|Dmq|2 − |Dmq̃|2 = − 1

2
√

2R

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}

−
√

2R
(
− ∂mα−Am +

1√
2
ωi ∂mr

i
)2
, (3.9a)

ωi ∂mr
i = ω1 ∂mr

1 + ω2 ∂mr
2 + ω3 ∂mr

3 , (3.9b)

ω1 =
r2 − s2√

2R(R+ (r3 − t1))
, ω2 =

−(r1 − s1)√
2R(R+ (r3 − t1))

, ω3 = 0 .

(3.9c)

This form implies that there is a rotational symmetry among (r1, r2, r3) and among

(ω1, ω2, ω3). This rotational symmetry is an SU(2)R symmetry of the N = (4, 4) super-

symmetry assigned by the vector multiplet (V,Φ). This is one of the concrete assignment

of the representation of the SU(2)R symmetry, though it is of course possible to impose the

same charge assignment of this SU(2)R symmetry in the GLSM level.
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We also solve the equations (3.7c) as follows:

q′ = − i

21/4g
e−iα′

√
R′ + (−r1 − g2t′1) , q̃′ =

i

21/4g
e+iα′ (−r3 − g2s′1) + i(g2γ4 − g2s′2)√

R′ + (−r1 − g2t′1)
,

(3.10)

R′ =
√

(−r1 − g2t′1)2 + (−r3 − g2s′1)2 + (g2γ4 − g2s′2)2 . (3.11)

Substituting this into the kinetic terms of the scalar fields (q′, q̃′), we obtain

−|Dmq
′|2 − |Dmq̃

′|2 = − 1

2
√

2 g2R′

{
(∂mr

1)2 + (∂mr
3)2 + g4(∂mγ

4)2
}

−
√

2R′

g2

(
− ∂mα′ −A′m +

1√
2
ω′j ∂mr̂

j
)2
, (3.12)

ω′j ∂mr̂
j = ω′1 ∂mr

1 + ω′3 ∂mr
3 + ω′4 ∂m(g2γ4) , (3.13)

ω′1 = 0 , ω′3 =
−(g2γ4 − g2s′2)√

2R′(R′ + (−r1 − g2t′1))
, ω′4 =

−(−r3 − g2s′1)√
2R′(R′ + (−r1 − g2t′1))

.

(3.14)

The above form also implies that there is a rotational symmetry among (r1, r3, g2γ4)

and among (ω′1, ω
′
3, ω
′
4). This rotational symmetry is another SU(2)R symmetry of the

N = (4, 4) supersymmetry assigned by the vector multiplet (V ′,Φ′). This is one of the

concrete assignment of the representation of the second SU(2)R symmetry. As mentioned

before, it is hard to preserve both of the SU(2)R symmetries simultaneously. The two

SU(2)R symmetries are broken down to U(1)R and the system (3.1) has only N = (2, 2)

supersymmetry.

Integrating-out of gauge fields. Now we take the IR limit e, e′ → ∞. In this limit

the kinetic terms of the gauge fields Am and A′m shrink to zero and they become auxiliary

fields. In order to integrate them out explicitly, we first substitute the supersymmetry

condition (3.7), the solutions (3.8), (3.10) and the covariant derivatives (3.9), (3.12) into

the Lagrangian (3.5):

LE2b = − 1

2g2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
− g2

2
(Dmγ

4)2 + εmn(∂mr
2)(∂ny

2)

− 1

2
√

2R

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
−
√

2R
(
− ∂mα−Am +

1√
2
ωi ∂mr

i
)2

− 1

2
√

2 g2R′

{
(∂mr

1)2 + (∂mr
3)2 + g4(∂mγ

4)2
}

−
√

2R′

g2

(
− ∂mα′ −A′m +

1√
2
ω′j ∂mr̂

j
)2

−
√

2 εmn∂m
(
(ϑ− t2)An

)
+
√

2 εmn(y2 − t′2) ∂nA
′
m . (3.15)
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Then we can solve the equations of motion for the gauge fields Am, A′m. The solution is

Am = − 1√
2 g2H

(
∂mϑ̃− ωi ∂mri

)
+

1√
2
∂mϑ̃− ∂mα , (3.16a)

A′m =
1√
2
ω′j ∂mr̂

j +
g2

√
2
H ′εmn (∂ny2)− ∂mα′ , (3.16b)

H =
1

g2
+

1√
2R

, H ′ =
1√
2R′

. (3.16c)

Here α and α′ are the unfixed phase factors of (q, q̃) and (q′, q̃′), respectively. They can be

interpreted as the gauge parameters of Am and A′m. We also introduced the representation

γ4 = ϑ̃ up to the gauge transformation [14]. Imposing the gauge-fixing condition α = 0 =

α′, we substitute (3.16) into (3.15):

LE2b = −1

2

(
H +

1

g2
H ′
){

(∂mr
1)2 + (∂mr

3)2
}
− 1

2

( 1

H
+ g2H ′

)
(∂mϑ̃)2

− ωiωj
2H

(∂mr
i)(∂mrj) +

ωi
H

(∂mr
i)(∂mϑ̃)

− 1

2
H(∂mr

2)2 − g2

2
H ′(∂my

2)2 + εmn
(
∂mr

2 + ω′j ∂mr̂
j
)

(∂ny
2)

−
√

2 εmn∂m
(
(ϑ− t2)An

)
. (3.17)

This is not the sigma model for the exotic 52
2-brane because the dual field r2 still contributes

to the system. In order to generate the genuine background geometry of the exotic 52
2-brane,

we take the following reduction discussed below. This is identical to the smearing procedure

performed in (2.8).

Smearing procedure: generating isometries. We perform the smearing procedure

identical to the computations (2.8). Integration of the functionals with respect to the FI

parameters s2 and s′2 yields the shift symmetries r2 → r2 + β and ϑ̃→ ϑ̃+ β̃, where β and

β̃ are arbitrary constants. First we focus on the functionals H and ωi. They contain the

field r2 with the FI parameter s2, whilst they do not depend on the field γ4 = ϑ̃ and the

FI parameter s′2. The other functionals H ′ and ω′i do not depend on r2 and s2, whilst they

are subject to the field γ4 = ϑ̃ and the FI parameter s′2.

Now we set the FI parameter s2 to 2πR8s, where R8 corresponds to the radius of the

compactified direction r2 = X8. This is dual to the physical coordinate X̃8 in the back-

ground geometry of the exotic 52
2-brane. We integrate the functionals over the parameter s:

s2 = 2πR8 s , (3.18a)

H
integral over s−−−−−−−−−→ H% =

1

g2
+ σ log

Λ

%
, σ =

1√
2πR8

, (3.18b)

ω1
integral over s−−−−−−−−−→ 0 , % =

√
(r1 − s1)2 + (r3 − t1)2 , (3.18c)

ω2
integral over s−−−−−−−−−→ ω% = σ ϑ% , ϑ% = arctan

( r3 − t1
r1 − s1

)
. (3.18d)
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Due to this, all the functionals do not depend on the dual field r2 any more. This denotes

that the system has an isometry along the X8-direction. We note that Λ is the IR cutoff on

the two-dimensional (r1, r3) = (X6, X7) plane. In the same way, we set the FI parameter

s′2 to 2πR̃9s
′, where R̃9 corresponds to the compact radius of the physical coordinate X̃9.

We integrate the functionals over the parameter s′:

s′2 = 2πR̃9 s
′ , (3.19a)

H ′
integral over s′−−−−−−−−−→ H ′% = σ′ log

Λ′

%′
, σ′ =

1
√

2πR̃9

, (3.19b)

ω′3
integral over s′−−−−−−−−−→ 0 , %′ =

√
(−r1 − g2t′1)2 + (−r3 − g2s′1)2 , (3.19c)

ω′4
integral over s′−−−−−−−−−→ 1

g2
ω′% =

σ′

g2
ϑ′% , ϑ′% = arctan

(−r1 − g2t′1
−r3 − g2s′1

)
. (3.19d)

Due to this, the system does not depend on the field γ4 = ϑ̃ any more. This indicates

that the target space geometry of the sigma model has an isometry along the X̃9-direction.

Here we also introduced another IR cutoff parameter Λ′ of the two-dimensional (r1, r3) =

(X6, X7) plane. Applying the reductions (3.18) and (3.19) to the Lagrangian (3.17), we

obtain

LE2b = −1

2

(
H% +

1

g2
H ′
){

(∂mr
1)2 + (∂mr

3)2
}
− 1

2

( 1

H%
+ g2H ′%

)
(∂mϑ̃)2

− K%

2H%
(∂mr

2)2 +
ω%
H%

(∂mr
2)(∂mϑ̃)− g2

2
H ′%(∂my

2)2

+ εmn
(
∂mr

2 +
1

g2
ω′% ∂m(g2ϑ̃)

)
(∂ny

2)

−
√

2 εmn∂m
(
(ϑ− t2)An

)
. (3.20)

Now we are ready to integrate out the dual field r2 to complete the T-duality transforma-

tion [17]. The solution of the integration is given by

∂mr
2 =

H%

K%

{ ω%
H%

(∂mϑ̃) + εmn(∂ny2)
}
. (3.21)

Plugging this into the above Lagrangian, we obtain the final form of the NLSM:

LE2b = −1

2

(
H% +

1

g2
H ′
){

(∂mr
1)2 + (∂mr

3)2
}
− 1

2

(H%

K%
+ g2H ′%

){
(∂my

2)2 + (∂mϑ̃)2
}

−
( ω%
K%

+ ω′%

)
εmn (∂my

2)(∂nϑ̃)

−
√

2 εmn∂m
(
(ϑ− t2)An

)
. (3.22)

Compared with the string worldsheet sigma model (1.1), we can read off the target space

variables GIJ and BIJ in the following way (for the indices, see table 1):

G66 = G77 = H% +
1

g2
H ′% , G88 = G99 =

H%

K%
+ g2H ′% , (3.23)

B89 = − ω%
K%
− ω′% . (3.24)
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Due to the smearing procedure (3.18) and (3.19), all of these variables do not depend on

y2 and ϑ̃. The third line in the right-hand side of (3.22) is the dyonic mode with the field

ϑ, which is dual to the dynamical field ϑ̃. This term also appears in the NLSM (2.9).

We note that the configuration (3.23) does not correspond to (2.10) given by the

NLSM (2.9). This might be interpreted as a deformation of the background geometry of

the exotic 52
2-brane. However, this is quite a naive guess. We should also notice that the

variables in (3.23) do not satisfy the equations of motion in supergravity theories. The

main reason is that the N = (4, 4) supersymmetry is broken down in the presence of

LG (3.1c). We will discuss this serious issue in section 5. Fortunately, we can restore

N = (4, 4) supersymmetry if we correctly tune the parameters in the sigma model (3.22).

3.3 N = (4, 4) limit

The NLSM (3.22) has only N = (2, 2) supersymmetry. This is different from the NLSM

for the exotic 52
2-brane with N = (4, 4) supersymmetry (2.9). In order to go back to the

NLSM (2.9), we should take a special configuration in which the functionals H ′% and ω′%
in (3.19) shrink to zero. Both variables are proportional to the parameter σ′ ∼ 1/R̃9. If we

want to consider the vanishing limit of H ′% and ω′%, we should take the large R̃9 limit. We

now study the background geometry of the exotic 52
2-brane dualized from the geometry of

the H-monopole. In this configuration it is natural to take the large R̃9 limit. In the same

analogy it is also natural to take the small R8 limit, where the variables H% and ω% are

large. This limit corresponds to the large R̃8 limit, where R̃8 is the radius of the physical

coordinate X̃8. Under this limit, the NLSM (3.22) is reduced to

LE2b = −1

2
H%

{
(∂mr

1)2 + (∂mr
3)2
}
− H%

2K%

{
(∂my

2)2 + (∂mϑ̃)2
}

− ω%
K%

εmn (∂my
2)(∂nϑ̃)−

√
2 εmn∂m

(
(ϑ− t2)An

)
. (3.25)

Here the FI parameters s1, t1 and t2 are still arbitrary. Indeed we can interpret the pa-

rameters (s1, t1) as the position of the 52
2-brane in the two-dimensional (r1, r3) = (X6, X7)

plane. The parameter t2 is a shift parameter of the brane along the dual coordinate ϑ.

Since the NLSM (2.9) indicates that the 52
2-brane is located at the origin of the plane, the

NLSM (3.22) is a natural generalization of (2.9).

4 Worldsheet instanton corrections

In this section, we study worldsheet instanton effects in the Remodeled GLSM. It is known

that string worldsheet instanton effects modify the geometry of the target spacetime [13].

The worldsheet instantons in NLSMs are traced back into the gauge instantons in GLSMs.

Consider an NS5-brane and compactify the transverse direction X9 on S1. We call

this X9-circle. The geometry of the NS5-brane involves infinite tower of the KK-modes

in the X9-circle. When all the KK-modes are smoothed out, the geometry becomes that

of the H-monopole. Then the geometry has an isometry along the X9-circle and one can

perform the T-duality transformation using the Buscher rule. Instantons in the GLSM
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for the H-monopole are studied in [14]. It is shown that the worldsheet instanton effects

break the isometry in the geometry. Then the geometry of the H-monopole becomes that

of the NS5-brane on S1 after the worldsheet instanton corrections are involved. From the

viewpoint of supergravity theories, the disappearance of the isometry is interpreted as the

recovery of the light KK modes. A physical interpretation of this result is as follows: in [14],

the author studied the GLSM in a specific parameter region g → 0 where the radius of S1

shrinks to zero size. Therefore the KK modes in S1 becomes light and they appear in the

string spectrum and modify the geometry.

On the other hand, the H-monopole becomes the KK-monopole by the T-duality trans-

formation along the X9-circle. The parameter region g → 0 corresponds to the divergent

radius of the T-dualized X̃9-circle. This indicates that the KK-modes become massive

while the winding modes become lighter and appear in the string spectrum. Compared

with the H-monopole case, the geometry of the KK-monopole should involve information

of the light winding modes in this parameter region. In [15] the authors studied the in-

stantons in the GLSM for the KK-monopole. They found that the instantons break the

isometry along the winding coordinate X9 and the KK-monopole geometry acquires the

X9 (not the geometrical coordinate X̃9) dependence. This is consistent with the physical

intuition and seems a conceivable result.

The KK-monopole geometry has an isometry along the X̃9-circle. The 52
2-brane ge-

ometry is obtained by performing the T-duality transformation along the other transverse

direction (the X8-direction in this paper) of the KK-monopole. Then the 52
2-brane ge-

ometry has two isometries in the transverse directions X̃8, X̃9. In the previous papers,

we studied the worldsheet instanton corrections to the 52
2-brane geometry through the

N = (4, 4) GLSM [17, 18] in the parameter region g → 0. We found that the 52
2-brane

geometry is corrected by instanton effects and the geometry has the X9 winding coordinate

dependence. This is a reflection of the fact that the parameter region g → 0 corresponds to

the large radius of the X̃9- (and also X̃8-) circle, and the light winding modes are favored

in the spectrum. However, the 52
2-brane geometry has the symmetry under the exchange

of the X̃8 and X̃9 directions. Therefore it is natural to study the stringy corrections to the

X̃8 isometry direction.

In this section we look for the instanton corrections to the second T-dual circle of the

52
2-brane geometry.

4.1 Truncated model

Before going to the calculation of the instantons, we look for the parameter region where

the instanton effects capture the stringy corrections to the geometry. We expect that

the Remodeled GLSM (3.1) introduced in the previous section incorporates the instanton

corrections associated with the X̃8-circle. In the Remodeled GLSM, there is the topological

term −
√

2y2F ′01 in the Lagrangian LG. When the gauge field A′m resides in the non-trivial

homotopy class, this term breaks the isometry along y2 = X̃8 direction. Therefore, the

instanton configuration in LG sector can induce the corrections to the geometry caused by

the light KK modes. In order to favor the light KK modes, we take the parameter region

g →∞ where the radii of the X̃8, X̃9-circles become large.
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We first find the truncated model of the Remodeled GLSM in the parameter region

g → ∞. The bosonic part of the Lagrangian is given by (3.5) supplemented by the con-

straints (3.5b) and (3.6). The supersymmetric vacuum condition is given in (3.7). The

solutions to the condition are (3.8) and (3.10). We then consider the parameter region

g →∞. The kinetic terms − 1
2g2

[(∂mr
1)2 +(∂mr

3)2] in the Lagrangian are dropped out and

r1, r3 become auxiliary fields. From the kinetic terms −g2

2 [(∂my
2)2 + (Dmγ

4)2], the field

y2 is frozen and Dmγ
4 = 0. The condition Dmγ

4 = ∂mγ
4 +
√

2Am = 0 implies that γ4 is

frozen and Am = 0. Since y2 is frozen the constraint (3.5b) in g →∞ is trivially satisfied.

The last term in (3.5) vanishes by the condition ∂my
2 = 0 and the constraint (3.6). The

field σ′ is decoupled from the other parts of the Lagrangian and we choose σ′ = 0. From

the potential term −2(|σ|2 + 4|Mc|2)(|q|2 + |q̃|2 + g2), the fields σ and Mc should stay in

the vacuum σ = Mc = 0 for finite energy configurations. Then the bosonic part of the

truncated model for the Remodeled GLSM in the limit g →∞ is

Lt = L1 + L2 , (4.1)

where

L1 = −
{

(∂mq)
2 + (∂mq̃)

2
}
− 1

e′2
|∂mφ′|2 − 2|φ′|2(|q|2 + |q̃|2)

− e2

2

{
|q|2 − |q̃|2 −

√
2(r3 − t1)

}2
− e2

∣∣∣√2qq̃ −
(
(r1 − s1) + i(r2 − s2)

)∣∣∣2 , (4.2a)

L2 =
1

2e′2
(F ′01)2 −

{
|Dmq

′|2 + |Dmq̃
′|2
}
−
√

2(y2 − t′2)F ′01

− e′2
∣∣∣√2 q′q̃′ −

(
iγ4 −

√
2s′
)∣∣∣2 . (4.2b)

We note that L1 and L2 are completely independent of each other. We also stress that

the gauge field Am, hence the associated topological term, is dropped in the g → ∞
truncated model. This is the most notable difference from the g → 0 truncated model

discussed in [18] where the Am gauge dynamics induces the X9 winding mode corrections

through the Am topological term. Although the model (4.2b) fails to capture the X9

winding mode corrections, it can potentially break the isometry along the y2 direction by

the A′m topological term. In order to find the field configuration of the gauge field A′m with

non-trivial homotopy class, we further focus on a specific field configuration.

Since the dynamics of L1 and L2 is independent, we consider the L2 part in the

following. The field γ4 is frozen and should be treated as a vacuum moduli ξ ∈ R. For

simplicity, we consider a specific configuration q′ = 1√
2
f , q̃′ = i√

2
f where f is a complex

scalar field. Then we find

L ′2 =
1

2e′2
(F ′01)2 − |Dmf |2 −

e′2

2

(
|f |2 −

√
2ξ
)2
−
√

2(y2 − t′2)F ′01 , (4.3)

where we have turned on only the imaginary part of s′ which is absorbed into the vacuum

moduli ξ. The resultant model L ′2 is nothing but the Abelian-Higgs model in two dimen-

sions. The instantons in this gauge field theory are known as vortices. In the following

subsection, we calculate instanton corrections to the target spacetime geometry in the IR

regime.
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4.2 BPS vortices

After the Wick rotation to the Euclidean space, the Lagrangian L ′2 is rewritten as

L ′2 =
1

2e′2
(F ′12)2 + |Dmf |2 +

e′2

2

(
|f |2 −

√
2ξ
)2

+ i
√

2(y2 − t′2)F ′12

=
1

2e′2

{
F ′12 ± e′2

(
|f |2 −

√
2ξ
)}2

+
∣∣(D1 ± iD2)f

∣∣2 ±√2ξF ′12 + i
√

2(y2 − t′2)F ′12 .

(4.4)

The instantons in the model are just the Abrikosov-Nielsen-Olesen (ANO) vortices. The

BPS vortex equations are

F ′12 ± e′2
(
|f |2 −

√
2ξ
)

= 0 , (D1 ± iD2)f = 0 . (4.5)

In order that the BPS state has finite energy, the field |f |2 should asymptotics to the

vacuum
√

2ξ. This is indeed the case3 when we take t′1 = 0. Then the action associated

with L ′2 is evaluated in this BPS state as

S′2 = ±
√

2ξ

∫
d2xF ′12 + i

√
2 (y2 − t′2)

∫
d2xF ′12 . (4.6)

Now we study the instanton corrections to the target spacetime geometry. The analysis

attributes to the four-point functions of fermions ψ′±, ψ̃
′
± in the charged hypermultiplet

(Q′, Q̃′) in the background of the vortex solutions (4.5). Each fermion ψ′±, ψ̃′± contains

one Goldstino mode and four fields are enough to saturate these fermionic moduli integral.

The other fermionic moduli are saturated by the instanton moduli action including the

Riemann tensor in the moduli space [14]. The calculations of the four-point function are

the same performed in [14, 15, 18] and we never repeat it here.

In the string worldsheet sigma model (1.1), the fermions ψ′±, ψ̃
′
± are related to the

superpartners of the geometrical coordinate fields via the supersymmetric completion of

the vacuum condition (3.7c). The four-point interaction of the fermions associated with

the geometrical coordinates is interpreted as the Riemann tensor of the target spacetime

geometry. Therefore the Riemann tensor receives instanton effects from which we find

the corrections to the geometry. The relations among the fermions are derived from the

superfield equations of motion in the IR limit. In the IR limit e′ → ∞, the superfield

Lagrangian of the charged hypermultiplet is given by

L IR
G =

∫
d4θ

{
Q
′
e−2V ′Q′ + Q̃

′
e+2V ′Q̃′

}
+
{√

2

∫
d2θ

(
Q̃′Φ′Q′ + (s′ − Γ)Φ′

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ (t′ − Ξ)Σ′ + (h.c.)

}
. (4.7)

The kinetic term of the vector multiplet (V ′,Φ′) is dropped out in the IR limit and they

become auxiliary fields. The twisted F-term is rewritten as a D-term and a total derivative

term:
√

2

∫
d2θ̃ (t′ − Ξ)Σ′ + (h.c.) = −2

∫
d4θ (Ξ + Ξ)V ′ −

√
2 εmn ∂m((y2 − t′2)A′n) . (4.8)

3In this case, the vacuum of the q′, q̃′ is given by q′ = − i

21/4
e−iα′√

γ4 − s′2, q̃′ = − 1

21/4
eiα

′√
γ4 − s′2.
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Then the equations of motion for V ′, Φ′ are

0 = Q
′
e−2V ′Q′ − Q̃

′
e+2V ′Q̃′ − (Ξ + Ξ) , (4.9a)

0 = Q̃′Q′ + (s′ − Γ) . (4.9b)

From which we find the constraints among the charged hyper fermions and the superpartner

of the geometrical coordinates (r1, r3, y2, γ4):

1

g2
χ± −

√
2(ψc± + χc±) = −(q′ψ′± − q̃′ψ̃′±) , (4.10a)

1

g2
χ̃± = −(q̃′ψ′± + q′ψ̃′±) . (4.10b)

In the vacuum, we choose ψc± = χc± = 0. Then we have

ψ′± = − f√
2g2|f |2

(χ± − iχ̃±) , ψ̃′± =
if√

2g2|f |2
(χ± + iχ̃±) , (4.11)

where

|f |2 = |q′|2 + |q̃′|2 =
√

2ξ . (4.12)

The four-point function which receives instanton corrections is [14, 15]

G(k) = 〈ψ′+(x1)ψ′−(x2)ψ̃′+(x3)ψ̃′−(x4)〉
∣∣∣
k-inst.

, (4.13)

where the correlation function is evaluated in the instanton background with topological

number k. This provides the four-point interaction term ψ′+ψ
′
−ψ̃
′
+ψ̃
′
− in the IR Lagrangian.

In order to interpret the four-point interaction of ψ′±, ψ̃′± in terms of the geometrical

fermions, we need to identify the superpartners of real components (r1, r3, y2, γ4) in the

superfields (Ξ,Γ). Those are extracted from the real and imaginary parts of the superfields

(Ξ,Γ), namely,

Ξ1 =
1√
2

(Ξ + Ξ) , Ξ2 = − i√
2

(Ξ− Ξ) , (4.14a)

Γ1 =
1√
2

(Γ + Γ) , Γ2 = − i√
2

(Γ− Γ) . (4.14b)

They are compared with an N = (1, 1) real superfield R = R = A+
√

2θ+
r Ω+ +

√
2θ−r Ω−+

. . ., where θ±r are real fermionic coordinates. We first decompose the N = (2, 2) coordinates

θ± into the real and imaginary components θ± = θ±R + iθ±I where θ±R and θ±I are real. We

follow the convention of [15] where the N = (1, 1) coordinates are the imaginary parts4 of

θ±. Then we find that the real fermions (Ωr1 ,Ωr3 ,Ωy2 ,Ωγ4) associated with the geometrical

coordinates (r1, r3, y2, γ4) are

Ωr1

± = −(χ± − χ±) , Ωr3

± = χ̃± − χ̃± , (4.15a)

Ωy2

± = − i

g2
(χ± + χ±) , Ωγ4

± = − i

g2
(χ̃± + χ̃±) . (4.15b)

4For an N = (2, 2) twisted superfield, we need to flip the sign of θ−I to define the real superfield.
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From this expression we conclude that terms containing Ωy2 and Ωγ4 in the four-point

interaction (4.13) can survive in the limit g → ∞. The genuine geometrical coordinate is

not γ4 but ϑ̃ = γ4 +
√

2α, where α is the phase of q, q̃. The superpartner of α is found

in [15] but this is irrelevant in the g → ∞ limit, and we can take Ωϑ̃ = Ωγ4 . Then in the

vacuum and the limit g2 →∞, we find

ψ′± =
−if

2
√

2|f |2
(Ωy2

± − iΩϑ̃
±) , ψ̃′± =

f

2
√

2|f |2
(Ωy2

± + iΩϑ̃
±) . (4.16)

Using this expression, we find that the instanton corrections to the four-point interaction

ψ′+ψ
′
−ψ̃
′
+ψ̃
′
− vanish. This result is quite different from that in the parameter region g → 0

where the instanton corrections to the four-point interaction remain non-zero. Although

the parameter region g → ∞ suggests that the radius of the X̃8-circle becomes large, the

Remodeled GLSM in g →∞ does not capture the light KK-modes which would appear in

the spectrum. We give a short discussion for this result in the next section.

5 Summary and discussions

In this paper, we remodeled the N = (4, 4) supersymmetric GLSM for the exotic 52
2-

brane [17, 18]. We added another vector multiplet (V ′,Φ′), another charged hypermultiplet

(Q′, Q̃′) and other FI parameters (s′, t′). Coupled them to the neutral hypermultiplet (Ξ,Γ)

in additional (twisted) F-terms, we constructed a new model (3.1), called the Remodeled

GLSM. This is a sigma model whose target space geometry has two gauged isometries.

The Remodeled GLSM has only N = (2, 2) supersymmetry rather than N = (4, 4) super-

symmetry. This is caused by a conflict between two different SU(2)R symmetries associated

with two respective vector multiplets. The IR effective theory is also affected by this con-

flict. However, if we choose a suitable choice of parameters in the IR limit, i.e., if we take

the small σ′ limit, we can restore the NLSM of the background geometry of the single

exotic 52
2-brane. We can also interpret that the N = (2, 2) supersymmetry is enhanced

to N = (4, 4) supersymmetry. We also pointed that the original background geometry is

realized in the small σ′ limit.

We also studied the quantum corrections to the background geometry of the exotic 52
2-

brane from the Remodeled GLSM (3.1). Since the GLSM can be regarded as the UV com-

pletion of the string worldsheet sigma model, the string worldsheet instanton corrections

can be traced by the vortex corrections. This technique is quite successful to investigate the

quantum corrections to the H-monopoles and to the KK-monopoles [14–16]. Previously,

we also applied this to the GLSM with one gauged isometry [18]. There the isometry along

the X9-circle is gauged. We could argued the quantum corrections to the X9-circle of the

52
2-brane. We understood that the corrections are generated by the string winding modes

to the dual coordinate X9. The Remodeled GLSM (3.1) has two gauged isometries along

not only the X9-circle but also the X̃8-circle. We studied the Remodeled GLSM in the

parameter region g → ∞ where the radii of the X̃8- and X̃9-circles become large. The

g →∞ limit allows us to truncate the model, in which several fields are frozen and lose their

dynamics. Then the Remodeled GLSM is reduced to the Abelian-Higgs model with the
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decoupled sector. We showed that the Abelian-Higgs model accommodates the instanton

solution. The instanton corrections to the four-point correlation function of the charged

fermions are calculated in the standard way. In the IR limit, the four-point interaction is

interpreted as that of the superpartner of the geometrical coordinate. We found that the

four-point interaction of the geometrical fermions vanishes in the limit g → ∞ and is not

captured in the Remodeled GLSM.

As we summarized above, we investigated the Remodeled GLSM (3.1) in the classical

and quantum levels. We found various issues which we have to solve in a near future. Here

we enumerate two of them with our current interpretations.

Multiple defect five-branes? We have constructed the Remodeled GLSM (3.1) as the

supersymmetric sigma model with two gauged isometries. Indeed, in the large R̃9 limit,

we derived the NLSM of the background geometry of the exotic 52
2-brane. This is identical

to the NLSM (2.9). Furthermore, we wonder whether this NLSM itself would have much

wider feature of five-branes, even though the target space variables (3.23) do not satisfy

field equations of supergravity theories.

Let us remember the GLSMs with multiple U(1) vector multiplets (2.1) and (2.2),

which have been discussed in [16]. In each model we prepare k sets of the vector multiplets,

the FI parameters, and the charged hypermultiplets. In the IR limit, the k sets yield k

five-branes. The gauge coupling of each vector multiplet in the (twisted) F-term and the

D-term determines the configuration of each five-brane as an H-monopole (i.e., a smeared

NS5-brane) or a KK-monopole. Each set of the FI parameters indicates the position of

each five-brane.

We again consider the Remodeled GLSM (3.1). This GLSM has two vector multiplets

(V,Φ) and (V ′,Φ′). The former vector multiplet is coupled to the neutral hypermultiplet

(Ξ,Γ) in the D-terms. This generates the exotic 52
2-brane (2.4). The latter vector multiplet

is coupled to (Ξ,Γ) in the twisted F-term and in the F-term. This coupling is the same

as the one to generate the H-monopole (2.1), as we mentioned before. If we apply the

above discussion of the GLSM for multiple five-branes to the Remodeled GLSM (3.1), we

encounter the following speculations:

• Does the Remodeled GLSM (3.1) provide the two-body system of an exotic 52
2-brane

and a defect NS5-brane in the IR limit?

• Do the FI parameters (s, t) and (s′, t′) represent the positions of the exotic 52
2-brane

and the defect NS5-brane, respectively?

We would be able to argue these speculations partially, even though it is hard to understand

them completely in the current stage. Focusing on the parameters σ ∼ 1/R̃9 and σ′ ∼ 1/R8

in (3.18) and (3.19), we consider the following two configurations:

1. a configuration that an exotic 52
2-brane is dominant: σ′ → 0 and σ →∞

This is the case which we have already studied in section 3.3. In this limit the

functionals (H ′%, ω
′
%) originated from the vector multiplet (V ′,Φ′), the FI parameters
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(s′, t′) and the charged hypermultiplet (Q′, Q̃′) are removed. We obtain the NLSM

for the background geometry of an exotic 52
2-brane.

2. a configuration that a defect NS5-brane is dominant: σ → 0, σ′ →∞ and g → 1

This is another remarkable limit. In this configuration, the functionals (H%, ω%)

are reduced to simple values, whilst (H ′%, ω
′
%) are unchanged. The NLSM (3.22) is

eventually reduced to the following form:5

H% → 1 , ω% → 0 , Ĥ% = 1 +H ′% = 1 + σ′ log
Λ′

%′
, (5.1a)

LE2b = −1

2
Ĥ%

{
(∂mr

1)2 + (∂mr
3)2 + (∂my

2)2 + (∂mϑ̃)2
}

− ω′% εmn (∂my
2)(∂nϑ̃)−

√
2 εmn∂m

(
(ϑ− t2)An

)
. (5.1b)

This is nothing but the NLSM of the background geometry of a defect NS5-brane (for

a similar configuration, see also appendix B.2). The position of the defect NS5-brane

is given by the FI parameters (−t′1,−s′1) in the (r1, r3) = (X6, X7) plane, which can

be read from the functional %′ in (3.19).

Due to the above two configurations, we suspect that the target space geometry of the

NLSM (3.22) would describe “a part of” the two-body system of an exotic 52
2-brane and a

defect NS5-brane. Unfortunately, however, we have not obtained the perfect construction

of the two-body system yet. This is because the target space geometry (3.23) does not

satisfy the field equations in supergravity theories. We cannot find a suitable solution of

the dilaton field, either.

Worldsheet instanton effects. One may expect that the Remodeled GLSM in the

parameter region g → ∞ could capture the light KK-modes and modify the geometry.

However, we found that the instantons from the second gauge field in the Remodeled

GLSM (3.1) do not induce any corrections to the geometry in the limit g → ∞. The

resolution to this puzzle lies in the fact that the Remodeled GLSM constructed in this

paper may not be enough to describe the whole physics of five-branes. We think that

the Remodeled GLSM (3.1) represents not only the sigma model for a single defect five-

brane with two gauged isometries, but also “a part of” the two-body system of an exotic

52
2-brane and a defect NS5-brane as we have already argued above. The gauge multiplet

(V ′,Φ′) is associated with the geometry of the H-monopole compactified on the X̃8-circle

(the defect NS5-brane) in the IR limit. When the gauge field A′m resides in the non-trivial

topological sector, the configuration breaks the isometry along the X̃8-circle. Then the

instantons would uplift the defect NS5-brane of codimension two to the H-monopole of

codimension three. This is the reminiscent of the instanton corrections to the geometry

of the H-monopole studied in [14]. The NS5-brane of codimension four is recovered from

the H-monopole of codimension three by the instanton effects. In this paper we showed

that the instantons in the limit g → ∞ live in the gauge multiplet (V ′,Φ′) in the trun-

cated Lagrangian L2. However, the defect NS5-brane appears in the specific limit of the

5The g → 1 limit is necessary to yield the geometry of the defect NS5-brane.
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parameter g → 1. Therefore the natural geometrical interpretation of the instanton effects

contradicts with the truncated model.

In order to find the complete description both in the classical and in the quantum

levels, we have to find additional terms to the Remodeled GLSM (3.1). Since we have not

obtained any suitable ideas in the current stage, we should bear in mind the above two

discussions as future problems. If we successfully construct a GLSM which solves them, we

can consistently describes the two-body system. Furthermore we can apply it to various

situations discussed in [7] and try to analyze nongeometric microstates of black holes in

string theory.
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A Conventions

In this appendix we summarize the conventions of N = (2, 2) supersymmetry in two-

dimensional spacetime. N = (2, 2) supersymmetric objects are also applicable to describe

N = (4, 4) supersymmetric theories as discussed in [14].

First of all, we introduce the N = (2, 2) supercovariant derivatives defined as

D± =
∂

∂θ±
− iθ±

(
∂0 ± ∂1

)
, D± = − ∂

∂θ±
+ iθ±

(
∂0 ± ∂1

)
. (A.1)

Here θ± are the anti-commuting Grassmann coordinates in superspace. All the N = (2, 2)

superfields are defined in terms of the supercovariant derivatives. It is also useful to define

the integral measures of the Grassmann coordinates such as

d2θ = −1

2
dθ+ dθ− , d2θ̃ = −1

2
dθ+ dθ− , d4θ = −1

4
dθ+ dθ− dθ+ dθ− . (A.2)

The first measure is for F-terms, the second one is for twisted F-terms, and the third one is

for D-terms in the supersymmetric Lagrangian in the N = (2, 2) language. It is important

to describe them explicitly in order to avoid any ambiguities caused by the ordering of the

Grassmann coordinates.

As discussed in [14], the N = (4, 4) string worldsheet sigma model of the background

geometry of the NS5-branes is described byN = (2, 2) supersymmetric objects with SU(2)R

symmetry. The sigma model of the background geometry of the exotic 52
2-brane, which
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emerges by T-duality transformations from the background geometry of the NS5-branes,

is also formulated in the language of N = (2, 2) superfields [17, 18]. Here we exhibit the

expansions of the N = (2, 2) superfields.

An N = (4, 4) vector multiplet is built with an N = (2, 2) vector superfield Va and

an N = (2, 2) chiral superfield Φa. Their expansions by component fields under the Wess-

Zumino gauge are

Va = θ+θ+(A0,a +A1,a) + θ−θ−(A0,a −A1,a)−
√

2 θ−θ+σa −
√

2 θ+θ−σa

− 2i θ+θ−
(
θ+λ+,a + θ−λ−,a

)
+ 2i θ+θ−

(
θ+λ+,a + θ−λ−,a

)
− 2 θ+θ−θ+θ−DV,a ,

(A.3a)

Φa = φa + i
√

2 θ+λ̃+,a + i
√

2 θ−λ̃−,a + 2i θ+θ−DΦ,a + . . . , (A.3b)

where the term “. . .” comes from the derivative expansions by the supercovariant deriva-

tives (A.1). Note that Va can be written as a twisted chiral superfield as Σa = 1√
2
D+D−Va,

and Φa can be described in terms of (A.1) and an unconstrained complex superfield Ca in

such a way as Φa = D+D−Ca. Their expansions are

Σa = σa − i
√

2 θ+λ+,a − i
√

2 θ−λ−,a +
√

2 θ+θ−(DV,a − iF01,a) + . . . , (A.4a)

Ca = φc,a + i
√

2 θ+ψc+,a + i
√

2 θ−ψc−,a + i
√

2 θ+χc+,a + i
√

2 θ−χc−,a

+ 2i θ+θ−Fc,a + 2i θ+θ−Mc,a

+ 2i θ+θ−Gc,a + 2i θ+θ−Nc,a + θ−θ−Ac=,a + θ+θ+Bc++,a

− 2i θ+θ−θ+ζc+,a − 2i θ+θ−θ−ζc−,a + 2i θ+θ−θ+λc+,a + 2i θ+θ−θ−λc−,a

− 2θ+θ−θ+θ−Dc,a . (A.4b)

The relation among the component fields of Φa and Ca are

φa = −2iMc,a , (A.5a)

DΦ,a = −iDc,a +
1

2
(∂0 − ∂1)Bc++,a −

i

2
(∂0 + ∂1)Ac=,a +

i

2
(∂2

0 − ∂2
1)φc,a , (A.5b)

λ̃±,a = −
√

2λc±,a ∓ i(∂0 ± ∂1)χc∓,a . (A.5c)

An N = (4, 4) charged hypermultiplet is expressed by N = (2, 2) chiral superfields Qa and

Q̃a whose expansions are

Qa = qa + i
√

2 θ+ψ+,a + i
√

2 θ−ψ−,a + 2i θ+θ−Fa + . . . , (A.6a)

Q̃a = q̃a + i
√

2 θ+ψ̃+,a + i
√

2 θ−ψ̃−,a + 2i θ+θ−F̃a + . . . . (A.6b)

The target space coordinates of the string worldsheet sigma model are provided by an

N = (4, 4) neutral hypermultiplet whose building blocks are N = (2, 2) chiral and twisted

chiral superfields. In the case of the background geometry of the NS5-branes, the pair

(Ψ,Θ) is the N = (4, 4) neutral hypermultiplet, whilst the geometry of the KK-monopoles

is given by the pair (Ψ,Γ). The geometry of the exotic 52
2-brane is represented by the pair
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spacetime 0 1 2 3 4 5 6 7 8 9

NS5-brane © © © © © © r1 = X6 r3 = X7 r2 = X8 ϑ = X9

KK-monopole © © © © © © r1 = X6 r3 = X7 r2 = X8 ϑ̃ = X̃9

exotic 52
2-brane © © © © © © r1 = X6 r3 = X7 y2 = X̃8 ϑ̃ = X̃9

table 1. Correspondence between the worldsheet scalar fields and the spacetime coordinates.

(Ξ,Γ). Their explicit expansions are

Ψ =
1√
2

(r1 + ir2) + i
√

2 θ+χ+ + i
√

2 θ−χ− + 2i θ+θ−G+ . . . , (A.7a)

Θ =
1√
2

(r3 + iϑ) + i
√

2 θ+χ̃+ + i
√

2 θ−χ̃− + 2i θ+θ−G̃+ . . . , (A.7b)

Γ =
1√
2

(γ3 + iγ4) + i
√

2 θ+ζ+ + i
√

2 θ−ζ− + 2i θ+θ−GΓ + . . . , (A.7c)

Ξ =
1√
2

(y1 + i y2) + i
√

2 θ+ξ+ + i
√

2 θ−ξ− + 2i θ+θ−GΞ + . . . . (A.7d)

The relations among them under the duality transformations [19] are given in (2.3) and (2.5).

As mentioned in the main part of the present paper, γ4 is rewritten as ϑ̃ under the gauge

transformation [14]. In order to make discussions clear under T-duality transformations,

we summarize the scalar fields in the worldsheet sigma models of various background ge-

ometries of five-branes and the labels of the spacetime coordinates XI in table 1:

Finally, the FI parameters in the N = (4, 4) theories are given by the pair of complex-

valued variables such as

sa =
1√
2

(s1,a + is2,a) , ta =
1√
2

(t1,a + i t2,a) , (A.8)

where si,a and ti,a are real-valued. In the same way as this, the other FI parameters (s′, t′)

in the main part of this paper are expanded.

B Remodeled GLSMs for defect five-branes

In this appendix we briefly discuss the duality transformations [19] of the Remodeled

GLSM (3.1) to other GLSMs for five-branes, i.e., the KK-monopole and the H-monopole.

Here we also perform the smearing procedure to the FI parameters s2 (3.18) and s′2 (3.19).

Then the target space geometries of the dualized NLSMs in the IR limit are deformed to

the five-branes of codimension two. We refer to these deformed five-branes as the defect

KK-monopole and the defect NS5-brane, respectively [11].

B.1 Remodeled GLSM for defect KK-monopole

We perform the duality transformation [19] to the dynamical twisted chiral superfield Ξ

in the Remodeled GLSM for the exotic 52
2-brane (3.1). First, we convert the twisted
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F-term ΞΣ′ in LG (3.1c) to a D-term. Next, we perform the conventional duality trans-

formation [19] to Ξ in the similar way as (2.3). Then Ξ is dualized to a dynamical chiral

superfield Ψ′:

−g2
{

(Ξ + Ξ)−
√

2(C + C)
}
− 2V ′ = Ψ′ + Ψ′ . (B.1)

Due to the previous relation (2.5), we express the new duality transformation in the fol-

lowing form:

Ψ′ + Ψ′ + 2V ′ = −g2(Ξ + Ξ) +
√

2 g2(C + C) = Ψ + Ψ . (B.2)

Notice that Ψ is not the dynamical superfield but merely a symbol which simplifies the

expression of (B.2), though originally Ψ was the dynamical fields in the GLSM (2.2). If

the vector superfield V ′ is turned off, the symbol Ψ corresponds to the dynamical field Ψ′.

Plugging (B.2) into (3.1), we obtain the Remodeled GLSM for the KK-monopole:

LKK2 =

∫
d4θ

{ 1

e2

(
− ΣΣ + ΦΦ

)
+Qe−2VQ+ Q̃e+2V Q̃

}
+

∫
d4θ

{g2

2

(
Γ + Γ + 2V

)2
+

1

g2
ΨΨ
}

+
{√

2

∫
d2θ

(
Q̃ΦQ+ (s−Ψ) Φ

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ tΣ + (h.c.)

}
−
√

2 εmn∂m(ϑAn)−
√

2 εmn∂m(y2A′n)

+

∫
d4θ

{ 1

e′2

(
− Σ′Σ′ + Φ′Φ′

)
+Q

′
e−2V ′Q′ + Q̃

′
e+2V ′Q̃′

}
+
{√

2

∫
d2θ

(
Q̃′Φ′Q′ + (s′ − Γ)Φ′

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ t′Σ′ + (h.c.)

}
.

(B.3)

As mentioned above, Ψ is the functional of the superfields Ψ′ and V ′ via (B.2). This is

slightly different from the GLSM for the KK-monopole (2.2) with k = 1. This Remodeled

GLSM possesses N = (2, 2) supersymmetry rather than N = (4, 4) caused by the same

reason in the Remodeled GLSM (3.1).

Following the same discussions in section 3, we consider the IR limit of the Remodeled

GLSM (B.3). By a straightforward computation, we obtain

LKK2b = −1

2
A
{

(∂mr
′1)2 + (∂mr

3)2
}
− 1

2
B−1

(
∂mr

′2 − C ∂mϑ̃
)2 − 1

2
B(∂mϑ̃)2

−
√

2 εmn∂m
(
(ϑ− t2)An

)
−
√

2 εmn∂m((y2 − t′2)A′n) . (B.4)

Here various functionals in (B.4) are defined as follows:

A = H% +
1

g2
H ′% , B =

H%

K%
+ g2H ′% , C =

ω%
K%

+ ω′% , (B.5a)

Am = − 1√
2 g2H%

(
∂mϑ̃− ω%Dmr

′2
)

+
1√
2
∂mϑ̃ , Dmr

′2 = ∂mr
′2 +
√

2A′m , (B.5b)

A′m =
1√
2
B−1

[
g2H ′%

{
∂mr

′2 − ω%
K%

∂mϑ̃
}

+
H%

K%
ω′% ∂mϑ̃

]
. (B.5c)
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Here we have already performed the smearing procedure (3.18) and (3.19). We fixed the

gauge parameter α (or α′) of the gauge field Am (or A′m) to zero, and rewrote γ4 =

ϑ̃ [14]. Due to the duality transformation (B.2), we replaced the scalar fields (r1, r2) in the

functionals (H%, H
′
%, ω%, ω

′
%) by (r′1, r′2).

We extract the target space feature of the effective Lagrangian (B.4). The first line

indicates the target space metric. The second line denotes two types of dyonic modes [20].

They are originated from the gauging of two isometries. Compared with the string world-

sheet sigma model (1.1), we read off the explicit forms of the target space metric GIJ and

the NS-NS B-field BIJ :

G66 = G77 = A , G88 = B−1 , G99 = B + C2B−1 , (B.6)

G89 = −CB−1 , BIJ = 0 . (B.7)

This configuration does not satisfy the equations of motion in supergravity theories. This

is because the geometry is not Ricci-flat, even though the B-field is trivial. In order to

restore the Ricci-flatness on the geometry, we should take the large R̃9 limit, where the

functionals H ′% and ω′% in (B.6) are proportional to the inverse of R̃9. As discussed before,

the large R̃9 limit implies that the radius of the physical coordinate ϑ̃ = X̃9 is large. In

the same way, we take the small R8 limit, where R8 is the radius of the physical coordinate

r′2 = X8. In these limits, the target space feature (B.6) is reduced to

G66 = G77 = H% , G88 =
K%

H%
, G99 =

1

H%
, G89 = − ω%

H%
. (B.8)

This is nothing but the background geometry of the defect KK-monopole. We note that

the defect KK-monopole is a five-brane of codimension two, where the X8-direction is

compactified on a small radius from the standard geometry of the KK-monopole. On the

other hand, the Taub-NUT circle along the physical coordinate X̃9 is large. Thus it is

natural to take the above limits.

B.2 Remodeled GLSM for defect NS5-brane

Here we study the dualization of the Remodeled GLSM for the defect KK-monopole (B.3)

and perform the IR limit. First we take the duality transformation [19] to the dynamical

chiral superfield Γ in (B.3). Note that Γ is coupled to Φ′ in the F-term. Then, in the

similar way as (2.5), Γ is dualized to a dynamical twisted chiral superfield Θ′ [17]:

−g2
{

(Γ + Γ) + 2V
}

+
√

2(C ′ + C ′) = Θ′ + Θ′ . (B.9)

Here we used Φ′ = D+D−C
′. Due to (2.3), this relation can be expressed as follows:

Θ′ + Θ′ −
√

2(C ′ + C ′) = −g2(Γ + Γ)− 2g2V = Θ + Θ . (B.10)

We should notice that the twisted chiral superfield Θ is not a dynamical superfield but

merely a symbol, or a functional of the other superfields. Plugging (B.10) into (B.3), we
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obtain another Remodeled GLSM:6

LH2 =

∫
d4θ

{ 1

e2

(
− ΣΣ + ΦΦ

)
+Qe−2VQ+ Q̃e+2V Q̃

}
+

∫
d4θ

1

g2

(
−ΘΘ + ΨΨ

)
+
{√

2

∫
d2θ

(
Q̃ΦQ+ (s−Ψ) Φ

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃

(
t−Θ

)
Σ + (h.c.)

}
+

∫
d4θ

{ 1

e′2

(
− Σ′Σ′ + Φ′Φ′

)
+Q

′
e−2V ′Q′ + Q̃

′
e+2V ′Q̃′

}
+
{√

2

∫
d2θ

(
Q̃′Φ′Q′ + s′Φ′

)
+ (h.c.)

}
+
{√

2

∫
d2θ̃ t′Σ′ + (h.c.)

}
−
√

2

∫
d4θ (Γ− Γ)(C ′ − C ′)−

√
2 εmn∂m(y2A′n) . (B.11)

Here Ψ and Θ are the functionals of the dynamical superfields Ψ′, Θ′ and the vector

multiplets via (B.2) and (B.10). This is slightly different from the GLSM for the H-

monopole (2.1) with k = 1. We note that the term Γ − Γ still remains even after the

duality transformation (B.10). This implies that the imaginary part of Γ, i.e., the scalar

field γ4, behaves as the dual coordinate field, as in the same way as the scalar field r2 in the

GLSM for the exotic 52
2-brane (2.4). The Remodeled GLSM (B.11) has, as in the same way

as (3.1) and (B.3), only N = (2, 2) supersymmetry, rather than N = (4, 4) supersymmetry.

Following the discussions in section 3, we consider the IR limit of the Remodeled

GLSM (B.11). After a straightforward computation, we obtain

LH2b = −1

2
A
{

(∂mr
′1)2 + (∂mr

′3)2
}
− 1

2
B−1(∂mr

′2)2 − 1

2

(
B + C2B−1

)
(∂mϑ̃)2

+ CB−1(∂mr
′2)(∂mϑ̃) + εmn(∂mϑ̃)(∂nϑ

′)−
√

2 εmn∂m
(
(y2 − t′2)A′n

)
. (B.12)

Here we have already performed the smearing procedure (3.18) and (3.19). The functionals

in (B.12) correspond to the ones (B.5), whilst their variables (r3, ϑ) are replaced by (r′3, ϑ′)

via the duality transformation (B.10). Since the dual field γ4 = ϑ̃ still remains in the

Lagrangian, we integrate it out. The solution is

∂mϑ̃ = (B + C2B−1)−1
{
CB−1(∂mr

′2) + εmn(∂nϑ′)
}
. (B.13)

Substituting this into (B.12), we obtain the final form of the NLSM:

LH2b = −1

2
A
{

(∂mr
′1)2 + (∂mr

′3)2
}
− 1

2

(
B + C2B−1

)−1
{

(∂mr
′2)2 + (∂mϑ

′)2
}

+ CB−1
(
B + C2B−1

)−1
εmn(∂mr

′2)(∂nϑ
′)

−
√

2 εmn∂m
(
(y2 − t′2)A′n

)
. (B.14)

The first line in the right-hand side of (B.14) indicates the target space metric and the

second line denotes the NS-NS B-field, while the third line gives rise to the dyonic mode.

Compared with the string worldsheet sigma model (1.1), we can read the explicit forms of

the target space variables:

G66 = G77 = A , G88 = G99 =
(
B + C2B−1

)−1
, (B.15)

B89 = CB−1
(
B + C2B−1

)−1
. (B.16)

6The duality transformation rule is close to the one in [17].
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This configuration does not satisfy the equations of motion in supergravity theories. In

order to satisfy these equations, we should take the large R̃9 limit, where the functionals

H ′% and ω′% in (B.15) are proportional to the inverse of R̃9. As discussed before, the large

R̃9 limit implies that the radius of the dual coordinate ϑ̃ = X̃9 is large. This also denotes

that the radius R9 of the physical coordinate ϑ′ = X9 is small, because the two radii are

related to each other via R9 = α′/R̃9 where α′ is the string Regge slope parameter. In the

same way, we take the small R8 limit, where R8 is the radius of the physical coordinate

r′2 = X8. In these limits, the target space feature (B.15) is reduced to

G66 = G77 = G88 = G99 = H% , B89 = ω% . (B.17)

This is nothing but the background geometry of the defect NS5-brane. We note that the

defect NS5-brane is a five-brane of codimension two, where both the X8- and X9-directions

are compactified on small radii from the standard geometry of the H-monopole. Thus it is

natural to take the above limits.
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