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1 Introduction

In supersymmetric field theories with conserved R-charges, the localization technique, pi-

oneered by Pestun [1] in four dimensions, by Kapustin, Willett and Yaakov [2] in three

dimensions, and by Kallen and Zabzine [3] in five dimensions, provides exact computation

of a certain class of physical observables. Once combined with physical considerations,

these results provide useful data sets for understanding nonperturbative dynamics of these

theories. Essential prerequisites to these studies is the construction of supersymmetric

field theories on curved backgrounds. It is now understood quite extensively how to put

supersymmetric field theories on Riemannian manifolds.

The purpose of this paper is to refine previous investigations to the supersymmetric

field theories on singular space and its holographic dual. Because of singularities, the

base spacetime is no longer a manifold and the previous constructions may fall short of

its validity. Nevertheless, in this paper, we shall show that the localization technique

can be made to work even on singular spaces. For concreteness of our investigation, by

singular space, we specifically refer to the branched sphere S3
q that is formed from sphere

by inserting conic singularities, where (q − 1) is a deformation parameter away from the

round three-sphere S3.

The idea is that, firstly, S3
q has the same Reeb vector as the ellipsoid S̃3

b and that,

secondly, this space is conformally equivalent to S1 ×H2, at least, locally. The first point

implies that, for N = 2 supersymmetric field theories, the partition function on S3
q is

the same as the partition function on S̃3
b . The second point implies that, if the theories

are superconformal, the partition function on S3
q is the same as the partition function on

S1×H2. These chains of equivalence also hold for other observables than identity operator

so long as they are in the orbit of the conserved supersymmetries on S3
q .

The above idea also suggests that, in the large N limit, these SCFTs on the branched

sphere S3
q are holographically dual to a topological black hole (TBH) in four-dimensional

anti-de Sitter spacetime, whose horizon takes the shape of H2. We shall refer this proposal

as the TBH / qSCFT correspondence. The black hole is charged, which reflects the fact

that conical singularity of S3
q is accompanied by a background vector field dual to the

conserved R-symmetry. The black hole is extremal, which reflects the fact that the SCFTs

on S3
q preserve two supercharges. To test our proposed TBH / qSCFT correspondence,

we compute the free energy and the supersymmetric Rényi entropy [4] of the TBHs. The

results show perfect agreement with the exact results of the qSCFT in the large N limit.

This paper is organized as follows. In section 2, we formulate the qSCFTs — the

N = 2 SCFTs on various branched spheres, including S3
q . We first analyze the charged

Killing spinor equations in the background off-shell supergravity fields. We then compute

the partition functions on different branched spheres by localization technique and show

that their form remains exactly the same as the form for the ellipsoidal three sphere S̃3
b .

We analyze the Reeb vectors on these spaces and show that partition functions depend

only on Reeb vectors on branched spheres. Built upon these observations, we extract the

partition function of qSCFTs and show that its free energy F (q) in the large N limit takes
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the form

F (q) =
1

4

(
√
q +

1
√
q

)2

F (1) . (1.1)

We also extract the supersymmetric Rényi entropy and show that it takes the form

S(q) =
3q + 1

4q
S(1), and hence S(∞) =

3

4
S(1) . (1.2)

In section 3, we study the charged topological black hole solution in the context of four

dimensional N= 2 gauged supergravity. We first analyze the 4d Killing spinor equation on

this background and show that the integrability condition determines the BPS condition

for the black hole, namely the mass-charge relation. We then discuss two supersymmetric

black hole solutions, neutral massless and charged BPS black holes. In section 4, we show

the TBH4/qSCFT3 correspondence. We first fix the charged topological black hole solution

by matching temperature and chemical potential to the boundary field theory on S1 ×H2

and compute the free energy and the supersymmetric Rényi entropy, which precisely agree

with the localization results (1.1), (1.2) of qSCFT3 in the large N limit. We then analyze

the supersymmetry of this TBH4 and show that it is BPS. We further find the Killing spinor

solutions for this TBH4 and show that it preserves the same number of supercharges as the

boundary field theory. We conclude and discuss future questions in section 5.

2 qSCFT3

Supersymmetric field theories were constructed on round three-sphere [2], ellipsoid and

squashed sphere [5, 6]. The partition function on S3 was found not to depend on the

size of S3, and this is a consequence of the conformal fixed point the theory flows to.

The partition function on S̃3
b was found to depend on squashing parameters of S̃3

b . A

refinement of such construction is supersymmetric field theories on a three-sphere with

conical singularities [4]. The conical singularity is specified by a parameter q ∈ R. We can

think of S3
q as a q-deformation of round 3-sphere and S̃3

q as a q-deformation of squashed

sphere or ellipsoid.

In this section, we shall construct supersymmetric field theories on S3
q and S̃3

q , following

the systematical approach [7–10], which was initiated in [11]. The construction is based on

the rigid limit of three dimensional supergravity that couples to the R-multiplet of the field

theory. We are particularly interested in three-dimensional N = 2 theories with a U(1)R
symmetry. Note that such construction is equivalent to the construction of superconfor-

mal field theories (SCFTs) on curved manifold, because it is now known [12–14] that the

solutions to the conformal Killing spinor equations are closely related to the solutions of

the Killing spinor equations we will solve in this section.1 Therefore, in what follows, we

shall not distinguish the two constructions. The Poincaré supersymmetry algebra involving

supercharges Qα, Q̃α of R-charges ±1 reads

{Qα, Q̃β} = 2γµαβPµ + 2iεαβZ ,

{Qα, Qβ} = 0 , {Q̃α, Q̃β} = 0 . (2.1)

1See also [10] for exemplification of this in Euclidean three-manifolds.
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The supergravity multiplet contains the metric gµν , two gravitini ψµ, ψ̃µ, an Abelian two-

form connection Bµν and two Abelian one-form connections Aµ and Cµ. For auxiliary fields

Bµν and Cµ, the dual of their field strengths are denoted by

Vµ = −iε νρ
µ ∂νCρ , H =

i

2
εµνρ∂µBνρ . (2.2)

The metric gµν couples to the energy momentum tensor, the gauge connection Aµ couples

to the U(1)R current, and Cµ couples to the central current whose charge is the charge Z

that appears in the supersymmetry algebra above. A given configuration of the background

fields Aµ, Vµ, H preserves supersymmetry if and only if the variations (parameterized by

some choice of ζ and ζ̃) of the two gravitini fields vanish:

δψµ = 0 , δψ̃µ = 0 . (2.3)

In Euclidean signature, ζ and ζ̃ are independent complex spinors. These conditions essen-

tially give the Killing spinor equation

(∇µ − iAµ) ζ = −1

2
Hγµζ − iVµζ −

1

2
εµνρV

νγρζ , (2.4)

where a solution ζ of it corresponds to a supercharge δζ taking R-charge +1, while a

supercharge δ
ζ̃

of R-charge −1 corresponds to a solution of

(∇µ + iAµ) ζ̃ = −1

2
Hγµζ̃ + iVµζ̃ +

1

2
εµνρV

νγρζ̃ . (2.5)

These equations generally tell us what background fields on three-dimensional space M3

allow a set of rigid supersymmetries.

2.1 Killing spinors on branched spheres

We would like to solve the Killing spinor equations for branched 3-spheres. These equations

were analyzed in [10, 12], where the three dimensional space M3 is a Riemannian three-

manifold. There, it was shown that three-dimensional rigid supersymmetry requires an

almost contact structure satisfying a certain integrability condition onM3, much the same

way four-dimensional rigid supersymmetry requires a Hermitian structure [7]. Here, we

refine these results to three-dimensional spaces containing conical singularities.

2.1.1 S3q
This class of branched 3-spheres can be characterized by deformation of round 3-sphere. A

quick way to see this is by dilating the metric while keeping domains of coordinates intact.

The metric of the 3-sphere then turns into

ds2 = `2
(
dθ2 + cos2 θdφ2 + q2 sin2 θdτ2

)
, (2.6)

where, as said, the domains of θ, τ, φ are

θ ∈ [0, π/2] , τ ∈ [0, 2π) , φ ∈ [0, 2π) . (2.7)
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If q 6= 1, the space has a conical singularity at the point θ = 0, otherwise regular every-

where else. We can regard the branched sphere as a deviation from the round 3-sphere

parameterized by q − 1. Therefore we expect that Killing spinor equations have minimal

deviations from those for round sphere, with an additional background gauge field Aµ.

Thus we have Aµ 6= 0 (modulo flat connection), H 6= 0 and V = 0 and Killing spinor

equations become a special case of (2.4) and (2.5)

(∇µ − iAµ) ζ = −1

2
Hγµζ , (2.8)

(∇µ + iAµ) ζ̃ = −1

2
Hγµζ̃ . (2.9)

Spinor covariant derivative is defined as

∇µζ = ∂µζ +
1

4
ω ij
µ σijζ , (2.10)

where σij := 1
2 [σi, σj ] and the spin connection ω ij

µ is given in terms of the Christoffel

connection Γνσµ by

ω ij
µ = eiν∂µe

νj + eiνe
σjΓνσµ . (2.11)

To solve these equations, we use the fact that the round 3-sphere is the SU(2) group

manifold with group element g. The metric of the SU(2) group manifold reads

ds2 = `2µmµm = `2µ̃mµ̃m , (2.12)

where m = 1, 2, 3, µ := g−1dg and µ̃ := dgg−1 are left-invariant and right-invariant 1-forms,

respectively. In the left-invariant frame, the vielbeins are given by

e1 = `µ1 , e2 = `µ2 , e3 = `µ3 . (2.13)

Likewise, the q-branched sphere can be constructed by rescaling dτ in the vielbein to q dτ .

We collected the vielbein and spin connection in appendix B.1. With the convention of the

three-dimensional gamma matrices in terms of Pauli matrices as

γ1 = σ1 , γ2 = σ2 , γ3 = σ3 , (2.14)

the spin connection ω ij
θ σij is proportional to γθ

1

4
ω ij
θ σij = −1

2
Hγθ , H = −i . (2.15)

We now determine the gauge connection that yields a nontrivial Killing spinor. For a

constant spinor, this relation implies that the Killing spinor equations (2.8)(2.9) hold in

the θ direction provided Aθ = 0 modulo flat connection. By the same reasoning, the Killing

spinor equation is solved provided Aφ = 0 modulo flat connection. Finally, with H given

as above, Aτ can be easily determined. Notice

1

4
ω ij
τ σij +

1

2
Hγτ =

i

2
(1− q)σ3 , (2.16)
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which gives the constant Killing spinor solution for (2.8)2

ζ =

(
0

1

)
, (2.17)

with the gauge field Aτ = 1
2(q − 1). With this choice of Aτ , the constant Killing spinor

solution for (2.9) is

ζ̃ =

(
1

0

)
. (2.18)

To summarize, we determined the supergravity backgrounds admitting two supercharges

of opposite R-charge on S3
q :

H(S3
q) = −i , A(S3

q) =
1

2
(q − 1) dτ , V (S3

q) = 0 . (2.19)

This result was first obtained in [4]. Here, we included our derivation to emphasize the

strategy of finding Killing spinor solutions, which will be extended for more general q-

branched spaces in subsequent sections.

So far we have been discussing the branched 3-sphere S3
q (2.6), which has a conical

singularity at θ = 0. As a common recipe [15] to handle the singularity, one may instead

study a sequence of smooth resolved spaces Ŝ3
q(ε) (ε > 0 is small) and consider S3

q as the

ε→ 0 limit of Ŝ3
q(ε). The metric of Ŝ3

q(ε) is given by

ds2 = fε (θ)2 dθ2 + q2`2 sin2 θdτ2 + `2 cos2 θdφ2 , (2.20)

where fε (θ) is a smooth function satisfying

fε (θ) =

q` , θ → 0

` , ε < θ ≤ π

2
.

(2.21)

One readily finds that the background fields permitting two supercharges with opposite

R-charge are

H = − i

fε(θ)
, A =

1

2

(
q`

fε(θ)
− 1

)
dτ +

1

2

(
`

fε(θ)
− 1

)
dφ , V = 0 . (2.22)

With the choice of vielbeins as in (B.4), the two Killing spinors are the same as (2.17)

and (2.18) . As we shall discuss later, the partition function on the resolved space Z[Ŝ3
q(ε)]

can be computed using the supersymmetry localization technique. In particular, the result

does not depend on the specific form of the resolving function fε(θ).

2.1.2 S̃3p,q
The study above can be extended to more general 3-spheres: (p, q)-branched spaces, includ-

ing branched ellipsoid, branched squashed sphere and the general branched sphere. Here,

p and q are two conic deformation parameters of the two circles along φ and τ directions,

respectively. For completeness, we include the results for each of these 3-spheres.

2We take Killing spinors normalized. We further require that Killing solution should obey the periodicity

under τ → τ + 2π. Therefore we do not include those solutions that depend on q explicitly.
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Branched ellipsoid: the metric of (p, q)-branched 3-ellipsoid is given by

ds2 = f(θ)2dθ2 + p2`2 cos2 θdφ2 + q2 ˜̀2 sin2 θdτ2 , f(θ) =

√
`2 sin2 θ + ˜̀2 cos2 θ . (2.23)

Following the procedure in section 2.1.1 for q-branched round sphere, we find the Killing

spinors remain the same:

ζ =

(
0

1

)
, ζ̃ =

(
1

0

)
, (2.24)

with the supergravity background

H = − i

f(θ)
, A =

1

2

(
q ˜̀

f(θ)
− 1

)
dτ +

1

2

(
p`

f(θ)
− 1

)
dφ , V = 0 . (2.25)

In the limit p→ 1 and ˜̀→ ` (and under a replacement f → fε), the background (2.25) is

reduced to (2.22).

Branched squashed sphere: the metric for the smooth squashed 3-sphere is3

ds2 = `2
(

1

v2
µ1µ1 + µ2µ2 + µ3µ3

)
, (2.26)

where v is the squashing parameter. To make the q-branched space manifest, we go to

(θ, τ, φ) coordinates. We will set ` = 1 below. The metric can be written as

ds2 = dθ2 +
1

v2

(
cos4 θdτ2 + sin4 θdφ2

)
+ cos2 θ sin2 θ(dτ2 + dφ2)

−sin2 2θ

2

(
1− 1

v2

)
dφdτ , (2.27)

where the domains of θ, τ, φ are

θ ∈ [0, π/2] , τ ∈ [0, 2π) , φ ∈ [0, 2π) . (2.28)

The (p, q)-branched squashed 3-sphere is obtained by replacing (dφ,dτ) by (pdφ, qdτ) in

the metric, while keeping the domains of the coordinates intact

ds2 = dθ2 +
1

v2

(
cos4 θq2dτ2 + sin4 θp2dφ2

)
+ cos2 θ sin2 θ(q2dτ2 + p2dφ2)

−pq sin2 2θ

2

(
− 1

v2
+ 1

)
dφdτ . (2.29)

For p = q = 1, the space becomes a squashed 3-sphere; for v = 1, it becomes a (p, q)-

branched, round 3-sphere. Choosing the vielbein listed in appendix B.3, we found the

same constant Killing spinor solutions as before

ζ =

(
0

1

)
, ζ̃ =

(
1

0

)
, (2.30)

3Gamma matrices and the vielbein are listed in appendix B.3. The same notation will be used in the

one-loop computation for branched squashed sphere later.
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with the following background fields

H = − i
v
, V = 0 (2.31)

A =

(
− q

2v2

(
(v2 − 1) cos 2θ − 1

)
− 1

2

)
dτ +

(
p

2v2

(
(v2 − 1) cos 2θ + 1

)
− 1

2

)
dφ .

A general 3-space with U(1) × U(1) isometry: having studied various branched

spheres, we now move on to a general 3-space with U(1) × U(1) isometry. The space is

characterized by three real parameters p, q, v and one arbitrary function f(θ):

ds2 = f(θ)2dθ2 +
1

v2

(
cos4 θq2dτ2 + sin4 θp2dφ2

)
+ cos2 θ sin2 θ(q2dτ2 + p2dφ2)

−pq sin2 2θ

2

(
− 1

v2
+ 1

)
dφdτ . (2.32)

Again, we find that this 3-space admits constant spinor solutions for the Killing spinor

equations (2.8)(2.9):

ζ =

(
0

1

)
, ζ̃ =

(
1

0

)
, (2.33)

with the background fields

H = − i

vf(θ)
, V = 0 ,

A =

(
− q

2v2

(
(v2 − 1) cos 2θ − 1

)
f(θ)

− 1

2

)
dτ +

(
p

2v2

(
(v2 − 1) cos 2θ + 1

)
f(θ)

− 1

2

)
dφ .

It can be shown that the metric (2.32) covers the round 3-sphere, 3-ellipsoid, squashed

3-sphere and their (p, q)-branched spaces, with different choices of parameters p, q, v ∈ R
and functions f(θ). The general 3-space also covers more generally other singular and

regular 3-spaces, in so far as the space preserves U(1)×U(1) isometry.

2.2 Localization on branched spheres

Consider an N = 2 supersymmetric field theory admitting Lagrangian formulation on a

branched 3-space. The partition function of the theory is invariant under the fermionic

symmetries generated by the two supercharges Q and Q̃. These supersymmetries allow

to evaluate the path integral by the localization technique: one adds a Q-exact localizing

term {Q,V } to the action. It follows from the supersymmetry algebra that the deformed

partition function,

Z(t) =

∫
Dφ e−S−t{Q,V } , (2.34)

is independent of t. The localization technique proceeds by choosing the bosonic part of

{Q,V } positive semi-definite and sending the deformation parameter t→∞ so that

{Q,V } = 0 (2.35)

– 8 –



J
H
E
P
0
3
(
2
0
1
4
)
1
2
7

puts each independent positive semi-definite term to vanish. In the limit t → ∞, the

integral over critical points of V (locus) can be evaluated exactly using the saddle-point

approximation. Once the field contents are specified, the explicit form of the deformation

term {Q,V } can be constructed from supersymmetry transformation rules, equivalently,

the supersymmetric Lagrangian.

Consider the N = 2 Chern-Simons-matter theory. The vector multiplet has com-

ponents (aµ, λ, λ̄, σ,D), transforming in the adjoint representation of the gauge group.

The Yang-Mills term is Q-exact and can be used to localize the vector multiplet in the

Coulomb branch

LYM = Tr

[
1

4
FµνF

µν +
1

2
DµσD

µσ − iλ̄γµDµλ−
1

2
(D+ σH)2 − iλ̄[σ, λ] +

i

2
Hλ̄λ

]
, (2.36)

where

Fµν := ∂µaν − ∂νaµ − i[aµ, aν ] ,

Dµσ := ∂µσ − i[aµ, σ] ,

Dµλ := (∇µ + iAµ)λ− i[aµ, λ] .

(2.37)

The bosonic part of LYM are positive semi-definite, so the path integral is localized to a

matrix integral over the Coulomb branch

aµ = 0 , σ = σ0 , D = −Hσ0 , (2.38)

where σ0 is a Lie algebra valued constant matrix. The integrand consists of saddle-point

contribution and Gaussian fluctuations around the saddle-point. The latter is a product

of one-loop determinants of each dynamical fields. Only the Chern-Simons and Fayet-

Iliopoulos (FI) terms contribute to the saddle-points

LCS =
k

4π
Tr

[
iεµνρ

(
aµ∂νaρ +

2i

3
aµaνaρ

)
− 2Dσ + 2iλ̄λ

]
, (2.39)

LFI =
ξ

2π
Tr(D − σH) . (2.40)

For simplicity, we drop the FI term from now on — their inclusion is straightforward

and does not add any new features. The saddle-point contribution of the Chern-Simons

term can be evaluated straightforwardly for different backgrounds. The theory may contain

chiral multiplet matter with components (φ, ψ, F ) in arbitrary representations of the gauge

group, but they are localized at the origin. Matter and gauge one-loop determinants

will be computed explicitly for different backgrounds later. The partition functions of

N = 2 Chern-Simons-matter theories on branched 3-spheres, obtained by the localization

technique, take the form

Z[k,N ; g,∆;M3(b1, b2)] =

∫
[dσ0] eikf(b1,b2)Trσ2

0Detv(σ0, b1, b2;α)Detch(σ0, b1, b2,∆; ρ).

(2.41)

The three terms in the integrand are classical contribution, one-loop determinant of the

vector multiplets, and one-loop determinant of the chiral multiplets. Possible nonpertur-

bative terms are omitted since they are exponentially small in the large N limit we are

– 9 –



J
H
E
P
0
3
(
2
0
1
4
)
1
2
7

primarily interested in. The partition function depends on the coupling parameters k,N ,

on the Lie algebra g of the gauge group, and on the geometric data b1, b2 of M3. So,

f(b1, b2) is a certain geometric function that depends on b1, b2, α is the set of positive

roots, ρ is the weight space of the chiral multiplet, which is in a certain representation of

the gauge group, and ∆ is the conformal dimension of chiral supermultiplet fixed by the

R-charge. Two geometric parameters b1 and b2 are determined by p, q and the squashing

parameters (e.g. v). As we shall see later, b1 and b2 also specify the Reeb vectors on the

branched spaces.4

A particularly simplifying limit is the weak coupling limit k → ∞. In this case, the

partition function is reduced to the chiral multiplet one-loop determinant at the origin of

the Coulomb branch σ0 = 0. Let us explain how this comes out. The classical contribution

provides a Gaussian distribution to σ0. If we take k → ∞ limit while keeping other

geometric parameters fixed, we see that the classical contribution becomes a delta-function

lim
k→∞

eikf(b1,b2)Trσ2
0 ∼

∏
Cartan

δ(σ0) (2.42)

up to normalization factors. We see that the partition function localized in the Coulomb

branch becomes infinitely peaked at the origin σ0 = 0 . At the origin, the one-loop deter-

minant contribution of vector multiplet is reduced to unity. Intuitively, this follows from

the fact that at the origin of the Coulomb branch vector multiplet is massless and super-

symmetric cancellation between boson and fermion one-loop determinants ensures that the

ratio is unity. On the other hand, the one-loop determinant of the chiral multiplet depends

on the geometric data through the R-charge dependence. This dependence continues to be

present to the origin σ0 = 0. Summarizing, at the weak coupling limit, we have

Z[k,N ; g,∆;M3(b1, b2)] −→ Detch(b1, b2; ∆, ρ) at k →∞. (2.43)

In the following subsections, we shall check this assertion by explicit computations.

2.2.1 Branched ellipsoid

We compute the partition function of N = 2 Chern-Simons matter theory on branched

ellipsoid background (2.23)(2.25). The saddle-point contribution from supersymmetric

Chern-Simons term (2.39) is

Zsaddle = e
iπk
b1b2

Trσ2
0 , b−1

1 = q ˜̀, b−1
2 = p` . (2.44)

Now we compute the one-loop determinant of a chiral multiplet around the locus

σ = σ0. The Q-exact term used to localize the matter fields is chosen as a total super-

derivative [5]

ζζ̃ Lmatter = δζδζ̃
(
ψ̄ψ + 2iφ̄σφ

)
. (2.45)

This leads to the scalar kinetic operator

∆φ = −DµD
µ − 2i(∆− 1)

f(θ)
vµDµ + σ2

0 +
2∆2 − 3∆

2f(θ)2
+

∆R

4
, (2.46)

4See section 2.3 for the definition and discussions of Reeb vector.
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and the fermion kinetic operator

∆ψ = −iγµDµ − iσ0 −
1

2f(θ)
+

∆− 1

f(θ)
γµvµ , (2.47)

where ∆ is R-charge of the scalar and R is the positive Ricci scalar. The covariant deriva-

tives are defined as

Dµφ = (∇µ − i∆Aµ)φ ,

Dµψ = (∇µ − i(∆− 1)Aµ)ψ . (2.48)

The vector vµ is defined as

vµ = ζγµζ̃ , (2.49)

where ζ = (0, 1)T , ζ̃ = (1, 0)T are two Killing spinors with R charge +1 and −1, respec-

tively. The spinor product is defined as

ζλ = ζαεαβλ
β , ζγµλ = ζα(εγµ)αβλ

β , (2.50)

where εαβ is anti-symmetric 2×2 matrix with non-vanishing components ε12 = −ε21 = −1.

Decomposing the scalar as5

φ(θ, τ, φ) = φ0(θ)eimτ+inφ , m, n ∈ Z , (2.51)

the equation of motion for the scalar is given by

∆φφ = λsφ . (2.52)

Decomposing the spinor as

ψ(θ, τ, φ) = ei(mτ+nφ)

(
ψ1(θ)

ei(τ+φ)ψ2(θ)

)
, m, n ∈ Z , (2.53)

the equation of motion is given by

∆ψψ = λfψ . (2.54)

Spinor equations of motion can be decomposed to give a single second order ordinary

differential equation for ψ1(θ). If we map

ψ1(θ) ∼ φ0(θ) , (2.55)

their equations of motion are the same provided that the following matching condition

is satisfied,

λs = λf (λf + 2iσ0) . (2.56)

A scalar mode with eigenvalue λs and a pair of fermion modes with eigenvalue λf and

λf + 2iσ0 will cancel with each other in the one-loop determinant as long as ψ1 6= 0 and

5We use Z to denote integers and N for non-negative integers.
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ψ2 6= 0. The remaining contributions will come from those modes with only one of ψ1

and ψ2 vanishing. Denote the eigenvalue for ψ1 6= 0, ψ2 = 0 as λ1 and the eigenvalue for

ψ1 = 0, ψ2 6= 0 as λ2. In the former case, modes with λ1 do not have pairing modes of

λ1 + 2iσ0. In the latter case, there is no bosonic mode to cancel the fermionic modes with

λ2. λ1 and λ2 can be solved from spinor first order equations of motion. The remaining

effective scalar mode gives the eigenvalue6

λ1 + 2iσ0 =
n

p`
+
m

q ˜̀
+

∆

2

(
1

p`
+

1

q ˜̀

)
+ iσ0 , (m,n ∈ N) (2.57)

and the unmatched spinor eigenvalue is

λ2 = − n
p`
− m

q ˜̀
− ∆

2

(
1

p`
+

1

q ˜̀

)
− iσ0 , (m,n < 0) (2.58)

The one-loop determinant is given by

Detch =
det ∆ψ

det ∆φ
=

∏
m,n≥0

n
p` + m

q ˜̀−
∆−2

2

(
1
p` + 1

q ˜̀

)
− iσ0

n
p` + m

q ˜̀ + ∆
2

(
1
p` + 1

q ˜̀

)
+ iσ0

. (2.59)

Introducing familiar notations

b =

√
b2
b1

:= b0

√
q

p
, b0 =

√
˜̀

`
, Q = b+ 1/b , (2.60)

we get

Detch(σ0, b1, b2,∆; ρ) = sb

[
iQ(1−∆)

2
+
ρ(σ0)√
b1b2

]
, (2.61)

where sb(x) is double sine function.

Now we compute the one-loop determinant of the gauge fluctuations. For the fluctua-

tions of Yang-Mills Lagrangian LYM around the locus, one can impose the covariant gauge

∇µaµ = 0 (2.62)

by adding the gauge fixing term

Lg.f. = c̄∇µDµc+ b∇µaµ . (2.63)

Decomposing the gauge potential

a = B + dχ , with ∇µBµ = 0 , (2.64)

the determinants from fluctuations χ and δσ cancel with those from the ghosts c, c̄ [4]. The

remaining gauge fixed Lagrangian for the fluctuations becomes

Lgauge = Tr

(
Bµ∆BB

µ − [Bµ, σ0]2 − iλ̄γµ(∇µ + iAµ)λ+ iλ̄[λ, σ0] +
λ̄λ

2

)
. (2.65)

6Ranges of m,n are determined by the normalizability condition. We emphasize that, resolving condi-

tions at θ = 0 and π/2 are necessary to obtain the (p, q) independent ranges of m,n.
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For all adjoint fields, one can decompose them with respect to the Cartan-Weyl basis

[Hi, Hj ] = 0, [Hi, Eα] = αiEα, [Eα, E−α] =
2αiHi

|α|2
, (2.66)

and the Lagrangian can be written as

Lgauge =

r∑
i

(
Bi
µ∆BB

µ
i + λ̄i∆λλi

)
+
∑
α

(
B−αµ (∆B + α(σ0)2)Bµ

α + λ̄−α(∆λ − iα(σ0))λα

)
, (2.67)

where r is the rank of gauge group G and σ0 takes the value in the Cartan subalgebra.

The kinetic operators ∆B and ∆λ are defined as (? for Hodge star operator)

∆B = ? d ? d + d ? d ? ,

∆λ = −iγµ(∇µ + iAµ) +
i

2
H . (2.68)

Now we solve the eigenvalue problem for the vector Laplacian with a constraint [16]

∆BB = λ2
BB , with ∇µBµ = 0 , (2.69)

which is equivalent to solve equations

d ? B = 0 , ?dB = λBB . (2.70)

We can decompose B field in terms of the vielbein (B.4)

B = ei(mτ+nφ)
[
e−i(φ+τ)b+(θ)(e1 + ie2) + ei(φ+τ)b−(θ)(e1 − ie2) + b3(θ)e3

]
, m, n ∈ Z .

(2.71)

From ? dB = λBB we get

b±(θ) =
1

2(m
q ˜̀ + n

p` ∓ λB)

[(
m

q ˜̀
cot θ − n

p`
tan θ

)
b3(θ)± b′3(θ)

f(θ)

]
. (2.72)

Substituting it into d ? B = 0, we get a second order differential equation for b3(θ)

∆b3b3 = 0 . (2.73)

Decomposing spinor λ as

λ(θ, τ, φ) = ei(mτ+nφ)

(
λ+(θ)

ei(τ+φ)λ−(θ)

)
, m, n ∈ Z , (2.74)

the equation of motion

(∆λ − λf )λ = 0 , (2.75)
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can be rewritten as a second order ordinary differential equation of λ+(θ). Note that

equations of motion for b3(θ) and λ+(θ) coincide provided that the matching condition

is satisfied

(λB − λf )(λB + λf −
2

f(θ)
) = 0 . (2.76)

After cancellation of the matched eigenvalues, the remaining (effective) bosonic eigen-

value is
2

f(θ)
− λ1 = −m

q ˜̀
− n

p`
, (m,n ∈ N) (2.77)

and the remaining fermionic eigenvalue is

λ2 = −m
q ˜̀
− n

p`
. (m,n < 0) (2.78)

Note that the remaining eigenvalues are independent of f(θ) and we regularize the de-

terminant by neglecting the zero mode in (2.77). The one-loop determinant of the gauge

fluctuations is

Detv(σ0, b1, b2;α) =

(∏
m,n<0−

m
q ˜̀−

n
p`∏

m,n>0−
m
q ˜̀−

n
p`

)r ∏
α>0

∏
m,n<0

(
m
q ˜̀ + n

p`

)2
+ α(σ0)2

∏
m,n>0

(
m
q ˜̀ + n

p`

)2
+ α(σ0)2

∼
∏
α>0

[
1

α(σ0)2
× 4 sinh

πα(σ0)

b1
sinh

πα(σ0)

b2

]
. (2.79)

In the last step, we dropped an overall constant, which is irrelevant for the discussion.

Combining (2.44), (2.61) and (2.79) the total partition function is given by

Z[k,N ; g,∆; b1, b2] (2.80)

=

∫ r∏
i=1

d(σ0)i e
iπk
b1b2

Trσ2
0
∏
α>0

4 sinh
πα(σ0)

b1
sinh

πα(σ0)

b2

∏
ρ

sb

(
iQ

2
(1−∆) +

ρ(σ0)√
b1b2

)
,

where r is the rank of the gauge group and (σ0)i denote the Cartan parts of σ0. Note that
1

α(σ0)2 in the gauge determinant canceled the Vandermonde determinant in the measure,

therefore we get the final result (2.80) shown above. The partition function on the (p, q)-

branched ellipsoid is the same as that on the smooth ellipsoid with redefined squashing

`→ p`, ˜̀→ q ˜̀. Particularly, in the round sphere limit ˜̀= `, it will be the same as that on

the smooth ellipsoid with b =
√

q
p [4]. Note that the full partition function is independent

of the specific form of f(θ), which shows that the result is valid for arbitrary f(θ).

2.2.2 Branched squashed sphere

We compute the partition function of N = 2 Chern-Simons matter theory on the branched

squashed sphere background (2.29)(2.31). The saddle-point contribution is

Zsaddle = e
iπk
b1b2

Trσ2
0 , b1 =

v

q
, b2 =

v

p
. (2.81)
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Now we compute the one-loop determinant of a chiral multiplet. The Q-exact term used

to localize the matter fields is chosen to be a total super-derivative [5]

ζζ̃ Lmatter = δζδζ̃

(
ψ̄ψ + 2iφ̄σφ+

2(1−∆)

v
φ̄φ

)
. (2.82)

This leads to the operators

∆φ = −DµD
µ + σ2

0 +
∆(1− 2∆)

2v2
+

2i(1−∆)σ0

v
+

∆R

4
, (2.83)

∆ψ = −iγµDµ − iσ0 −
2∆− 1

2v
, (2.84)

where ∆ is the R-charge of the scalar component field. Decomposing the scalar field as

φ(θ, τ, φ) = φ0(θ)eimτ+inφ , m, n ∈ Z (2.85)

the equation of motion is given by

∆φφ = λsφ . (2.86)

Decomposing the spinor field as

ψ(θ, τ, φ) = ei(mτ+nφ)

(
ei(−τ−φ)ψ1(θ)

ψ2(θ)

)
, m, n ∈ Z , (2.87)

the equation of motion is given by

∆ψψ = λfψ . (2.88)

As in the case of branched ellipsoid, the equations of motion for ψ2(θ) and φ0(θ) are the

same when

λs =

(
λf +

1

v

)(
λf +

2∆− 1

v
+ 2iσ0

)
. (2.89)

According to the analysis in the previous subsection, after cancellation, the remaining

eigenvalues are (bosonic)

(1 + vλ1)/v =
mv

q
+
nv

p
− ∆v

2

(
1

p
+

1

q

)
− iσ0 , (−m,−n ∈ N) (2.90)

and (fermionic)

(2∆ + v(λ2 + 2iσ0)− 1)/v = −mv
q
− nv

p
+

∆v

2

(
1

p
+

1

q

)
+ iσ0 . (−m,−n < 0) (2.91)

Putting a minus sign in front of both the numerator and denominator, we obtain the final

one-loop determinant

Detch =
det ∆ψ

det ∆φ
=

∏
m,n≥0

nv
p + mv

q −
∆−2

2

(
v
p + v

q

)
− iσ0

nv
p + mv

q + ∆
2

(
v
p + v

q

)
+ iσ0

(2.92)

=
∏

m,n≥0

n
p + m

q −
∆−2

2

(
1
p + 1

q

)
− iσ0

v

n
p + m

q + ∆
2

(
1
p + 1

q

)
+ iσ0

v

. (2.93)
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Introducing the notations

b =

√
b2
b1
, Q = b+ 1/b , b1 =

v

q
, b2 =

v

p
. (2.94)

we get

Detch(σ0, b1, b2,∆; ρ) = sb

[
iQ(1−∆)

2
+
ρ(σ0)√
b1b2

]
. (2.95)

The one-loop determinant of the gauge fluctuations can be computed as before. One needs

to solve the vector eigenvalue problem

d ? B = 0 , ?dB = λBB , (2.96)

and the spinor eigenvalue problem[
−iγµ(∇µ + iAµ) +

1

2v
− λf

]
λ = 0 . (2.97)

B field can be decomposed in terms of the vielbein (B.7)

B = ei(mτ+nφ)
[
e−i(φ+τ)b+(θ)(e2 + ie3) + ei(φ+τ)b−(θ)(e2 − ie3) + b0(θ)e1

]
, m, n ∈ Z .

(2.98)

From ? dB = λBB we get

b±(θ) =
1

2(mvq + nv
p ± λB)

[(
m

q
cot θ − n

p
tan θ

)
b0(θ)± b′0(θ)

]
. (2.99)

Substituting it into d ? B = 0, we get a second-order differential equation for b0(θ)

∆b0b0 = 0 . (2.100)

We decompose spinor λ as

λ(θ, τ, φ) = ei(mτ+nφ)

(
ei(−τ−φ)λ+(θ)

λ−(θ)

)
, m, n ∈ Z . (2.101)

and obtain a second order ordinary differential equation for λ−(θ). Again equations of

motion for b0(θ) and λ−(θ) coincide if(
λB − λf +

1

v

)(
λB + λf +

1

v

)
= 0 . (2.102)

We then have the uncanceled eigenvalues (bosonic)

λ1 −
1

v
= −mv

q
− nv

p
, (−m,−n ∈ N) (2.103)

and (fermionic)

−
(
λ2 +

1

v

)
= −mv

q
− nv

p
. (−m,−n < 0) (2.104)
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The one-loop determinant for the gauge fluctuations is

Detv(σ0, b1, b2;α) =

(∏
m,n<0

mv
q + nv

p∏
m,n>0

mv
q + nv

p

)r ∏
α>0

∏
m,n<0

(
mv
q + nv

p

)2
+ α(σ0)2

∏
m,n>0

(
mv
q + nv

p

)2
+ α(σ0)2

∼
∏
α>0

[
1

α(σ0)2
× 4 sinh

πα(σ0)

b1
sinh

πα(σ0)

b2

]
. (2.105)

Note that b1, b2 now have different physical meanings from those of the branched ellipsoid

(2.44). However, up to an overall constant the partition function on the (p, q)-branched

squashed sphere is the same as that on the (p, q)-branched round sphere. Notice that v-type

squashing does not affect the partition function even for branched sphere.7

2.3 Reeb vector and parameter dependence of ZM3

All of the backgrounds we discussed in subsection 2.1 admit at least two supercharges with

opposite R-charges and also have at least U(1)× U(1) isometry. In case the base space is

smooth, it has a toric contact structure. The associated Killing Reeb vector field K, which

can always be constructed from bilinear of Killing spinors

K = ζγµζ̃∂µ , (2.106)

can be expressed as the linear combination of the two U(1) Killing vectors,

K = b1∂τ + b2∂φ . (2.107)

Recently it was shown [17] that the partition function ZM3 of N = 2 Chern-Simons-

matter theories on a 3-manifold with U(1) × U(1) isometry (and the topology of S3) can

be computed using the supersymmetry localization technique. The result is exactly the

same as (2.80)8 with b1, b2 being the parameters of the Reeb vector (2.107). We show that

the same form of (2.80) holds even for singular spaces such as the branched spheres, where

metrics are singular but Reeb vectors are still regular (specified by b1 and b2). It can be

seen from (2.80) that ZM3 only depends on a single parameter

b =

√
b2
b1

. (2.108)

Because a rescaling of both b1 and b2 by a constant only contributes an overall constant to

the matrix integral by a redefinition of the integration variable σ0.

7It was shown in [5] that the partition function on squashed sphere ((2.29) with p = q = 1) remains the

same as that on round sphere.
8Partition functions of the same form were previously obtained for ellipsoid [5] and squashed sphere [6].

For recent developments on localization on three sphere or deformed three spheres, see [18–22].
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2.3.1 Parameter dependence of ZM3

The assertion that ZM3 depends only on the ratio b can also be understood without explicit

computation. Here we first recapitulate the relevant results from [23] and then explain why

all the partition functions (some of which have singular spaces as their limits) discussed

in subsection 2.1 have the same form. For readers who are not interested in the details,

the short answer is the following. First, we can consider all these examples as deforma-

tions of round sphere. All the deformations in geometry (including metric, almost contact

structure etc.) other than Θ (a quantity built from deformations in the almost contact

structure, see (2.122) below) only give Q-exact terms in the Lagrangian and therefore do

not contribute to the partition function. Finally, Θ (2.124) is entirely determined by the

Reeb vector ξµ.

Supersymmetric field theories on 3-manifolds have been studied in great details in [10].

In order to have a single supercharge, the manifold M must admit an integrable almost

contact structure. An almost contact structure is defined by a vector ξµ, a one-form ηµ,

and an endomorphism Φµ
ν , which satisfy,

Φµ
ρΦ

ρ
ν = −δµν + ξµην , ηµξ

µ = 1 . (2.109)

Note that ηµ and ξµ are left and right kernels of Φµ
ν , respectively. The almost contact

structure can be understood as an odd dimensional analogue of complex structure. In the

subspace of tangent bundle orthogonal to ηµ, Φµ
ν serves as an almost complex structure

as Φ2 = −1 in this subspace.

More explicitly, with the integrable almost contact structure, we can define a projec-

tion operator

Πµ
ν =

1

2
(δµν − iΦµ

ν − ξµην) , Πµ
νΠν

ρ = Πµ
ρ , (2.110)

and use it to separate the complexified tangent and cotangent bundles into holomorphic

and anti-holomorphic subspaces. Holomorphic vectors X ∈ T 1,0M and holomorphic one-

forms ω1,0 ∈ Λ1,0 are defined by

Πµ
νX

ν = Xµ , ω1,0
µ Πµ

ν = ω1,0
ν . (2.111)

Anti-holomorphic one-forms ω0,1 ∈ Λ0,1 are defined by ω0,1
µ Πµ

ν = 0.

The space of complex k-forms Λk can be decomposed into (p, q)-forms defined by

Λp,q = ∧pΛ1,0 ⊗ ∧qΛ0,1. Similar to the Dolbeault operators ∂̄ on a complex manifold, we

can define a nilpotent operator ∂̃ by projecting the exterior derivative of a (p, q)-form ωp,q

to Λp,q+1 (normally dωp,q ∈ Λp+1,q ⊕ Λp,q+1):

∂̃ : Λp,q → Λp,q+1 , ∂̃ωp,q = dωp,q
∣∣
Λp,q+1 . (2.112)

The relation ∂̃2 = 0 follows from d2 = 0 and we have the ∂̃-cohomology,

Hp,q(M) =
{ωp,q ∈ Λp,q|∂̃ωp,q = 0}

∂̃Λp,q−1
. (2.113)
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The almost contact structure becomes integrable if ξµ, ηµ, Φµ
ν satisfy

Φµ
ν(LξΦ)νρ = 0 , (2.114)

where Lξ is the Lie derivative along ξµ. In this case, we can have adapted charts (τ, z, z̄)

covering the manifold so that in each patch ξµ, ηµ, Φµ
ν are in the form of,

ξ = ∂τ , η = dτ + hdz + h̄dz̄ , Φµ
ν =

 0 −ih ih̄

0 i 0

0 0 −i

 , (2.115)

where h(τ, z, z̄) is a complex function. Coordinates in overlapping patches are related to

each other by τ ′ = τ + t(z, z̄), z′ = f(z), where f(z) is a holomorphic function and t(z, z̄) is

real. Note that we have Φz
z = −Φz̄

z̄ = i,Φz
z̄ = Φz̄

z = 0, which is like the complex structure

in its canonical form. Holomorphic vectors and one-forms read in adapted coordinates as

X = Xz(∂z − h∂τ ) , ω1,0 = ω1,0
z dz , (2.116)

while anti-holomorphic one-forms read as

ω0,1 = ω0,1
τ (dτ + hdz) + ω0,1

z̄ dz̄ . (2.117)

We can always find a compatible metric for a certain almost contact structure ξµ,

ηµ, Φµ
ν ,

gµνΦµ
αΦν

β = gαβ − ηαηβ . (2.118)

Given this metric we can express ηµ and Φµ
ν in terms of ξµ,

ηµ = gµνξ
ν , Φµ

ν = −εµνρξρ . (2.119)

In adapted coordinates, the compatible metric is in the form of

ds2 = η2 + c (τ, z, z̄)2 dzdz̄ =
(
dτ + h (τ, z, z̄) dz + h̄ (τ, z, z̄) dz̄

)2
+ c (τ, z, z̄)2 dzdz̄ .

(2.120)

In the following discussion compatible metric is assumed.

Now we can consider deformations of background fields and study the dependence of

the partition function. At linearized level, the coupling between the background fields and

the R-multiplet takes the form (only bosonic sector displayed)

∆L = −1

2
∆gµνTµν +Aµj(R)

µ + Cµj(Z)
µ +HJ (Z) , (2.121)

where Tµν is the stress tensor and j
(R)
µ , j

(Z)
µ , J (Z) are operator components in the R-

multiplet. Cµ is related to Vµ by eq.(2.2). Note that the background fields Aµ, Vµ and

H are determined by the almost contact structure and the metric. This is essentially how

to show that the existence of almost contact structure allows supersymmetric background.

Not all the components of ∆ξµ, ∆ηµ, ∆Φµ
ν and ∆gµν are independent. The deformed
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contact structure needs to satisfy ((2.109)). There are also constraints from metric com-

patibility and from the integrability condition of the almost contact structure. It can be

shown that all the other components are fixed by ∆ξµ, ∆ηz, ∆ηz̄, ∆Φτ
τ , ∆Φz

z̄, ∆Φz̄
z and

∆gzz̄ and there are additional constraints on ∆Φτ
τ ,∆Φz

z̄,∆ξ
z and ∆ξz̄ (see below) from

the integrability condition.

Moreover, most of the coefficients of the geometry deformations in ∆L, which are linear

combinations of the components in the R-multiplet, are Q-exact operators and therefore do

not affect the partition function. Only ∆Φz
z̄ and ∆ξz provide nontrivial deformations. Yet

they are not independent as integrability condition imposes the constraint ∂̃Θz = 0, where

Θz is built from ∆Φz
z̄ and ∆ξz and it is the z-component of a (0, 1)-form with coefficients

in the holomorphic tangent bundle T 1,0M,

Θz := −2i∆ξz (dτ + hdz) +
(
∆Φz

z̄ − ih̄∆ξz
)

dz̄ . (2.122)

A trivial deformation of the almost contact structure due to an infinitesimal diffeomorphism

(generated by εµ) corresponds to an exact Θz = 2i∂̃εz

∆ξz = −∂τ εz , ∆Φz
z̄ = 2i∂z̄ε

z − ih̄∂τ εz , (2.123)

and therefore only the cohomology class of Θ can affect the partition function. Summariz-

ing, the partition function only depends on the cohomology class of Θ in H0,1
(
M, T 1,0M

)
.

Let us now focus on the cases we are interested in, namely manifolds with the topology

of an S3. It can be shown that every element in H0,1
(
S3, T 1,0S3

)
can be expressed (up to

an exact form) in the form of

Θ = γX ⊗ η , (2.124)

where γ is a complex-valued deformation parameter and X is a holomorphic vector fields

X = Xz(∂z − h∂τ ) satisfying ∂̃X = 0. As we shall see, resolved sphere, ellipsoid and

squashed sphere9 all giveX = z(∂z−h∂τ ). In fact, this is the case for the generic U(1)×U(1)

manifold discussed above. The only difference in their Θ is the complex parameter γ, which

is what the corresponding partition functions should depend on. Obviously there is an one

to one correspondence between γ and b.

It is not difficult to compute the vector X explicitly. In these cases, ξ is the Reeb

vector K. For simplicity, we consider K = 1
q∂τ + ∂φ. In the adapted coordinates,10

ψ = φ+ τ, z = tan θei(φ−τ) , (2.125)

the metric of a round sphere takes the following form,

ds2 = η2 +
4dzdz̄

(1 + |z|2)2
, η = dψ +

i

2

(z̄dz − zdz̄)(1− |z|2)

|z|2(1 + |z|2)
. (2.126)

9To have nontrivial deformation on squashed sphere, one needs background fields different from those

given in eq.(2.31). See [6, 23] for more details.
10To avoid confusion, here we use ψ instead of τ and ξ = ∂ψ.
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The Reeb vector K corresponds to a deformation in ξ from ξ = ∂τ + ∂φ on a round sphere

(ellipses denote other components of ∆ξ),

∆ξ =

(
1

q
− 1

)
∂τ =

(
1

q
− 1

)
(−iz∂z + . . .) ,

which implies

∆ξz = −i
(

1

q
− 1

)
z . (2.127)

From the definition of Θ (2.122) and the fact (2.124) that it is proportional to the 1-form

η (2.115),11 we get

Xz = z , γ = 2

(
1− 1

q

)
. (2.128)

2.3.2 Generalization to branched spaces

The conclusion that partition function only depends on the Reeb vector holds even for

branched spheres. This is because insertion of a conical singularity to an otherwise smooth

manifold with almost contact structure does not break U(1)×U(1) isometry and because

addition of appropriate background gauge field compensates the curvature singularity for

the Killing spinors. One way to reach to this conclusion is to use the resolution argument.

The argument goes as follows. Since the resolved space is smooth, the partition function

Zε := Z[Ŝ3
q(ε)] will only depend on the Reeb vector. A key observation is that, Reeb vector

is regular even for the limit ε → 0, where the space becomes singular. We further notice

that, Reeb vector does not depend on the resolving factor fε(θ) and therefore does not

depend on the small parameter ε. This chain of dependence relations gives

∂εZε = 0 . (2.129)

With the assumption that Zε is a smooth function of ε, we conclude that the partition

function on S3
q

Zq = Zε→0 = Zε>0 . (2.130)

The fact that partition function only depends on Reeb vector on both smooth spheres and

branched spheres actually tells us that partition functions of supersymmetric field theories

on all the backgrounds we discussed in 2.1 share the same form of (2.80), with b1, b2 defined

from the Reeb vectors.

We can also check this conclusion by direct computations. As we discussed in sec-

tion 2.2, the supersymmetry localization technique is also applicable to the branched spaces.

The partition functions take the form of (2.80). We have already studied Killing spinor

equations in various branched spheres explicitly, so we simply list the Reeb vectors in which

the overall size ` is also restored:

11We can check that ∆Φzz̄ = −ih̄∆ξz + i
2
c2∆gzz = −ih̄∆ξz − i∂z̄z′, where the second term is a total

derivative and corresponds to an exact form. In the second equality, we use the fact that in the adapted

coordinates (τ ′, z′, z̄′) for the deformed sphere, gzz = 0 and gzz̄ = 2/c2 (the second equation is true up to

zeroth order in the deformation parameters).
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Round sphere:

K` = ∂τ + ∂φ , (2.131)

Ellipsoid:

K` =
`
˜̀
∂τ + ∂φ , (2.132)

Squashed sphere:

K` = v∂τ + v∂φ , (2.133)

Branched round sphere:

K` =
1

q
∂τ +

1

p
∂φ , (2.134)

Branched ellipsoid:

K` =
`

q ˜̀
∂τ +

1

p
∂φ , (2.135)

Branched squashed sphere:

K` =
v

q
∂τ +

v

p
∂φ , (2.136)

The general metric with U(1) × U(1):

K` =
v

q
∂τ +

v

p
∂φ . (2.137)

Based on the Reeb vector results, we have the following observations

• Squashed sphere shares the same partition function with round sphere. This was first

pointed out in [5] by explicit computation using localization.

• Branched round sphere shares the same partition function with the ellipsoid by the

identification
q

p
=

˜̀

`
. (2.138)

This was also observed in [4] explicitly by localization computation.

• Branched ellipsoid shares the same partition function with ellipsoid by redefining the

squashing

`→ p` , ˜̀→ q ˜̀ . (2.139)

This was also observed in 2.2.1 explicitly by localization computation.

• Branched squashed sphere shares the same partition function with branched round

sphere, therefore with ellipsoid as well. This was also observed in 2.2.2 explicitly by

localization computation.

• The general three-dimensional space with U(1) × U(1) symmetry shares the same

partition function as branched round sphere.

Notice that Reeb vector does not depend on f(θ) in any of these cases. For S3
q , there

could be many different ways to resolve the singularity without changing the Reeb vector,

which would lead us to many different resolved 3-spheres described by different f(θ). But

all of them share the same partition function.
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2.4 Partition function in the large N limit

In the large N limit, the exact result of the partition function simplifies further. Because S3
q

and S̃3
b share the same Reeb vector, we can identify the supersymmetric partition function

on S3
q with the one on S̃3

b :

Zq = Z[S̃3
b ]
∣∣∣
b=
√
q
. (2.140)

The latter can be solved in the large N limit (while holding other parameters fixed) as

in [6, 24–27]

logZ[S̃3
b ] =

1

4

(
b+

1

b

)2

logZb=1 . (2.141)

Therefore, we have the partition function of qSCFT3

logZq =
(q + 1)2

4q
logZ1 . (2.142)

By the definition of the supersymmetric Rényi entropy

Sq =
q logZ1 − logZq

q − 1
, (2.143)

we get

Sq =
3q + 1

4q
S1 , S1 = logZ1 = −F1 , (2.144)

where S1 is the entanglement entropy (EE), which is defined as the q → 1 limit of the

(supersymmetric) Rényi entropy.12 The result is remarkably simple, factoring out the

branching parameter dependence.

Factorization of the supersymmetric Rényi entropy was first observed in [4] for

branched round sphere. As we discussed in the last subsection, because the form of Reeb

vector remains the same, this formula holds even for branched ellipsoid, branched squashed

sphere, and general spaces with U(1)×U(1) isometry (2.32) with proper definitions of the

effective parameter b (or
√
q).

2.5 From CFT on S3q to CFT on S1 × H2

A CFT on S3
q can be mapped to a CFT on S1 × H2 by appropriate Weyl rescaling of the

metric. The metric of S3
q can be written with the coordinate transformation

sinh η = − cot θ (2.145)

in the form

ds2 = sin2 θ
(
dτ2
E + `2(dη2 + sinh2 ηdφ2)

)
, (2.146)

where we define

τE = qτ`, τE ∈ [0, 2πq`) . (2.147)

12S1 = −F1 can be considered due to the fact ∂q(logZq)|q→1 = 0, from the equivalent definition of

entanglement entropy as S1 = (−∂q logZq + logZ1)|q→1. This relation between entanglement entropy and

free energy on S3 for general CFTs in any coupling was proved in [28].
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By dropping the overall Weyl scale factor sin2 θ, we get the metric on S1 ×H2

ds2 = dτ2
E + `2(dη2 + sinh2 ηdφ2) . (2.148)

Under the coordinate transformation and the conformal mapping, the North Pole θ = 0 is

mapped to the boundary of the hyperbolic space, η → −∞.

Due to the conformal nature of the CFTs, the partition function is invariant under the

Weyl rescaling

Z[S3
q ] = Z[S1

q ×H2] . (2.149)

The background gauge field A on S3
q is also invariant under the Weyl rescaling.13 This

equality (2.149) allows us to compute partition function (and the supersymmetric Rényi

entropy) on a branched sphere by studying the thermal partition function on S1 ×H2. In

the case of strongly coupled CFTs, the supersymmetric Rényi entropy can be related to

the thermal entropy of the dual AdS black hole [29, 30]. The conformal mapping for a free

field theory can be found in [16, 31]. The conformal mapping also allows [28] to identify

the supersymmetric Rényi entropy of a general CFT on S3
q with the supersymmetric Rényi

entropy across an entangling circle in flat space.

The coordinate transformation and the conformal mapping do not affect the super-

symmetry. This is as it should be since the partition function depends only on the data of

Reeb vector. Therefore, in this case, the ‘thermal’ partition function on S1×H2 is actually

populated on supersymmetric ground state. In the next section, we will see this from the

viewpoint of holographic dual black hole.

In figure 1, we summarize relations among these quantities.

A remark is in order concerning boundary condition and the space of CFTs on hy-

perbolic space. A quantum field theory on a hyperbolic space is completely specified only

if boundary conditions are specified at infinity. The situation is analogous to a quantum

field theory defined on AdS space. Since boundary conditions pick ground state, differ-

ent boundary condition corresponds to different specification of the quantum field theory.

Therefore, conventionally, the partition function on a hyperbolic space is a function of the

boundary condition. In the exact result of the partition function over the compact 3-space

we studied above, the scalar field σ0 at the North Pole (or any other point of the base

space) takes a constant real value, integrated over the Coulomb branch. When conformally

mapped, the image of the North Pole on the (branched) sphere is the boundary of the

hyperbolic space H2. This implies the following things. First, the boundary condition at

the boundary of H2 must allow an arbitrary constant value for the scalar field. Second,

by the partition function on the hyperbolic space, we actually mean the integral over the

boundary condition taking values in the Coulomb branch of the original, compact 3-space.

Therefore, what we actually mean by (2.149) is

Z[S3
q ] =

∫
Coulomb Branch

dσ0 Z[S1
q ×H2;σ0]. (2.150)

Note that, by the integration domain over the Coulomb branch, we do not mean that the

quantum field theory has a Coulomb branch when the theory is put on hyperbolic space.

13Weyl rescaling only affects the metric.
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free energy on a 

round 3-sphere

entanglement entropy 

across a circle in 3d 

flat space

free energy on q=1 

hyperbolic space

entanglement entropy across

a circle on a round 3-sphere

conformal mapping

conformal mapping

q=1 is an extremal

point of free energy

conformal mapping, 

q=1 is an extremal point

Figure 1. By the conformal mapping, equivalence among the following four quantities can be

established for a general CFT: (1) entanglement entropy across a circle in flat space and on a

round sphere, (2) free energies on a round sphere and on a hyperbolic space. Here, q is a branched

parameter, which is introduced as a virtual deformation in computing the entanglement entropy by

replica method.

Rather, we mean that the domain of integration coincides with the Coulomb branch when

the theory is put on a compact 3-space.

3 Charged topological black hole

Having established exact results on N = 2 qSCFTs on branched sphere and its simplifica-

tion in the large N limit, we next move to establish holographic dual of these theories. In

this section, we review the basics of charged topological black hole in AdS4, which can be

seen as the gravity dual of the thermal density matrix of a SCFT on R1 ×H2. In the next

section we will identify that the holographic dual of qSCFT is a supersymmetric charged

topological black hole in AdS4.

Consider an N = 2 SCFT on R1 × H2, the Lorentzian counterpart of the Euclidean

SCFTs we studied in the previous section. We shall first proceed in Lorentzian signature

and change to Euclidean signature in the end of this section, with the assumption that the

Wick rotation can act freely in the SCFT side as well. By the AdS/CFT correspondence,

one expects it to be dual to an AdS4 black hole [32–36] with the metric14

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΣ(H2) , (3.1)

14This statement is based on the assumption that N ≥ 2 Chern-Simons-Matter theories on S3 have

AdS4 duals [37–39], with the coupling dependence of free energy encoded in the Newton’s constant of AdS4

gravity. We work in a general setup — M theory solution with the AdS4 background will depend on specific

SCFT under consideration. We also assume that Weyl rescaling of dual SCFTs does not break the nature

of the duality. This implies that, once a given SCFT is deformed, the holography becomes more involved.
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whose horizon is conformal to R1 × H2. Here, dΣ(H2) is the conformal class metric of

the intersection H2 of the horizon with the Cauchy surface normal to dt, dΣ(H2) = dη2 +

sinh2 ηdφ2. Solutions of the form (3.1) was known [40] in the context of four-dimensional

N = 2 gauged supergravity [41]. Its field equations coincide with the field equations of the

Einstein-Maxwell theory with negative cosmological constant15

Λ = −3g2 , (3.2)

where g is the coupling between gauge field and gravitini. The effective action is16

I = − 1

2`2p

∫
d4x
√
−g
(

2Λ +R− 1

g2
FµνF

µν

)
. (3.3)

Due to the relation Λ = −3g2, the AdS radius is

L =
1

g
. (3.4)

The factor 1
g2 in front of the Maxwell Lagrangian F 2 can be absorbed into the definition

of gauge field, the convention we will adopt from now on. The general solution of (3.1) for

the action (3.3) is given by

f(r) =
r2

L2
+ κ− 2m

r
+
Q2

r2
, (3.5)

where 2κ refers to the constant curvature of two-dimensional Riemann surface. In our

convention, κ = −1 for H2. For later convenience, we leave the value of κ unspecified.17

The solution of the gauge field reads

ATBH =

(
Q

r
− µ

)
dt, (3.6)

where µ is fixed by the boundary condition that the gauge field vanishes at the horizon:

µ =
Q

rh
. (3.7)

The horizon radius of black hole rh is given by the maximum root of the equation

f(rh) = 0 , (3.8)

while the black hole temperature is determined by requiring the absence of singularity

when r → rh:

T =
f ′(rh)

4π
. (3.9)

15The cosmological constant is fixed by the 4d N = 2 supersymmetry.
16This corresponds to `∗ = (2/g) = 2L in the convention of [30].
17The solution with κ = −1 discussed here has a pairing solution with κ = +1, where H2 is replaced

by S2.
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3.1 Supersymmetry

Let’s first work out the condition that the above black hole is a supersymmetric configura-

tion. The Killing spinor equation of the four-dimensional, N= 2 gauged supergravity reads

∇̂µε = 0 , (3.10)

where the supercovariant derivative is given by18

∇̂µ = ∇µ − igAµ +
1

2
gγµ +

i

4
Fνργ

νργµ . (3.11)

The integrability condition for (3.10) leads to

Ωµνε = 0 , (3.12)

where Ωµν is the tensor-spinor operator defined by

Ωµν := [∇̂µ, ∇̂ν ] (3.13)

=
1

4
Cµν

ρτγρτ +
i

2
γρτγ[ν(∇µ]Fρτ ) +

i

8
gFρτ (3γρτγµν + γµνγ

ρτ ) , (3.14)

where Cµνρτ is the Weyl tensor and Fµν is the field strength. An important feature is that

this operator Ωµν can be factorized into the product of a nonsingular factor Xµν and a

spinor function Θ:19

Θ :=
√
f(r) + grγ1 +

(
1

r
− m

Q2

)
iγ0Q . (3.15)

The condition for (3.12) to admit a nontrivial solution is simply the requirement of van-

ishing determinant of Θ:

det Θ =

(
m2 − κQ2

)2
Q4

= 0 . (3.16)

We see that the requirement of supersymmetry condition relates the mass and the charge

of the black hole:

m2 = κQ2. (3.17)

3.1.1 Neutral black hole

The solution with Q = m = 0 is a quotient space of pure AdS4, describing an uncharged

black hole.20 In this case, we have

f(r) =
r2

L2
− 1 , (3.18)

and the horizon radius is

rh = L . (3.19)

18We use the convention γµν = 1
2
[γµ, γν ], and the 4d gamma matrices we use in the paper are listed

in (A.4).
19We checked that this holds for two-dimensional Riemann surfaces, S2 and H2. We focus on the latter

while the former was explicitly analyzed in [40].
20The spacetime can be considered as AdS4, viewed by a uniformly accelerated observer. The non-compact

horizon is nothing but the observer’s acceleration horizon [40].
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The black hole temperature is given by

T0 =
1

2πL
. (3.20)

The solution is expected to be dual to a SCFT on S1 ×H2 with q = 1

ds2 = dτ2
E + `2(dη2 + sinh2 ηdφ2) , τE ∈ [0, 2π`) , (3.21)

which can be mapped to a CFT on a round 3-sphere, S3. By matching the temperature

of CFT on S1 × H2 and that of the black hole, the AdS4 radius is set to be the size of

the 3-sphere

L = ` . (3.22)

Killing spinor equation (3.10) with m = Q = 0 has nontrivial solutions and the geometry

is at least locally supersymmetric [42]. This is consistent with the fact that, for q = 1,

the field theory is supersymmetric with no additional background gauge field. We will not

come to the details of the Killing spinor solutions since the uncharged topological black

hole is not our main focus. Notice that, in the bulk, the hyperbolic horizon with q = 1 can

be mapped to Ryu-Takayanagi surface [43] with the mapping between boundaries discussed

at the end of section 2.5.

3.1.2 Charged black hole

For the solution with Q2 = κm2 6= 0, f(r) in the metric takes the form

f(r) =
r2

L2
+ κ

(
1− m

κr

)2
, (3.23)

where we used |κ| = 1. The Killing spinor equation (3.10) can be solved following [40], and

we will do so in section 4.2.2. As we shall see later, in solving (3.10) it is very helpful to

use the integrability condition

Θε = 0 , Θ =
√
f(r) + grγ1 +

(
1

r
− 1

κm

)
iγ0Q , (3.24)

and construct a projection operator

P :=
Θ

2
√
f(r)

. (3.25)

4 TBH4/qSCFT3 correspondence

In this section, we would like to show that the three-dimensional N = 2 Chern-Simons-

matter theory on a q-branched sphere (q > 1) is holographically dual to the supersymmetric

charged topological black hole. To support the duality, we compute the free energy and

the supersymmetric Rényi entropy from the topological black hole (following the approach

in [30]) and find that they agree perfectly with the results from the qSCFT. We also show

that four-dimensional Killing spinors are reduced to the three-dimensional Killing spinors

at the boundary S1 ×H2.
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4.1 Free energy and supersymmetric Rényi entropy

We shall first compute the supersymmetric Rényi entropy holographically from the charged

topological black hole specified by metric (3.1) and gauge field (3.6). This can be done by

studying the thermodynamics of the black hole. We work in grand canonical ensemble. In

this ensemble, the Gibbs potential is given by

W = I/β = E − TS − µQ̂ , (4.1)

where I is the Euclidean on-shell action and β = 1/T denotes the period of Euclidean time

direction τE . The state variables can be computed as follows:

E =

(
∂I

∂β

)
µ

− µ

β

(
∂I

∂µ

)
β

, (4.2)

S = β

(
∂I

∂β

)
µ

− I , (4.3)

Q̂ = − 1

β

(
∂I

∂µ

)
β

. (4.4)

Let’s consider the black hole with both finite charge and temperature. The free energy is

given by

I := logZ(µ, T ) . (4.5)

Here, both µ and T are functions of parameter q only. This follows because temperature

of the black hole is fixed by matching it to that of the boundary CFT on S1 ×H2

T (q) = T0/q , (4.6)

while chemical potential µ is fixed by matching it to the background gauge field of the

boundary SCFT

µ(q) = −
(
q − 1

2q

)
i . (4.7)

We now compute the supersymmetric Rényi entropy defined in eq.(2.143). It can be written

as an integral over branched parameter n

Sq =
q

q − 1

(
logZ1

1
− logZq

q

)
=

q

q − 1

∫ 1

q
∂n

(
logZ(T, µ)

n

)
dn . (4.8)

By using (4.3), (4.4) and (4.6), the total derivative term in (4.8) can be written as

∂q

(
logZ(T, µ)

q

)
=
S

q2
− Q̂µ′(q)

T0
, (4.9)

where Q̂ is the total charge of black hole. The charge Q̂ can be computed from the

Gauss’s law:

Q̂ =
2VΣ

`2p
Q =

(
2VΣ

`2p

)
µ(q)rh , (4.10)
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where VΣ denotes the volume of H2. The thermal entropy is given by the Bekenstein-

Hawking formula

SBH = 2π
VΣ

`2p
r2

h . (4.11)

The horizon radius rh can also be expressed as a function of q by combining (3.8) and (3.9)

and substituting in (4.6) and (4.7)

x(q) :=
rh

L
=

1

3q

[√
3 µ(q)2q2 + 3q2 + 1 + 1

]
. (4.12)

Substituting S(q) , Q̂(q) , µ(q), we can finally express the integral (4.8) as

Sq = 2π

(
L

`p

)2

VΣ
q

q − 1

∫ 1

q

(
x(n)2

n2
− 2x(n)µ(n)µ′(n)

)
dn

= 2π

(
L

`p

)2

VΣ
q

q − 1

∫ 1

q

n+ 1

2n3
dn

=
3q + 1

4q
S1 .

(4.13)

We see that this agrees precisely with the CFT result (2.144).

It is also straightforwardly seen that the free energy agrees between the black hole and

the CFT. This follows from the same relation of partition function as (2.142)

Iq =
(q + 1)2

4q
I1 , (4.14)

which can be seen from the definition of supersymmetric Rényi entropy (2.143) and the

known fact that S1 = I1.

Actually, one can check that, at q = 1, for general strongly coupled three-dimensional

CFTs, we have a chain of identities

logZ[S3]

= entanglement entropy across S1 on S3

= entanglement entropy across S1 on R1,2

= I[AdS4]

= Ryu-Takayanagi Entanglement Entropy

= logZ[S1 ×H2]

= Bekenstein-Hawking entropy SBH[TBH4]

= I[TBH4] . (4.15)

Once again, by the free energy on S1 × H2, we mean log of the partition function defined

by the integral over the Coulomb branch, as in (2.150).

Notice that the background gauge field on S3
q given by (2.19) implies an imaginary µ

(by eq. (4.7)). We see this follows from the relation

gATBH(r →∞) = A(S3
q) , (4.16)

and t = −iτE .
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4.2 Supersymmetry

If the TBH4 is holographically dual to qSCFT, it must be preserving two supercharges of

opposite R-charges. We will now show that the TBH4 with chemical potential (4.7) and

temperature (4.6) is in fact supersymmetric. We will also show that the Killing spinors

obey the holographic relations — when restricted to the boundary, the four-dimensional

Killing spinors are reduced to those on S1×H2 at radial infinity, up to conformal rescaling.

4.2.1 Mass-charge relation

We first check the mass and charge relation for the topological AdS4 black hole we are

considering. The mass parameter can be solved from (3.8), in terms of x and Q:

m =
1

2

(
x(x2 − 1)L+

Q2

xL

)
. (4.17)

Substituting the chemical potential (4.7) back into (4.12), the horizon radius (in unit of `)

can be simplified to

x(q) =
1

2

(
1 +

1

q

)
. (4.18)

Substituting chemical potential (4.7) into Q−µ relation (3.7) and using the simplified x(q),

we have

Q(q) = − i
4
L

(
1− 1

q2

)
. (4.19)

Finally, the mass can be expressed as a function of q

m(q) = −1

4
L

(
1− 1

q2

)
. (4.20)

Therefore, the supersymmetry condition (3.17) is satisfied with Q = im

m2 +Q2 = 0 . (4.21)

As discussed in section 3, this implies that the integrability condition is satisfied. We then

expect to find nontrivial solutions to the Killing spinor equations (3.10), which we will do

in the next subsection.

4.2.2 Killing spinor

Let’s now explicitly solve for Killing spinors on TBH4 with the boundary metric (2.148)

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dη2 + sinh2 ηdφ2) , (4.22)

where f(r) is given by (3.5) with κ = −1, Q = im

f(r) =
r2

L2
−
(

1 +
m

r

)2

. (4.23)
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The vielbeins are

e0 =
√
f(r)dt, e1 =

dr√
f(r)

,

e2 = rdη, e3 = r sinh ηdφ, (4.24)

and the nonvanishing components of the spin connection are

ωt
0

1 =
1

2
f ′(r), ωη

1
2 = −

√
f(r),

ωφ
1

3 = −
√
f(r) sinh η, ωφ

2
3 = − cosh η . (4.25)

Combining the spin connection and the field strength, we have the supercovariant deriva-

tives

∇̂t = ∂t − i
1

L

(
Q

r
− Q

rh

)
+

1

2L

√
f(r)γ0 − i

Q

2r2

√
f(r)γ1 +

1

4
f ′(r)γ01,

∇̂r = ∂r +
1

2L

√
f(r)

−1
γ1 − i

Q

2r2

√
f(r)

−1
γ0,

∇̂η = ∂η −
1

2

√
f(r)γ12 +

r

2L
γ2 − i

Q

2r
γ01γ2,

∇̂φ = ∂φ −
1

2

√
f(r)γ13 sinh η − 1

2
γ23 cosh η +

1

2L
rγ3 sinh η − i Q

2r
sinh ηγ01γ3 .

(4.26)

The projection operator P is defined as

P :=
Θ

2
√
f(r)

=
1

2

(
1− 1√

f(r)

(
1 +

m

r

)
γ0 +

1√
f(r)

r

L
γ1

)
. (4.27)

We can use the integrability condition Pε = 0 to simplify (4.26). The Killing spinor

equations (3.10) can be finally expressed as(
∂t −

1

2L
(1 + 2m/rh)

)
ε = 0 (4.28)(

∂r +
m

2r(r +m)
+

1

2L
√
f(r)

(
1 +

m

r +m

)
γ1

)
ε = 0 (4.29)(

∂η −
1

2
γ0γ1γ2

)
ε = 0 (4.30)(

∂φ −
1

2
cosh ηγ23 −

1

2
sinh η(γ0γ1γ3)

)
ε = 0 (4.31)

This type of equations can be solved [40]. All of the supercovariant derivatives commute

with each other except for ∇̂η and ∇̂φ. We can solve the radial, temporal and angular

equations separately. t , η , φ components are solved first. The solution can be expressed as

ε(t, r, η, φ) = e
1

2qL
t
e
η
2
γ0γ1γ2e

φ
2
γ23ε(r). (4.32)

The radial equation takes the form of

∂rε(r) = (a(r) + b(r)Γ1)ε(r),
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and ε(r) also satisfies the constraint Pε(r) = 0 with P in the form of

P =
1

2
(1 + x(r)Γ1 + y(r)Γ2) ,

where Γ1,2 are matrices satisfying

Γ2
1 = Γ2

2 = 1, Γ1Γ2 + Γ2Γ1 = 0 . (4.33)

Solution to this type of equation is provided in the appendix of [40]

ε(r) = (u(r) + v(r)Γ2)

(
1− Γ1

2

)
ε0, (4.34)

where u, v are defined by,

u =

√
1 + x

y
ew, v = −

√
1− x
y

ew, w(r) =

∫ r

a(r′)dr′, (4.35)

and ε0 is an arbitrary constant spinor. In our case, (4.34) gives

ε(r) =

(√
r

L
+
√
f(r)− γ0

√
r

L
−
√
f(r)

)(
1− γ1

2

)
ε′0 , (4.36)

where ε′0 is an arbitrary constant spinor.

Similarly, the Killing spinor in the Euclidean TBH4 background is given by

ε(τE , r, η, φ) = e
− i

2qL
τEei

η
2
γ0γ1γ2e

φ
2
γ23ε(r), (4.37)

with

ε(r) =

(√
r

L
+
√
f(r)− iγ0

√
r

L
−
√
f(r)

)(
1− γ1

2

)
ε′0 . (4.38)

4.2.3 Holography of Killing spinors

The pre-requisite of the holographic relation we proposed above is that the Killing spinors

in the background of THB4 must reduce to the Killing spinors on branched 3-sphere the

qSCFT3 is defined. Here, we will check this by showing that the Killing spinor equations

on TBH4 is reduced at asymptotic infinity to the Killing spinor equation on branched

3-sphere, up to conformal rescaling. Hereafter, we take the convention of Dirac gamma

matrices listed in (A.4). Notice that the projection operator (1−γ1)/2 will project out the

second and fourth components for a 4-spinor

1

2

[
1− γ1

]
ε0 =


a

0

c

0

 .

We can temporarily drop the r dependent factor. Then, the Killing spinor (4.32) becomes

ε′ = e
1

2qL
t
e
η
2
γ0γ1γ2e

φ
2
γ23

1− γ1

2
ε0 , (4.39)
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which can be evaluated to be

ε′ = e
1

2qL
t


M

0

N

0

 ,

where

M = a e
η
2 cos

(
φ

2

)
− c e

η
2 sin

(
φ

2

)
, N = c e−η/2 cos

(
φ

2

)
+ a e−η/2 sin

(
φ

2

)
. (4.40)

Indeed, the solution contains the first and the third components only. This indicates that

the 4-component spinor equations is decomposable such that only a(t, η, φ) and c(t, η, φ)

components are left out. It is convenient to start from the simplified Killing spinor equations

(4.28)(4.30)(4.31). Notice that the kinetic operators in t and η components are diagonal

and therefore the reduction is straightforward. For φ component, the matrix after the

derivative can be written as 
0 0 L1

φ 0

0 0 0 L2
φ

L2
φ 0 0 0

0 L1
φ 0 0


where

L1
φ =

cosh η

2
+

sinh η

2
, L2

φ = −cosh η

2
+

sinh η

2
. (4.41)

We see that the reduced 2-component spinor equation is given by(
∂φ +

i cosh η

2
σ2 +

sinh η

2
σ1

)
ε = 0 , (4.42)

where the 2-spinor ε is defined as

ε :=

(
a(t, η, φ)

c(t, η, φ)

)
. (4.43)

Let’s further perform the Wick rotation t→ −iτE . Then, the τE and η components become(
∂η −

1

2
σ3

)
ε = 0 , (4.44)(

∂τE +
i

2q`

)
ε = 0 . (4.45)

We recognize that these equations are identifiable with the three-dimensional Killing spinor

equations on S1 ×H2: (
∇µ − iAµ +

i

2`
eν̄µγν̄γτ̄E

)
ε = 0 . (4.46)

Here, ν̄ denotes the flat indices and the three-dimensional Dirac gamma matrices are defined

by Pauli matrices

γτ̄E = σ2 , γη̄ = σ1 , γφ̄ = σ3 , (4.47)
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Moreover, the background gauge field A = 1
2 (q − 1) dτ is precisely the one we had to turn

on over branched 3-spheres to preserve the two supercharges of opposite R-charges. (4.46)

will be connected to (2.8)(2.9) by conformal rescaling and coordinate transformation.

The reduction of the Killing spinor equations implies that one can solve for the Killing

spinors explicitly. The three-dimensional Killing spinors at radial infinity set boundary

condition of the spinors for the four-dimensional Killing spinor equations. Up to conformal

rescaling, one gets nontrivial Killing spinors on TBH4 from nontrivial Killing spinors on

branched 3-sphere. We conclude that the holographic relation of Killing spinors is injective.

5 Conclusion and discussions

In this work, we studied three-dimensional N = 2 supersymmetric field theories on a gen-

eral class of branched 3-spheres with U(1)×U(1) isometry. We showed that supersymmetry

localization techniques can be made to work even on these singular spaces. We have par-

ticularly shown that all the branched spheres belonging to this class have the same form

of Reeb vectors and therefore have the same form of partition functions as a function of

deformation parameter. We focused on S3
q as the representative for this class of spaces and

found that there is a natural gravity dual for SCFT on it. As supporting evidences, we

computed the holographic free energy and supersymmetric Rényi entropy and confirmed

that they precisely agree with the large N limit of corresponding exact results of SCFT3

by the supersymmetry localization techniques. This agreement also indicates that the su-

persymmetry localization techniques can be utilized on singular spaces such as branched

3-spaces. Built upon these facts, we proposed TBH4/qSCFT3 correspondence, which is

the correspondence between SCFT on q-branched sphere and supersymmetry-preserving,

charged topological black hole in AdS4. We checked the proposed correspondence by match-

ing free energy, supersymmetric Rényi entropy and supersymmetries. We believe further

checks can be made for other physical observables such as supersymmetric Wilson loops

and correlation functions.

It was recently understood that three-dimensional partition functions with N = 2 su-

persymmetry depends only on the almost contact metric structure of the three-dimensional

manifold. Specifically ZM3 (of M3 with U(1)×U(1) isometry) only depends on the Reeb

vector. It would be interesting to understand this result entirely in terms of the topological

black hole in AdS4. Note that q dependence in the Reeb vector on the branched 3-sphere

is the same as the q dependence in the temperature T of the topological black hole. We

thus expect that the Reeb vector dependence of ZM3 is mapped to the T dependence of

the black hole partition function.

To make further checks in this direction, we can consider the resolution deformation of

the black hole geometry. It is clear that, adding the resolution function (2.20) corresponds

to adding a factor Rε(η) in the line element of dη2. Therefore, the black hole metric becomes

ds2 = −fε(r, η)dt2 + gε(r, η)dr2 + r2

[
(1 +Rε(η))dη2 + sinh2 ηdφ2

]
. (5.1)

Since the singularity in the branched 3-sphere S3
q is mapped to the boundary at radial

infinity of H2, resolving the singularity will correspond to small deformation of H2. We
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expect that the resolved black hole is still a solution of Einstein-Maxwell theory, with a flux

of the gauge field depending on the resolution ε. Nevertheless, the free energy of the black

hole ought not to depend on ε. Reverting the direction, if we relax ε not to be small, the

above procedure would lead us to the gravity dual of a SCFT3 on an ellipsoid, which is a

regular 3-manifold. Again, the free energy of the black hole will not change. Provided such

gravity dual (5.1) exists, we may claim that the supersymmetry preserving condition makes

the partition function solely depend on temperature T , equivalently, a single parameter q

since T = T0/q is independent of the resolution. This is in fact the black hole version

of the same statement in the SCFT that global supersymmetry will restrict ZM3 to be a

function of a single complex-valued deformation parameter γ in (2.124) (or equivalently b

in (2.108)).

It is also interesting to compare our solution with the one found in [24]. This can be

done by performing a coordinate transformation in the bulk (or a different slicing in the

language of [44]) so that the boundary of the TBH (or its resolved version) becomes a

(resolved) q-branched S3. Note that despite the conical singularity in the boundary theory,

the gravity solution is smooth everywhere [45].
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A Notations and conventions

A.1 Three dimensions

Consider a 3-dimensional spin manifold M3. In Lorentzian signature, the tangent space

has the Lorentz symmetry Spin(2, 1) ' SU(1, 1). A spinor transforms as a defining rep-

resentation of SU(1, 1). On the tangent space, we have fundamental symbols ηmn, η
mn,

Levi-Civita antisymmetric symbol εmnp, and spinor antisymmetric symbol εαβ. They sat-

isfy the relations

ηmpη
pn = δnm ≡ diag(+,+,+)

εmnrε
rpq = δpmδ

q
n − δqmδpn

εαγε
γβ = δβα ≡ diag(+,+). (A.1)

The spinors are complex-valued, and complex conjugation is an internal operation. There-

fore, ψα and its complex conjugate ψ∗α are related each other by charge conjugation. In

Euclidean signature, the tangent space has the Lorentz symmetry Spin(3) ' SU(2). The
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spinors are complex-valued, and complex conjugation is an external operation. Therefore,

ψα and ψ∗α are mutually independent.

In the main text, we adopted the convention of the (2 × 2) Dirac gamma matrices in

tangent space to the Euclidean round three sphere as21

γ1 = σ1, γ2 = σ2, γ3 = σ3 . (A.2)

where the σ1, σ2, σ3 are the Hermitian Pauli matrices.

A.2 Four dimensions

On a 4-dimensional Lorentzian spin manifold, the tangent space has the Lorentz symmetry

Spin(3, 1) ' SL(2,C). A spinor transforms as a defining representation of SL(2,C). On the

tangent space, we have fundamental symbols ηmn, η
mn, Levi-Civita antisymmetric symbol

εmnpq, and spinor antisymmetric symbol εαβ. They satisfy the relations

ηmpη
pn = δnm ≡ diag(+,+,+,+)

−1

2
εmnrsε

pqrs = δpmδ
q
n − δqmδpn

−1

6
εmprsε

nprs = δnm

εαγε
γβ = δβα ≡ diag(+,+). (A.3)

The spinors are complex-valued, and complex conjugation take a spinor in one Weyl rep-

resentation to its conjugate representation. In Euclidean signature, the tangent space has

the Lorentz symmetry Spin(4) ' SU(2) × SU(2). The spinors are complex-valued, and a

spinor ψα and its complex conjugate ψ∗α transform under the same representations (2,1).

Therefore, chiral spinors ψ, ψ̃ in different Weyl representations are mutually independent.

We choose the following 4d real gamma matrices in Lorentz signature,

γ0 =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , γ1 =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,

γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ3 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

(A.4)

B Branched 3-spheres

B.1 Round

We choose 3d gamma matrices in terms of Pauli matrices

γ1 = σ1 , γ2 = σ2 , γ3 = σ3 . (B.1)

21We choose different gamma matrices for squashed sphere and S1 ×H2 in our convention.
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for round sphere and ellipsoid. The vielbein for S3
q is

e1/` = µ1 = sin(τ + φ)dθ + cos(τ + φ) sin θ cos θ(qdτ − dφ) ,

e2/` = µ2 = − cos(τ + φ)dθ + sin(τ + φ) sin θ cos θ(qdτ − dφ) ,

e3/` = µ3 = q sin2 θdτ + cos2 θdφ ,

(B.2)

with a spin connection

ω1
2 = (1− q cos2 θ)dτ + cos2 θdφ ,

ω1
3 = cos(τ + φ)dθ − sin θ cos θ sin(τ + φ)(qdτ − dφ) ,

ω2
3 = sin(τ + φ)dθ + sin θ cos θ cos(τ + φ)(qdτ − dφ) .

(B.3)

Notice that the basis we used here are left invariant frame (corresponding to H = −i) .

B.2 Ellipsoid

We choose a vielbein

e1 = f(θ) sin(τ + φ)dθ + cos(τ + φ) sin θ cos θ(q ˜̀dτ − p`dφ) ,

e2 = −f(θ) cos(τ + φ)dθ + sin(τ + φ) sin θ cos θ(q ˜̀dτ − p`dφ) ,

e3 = q ˜̀sin2 θdτ + p` cos2 θdφ ,

(B.4)

with a spin connection

ω1
2 =

(
1− q ˜̀

f(θ)
cos2 θ

)
dτ +

(
1− p`

f(θ)
sin2 θ

)
dφ ,

ω1
3 = cos(τ + φ)dθ − 1

f(θ)
sin θ cos θ sin(τ + φ)(q ˜̀dτ − p`dφ) ,

ω2
3 = sin(τ + φ)dθ +

1

f(θ)
sin θ cos θ cos(τ + φ)(q ˜̀dτ − p`dφ) .

(B.5)

B.3 Squashed sphere

We choose gamma matrices in terms of Pauli matrices

γ1 = σ3 , γ2 = −σ1 , γ3 = −σ2 . (B.6)

and vielbein (` = 1)

e1 = − q

2v
(1 + cos 2θ)dτ − p

2v
(1− cos 2θ)dφ ,

e2 = − sin(τ + φ)dθ +
q

2
sin 2θ cos(τ + φ)dτ − p

2
sin 2θ cos(τ + φ)dφ ,

e3 = cos(τ + φ)dθ +
q

2
sin 2θ sin(τ + φ)dτ − p

2
sin 2θ sin(τ + φ)dφ ,

(B.7)

with a spin connection

ω1
2 = −cos(τ + φ)

v
dθ − q

2v
sin 2θ sin(τ + φ)dτ +

p

2v
sin 2θ sin(τ + φ)dφ ,

ω2
3 =

((
2− 1

v2

)
q cos2 θ + 1− q

)
dτ +

((
2− 1

v2

)
p sin2 θ + 1− p

)
dφ ,

ω3
1 =

sin(τ + φ)

v
dθ − q sin 2θ cos(τ + φ)

2v
dτ +

p sin 2θ cos(τ + φ)

2v
dφ .

(B.8)
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