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Abstract: In this work the correspondence between the semiclassical limit of the DOZZ

quantum Liouville theory on the torus and the Nekrasov-Shatashvili limit of the N = 2∗

(Ω-deformed) U(2) super-Yang-Mills theory is used to propose new formulae for the acces-

sory parameter of the Lamé equation. This quantity is in particular crucial for solving the

problem of uniformization of the one-punctured torus. The computation of the accessory

parameters for torus and sphere is an open longstanding problem which can however be

solved if one succeeds to derive an expression for the so-called classical Liouville action.

The method of calculation of the latter has been proposed some time ago by Zamolod-

chikov brothers. Studying the semiclassical limit of the four-point function of the quantum

Liouville theory on the sphere they have derived the classical action for the Riemann sphere

with four punctures. In the present work Zamolodchikovs idea is exploited in the case of

the Liouville field theory on the torus. It is found that the Lamé accessory parameter is

determined by the classical Liouville action on the one-punctured torus or more concretely

by the torus classical block evaluated on the saddle point intermediate classical weight.

Secondly, as an implication of the aforementioned correspondence it is obtained that the

torus accessory parameter is related to the sum of all rescaled column lengths of the so-

called “critical” Young diagrams extremizing the instanton “free energy” for the N = 2∗

gauge theory. Finally, it is pointed out that thanks to the known relation the sum over

the “critical” column lengths can be expressed in terms of a contour integral in which the

integrand is built out of certain special functions.
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1 Introduction

The name “Lamé equation” denotes in fact a class of related ordinary second-order differen-

tial equations in the complex or real domain which contain (explicitly or implicitly) certain

elliptic functions [1]. One of the most suitable forms of the Lamé equation in practical

applications is the so-called Jacobian form:

d2Ψ

du2
−
[
κmsn2(u|m) + A

]
Ψ = 0. (1.1)

Eq. (1.1) can be looked at as a one-dimensional Schrödinger equation: −Ψ′′(u) +

V (u)Ψ(u) = EΨ(u) with a doubly periodic potential V (u) = κmsn2(u|m) and the energy
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eigenvalue E = −A. The potential is parameterized by the elliptic modular parameter1 m

of the Jacobi sn-function sn(u|m) and the constant κ. In order to classify the solutions it

is convenient to write κ = ℓ(ℓ + 1). In particular, in the real domain if ℓ is a nonnegative

integer the energy spectrum consists of bands. There are 2ℓ+1 eigenfunctions called Lamé

polynomials2 associated with the boundaries of the energy gaps. For these solutions the

values of E are the solutions of a certain algebraic equation [1, 2].3

Another important representation of the Lamé equation contains the Weierstrass ℘-

function:
d2Ψ

dz2
− [κ℘(z) + B]Ψ = 0. (1.2)

Eq. (1.2) is known as the Weierstrassian form of the Lamé equation and can be achieved

from eq. (1.1) by an appropriate change of the independent variable (see appendix A). The

accessory parameters A and B appearing in eqs. (1.1) and (1.2) are related to each other

in the following way4

B = A(e1 − e3)− κ e3 ⇔ A =
B

e1 − e3
− 1

3
κ(m+ 1). (1.3)

The substitution η = ℘(z) converts eq. (1.2) to the third version of the Lamé equation,

commonly encountered in the literature, the so-called algebraic form:

d2Ψ

dη2
+

1

2

[
1

η − e1
+

1

η − e2
+

1

η − e3

]
dΨ

dη
−
[

κ η + B

4(η − e1)(η − e2)(η − e3)

]
Ψ = 0. (1.4)

Eq. (1.4) “lives” on the Riemann sphere C∪{∞}. Its (regular) singular points are located

at η = e1, e2, e3,∞. The algebraic form of the Lamé equation is the most appropriate form

for further generalizations, cf. [2].

Historically, the Lamé equation has first been obtained (by Lamé) by applying the

method of separation of variables to the Laplace equation in ellipsoidal coordinates [1].

More recently it has been noticed that the Lamé equation arises in various physical contexts.

First, the Lamé potential can be considered as a good candidate for a realistic model

of a one-dimensional crystal [13]. Other areas, where the Lamé equation is applicable,

are superconductivity [14], certain version of the Ginzburg-Landau theory [15], and the

cosmological models [16–20].5 In mathematical physics applications the Lamé equation

occurs in the so-called Lie-algebraic approaches to the Schrödinger equation [22].

1We will use two notations of Jacobi elliptic functions, i.e. with m: sn(u|m), cn(u|m), dn(u|m) and

an alternative notation: sn(u, k), cn(u, k), dn(u, k) which uses a parameter k =
√
m. For definition and

properties of the Jacobi elliptic functions see appendix A.
2These are homogeneous polynomials of degree ℓ in the elliptic functions: sn, cn, dn.
3Note, that for ℓ ∈ Z

+ the spectra of the Lamé and related finite-gap periodic systems are characterized

by a hidden bosonized nonlinear N = 2 supersymmetry, cf. [3–9]. It seems to be an interesting task to

study whether this observation has something to do with the so-called Bethe/gauge correspondence [10–12].
4Recall, that the Weierstrass ℘-function is doubly periodic on the complex plane with periods 2ω1, 2ω2

and points e1, e2, e3 are images ek = ℘(ωk) of the points ω1, ω2 and ω3 = −ω1 − ω2.
5For instance, in the theory of preheating the Lamé equation has been recognized to determine quantum

fluctuations of the inflaton field [17–20]. Let us note, that in several listed above applications the Lamé

equation plays the same role. Indeed, regardless of the specific physical contexts one can observe that

the Lamé equation serves as the stability equation or the equation of small fluctuations around classical

configurations associated with a certain class of basic potentials, cf. [21].
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In pure mathematics the Lamé equation arises in the uniformization theory of tori [23].

More concretely, let T denotes the Teichmüller space for the one-punctured torus. It

is well known that T has at least two distinct models. The first one is the upper half

plane U = {τ ∈ C | Im τ > 0}. The second model for T is a subset of R
3, namely F ={

(x, y, z) ∈ R
3 |x, y, z are positive and x2 + y2 + z2 = xyz

}
. The question arises what is a

relationship between U and F. It turns out that the mapping ϕ : U → F is determined by

the monodromy of the linearly independent solutions (Ψ1,Ψ2) of the equation:

d2Ψ

dz2
+

1

4
[℘(z|L) + C(L) ] Ψ = 0, (1.5)

where z ∈ C − L and L is a period lattice. However, an explicit construction of ϕ is

difficult and still an open problem since the accessory parameter C in the above equation

is an undetermined constant, cf. [23].

The Weierstrassian-form Lamé equation appears also in a two-dimensional conformal

field theory (2d CFT) as a classical limit of the null vector decoupling equation satisfied by

a torus two-point correlation function with a degenerate field.6 Moreover, one can observe

that the accessory parameter B in this equation is expressed in terms of the so-called

classical Liouville action on the one-punctured torus. The latter quantity can be computed

by means of 2d CFT technics and recently discovered dualities, in particular applying the

correspondence between the classical limit of the quantum DOZZ Liouville theory on the

torus and the Nekrasov-Shatasvili limit of the N = 2∗ U(2) super-Yang-Mills theory.

The aim of the present work is to find an analytical expression of the Liouville classical

action on the one-punctured torus employing aforementioned technology and apply it to

compute the Lamé accessory parameter B (⇔ A and/or C). The main motivation for this

line of research is the above mentioned monodromy problem for the Lamé equation. Its so-

lution is crucial not only for finding the correspondence between models of the Teichmüller

space for punctured torus but also for constructing a solution of the Liouville equation on

such surface, cf. [29–32].

The organization of the paper is as follows. In section 2 we briefly review interrelation-

ships between Liouville theory and the problem of computation of the accessory parameters

of the Fuchsian uniformization of the punctured Riemann sphere. The principal purpose

of this section is to recall the concept of the classical Liouville action and the classical

conformal block [33]. For a long time the motivations to study classical blocks were mainly

confined to applications in pure mathematics, in particular to the celebrated uniformiza-

tion problem, which roughly speaking is related to the construction of conformal mappings

between Riemann surfaces (RS) admitting a simply connected universal covering and the

three existing simply connected RS, the sphere, the complex plane and the upper half plane.

The uniformization problem is well illustrated by the example of the uniformization of the

Riemann sphere with n punctures. Its uniformization may be associated to a Fuchsian

6Surprisingly, it seems to be possible to obtain the Lamé system (Hamiltonian and eigenfunctions) from

a certain matrix model. Indeed, as has been observed in [24], in a suitable limit the so-called loop equation

of certain generalized matrix model yields the equation closely related to the KZB equation [25–27] (see

also [28]). The latter is known to reduces to Lamé equation in some cases.
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equation whose form is known up to some constants that are called accessory parameters.

Their computation is an open longstanding problem, which can however be solved if we

succeed to derive an analytical expression of the classical block obtained by performing

the classical limit of the n-point correlation function of the quantum Liouville field theory.

The importance of the classical blocks is not only limited to the uniformization theorem,

but gives also information about the solution of the Liouville equation on surfaces with

punctures. Recently, an interesting mathematical application of classical blocks emerged

in the context of Painlevé VI equation [34]. Due to the recent discoveries the classical

blocks are also relevant for physics, since they are related to integrable models and to the

instantonic sector of certain N = 2 supersymmetric gauge field theories [35–38]. Moreover,

lately classical conformal blocks have been of use to studies of holographic principle and

AdS/CFT correspondence [39].

In section 3 we exploit the idea of brothers Zamolodchikov (see [33]) in order to propose

the form of the Liouville classical action Storus
L on the one-punctured torus. Our conjecture

is that (i) Storus
L decomposes into a sum of the three-point Liouville action on the sphere

and the torus classical block; (ii) factorization holds on the saddle point intermediate

classical conformal weight. Next, we consider the classical limit of the null vector decoupling

equation satisfied by the torus two-point function with a degenerate field and find an

expression for the Lamé accessory parameter. As has been already mentioned the latter is

determined by the (one-punctured) torus classical action.

In section 4 we employ the AGT correspondence and express the toroidal classical block

and then the eigenvalue/accessory parameter of the Lamé equation in terms of the so-called

effective twisted superpotential of the N = 2∗ U(2) supersymmetric gauge theory. In order

to compute the latter quantity, i.e. the twisted superpotential, we use a straight-forward

generalization of the calculation performed by Poghossian in [40]. We check that on the

“classical level” the eigenvalue computed by means of the WKB method exactly coincides

with that obtained from the classical torus block. Finally, using a relation between the

instantonic sector of the twisted superpotential of the N = 2∗ U(2) SYM theory and the

classical toroidal block we find that the Lamé accessory parameter is related to the sum of

column lengths of the so-called “critical” Young diagrams. It is shown that such sum can

be rewritten in terms of a contour integral in which the integrand is built out of certain

special functions.

In section 5 we present our conclusions. The problems that are still open and the

possible extensions of the present work are discussed.

2 Liouville theory and accessory parameters

2.1 Quantum and classical conformal blocks

Let Cg,n denotes the Riemann surface with genus g and n punctures. The basic objects

of any two-dimensional conformal field theory living on Cg [41, 42] are the n-point corre-

lation functions of primary vertex operators defined on Cg,n. Given a marking7 σ of the

7A marking of the Riemann surface Cg,n (for definition see [43]) is a pants decomposition of Cg,n together

with the corresponding trivalent graph.
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Riemann surface Cg,n any correlation function can be factorized according to the pattern

given by a pants decomposition of Cg,n and written as a sum (or an integral for theories

with a continuous spectrum) which includes the terms consisting of holomorphic and anti-

holomorphic conformal blocks times the three-point functions of the model for each pair

of pants. The Virasoro conformal block F (σ)
c,α [β](Z) on Cg,n, where α ≡ (α1, . . . , α3g−3+n),

β ≡ (β1, . . . , βn) depends on the cross ratios of the vertex operators locations denoted

symbolically by Z and on the 3g− 3+n intermediate conformal weights ∆αi
= αi(Q−αi).

Moreover, it depends on the n external conformal weights ∆βa
= βa(Q − βa) and on the

central charge c which can be parameterized as follows c = 1 + 6Q2 with Q = b+ b−1.

Conformal blocks are fully determined by the underlying conformal symmetry. These

functions possess an interesting, although not yet completely understood analytic structure.

In general, they can be expressed only as a formal power series and no closed formula is

known for its coefficients. Let us write down two canonical examples which illustrate

this fact.

Let q = e2πiτ be the elliptic variable on the torus with modular parameter τ then the

conformal block on C1,1 is given by the following q-series:

F ∆̃
c,∆(q) = q∆− c

24

(
1 +

∞∑

n=1

F ∆̃,n
c,∆ qn

)
, (2.1)

F ∆̃,n
c,∆ =

∑

n=|I|=|J |

〈
ν∆,I , V∆̃(1)ν∆,J

〉 [
Gc,∆

]IJ
. (2.2)

Let x be the modular parameter of the four-punctured sphere then the s-channel

conformal block on C0,4 is defined as the following x-expansion:

Fc,∆

[
∆3 ∆2
∆4 ∆1

]
(x) = x∆−∆2−∆1

(
1 +

∞∑

n=1

F n
c,∆

[
∆3 ∆2
∆4 ∆1

]
xn

)
, (2.3)

F n
c,∆

[
∆3 ∆2
∆4 ∆1

]
=

∑

n=|I|=|J |

〈ν∆4 , V∆3(1)ν∆,I〉
[
Gc,∆

]IJ 〈ν∆,J , V∆2(1)ν∆1〉 . (2.4)

In the above equations
[
Gc,∆

]IJ
is the inverse of the Gram matrix

[
Gc,∆

]
IJ

=

〈ν∆,I , ν∆,J〉 of the standard symmetric bilinear form in the Verma module V∆ =
⊕∞

n=0 Vn
∆,

Vn
∆ = Span

{
νn∆,I = L−Iν∆ = L−ik . . . L−i2L−i1ν∆ :

I = (ik ≥ . . . ≥ i1 ≥ 1) an ordered set of positive integers

of the length |I| ≡ i1 + . . .+ ik = n
}
.

The operator V∆ in the matrix elements is the normalized primary chiral vertex operator

acting between the Verma modules
〈
ν∆i

, V∆j
(z)ν∆k

〉
= z∆i−∆j−∆k .

In order to calculate the matrix elements in (2.2) and (2.4) it is enough to know the covari-

ance properties of the primary chiral vertex operator with respect to the Virasoro algebra:

[Ln, V∆(z)] = zn
(
z
d

dz
+ (n+ 1)∆

)
V∆(z) , n ∈ Z.

– 5 –
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As the dimension of Vn
∆ grows rapidly with n, the calculations of conformal blocks coef-

ficients by inverting the Gram matrices become very laborious for higher orders. A more

efficient method based on recurrence relations for the coefficients can be used [44–48].

Among the issues concerning conformal blocks which are still not fully understood

there is the problem of their semiclassical limit. This is the limit in which all parameters

of the conformal blocks tend to infinity in such a way that their ratios are fixed. It is

commonly believed that such limit exists and the conformal blocks behave in this limit

exponentially with respect to Z. This last property can be heuristically justified in the case

of conformal blocks on C0,4 and C1,1.

Indeed, the existence of the semiclassical limit of the Liouville four-point correlation

function with the projection on one intermediate conformal family implies a semiclassical

limit of the quantum conformal block with heavy weights ∆ = b−2δ, ∆i = b−2δi, with

δ, δi = O(1) in the following form:

F1+6Q2,∆

[
∆3 ∆2
∆4 ∆1

]
(x)

b→ 0∼ exp

{
1

b2
fδ

[
δ3 δ2
δ4 δ1

]
(x)

}
. (2.5)

The function fδ

[
δ3 δ2
δ4 δ1

]
(x) is called the classical conformal block [33] or with some abuse

of terms, the “classical action” [44, 49]. The existence of the semiclassical limit (2.5) has

been postulated first in [44, 49] where it has been pointed out that the classical block is

related to a certain monodromy problem of a null vector decoupling equation in a similar

way in which the classical Liouville action is related to the Fuchsian uniformization. This

relation has been further used to derive the ∆ → ∞ limit of the four-point conformal block

and its expansion in powers of the so-called elliptic variable.

Analogously, the existence of the semiclassical limit of the projected Liouville torus

one-point function implies that the semiclassical limit of the torus one-point block with

heavy weights ∆ = b−2δ, ∆̃ = b−2δ̃ with δ, δ̃ = O(1) has the form:

F ∆̃
1+6Q2,∆(q)

b→0∼ exp

{
1

b2
f δ̃δ (q)

}
. (2.6)

The function f δ̃δ (q) we shall call the classical torus (or toroidal) conformal block.

It should be stressed once again that the exponential behavior (2.5) and/or (2.6) is a

nontrivial statement concerning the quantum conformal blocks. Although there is no proof

of this property, it seems to be well confirmed together with its consequences by sample

numerical calculations [50] and recent discoveries.

The classical conformal blocks are in general again available only as power series with

coefficients calculated from the semiclassical asymptotics and the power expansions of the

quantum blocks. The question arises how to sum up these series. Surprisingly, one can

find closed formulae for at least the four-point spherical [38] and the one-point toroidal

classical blocks employing the AGT correspondence.

Indeed, a considerable progress in the theory of conformal blocks and their applications

has been achieved recently. This is mainly due to the discovery of the Liouville/N = 2

gauge theories correspondence by Alday, Gaiotto and Tachikawa in 2009 [51]. The AGT

– 6 –
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conjecture states that the LFT correlators on the Riemann surface Cg,n with genus g and n

punctures can be identified with the partition functions of a class Tg,n of four-dimensional

N = 2 supersymmetric SU(2) quiver gauge theories. A significant part of the AGT con-

jecture is an exact correspondence between the Virasoro blocks on Cg,n and the instanton

sectors of the Nekrasov partition functions of the gauge theories Tg,n. Very soon after its

discovery, the AGT hypothesis was extended to the SU(N)-gauge theories/conformal Toda

correspondence [52–54].8

Let us recall that originally the Nekrasov partition functions have been introduced

to calculate the low energy effective N = 2 SUSY gauge theories prepotentials [64, 65].

The Seiberg-Witten prepotentials [66, 67] determine the low energy effective dynamics

of the four-dimensional N = 2 super-Yang-Mills theories and can be recovered from the

Nekrasov partition functions in the appropriate limit, i.e. when the so-called Ω-background

parameters: ǫ1, ǫ2 appearing in the Nekrasov functions tend to zero.

The Nekrasov functions lead also to an interesting application when one of the two

Ω-background parameters is non-zero. Such situation has been considered by Nekrasov

and Shatashvili in [10]. They observed that in the limit when one of the Ω-background

parameters, say ǫ2, is zero and the second one, i.e. ǫ1, is kept finite (Nekrasov-Shatashvili

limit) then one can extract from the Nekrasov functions in this limit the so-called effective

twisted superpotentials. These quantities determine the low energy effective dynamics of

the two-dimensional (Ω-deformed) supersymmetric gauge theories. Twisted superpoten-

tials play also a prominent role in another context, namely in the so-called Bethe/gauge

correspondence [10–12] which maps supersymmetric vacua of the N = 2 two-dimensional

theories to Bethe states of quantum integrable systems (QIS’s). A result of that duality

is that twisted superpotentials are identified with Yang’s functionals [68] which describe a

spectrum of QIS’s.

Looking at the AGT relations it is not difficult to realize that the Nekrasov-Shatashvili

limit of the Nekrasov instanton partition functions corresponds to the classical limit of

conformal blocks. Let us note that by combining the AGT duality and the Bethe/gauge

correspondence it is possible to link classical blocks to Yang’s functionals, cf. [35–37].

Using correspondence identifying classical blocks and twisted superpotentials one can

find a closed formulae for at least spherical and toroidal classical blocks. As has been al-

ready mentioned, the relevant technical problem of this strategy consists in the summation

of the series defining the classical block. This problem can be tackled on the gauge theory

side by means of the saddle point method [40, 64, 65, 69].

2.2 Classical Liouville action

Let C0,n be the n-punctured Riemann sphere with complex coordinates chosen in such a

way that z = ∞. Consider the Liouville equation

∂z∂z̄φ(z, z̄) =
̺

2
eφ(z,z̄) (2.7)

8Of course, there have been made attempts to prove the AGT conjecture and its generalizations soon

after its discovery. Active studies of this duality have first led to proofs of the AGT relations in certain

special cases [46, 55, 56]. For more recent and more general achievements in this field, see [57–63].
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with one of the following asymptotic behaviors of the Liouville field φ(z, z̄) near the

punctures:

1. case of elliptic singularities:

φ(z, z̄) =

{
−2 (1− ξj) log |z − zj |+O(1) as z → zj , j = 1, . . . , n− 1,

−2 (1 + ξn) log |z|+O(1) as z → ∞,
(2.8)

ξi ∈ R>0 for all i = 1, . . . , n and
n∑

i=1

ξi < n− 2;

2. case of parabolic singularities (ξi → 0):

φ(z, z̄) =

{
−2 log |z − zj | − 2 log |log |z − zj ||+O(1) as z → zj ,

−2 log |z| − 2 log |log |z||+O(1) as z → ∞.
(2.9)

It is known that it exists a unique solution of eq. (2.7) if one of the conditions (2.8) [70–72]

or (2.9) [73] is satisfied.

One can define the Liouville action SL[φ] on C0,n. Because of the singular nature of

the Liouville field at the punctures such action has to be properly regularized:

SL[φ] =
1

4π
lim
ǫ→0

Sǫ
L[φ], (2.10)

Sǫ
L[φ] =

∫

Xǫ

d2z
[
|∂φ|2 + ̺ eφ

]
+

n−1∑

j=1

(1− ξj)

∫

|z−zj |=ǫ

|dz| κzφ+ (1 + ξn)

∫

|z|= 1
ǫ

|dz| κzφ

−2π
n−1∑

j=1

(1− ξj)
2 log ǫ− 2π (1 + ξn)

2 log ǫ, (2.11)

Xǫ = C\
{(⋃n

j=1 |z − zj | < ǫ
)
∪
(
|z| > 1

ǫ

)}
. The prescription given in eqs. (2.10) and (2.11)

is valid for parabolic singularities (corresponding to ξj = 0) as well.

It is well known mathematical fact that the critical value S cl
L [φ] of the Liouville ac-

tion functional SL[φ] on C0,n (the classical Liouville action) is the generating function

for the accessory parameters cj of the Fuchsian uniformization of the punctured Riemann

sphere, i.e.:

cj = −∂S
cl
L [φ]

∂zj
. (2.12)

Primarily, this formula has been derived within the so-called geometric path integral ap-

proach to the quantum Liouville theory by analyzing the quasi-classical limit of the confor-

mal Ward identity [74]. Then, for parabolic singularities formula (2.12) has been proved by

Takhtajan and Zograf. The details can be found in [75]. In ref. [76] the extension of [75] to

compact Riemann surfaces has been presented. For general elliptic singularities eq. (2.12)

has been proved in [77] and non rigorously derived in [78]. It is also possible to construct

the Liouville action functional satisfying (2.12) for the so-called hyperbolic singularities

(holes) on the Riemann sphere, see [79].
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On the other hand one can observe that in the case of the four-punctured sphere with

singularities located at z4 = ∞, z3 = 1, z2 = x, z1 = 0 the Fuchsian differential equation

∂2zΨ(z) +

[
δ1
z2

+
δ2

(z − x)2
+

δ3
(1− z)2

+
δ1 + δ2 + δ3 − δ4

z(1− z)
+

x(1− x)c2(x)

z(z − x)(1− z)

]
Ψ(z) = 0

with an accessory parameter c2(x) given by the derivative w.r.t. x of the four-point classical

action can be obtained from the classical limit b → 0 of certain null vector decoupling

equation. Concretely, from the equation
[
∂2

∂z2
− b2

(
1

z
− 1

1− z

)
∂

∂z

]
G(z, x) =

−b2
[
∆1

z2
+

∆2

(z−x)2 +
∆3

(1−z)2 +
∆1+∆2+∆3+∆− b

2
−∆4

z(1− z)
+

x(1− x)

z(z−x)(1−z)
∂

∂x

]
G(z, x)

satisfied by the five-point function

G(z, x) ≡
〈
V4(∞,∞)V3(1, 1)V− b

2
(z, z̄)V2(x, x̄)V1(0, 0)

〉

with a degenerate field

Vα=− b
2
, ∆− b

2
= ∆α=− b

2
= α(Q− α) = −1

2
− 3

4
b2, Q = b+

1

b

and four heavy primary operators V∆i
, ∆i = b−2 δi, δi = O(1).

Analogously, the Weierstrassian-form Lamé equation with the accessory parameter

determined by the torus classical one-point action can be recovered from the null vector

decoupling equation satisfied by the torus two-point correlation function with one degen-

erate field (see subsection 3.2).

2.3 Zamolodchikov’s conjecture

Hence, one can compute the accessory parameters once the classical action is known.

The latter can be derived by performing the classical limit of the DOZZ quantum LFT

correlation functions. In particular, Zamolodchikov brothers [33] studying the classi-

cal limit of the four-point function of the quantum Liouville theory on the sphere ar-

gued that the classical Liouville action with four elliptic/parabolic singularities located at

z4 = ∞, z3 = 1, z2 = x, z1 = 0 can be expressed as follows:

Scl
L (δ4, δ3, δ2, δ1;x) = (2.13)

Scl
L (δ4, δ3, δs(x)) + Scl

L (δs(x), δ2, δ1)− fδs(x)

[
δ3 δ2
δ4 δ1

]
(x)− f̄δs(x)

[
δ3 δ2
δ4 δ1

]
(x̄).

Indeed, the four-point function of the DOZZ theory can be defined as an integral of s-

channel conformal blocks and DOZZ couplings over the continuous spectrum of the theory.

In the semiclassical limit b → 0 the integrand can be expressed in terms of three-point

classical Liouville actions and the classical block, and the integral itself is dominated by

the saddle point ∆s =
1
b2
δs(x). One thus gets the factorization (2.13).

Concluding, in order to construct the four-point classical action via Zamolodchikov’s

prescription one needs the following data:
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(a) the classical three-point Liouville action Scl
L (δ3, δ2, δ1) for the classical weights

δ1, δ2, δ3 at the locations 0, 1,∞;

(b) the four-point classical conformal block on the sphere fδ

[
δ3 δ2
δ4 δ1

]
(x) ;

(c) the s-channel saddle point conformal weight δs(x) =
1
4 + p2s(x) where the s-channel

saddle point momentum ps(x) is determined by the saddle point condition (p ∈ R):

(
∂

∂p
Scl
L (δ4, δ3,

1
4 + p2) +

∂

∂p
Scl
L (

1
4 + p2, δ2, δ1)− 2Re

∂

∂p
f1
4+p2

[
δ3 δ2
δ4 δ1

]
(x)

)∣∣∣∣
p=ps

= 0.

Let us stress that we will exploit the above idea in the present work in order to compute

the classical action on the one-punctured torus.

The semiclassical limit should be independent of the choice of the channel in the repre-

sentation of the DOZZ four-point function. Therefore, one gets the consistency conditions

known as the classical bootstrap equations [50]:

Scl
L (δ4, δ3, δs(x)) + Scl

L (δs(x), δ2, δ1)− fδs(x)

[
δ3 δ2
δ4 δ1

]
(x)− f̄δs(x)

[
δ3 δ2
δ4 δ1

]
(x̄)

= Scl
L (δ4, δ1, δt(x)) + Scl

L (δt(x), δ2, δ3) (2.14)

− fδt(x)

[
δ1 δ2
δ4 δ3

]
(1− x)− f̄δt(x)

[
δ1 δ2
δ4 δ3

]
(1− x̄)

= 2δ2 log xx̄+ Scl
L (δ1, δ3, δu(x)) + Scl

L (δu(x), δ2, δ4)

− fδu(x)

[
δ3 δ2
δ1 δ4

](1

x

)
− f̄δu(x)

[
δ3 δ2
δ1 δ4

](1

x̄

)
.

The saddle weights δt(x), δu(x) in the t- and u-channel are simply related to the s-channel

saddle point classical weight:

δt(x) = δs(1− x), δu(x) = δs

(
1

x

)
.

There is a nice geometric interpretation of the saddle point conformal weight δi(x). Let

us recall that the classical solution describes a unique hyperbolic geometry with singularities

at the locations of conformal weights. For elliptic, parabolic and hyperbolic weights one gets

conical singularities, punctures and holes with geodesic boundaries respectively [79–81]. In

the latter case the classical conformal weight δ is related to the length ℓ of the corresponding

hole by

δ =
1

4
+
̺

4

(
ℓ

2π

)2

, (2.15)

where the scale of the classical configuration is set by the condition R = −̺/2 imposed on

the constant scalar curvature R.

In the case of four singularities at the standard locations 0, x, 1,∞ there are three closed

geodesics Γs,Γt,Γu separating the singular points into pairs (x, 0|1,∞), (x, 1|0,∞) and

(x,∞|0, 1) respectively. Since the spectrum of DOZZ theory is hyperbolic the singularities

corresponding to the saddle point weights δi(x) are geodesic holes. One may expect that
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these weights are related to the lengths ℓi of the closed geodesics Γi in corresponding

channels [50]:

δi(x) =
1

4
+
̺

4

(
ℓi(x)

2π

)2

, i = s, t, u. (2.16)

3 Lamé accessory parameter from Liouville theory

3.1 Semiclassical Liouville one-point function on the torus

Let τ be the torus modular parameter and q = e2πiτ , q̄ = e−2πiτ̄ . The Liouville one-point

function on the torus (expressed in terms of 2d CFT quantities defined on the complex

plane) reads as follows

〈Vβ(1) 〉τ ≡ TrH

(
qL0−c/24q̄L̄0−c/24

Vβ(z, z̄)
) ∣∣∣

z=1
(3.1)

=

∫

R+

dPC(ᾱP, β, αP)
∣∣∣F∆β

c,∆αP
(q)
∣∣∣
2
, (3.2)

where

αP =
Q

2
+ iP, ᾱP =

Q

2
− iP = Q− αP, P ∈ R

+; (3.3)

β =
Q

2
(1 + ξ), ξ ∈ [0, 1) (3.4)

and

∆αP = αP(Q− αP) =
Q2

4
+ P2 ≡ ∆(P) ≡ ∆, (3.5)

∆β = β(Q− β), (3.6)

c = 1 + 6Q2, Q = b+ b−1. (3.7)

The trace in (3.1) is taken over the basis of the Liouville Hilbert space [82]:

H =

⊕∫

R+

dP V∆(P) ⊗ V∆(P).

The operator Vβ in (3.1) is the primary Liouville vertex operator with the conformal weight

∆β . It has been assumed that Vβ is a heavy field (∆β
b→0∼ b−2 · const. ⇔ β

b→0∼ b−1 ·
const.). Moreover, the operator Vβ corresponds to the so-called elliptic or parabolic (ξ = 0)

singularity (cf. condition (3.4)). The integrand in (3.2) is built out of the DOZZ structure

constant [33, 83]:

C(α1, α2, α3) =
[
πµγ(b2)b2−2b2

](Q−α1−α2−α3)/b ×

Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(
∑
αi −Q)Υ(Q+ α1 − α2 − α3)Υ(α1 + α2 − α3)Υ(α1 − α2 + α3)

,

γ(x)≡ Γ(x)

Γ(1− x)
, Υ0 =

dΥ(x)

dx

∣∣∣
x=0

and the torus one-point conformal block F∆β

c,∆(q) defined in (2.1)–(2.2).
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Now, we want to find the limit b→ 0 of the one-point function (3.1)–(3.2) in the case

when all the conformal weights ∆αP , ∆β are heavy [33], i.e.:

∆αP ≡ ∆
b→0∼ 1

b2
δ, ∆β

b→0∼ 1

b2
δ̃, δ, δ̃ = O(1). (3.8)

As has been already assumed the external weight ∆β is heavy,

β
b→0∼ 1

2b
(1 + ξ). (3.9)

The corresponding classical conformal weight δ̃ is defined as follows

δ̃ = lim
b→0

b2∆β =
1

4

(
1− ξ2

)
, ξ ∈ [0, 1) ⇔ 0 < δ̃ ≤ 1

4
. (3.10)

In the case of the intermediate weight ∆αP , if we rescale the integration variable P= p
b , then

αP =
Q

2
+ i

p

b

b→0∼ 1

2b
(1 + 2ip) ⇔ δ = lim

b→0
b2∆αP =

1

4
+ p2, p ∈ R

+. (3.11)

Let us recall that the elliptic/parabolic (ξ = 0) classical weights 0 < δ̃ ≤ 1
4 are related

to the parabolic/elliptic singularities, i.e. conical singularities with an opening angle 2πξ.

The hyperbolic weights δ > 1
4 correspond to the hyperbolic singularities — holes with

geodesic boundary (as has been already mentioned the classical hyperbolic weight is related

to the length of the corresponding hole).

Let us turn to the problem of finding the b → 0 limit of the one-point func-

tion (3.19)–(3.20). First let us determine the asymptotical behavior of the integrand in (3.2)

when b→ 0.

In [81] it has been found that for the hyperbolic spectrum:

αj =
Q

2
(1 + iλj)

b→0∼ 1

2b
(1 + iλj), λj ∈ R, j = 1, 2, 3 (3.12)

the DOZZ three-point function in the limit b→ 0 behaves as follows

C(α1, α2, α3) ∼ exp

{
− 1

b2

[
∑

σ1,σ2=±

F

(
1 + iλ1

2
+ σ1

iλ2
2

+ σ2
iλ3
2

)

+

3∑

j=1

(
H(iλj) +

1

2
π|λj |

)
+

1

2
log(πµb2)

−i
3∑

j=1

λj

(
1− log |λj |+

1

2
log(πµb2)

)
+ const.

]}
, (3.13)

where

F (x) =

x∫

1
2

dy log
Γ(y)

Γ(1− y)
, H(x) =

x∫

0

dy log
Γ(−y)
Γ(y)

.

At this point, a few comments are in order. The expression in the square brackets should

correspond to the known expression for the classical Liouville action S
(3)
L [ϕ] on the sphere
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with three hyperbolic singularities (holes). Such classical action has been constructed in [81]

(see also [79]). The construction of S
(3)
L [ϕ] relies on a solution of a certain monodromy

problem for the Fuchsian differential equation:

d2Φ

dz2
+

n∑

k=1

[
δk

(z − zk)2
+

ck
z − zk

]
Φ = 0

with hyperbolic singularities (δk’s are hyperbolic). In this way one can find the form of the

n-point classical action S
(n)
L [ϕ] up to of at most n− 3 undetermined constants ck. S

(n)
L [ϕ]

satisfies Polyakov’s formula [79]:

∂

∂zj
S
(n)
L [ϕ] = −cj . (3.14)

In the case when n = 3 the Fuchsian accessory parameters ck are known and the classical

action can be determined from eq. (3.14). For the standard locations of singularities z1 = 0,

z2 = 1, z3 = ∞ this yields [81]:

Q2S
(3)
L [ϕ] = Q2

[
∑

σ1,σ2=±

F

(
1 + iλ1

2
+ σ1

iλ2
2

+ σ2
iλ3
2

)

+
3∑

j=1

(
H(iλj) +

1

2
π|λj |

)
+

1

2
log(πµb2) +

1

Q2
const.

]
, (3.15)

where the constant on the r.h.s. is independent of zj , λj and πµb2. Comparing (3.13)

and (3.15) we see that the classical limit of the DOZZ structure constant differs from

the classical three-point action by an additional imaginary term. As has been observed

in [81] this inconsistency occurs due to the fact that the classical Liouville action is by

construction symmetric with respect to the reflection α → Q − α, (λ → −λ) whereas the

DOZZ three-point function is not. Under this reflection the DOZZ three-point function

changes according to the formula [33]:

C (Q− α1, α2, α3) = S(iα1 − iQ/2)C (α1, α2, α3) ,

where

S(x) = −
(
πµγ(b2)

)−2ix/b Γ(1 + 2ix/b)Γ(1 + 2ixb)

Γ(1− 2ix/b)Γ(1− 2ixb)
(3.16)

is the so-called reflection amplitude [33]. The discrepancy between (3.13) and (3.15) can

be overcome if we consider the symmetric three-point function C̃ (α1, α2, α3) [81]:

C̃ (α1, α2, α3) ≡




3∏

j=1

√
S(iαj − iQ/2)


C (α1, α2, α3) (3.17)

instead of C (α1, α2, α3). Indeed, taking into account the classical limit of the reflection

amplitude for λ ∈ R:

logS
(
− λ

2b

)
∼ 2i

b2
λ

(
1− log |λ|+ 1

2
log(πµb2)

)
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one can easily verify that the symmetric three-point function in the limit b → 0 behaves

as follows [81]

C̃(α1, α2, α3) ∼ exp

{
− 1

b2

[
∑

σ1,σ2=±

F

(
1 + iλ1

2
+ σ1

iλ2
2

+ σ2
iλ3
2

)

+

3∑

j=1

(
H(iλj) +

1

2
π|λj |

)
+

1

2
log(πµb2) + const.

]}

= exp

{
− 1

b2
S
(3)
L (λ1, λ2, λ3)

}
, (3.18)

where αj , j = 1, 2, 3 are given by (3.12).

Hence, in order to obtain consistent semiclassical one-point function from the quantum

one it is more convenient to take as a starting point the quantum one-point function with

the symmetric DOZZ structure constant:

〈Vβ(1) 〉symτ ≡ TrH

(
qL0−c/24q̄L̄0−c/24Vβ(z, z̄)

) ∣∣∣
z=1

(3.19)

=

∫

R+

dP C̃(Q− αP, β, αP)
∣∣∣F∆β

c,∆αP
(q)
∣∣∣
2
, (3.20)

where c, ∆β , ∆αP are given by (3.5)–(3.7). The operator:

Vβ =
√
S(iβ − iQ/2)Vβ (3.21)

in (3.19) is the primary Liouville vertex operator Vβ rescaled by the square root of the

reflection amplitude (3.16). Also the primary vertex operators VαP ’s which generate inter-

mediate highest weight states are assumed to be rescaled by the square root of the reflection

amplitude, in accordance with (3.21).

Now, for heavy insertions (3.9)–(3.11) using (3.18) one gets

C̃(Q− αP, β, αP) = C̃(αP, β, αP)
b→0∼ e−

1
b2

S
(3)
L (2p,−iξ,2p).

It is reasonable to assume that the torus one-point block has the b → 0 asymptotic

similar to the DOZZ three-point function, i.e. given by the eq. (2.6).

Finally, in the limit b → 0 the integral (3.20) with heavy insertions is determined by

the saddle point approximation, i.e., by the critical value of the function:

Ŝ(ξ, p; q) = S
(3)
L (2p,−iξ, 2p)− f δ̃δ (q)− f̄ δ̃δ (q̄)

= S
(3)
L (2p,−iξ, 2p)− 2Ref δ̃δ (q), (3.22)

where δ = 1
4 + p2 and δ̃ = 1

4

(
1− ξ2

)
. Indeed, when b → 0 then the symmetric one-point

function behaves as follows

〈Vβ(1) 〉symτ ∼ e−
1
b2

Storus
L (ξ;q),
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where Storus
L (ξ; q) = Ŝ(ξ, p∗; q) and the saddle point momentum p∗ = p∗(ξ, q, q̄) is deter-

mined by the equation:

∂

∂p
Ŝ(ξ, p; q)

∣∣∣
p=p∗

= 0
(3.22)
=⇒

∂

∂p
S
(3)
L (2p,−iξ, 2p)

∣∣∣
p=p∗

= 2Re
∂

∂p
f δ̃1

4
+p2

(q)
∣∣∣
p=p∗

. (3.23)

One thus gets the factorization

Storus
L (ξ; q) = Ŝ(ξ, p∗; q)

= S
(3)
L (2p∗,−iξ, 2p∗)− 2Ref δ̃1

4
+p2∗

(q). (3.24)

As a final remark in this paragraph let us note that the modular invariance of the torus

Liouville one-point function [84, 85] implies the classical modular bootstrap equation:

Storus
L

(
ξ; e2πiτ

)
= Storus

L

(
ξ; e−2πi 1

τ

)
− 2δ̃ log |τ |.

3.2 Accessory parameter from torus one-point classical action

Consider the null fields [41]

χ±(z) =

(
L̂−2(z)−

3

2(2∆± + 1)
L̂ 2
−1(z)

)
V±(z) (3.25)

which correspond to the null vectors

|χ± 〉 =
(
L−2 −

3

2(2∆± + 1)
L2
−1

)
|∆± 〉 (3.26)

appearing on the second level of the Verma module. The operators V± in (3.25) are the

primary degenerate fields with the following conformal weights:

∆+ = −1

2
− 3

4
b2, ∆− = −1

2
− 3

4b2
.

The correlation functions with null fields must vanish. In particular, for the two-point

function on a torus9 with the null field χ+ ≡ χα+=− b
2
one has

〈χ+(z)Vβ(w)〉τ =
〈
L̂−2(z)V+(z)Vβ(w)

〉
τ

+
1

b2

〈
L̂2
−1(z)V+(z)Vβ(w)

〉
τ
= 0. (3.27)

Using the torus Ward identities [42] one can convert the condition (3.27) to the second

order differential equation:
[
1

b2
∂2

∂z2
+

(
2∆+η1 + 2η1z

∂

∂z

)
+∆β (℘(z − w) + 2η1) (3.28)

+ (ζ(z − w) + 2η1w)
∂

∂w

]
〈V+(z)Vβ(w)〉τ = − 2πi

Z(τ)

∂

∂τ

[
Z(τ) 〈V+(z)Vβ(w)〉τ

]
,

9With periods 1 and τ .
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where Z(τ) is a partition function and

ζ(z|τ) = ∂z log θ1(z|τ) + 2η1z,

℘(z) = −∂zζ(z|τ),
η(τ) = e2iπτ/24

∏

n>0

(1− e2iπτn) = q
1
24

∏

n>0

(1− qn),

η1 = (2π)2

(
1

24
−

∞∑

n=1

ne2πinτ

1− e2πinτ

)
= −2πi∂τ log η(τ).

Let us introduce

ζ∗(z|τ) = ζ(z|τ)− 2η1z = ∂z log θ1(z|τ),
℘∗(z) = −∂zζ∗(z|τ) = ℘(z) + 2η1.

For w = 0 from (3.28) one gets

[
− 1

b2
∂2

∂z2
+ ζ∗(z)

∂

∂z
−∆β ℘∗(z)− 2∆+η1

]
〈V+(z)Vβ(0)〉τ

= 2πi

(
∂

∂τ
logZ(τ)

)
〈V+(z)Vβ(0)〉τ − 4π2q

∂

∂q
〈V+(z)Vβ(0)〉τ . (3.29)

Recall, that the primary vertex operators in the two-point function above are defined on

the cylinder Vσ ≡ V
cyl
σ . These operators are related to the operators living on the plane

(used in the previous paragraph) in the standard way V
cyl
σ (z, z̄) = ez∆σez̄∆σV

C
σ (e

z, ez̄).

One can think of (3.29) as the equation obeyed by the Liouville two-point function on

the torus where the “alpha” α+ or equivalently the conformal weight ∆α+ of the operator

located at z “has been continued” to the degenerate value.10 If so, let us multiply both

sides of the eq. (3.29) by [S(iᾱP − iQ/2)S(iβ − iQ/2)S(iαP − iQ/2)]
1
2 =: R. Next, let us

assume that αP and β are heavy. On the other hand for b → 0 the operator V+ remains

light (∆+ = O(1)) and its presence in the correlation function has no influence on the

classical dynamics. Also logZ(τ) is of order O(1). Hence, one can expect that for b→ 0,11

R
〈
V
cyl
+ (z)Vcyl

β (0)
〉
τ
∼ Ψ(z)R

〈
V
cyl
β (0)

〉
τ
= Ψ(z)R

〈
V
C

β (1)
〉
τ

= Ψ(z)
〈
VC

β (1)
〉sym
τ

∼ Ψ(z) e−
1
b2

Storus
L (ξ;q). (3.30)

After substituting (3.30) into the eq. (3.29) and taking the limit b→ 0 one gets

∂2

∂z2
Ψ(z) +

(
δ̃ ℘∗(z) + 4π2q

∂

∂q
Storus
L (ξ; q)

)
Ψ(z) = 0.

10The idea which makes use of the degenerate representation of the Virasoro algebra in the Liouville field

theory is not new. In particular, such trick has been used by Teschner in order to re-derive the DOZZ

formula [86] (for reviews, see [82, 87]).
11Eq. (3.30) is justified by the well known semiclassical behavior of Liouville correlators with heavy and

light vertices on the sphere, see for instance [88]. It is reasonable to expect that the same holds on the

cylinder, cf. [89].
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From eqs. (3.23) and (3.24) we have

∂

∂q
Storus
L (ξ; q) =

∂

∂q
Ŝ(ξ, p∗(q); q)

=
∂

∂p
Ŝ(ξ, p; q)

∣∣∣
p=p∗(q)

∂p∗(q)

∂q
+

∂

∂q
Ŝ(ξ, p∗; q)

= − ∂

∂q
f δ̃1

4
+p2∗

(q).

Therefore,
∂2

∂z2
Ψ(z)−

[
−δ̃℘(z) + 4π2q

∂

∂q
f δ̃1

4
+p2∗

(q)− 2δ̃η1

]
Ψ(z) = 0.

Now, one can identify the parameters κ and B appearing in the Lamé equation (1.2) as

follows

κ = − δ̃, B = 4π2q
∂

∂q
f δ̃1

4
+p2∗

(q)− 2δ̃η1 . (3.31)

Then, for −κ = δ̃ = 1
4 (parabolic singularity) the accessory parameter C which occurs in

the version (1.5) of the Lamé equation explicitly reads as follows

C = −4B = − 16π2 q
∂

∂q
f

1
4
1
4
+p2∗

(q) + 2η1 . (3.32)

More in general, i.e. for the elliptic singularities −κ = δ̃ ∈
(
0, 14
)
one gets

Cell =
B

κ
= − 4π2 δ̃−1 q

∂

∂q
f δ̃1

4
+p2∗

(q) + 2η1 . (3.33)

Let us note that η1 depends on the modular parameter τ according to the formula η1 =
4π2

24 E2(τ) where E2(τ) is the second Eisenstein series. Hence, finally one can express B

(and C, Cell) in terms of functions depending on τ :

B(τ)

4π2
= q

∂

∂q
f δ̃1

4
+p2∗

(q)− δ̃

12
E2(τ) . (3.34)

4 Lamé accessory parameter from N = 2∗ gauge theory

4.1 Accessory parameter from twisted superpotential

In order to compute the torus classical block f δ̃δ (q) entering the expressions for B and/or

C, Cell one can exploit the “chiral” AGT relation on the torus and the correspondence

between the classical limit of the conformal blocks and the Nekrasov-Shatashvili limit of

the Nekrasov instanton partition functions.

The “chiral” AGT relation on the torus identifies the torus quantum block with the

Nekrasov instanton partition function [64, 65] of the N = 2∗, SU(2) gauge theory (which

equals to [ZU(1)
inst ]−1 ×ZU(2)

inst as it is written in the second line of the equation below):

q
c
24

−∆F∆β

c,∆(q) = ZN=2∗,SU(2)
inst (q, a, µ, ǫ1, ǫ2)

=

(
η(q)

q
1
24

)1−2∆β

ZN=2∗,U(2)
inst (q, a, µ, ǫ1, ǫ2). (4.1)
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In eq. (4.1) η(q) = q
1
24
∏∞

n=1(1 − q n) is the Dedekind η-function. The torus block pa-

rameters, namely the external conformal weight ∆β , the intermediate weight ∆ and the

Virasoro central charge c can be expressed in terms of the N = 2∗, SU(2) super-Yang-Mills

theory parameters as follows

c = 1 + 6
(ǫ1 + ǫ2)

2

ǫ1ǫ2
≡ 1 + 6Q2 ⇔ b =

√
ǫ2
ǫ1
, (4.2)

∆β = −µ(ǫ1 + ǫ2 + µ)

ǫ1ǫ2
⇔ β = − µ√

ǫ1ǫ2
, (4.3)

∆ =
(ǫ1 + ǫ2)

2 − 4a2

4ǫ1ǫ2
⇔ P =

ia√
ǫ1ǫ2

. (4.4)

Above µ is the mass of the adjoint hypermultiplet, a is the vacuum expectation value of

the complex scalar of the gauge multiplet and ǫ1, ǫ2 are Ω-background parameters. The

relation (4.1) is understood as an equality between the coefficients of the expansions of both

sides in powers of q. For the torus conformal block such expansion has been introduced in

eqs. (2.1)–(2.2). For the definition of the instanton partition function appearing in (4.1),

see subsection 4.3. The identity (4.1) has been proved by Fateev and Litvinov [46]. They

have shown that the coefficients of the expansions of both sides of (4.1) obey the same

recurrence relation.

Let us note that the relation (4.1) holds for the heavy conformal weights. Indeed,

from (4.2)–(4.4) we have

δ̃ = lim
b→0

b2∆β = − lim
ǫ2→0

ǫ2
ǫ1

µ(ǫ1 + ǫ2 + µ)

ǫ1ǫ2
= − µ

ǫ1

(
µ

ǫ1
+ 1

)
, (4.5)

δ = lim
b→0

b2∆ = lim
ǫ2→0

ǫ2
ǫ1

(ǫ1 + ǫ2)
2 − 4a2

4ǫ1ǫ2
=

1

4
− a2

ǫ21
. (4.6)

Hence, one can consider the limit b → 0 of the AGT relation (4.1). The limit b → 0

corresponds to ǫ2 → 0 (ǫ1 = const.), in accordance with (4.2). As has been observed

by Nekrasov and Shatashvili [10] if ǫ2 → 0 while ǫ1 is kept finite the Nekrasov instanton

partition function has the following asymptotical behavior:

Zinst( · , ǫ1, ǫ2) ǫ2→0∼ exp

{
1

ǫ2
Winst( · , ǫ1)

}
. (4.7)

Winst( · , ǫ1) is the instanton contribution to the so-called effective twisted superpotential

of the corresponding two-dimensional gauge theory restricted to the two-dimensional Ω-

background. Twisted superpotentials play also a prominent role in already mentioned

Bethe/gauge correspondence [10–12].

Therefore, taking into account the semiclassical asymptotic (2.6) of the torus quantum

block and (4.7) one can get from (4.1) the “classical version” of the torus AGT relation:

f δ̃δ (q) =

(
δ − 1

4

)
log q − 2δ̃ log

(
η(q)

q
1
24

)
+

1

ǫ1
WN=2∗,U(2)

inst (q, a, µ, ǫ1). (4.8)
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Using (4.8) and ∂τ log η(τ) =
iπ
12 E2(τ) one can rewrite the expression (3.34) for the param-

eter B to the following form:

B(τ)

4π2
= p2∗ +

δ̃

12
(1− 2E2(τ)) +

1

ǫ1
q
∂

∂q
WN=2∗,U(2)

inst (q, a, µ, ǫ1) (4.9)

where

p∗(ξ, q, q̄) =
ia

ǫ1
, δ̃ = −κ = − µ

ǫ1

(
µ

ǫ1
+ 1

)
=

1

4

(
1− ξ2

)
. (4.10)

Let us stress that the twisted superpotential WN=2∗,U(2)
inst is a computable quantity. The

derivation of WN=2∗,U(2)
inst directly from the Nekrasov instanton partition function shall

be presented in the third subsection. In the next subsection we confront the calculation

method of the eigenvalue, which employs the idea of the classical block, with another

procedure based on the WKB analysis, cf. [46, 89–92].

4.2 WKB analysis

Taking into account (4.10) one can rewrite the eq. (1.2) to the following Schrödinger-like

form:

− ǫ21Ψ
′′(z) + V (z, ǫ1)Ψ(z) = EΨ(z), (4.11)

where

V (z, ǫ1) = µ (µ+ ǫ1)℘(z) = µ2℘(z) + ǫ1µ℘(z) ≡ V0(z) + ǫ1V1(z)

and

E = −ǫ21 B. (4.12)

Substituting

Ψ(z) = exp

{
− 1

ǫ1

∫ z

P (x, ǫ1) dx

}

into the eq. (4.11) one finds

−P 2(z, ǫ1) + ǫ1P
′(z, ǫ1) + V (z, ǫ1) = E.

Above equation can be solved iteratively by expansions in ǫ1:

P (z, ǫ1) =
∞∑

k=0

ǫk1 Pk(z), V (z, ǫ1) =
∞∑

k=0

ǫk1 Vk(z).

In particular, for lower orders this yields

−P 2
0 + V0 = E,

−2P0P1 + P ′
0 + V1 = 0,

−2P0P2 − P 2
1 + P ′

1 + V2 = 0.

Note, that in our case V0(z) = µ2℘(z), V1(z) = µ℘(z) and Vk(z) = 0 for all k > 1.
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The quasiclassical approximation E ≡ E|zero order in ǫ1 to the energy eigenvalue is deter-

mined by the A-cycle integral [46, 90, 91]:

2πia =

∮

A

P0dz =

∮

A

√
V0 − E dz =

∮

A

√
µ2℘(z)− E dz. (4.13)

Physically, the equation above is nothing but the Bohr-Sommerfeld quantization condi-

tion [90]. It is convenient to introduce

E =
E

4π2a2
, ν =

µ2

4π2a2
(4.14)

and rewrite the eq. (4.13) to the form

1 =

∮

A

√
E− ν℘(z) dz. (4.15)

Let us recall that we are working on the torus with periods 1 and τ parameterized by the

complex coordinate z ≡ z + 1 ≡ z + τ . The A-cycle here is just the interval [0, 1].

Eq. (4.15) allows to compute E as an expansion in ν with coefficients depending on

q = e2πiτ :

E = 1 + E1(q) ν + E2(q) ν
2 + E3(q) ν

3 + E4(q) ν
4 + . . . . (4.16)

Indeed, after an expansion of the square root the eq. (4.15) becomes

1 =

∮

A

dz +

∮

A

1

2
(E1 − ℘(z)) ν dz +

∮

A

1

2

(
E2 −

1

4
(E1 − ℘(z))2

)
ν2 dz + . . . . (4.17)

Since ∮

A

dz = 1,

then, the higher terms on the r.h.s. of the eq. (4.17) must vanish. Therefore, up to ν4 one

finds [89]:

E1 =

∮

A

℘(z)dz = −π
2

3
E2, (4.18)

E2 =

∮

A

[
1

4
℘(z)2 − 1

2
E1℘(z) +

1

4
E
2
1

]
dz =

π4

36

(
E4 − E2

2

)
, (4.19)

E3 =

∮

A

[
1

8
℘(z)3 − 3

8
E1℘(z)

2 +
1

8

(
3E2

1 − 4E2

)
℘(z) +

1

8

(
−E

3
1 + 4E1E2

) ]
dz

=
π6

540

(
2E6 + 3E2E4 − 5E3

2

)
, (4.20)

E4 =

∮

A

[
5

64
℘(z)4 − 5

16
E1℘(z)

3 +
1

64

(
30E2

1 − 24E2

)
℘(z)2

+
1

64

(
− 20E3

1 + 48E1E2 − 32E3

)
℘(z) +

1

64

(
5E4

1 − 24E2
1E2 + 16E2

2 + 32E1E3

)]
dz

=
π8

9072

(
−35E4

2 + 7E2
2E4 + 10E2

4 + 18E2E6

)
, (4.21)
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where E2n, n = 1, 2, 3 are the Eisenstein series. In above calculations appear integrals of

the form ∮

A

℘(z)ndz =: Kn.

For their explicit computation see appendix B. Finally, using (4.14), (4.16), (4.18)–(4.21)

and the q-expansions of the Eisenstein series (A.4)–(A.6) one gets

1

4π2
E
∣∣∣
zero order in ǫ1

= a2 − µ2

12
+
µ2
(
4a2 + µ2

)

2a2
q

+
µ2
(
192a6 + 96a4µ2 − 48a2µ4 + 5µ6

)

32a6
q2 + . . . . (4.22)

On the other hand from (3.34) and (4.12) we have

1

4π2
E
∣∣∣
zero order in ǫ1

= − lim
ǫ1→0

ǫ21
B

4π2
= − lim

ǫ1→0
ǫ21

[
q
∂

∂q
f δ̃δ∗(q)−

δ̃

12
E2(q)

]
. (4.23)

The torus classical block f δ̃δ (q) appearing above has the following expansion

f δ̃δ (q) =

(
δ − 1

4

)
log q + f δ̃δ (q) =

(
δ − 1

4

)
log q +

∞∑

n=1

f
δ̃,n
δ qn (4.24)

with coefficients f δ̃,nδ determined by the semiclassical asymptotic (2.6) of the quantum block:

∞∑

n=1

f
δ̃,n
δ qn = lim

b→0
b2 log

[
1 +

∞∑

n=1

F∆β ,n

1+6Q2,∆
qn

]
.

For instance,

f
δ̃,1
δ =

δ̃2

2δ
, f

δ̃,2
δ =

δ̃2[24δ2 (4δ + 1) + δ̃2 (5δ − 3)− 48δ̃δ2]

16δ3 (4δ + 3)
. (4.25)

Using (4.5)–(4.6), (A.4) and (4.25) one can check that (4.23) exactly agrees with (4.22).12

4.3 Nekrasov-Shatashvili limit

A goal of this subsection is to compute an instanton contribution to the so-called effective

twisted superpotential of the N = 2∗ U(2) gauge theory. We closely follow here the method

of the calculation developed by Poghossian in ref. [40].

Consider the instanton part of the Nekrasov partition function of the N = 2 super-

symmetric U(2) gauge theory with an adjoint hypermultiplet (the N = 2∗ theory) [10, 64]:

ZN=2∗,U(2)
inst = 1 +

∞∑

k=1

qk

k!

(
ǫ1 + ǫ2
ǫ1ǫ2

)k

Zk

= 1 +
∞∑

k=1

qk

k!

(
ǫ1 + ǫ2
ǫ1ǫ2

)k ∮ dφ1
2πi

. . .

∮
dφk
2πi

Ωk, (4.26)

12Here δ∗ = 1
4
+ p2∗ and p2∗ = −a2

ǫ2
1

.
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where

Ωk =
k∏

I=1

P (φI − µ)P (φI + µ+ ǫ1 + ǫ2)

P (φI)P (φI + ǫ1 + ǫ2)

×
k∏

I,J=1
I 6=J

φIJ (φIJ + ǫ1 + ǫ2) (φIJ + µ+ ǫ1) (φIJ + µ+ ǫ2)

(φIJ + ǫ1) (φIJ + ǫ2) (φIJ + µ) (φIJ + µ+ ǫ1 + ǫ2)
,

φIJ = φI − φJ and P (x) = (x − a1)(x − a2). We will assume that µ, au, ǫ1, ǫ2 ∈ R. The

poles which contribute to the integral (4.26) are at

φI = φuij = au + (i− 1)ǫ1 + (j − 1)ǫ2, u = 1, 2. (4.27)

Recall, that these poles are in correspondence with pairs Y = (Y1, Y2) of Young diagrams

with total number of boxes |Y| = |Y1| + |Y2| = k. The index i parameterizes the columns

whereas j runs over the rows of the diagram Yu. The parameters ǫ1, ǫ2 describe a size of

a box (i, j) ∈ Yu in horizontal, vertical direction respectively. The instanton sum over k

in (4.26) can be rewritten as a sum over a pairs of Young diagrams as follows:

Zk =
∑

Y

|Y|=k

ZY.

The contributions ZY to the instanton sum correspond to those obtained by performing

(in some specific order) the contour integrals in (4.26).

Now we want to calculate the Nekrasov-Shatashvili limit [10] ǫ2 → 0 (ǫ1 is kept finite)

of the instanton partition function (4.26). Based on the arguments developed by Nekrasov

and Okounkov in ref. [65] it is reasonable to expect that for vanishingly small values of

ǫ2 the dominant contribution to the instanton partition function (4.26) will occur when

k ∼ 1
ǫ2
. Unfortunately, we have found no proof of that mechanism in the general case. Let

us note only that this statement becomes evident in the trivial case in which Zk = 1 for

all k = 1, 2, . . .. Indeed, for ǫ2 → 0 and x = q
ǫ2

∈ R>0 we have then from eq. (4.26):

Zinst =
∞∑

k=0

1

k!

(
q

ǫ2

)k

=
∞∑

k=0

xk

k!
= ex =

ex log x

ex log x−x
∼ ex log x

elog x!
=
xx

x!
.

This means that the whole sum is dominated by a single term with k ∼ x→ ∞.

Hence, in order to compute the limit ǫ2 → 0 of ZN=2∗,U(2)
inst let us find first the lead-

ing behavior of log
∣∣qkΩk

∣∣ for large k (i.e. small values of ǫ2 and finite ǫ1). After simple

calculations, using log(x± ǫ2) = log(x)± ǫ2
x +O(ǫ22), one gets

log
∣∣∣qkΩk

∣∣∣ ∼ 1

ǫ2
HN=2∗,U(2)

inst ,
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where

HN=2∗,U(2)
inst = ǫ2k log |q|+ ǫ2

k∑

I=1

log

∣∣∣∣
P (φI − µ)P (φI + µ+ ǫ1)

P (φI)P (φI + ǫ1)

∣∣∣∣

+ ǫ22

k∑

I,J=1
I 6=J

[
1

φIJ + ǫ1
− 1

φIJ
+

1

φIJ + µ
− 1

φIJ + µ+ ǫ1

]
. (4.28)

In eq. (4.28) it is implicitly understood that the poles φI are obtained from eq. (4.27) in

the limit ǫ2 → 0. Note that in the limit ǫ2 → 0 the poles form a continuous distribution

(cf. [69]):

φI = φu,i ∈
[
x0ui, xui

]
(4.29)

where

x0ui = au + (i− 1)ǫ1, u = 1, 2, i = 1, . . . ,∞,

xui = au + (i− 1)ǫ1 + ωui .

In terms of Young diagrams the situation can be explained heuristically as follows. When

ǫ2 is very small then the number of boxes kui in the vertical direction (the number of

rows) is very large, however this number multiplied by ǫ2, i.e.: ǫ2kui = ωui is expected to

be finite. In other words we obtain a continuous distribution of rows in the limit under

consideration. Then, in order to evaluate (4.28) at the values (4.29) one can assume that

the summations “over instantons” in (4.28) become continuous in the row index:

ǫ2
∑

I

−→
∑

u,i

xui∫

x0
ui

dφui. (4.30)

The limits of integration x0ui and xui are the bottom and the top ends of the i-th column

in Yu respectively. Applying eq. (4.30) to eq. (4.28) one gets

HN=2∗,U(2)
inst (xui) =

2∑

u,v=1

∞∑

i,j=1

[
− F (xui − xvj + ǫ1) + F

(
xui − x0vj + ǫ1

)

+ F
(
x0ui − xvj + ǫ1

)
− F

(
x0ui − x0vj + ǫ1

)
+ F (xui − xvj)− F (xui − x0vj)

− F (x0ui − xvj) + F (x0ui − x0vj)− F (xui − xvj + µ) + F (xui − x0vj + µ)

+F (x0ui − xvj + µ)− F (x0ui − x0vj + µ) + F (xui − xvj + µ+ ǫ1) (4.31)

−F (xui − x0vj + µ+ ǫ1)− F (x0ui − xvj + µ+ ǫ1) + F (x0ui − x0vj + µ+ ǫ1)
]

+
2∑

u,v=1

∞∑

i=1

[
F (xui − µ− av)− F

(
x0ui − µ− av

)
+ F (xui + µ− av + ǫ1)

−F
(
x0ui + µ− av + ǫ1

)
− F (xui − av) + F

(
x0ui − av

)

−F (xui − av + ǫ1) + F
(
x0ui − av + ǫ1

) ]
+

2∑

u=1

∞∑

i=1

(xui − (i− 1)ǫ1 − au) log |q| ,

where F (x) = x(log |x| − 1).
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Finally, the Nekrasov instanton partition function in the limit ǫ2 → 0 can be repre-

sented as follows:

ZN=2∗,U(2)
inst ∼

∫ [∏

u,i

dxui

]
exp

{
1

ǫ2
HN=2∗,U(2)

inst (xui)

}
, (4.32)

where the “integral” is over the infinite set of variables {xui : u = 1, 2; i = 1, . . . ,∞}. As a
consequence, the Nekrasov-Shatashvili limit of ZN=2∗,U(2)

inst is nothing but the critical value

of HN=2∗,U(2)
inst :

WN=2∗,U(2)
inst ≡ lim

ǫ2→0
ǫ2 logZN=2∗,U(2)

inst = HN=2∗,U(2)
inst (x̂ui), (4.33)

where x̂ui denotes the “critical configuration” extremizing the “free energy” (4.31).

4.4 Saddle point equation

The extremality condition for the “action” HN=2∗,U(2)
inst given by (4.31) reads as follows:

∣∣∣∣q
(∏

v,j

(xui − xvj − ǫ1)(xui − x0vj + ǫ1)

(xui − x0vj − ǫ1)(xui − xvj + ǫ1)

(xui − xvj − µ)(xui − x0vj + µ)

(xui − x0vj − µ)(xui − xvj + µ)

×
(xui − xvj + µ+ ǫ1)(xui − x0vj − µ− ǫ1)

(xui − x0vj + µ+ ǫ1)(xui − xvj − µ− ǫ1)

)(∏

v

(xui − µ− av)(xui + µ+ ǫ1 − av)

(xui − av)(xui + ǫ1 − av)

)∣∣∣∣=1,

where u, v = 1, 2 and i, j = 1, . . . ,∞. This implies that either the following eq.:

−q
(∏

v,j

(xui − xvj − ǫ1)(xui − x0vj + ǫ1)

(xui − x0vj − ǫ1)(xui − xvj + ǫ1)

(xui − xvj − µ)(xui − x0vj + µ)

(xui − x0vj − µ)(xui − xvj + µ)
(4.34)

×
(xui − xvj + µ+ ǫ1)(xui − x0vj − µ− ǫ1)

(xui − x0vj + µ+ ǫ1)(xui − xvj − µ− ǫ1)

)(∏

v

(xui − µ− av)(xui + µ+ ǫ1 − av)

(xui − av)(xui + ǫ1 − av)

)
=1

or its analog in which −q is replaced by +q are holding.13 Eq. (4.34) can be regularized

assuming that there is an integer L such that the length of the column ωui is equal to zero

for i > L. Analyzing eq. (4.34) in such a case, i.e. when j = 1, . . . , L, one can observe

that the column lengths extremizing the “free energy” are of the order ωui ∼ O(qi).14 For

13In eq. (4.34) and below q ≡ |q|.
14Note that the saddle point equation (or in fact a system of equations) must be solved subject to the

condition that the solution is consistent with the q-expansion of the twisted superpotential obtained from

the instanton partition function. This implies that the order of q in the expansions of rescaled column

lengths must correlate with the index i. Indeed, first, we have Winst ≡ limǫ2→0 ǫ2 logZinst =
∑

i=1 Wi q
i.

Then,

q
d

dq
Winst = W1 q + 2W2 q

2 + . . . = W̃1 q + W̃2 q
2 + . . . . (4.35)

On the other hand

q
d

dq
Winst =

∑

i=1

∑

u

ωui =
∑

u

ωu1 +
∑

u

ωu2 + . . . , (4.36)

where ωui’s are the column lengths of the critical diagrams (see the calculation at the beginning of the next

subsection). Hence, in order to get from (4.36) the q-expansion consistent with (4.35) the expansions of

ωui’s must start from qi.
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example, at order qL one can write

x̂ui ≡ xui = au + (i− 1)ǫ1 + ωui( q) = au + (i− 1)ǫ1 +
L∑

n=i

ωuin q
n. (4.37)

Here the symbols ωuin denote the contributions to the coefficients ωui at the n-th order in

q. Now it is possible to solve equation (4.34) starting from L = 1 and deriving recursively

the ωuin’s step by step up to desired order. For instance,

ω111 =
µ(2a− µ) (ǫ1 + µ) (2a+ ǫ1 + µ)

2aǫ1 (2a+ ǫ1)
,

ω211 = −µ(2a+ µ) (ǫ1 + µ) (−2a+ ǫ1 + µ)

2aǫ1 (2a− ǫ1)
.

In order to investigate the solution of the saddle point equation in the case when

L → ∞ it is helpful to convert it to other equivalent form. Indeed, as has been observed

in [69] (see also [40]) the eq. (4.34) can be rewritten in terms of certain “Y-system”:

− q
Y (xui − ǫ1)Y (xui − µ)Y (xui + µ+ ǫ1)

Y (xui + ǫ1)Y (xui + µ)Y (xui − µ− ǫ1)
= 1, (4.38)

where

Y (z) =
2∏

u=1

exp

{
z

ǫ1
ψ

(
au
ǫ1

)} ∞∏

i=1

(
1− z

xui

)
exp

{
z

x0ui

}
(4.39)

and ψ(z) = ∂z log Γ(z). The product in (4.39) is convergent for arbitrary z ∈ C provided

that the column lengths tend to zero for large enough i, which is equivalent to the as-

sumption that xui → x0ui. If ωui = 0 for all i, i.e. all column lengths are zero, then Y (z)

becomes

Y0(z) =
2∏

u=1

exp

{
z

ǫ1
ψ

(
au
ǫ1

)} ∞∏

i=1

(
1− z

x0ui

)
exp

{
z

x0ui

}
. (4.40)

The functions Y (z), Y0(z) have zeros located at xui and x
0
ui respectively.

4.5 Twisted superpotential, classical block, accessory parameter

Now we are ready to compute the critical value of the “free energy” (4.33), i.e. the

so-called twisted superpotential. It is convenient first to calculate the derivative of

WN=2∗,U(2)
inst ( q, a,mi; ǫ1) with respect to q:

∂

∂q
WN=2∗,U(2)

inst ( q, a, µ; ǫ1) =

(
∂Hinst

∂xui

∂xui
∂q

+
∂Hinst

∂q

) ∣∣∣
xui=x̂ui

=
1

q

∑

u,i

ωui. (4.41)

Above we have used the fact that ∂Hinst/∂xui|xui=x̂ui
= 0. Hence, it is easy to realize that

the last term in (4.41) coincides with the sum over the column lengths of the “critical”

Young diagrams. More explicitly, the eq. (4.41) reads as follows

q
∂

∂q
WN=2∗,U(2)

inst =
∑

i

(ω1i( q) + ω2i( q)) =
∑

i

[∑

n=i

(ω1in + ω2in) q
n

]

=
[
(ω111 + ω211) q + (ω112 + ω212) q

2 + . . .
]

+
[
(ω122 + ω222) q

2 + (ω123 + ω223) q
3 + . . .

]
+ . . . . (4.42)
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Then,

WN=2∗,U(2)
inst = (ω111 + ω211) q + (ω112 + ω212 + ω122 + ω222)

q2

2
+ . . . . (4.43)

Knowing the coefficients of the extremal lengths of the columns from a solution of the

system of equations (4.34) one gets

1

ǫ1
WN=2∗,U(2)

inst =
1

ǫ1
(ω111 + ω211) q + . . . =

1

ǫ1

(
f
δ̃,1
δ − 2δ̃

)
q + . . . , (4.44)

where δ, δ̃ are given by (4.5)–(4.6) and f
δ̃,n
δ , n = 1, . . . denote coefficients of the torus

classical block (see (4.24)–(4.25)). Concluding, the eq. (4.44) is nothing but the expansion

of both sides of the “classical” AGT relation:15

f δ̃δ (q) = −2δ̃ log

(
η(q)

q
1
24

)
+

1

ǫ1
WN=2∗,U(2)

inst (q, a, µ; ǫ1). (4.45)

As a final conclusion of this subsection let us write down the main result of the present

work. Knowing the classical torus one-point block from (4.8) and applying eqs. (4.9)

and (4.41), one arrives at the following expression of the Lamé accessory parameter:

B(τ)

4π2
= p2∗(ξ, q, q̄) +

δ̃

12
(1− 2E2(τ)) +

1

ǫ1

∑

u,i

ωui(q, a, µ, ǫ1) (4.46)

where

p∗(ξ, q, q̄) =
ia

ǫ1
, δ̃ = −κ = − µ

ǫ1

(
µ

ǫ1
+ 1

)
=

1

4

(
1− ξ2

)
.

Hence, we have found that the accessory parameter B is related to the sum of column

lengths of the “critical” Young diagrams. The latter can be rewritten using the contour

integral representation. Indeed, let γ denotes the contour which encloses all the points x̂ui,

x0ui, u = 1, 2, r = 1, . . . ,∞. Then, as has been noticed by Poghossian in ref. [40], the sum∑
u,i ωui can be expressed as follows

∑

u,i

ωui =
∑

u,i

(
x̂ui − x0ui

)
=

∮

γ

dz

2πi
z
∂

∂z
log

Y (z)

Y0(z)
.

5 Concluding remarks and open problems

The main result of the present work is the expression of the Lamé accessory parameter

B (or equivalently A, C, Cell) in terms of the solution of the TBA-like eq. (4.34). This

equation has been solved by a power expansion in the parameter q. It has been noticed

that obtained expression for B can be rewritten in terms of a contour integral in which

the integrand is built out of the functions Y and Y0 introduced in eqs. (4.39)–(4.40). As

has been observed in [40, 69] also the TBA-like eq. (4.34) can be rewritten in terms of the

15Of course, eqs. (4.45) and (4.8) are exactly the same.
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function Y . Hence, one can relate the problem of finding the Lamé accessory parameter to

the problem of searching a solution of the functional equation (4.38).

Another result presented in this paper is a check that the classical limit of the torus

quantum conformal block exists and yields a consistent definition of the torus classical

block. Moreover, it has been verified that the torus classical block corresponds to the

twisted superpotential of the N = 2∗ U(2) gauge theory.

Finally, in this paper has been proposed an expression for the Liouville classical action

Storus
L on the one-punctured torus. It has been conjectured that Storus

L can be calculated in

terms of the torus classical conformal block, classical three-point Liouville action and the

saddle point classical intermediate weight (the saddle point momentum). We leave as an

open question (to which we return very soon) a comparison of this result with the results

obtained by Menotti in [29–32].

Work is in progress in order to verify formulae (3.31)–(3.34) and (4.46). First of all let

us note that these formulae pave the way for numerical studies of the function B(τ) and

the results of such investigation can be compared with that obtained by Keen, Rauch and

Vasquez in [23]. It is well known that in a certain limit the Lamé equation becomes the

Mathieu equation. Hence, other possible check beyond the WKB analysis performed in

subsection 4.2 is to verify whether our candidate for the Lamé eigenvalue correctly reduces

to the Mathieu eigenvalue, cf. [92].16 As a final remark concerning possible combinatorial

tests of our main result let us note that it would be valuable to check whether one can

recover from eqs. (3.34), (4.9) the expansions of the Lamé eigenvalue worked out by Müller-

Kirsten [93] (see also [94]) and Longmann [95, 96].17

It is a well known fact [23] that the Lamé accessory parameter is a modular form of

weight 2. In order to answer the question whether proposed candidate for the Lamé acces-

sory parameter has correct modular transformation properties one has to put a heuristic

derivation of eqs. (3.34), (4.9), (4.46) on a more rigorous mathematical level. First, it has to

be proved that in the classical limit the quantum conformal blocks behave exponentially.18

Let us stress that there is still no rigorous proof of convergency of the expansions defining

generic quantum conformal blocks. Secondly, it seems to be possible to derive the “classi-

cal” torus AGT relation (4.8) more rigorously exploiting the Teichmüller theory approach

to Liouville theory. Indeed, relations such as (4.8) implicitly appear as a byproduct in the

proof of the AGT correspondence recently proposed by Teschner and Vartanov [58].

16Let us stress that we have found an agreement between B(τ) and the energy eigenvalue E computed by

means of the WKB method so far only for ǫ1 = 0. It remains still to calculate the “quantum corrections”

to E in the higher powers of ǫ1 and compare the result with B(τ) obtained from the classical block.
17Note, that since the modular properties of the Lamé accessory parameter are known [23], then the

relation (4.9), if it is true, encodes some information about the modular transformation properties of the

N = 2∗ U(2) twisted superpotential. This observation fits in an interesting line of research which aims

to answer the question how the S-duality is realized in the Ω-deformed N = 2 gauge theories, see for

instance [97, 98].
18It seems to be possible to prove the classical asymptotics of conformal blocks representing them

as the Coulomb gas/Dotsenko-Fateev/β-ensemble integrals [99–102] and applying matrix models tech-

nics [24, 103–112].
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A Special functions

Jacobi and Weierstrass elliptic functions. Let ω1 and ω2 be two complex numbers

whose ratio is not real. A function which satisfies f(z) = f(z + 2ω1) = f(z + 2ω2) for all

z ∈ D(f(z)) is called a doubly periodic function of z with periods 2ω1 and 2ω2. A doubly

periodic function that is analytic except at its poles and which has no singularities other

than these poles in a finite part of the complex plane is called an elliptic function.

Let Im
(
ω2
ω1

)
∈ R, then the points 0, 2ω1, 2ω1 + 2ω2, 2ω2 when taken in order are the

vertices of a parallelogram, known as the fundamental parallelogram. The behaviour of an

elliptic function is completely determined by its values in fundamental parallelogram.

If we consider the points of the period lattice defined as L = {2mω1 + 2nω2}, then the

four points 2mω1 +2nω2, 2(m+1)ω1 +2nω2, 2(m+1)ω1 +2(n+1)ω2, 2mω1 +2(n+1)ω2

are vertices of a similar parallelogram, obtained from the fundamental parallelogram by

a translation without rotations. This parallelogram is called a period parallelogram. The

complex plane is covered by a system of non-overlapping period parallelograms.

If we wish to count the number of poles or zeros of an elliptic function in a given

period parallelogram and it happens that certain poles or zeros lie on the boundaries of

this parallelogram, then one can translate the period parallelogram without rotation until

no pole or zero lies on its boundary. Such obtained parallelogram is called a cell.

In [1] one can find a list of general properties of elliptic functions. In particular, one

can prove, that (i) the number of poles of an elliptic function in any cell is finite; (ii) the

sum of the residues of an elliptic function at its poles in any cell is zero.

The number of poles of an elliptic function in any cell, counted with multiplicity, is

called the order of the function. The statements (i)-(ii) written down above imply, that the

order of an elliptic function is necessarily at least equal to 2. Indeed, an elliptic function of

order 1 would have a single irreducible pole. If this were actually a pole its residue would

not be zero. Hence, in terms of singularities, the simplest elliptic functions are those of

order 2. These can be divided into two classes: (I) those which have a single irreducible

double pole in each cell at which the residue is zero; (II) those which have two simple poles

in each cell at which the two residues are equal in absolute value, but of opposite sign.

The Jacobi elliptic functions are examples of the second class of elliptic functions of

order 2. The Jacobi function snu is defined by means of the integral

u =

x∫

0

dt√
(1− t2)(1− k2t2)

,

where k is a constant. By inversion of the integral we have x = snu. From definition

follows that sn 0 = 0.

The functions cnu and dnu are defined by the identities:

sn2u+ cn2u = 1, k2sn2u+ dn2u = 1.

It follows that cn 0 = dn 0 = 1.
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Each of the Jacobi elliptic functions depends on a parameter k, called the modulus. In

order to emphasize this dependence one can write the three functions as sn(u, k), cn(u, k),

dn(u, k). An alternative notation: sn(u|m), cn(u|m), dn(u|m) uses a parameter m = k2.

In accordance with the definition of an elliptic function the Jacobi elliptic functions

are doubly periodic:

snu = sn(u+ 4K) = sn
(
u+ 4K + 4iK′

)
= sn

(
u+ 2iK′

)
,

cnu = cn(u+ 4K) = cn
(
u+ 2K + 2iK′

)
= cn

(
u+ 4iK′

)
,

dnu = dn(u+ 2K) = dn
(
u+ 4K + 4iK′

)
= dn

(
u+ 4iK′

)
.

Periods are expressed in terms of the constants K and K′ defined as follows

K ≡ K(k) =

1∫

0

dt√
(1− t2)(1− k2t2)

, K′ ≡ K(k′),

where k′ is the so-called complementary modulus defined by the relation k2 + k′2 = 1. The

integral K(k) is the complete elliptic integral of the first kind.

The derivatives of the Jacobi elliptic functions are

d

du
snu = cnu dnu,

d

du
cnu = − snu dnu,

d

du
dnu = −k2 snu cnu.

For practical reasons it is convenient to introduce a shortened notation to express

reciprocals and quotients of the Jacobi elliptic functions. The reciprocals are denoted by

reversing the orders of the letters of the function:

nsu =
1

snu
, ncu =

1

cnu
, ndu =

1

dnu
.

Quotients are denoted by writing in order the first letters of the numerator and denominator

functions:

scu =
snu

cnu
, sdu =

snu

dnu
, cdu =

cnu

dnu
,

csu =
cnu

snu
, dsu =

dnu

snu
, dcu =

dnu

cnu
.

The Weierstrass elliptic function ℘(z) belongs to the first class of elliptic functions of

order 2, those with a single irreducible double pole in each cell with residue equal to zero.

The function ℘(z) is defined by the infinite sum

℘(z) =
1

z2
+

∑

(m,n) 6=(0,0)

[
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 − 2nω2)2

]
,

where 2ω1 and 2ω2 are periods and the summation is taken over all (positive, negative and

zero) integer values of m and n, except for when m,n are both equal to zero.
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The function ℘(z) satisfies the differential equation (℘′(z))2 = 4℘3(z) − g2℘(z) − g3,

where the elliptic invariants g2 and g3 are given by

g2 = 60
∑

(m,n) 6=(0,0)

1

(2mω1 + 2nω2)4
, g3 = 140

∑

(m,n) 6=(0,0)

1

(2mω1 + 2nω2)6
.

Conversely, given (dy/dz)2 = 4y3 − g2y − g3, and if numbers ω1 and ω2 can be deter-

mined such that

g2 = 60
∑

(m,n) 6=(0,0)

1

(2mω1 + 2nω2)4
, g3 = 140

∑

(m,n) 6=(0,0)

1

(2mω1 + 2nω2)6
.

then the general solution of the differential equation is y = ℘(z + const.).

Let e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω3), where ω3 = −(ω1 + ω2). The constants e1, e2
and e3 are mutually distinct and are roots of the equation 4y3−g2y−g3 = 0. It follows that

e1 + e2 + e3 = 0, e2e3 + e3e1 + e1e2 = −1

4
g2, e1e2e3 =

1

4
g3.

Let us write

y = e3 +
e1 − e3

sn2(λz, k)
.

Then, we have

(
dy

dz

)2

= 4λ2(e1 − e3)
2 ns2 λz cs2 λz ds2 λz

= 4λ2(e1 − e3)
2 ns2 λz

(
ns2 λz − 1

) (
ns2 λz − k2

)

= 4λ2(e1 − e3)
−1(y − e3)(y − e1)

[
y − k2(e1 − e3)− e3

]
.

Hence, if λ2 = e1−e3 and k2 = (e2−e3)/(e1−e3), then y satisfies the equation (dy/dz)2 =

4y3 − g2y − g3. Therefore,

e3 + (e1 − e3) ns
2

(
z(e1 − e3)

1
2 ,

(
e2 − e3
e1 − e3

) 1
2

)
= ℘(z + h),

where h is a constant. When z → 0, it is seen that h is a period, and so finally one gets

the following relation between Weierstrass and Jacobi elliptic functions:

℘(z) = e3 + (e1 − e3) ns
2

(
z(e1 − e3)

1
2 ,

(
e2 − e3
e1 − e3

) 1
2

)
. (A.1)

The identity (A.1) allows to pass from the Jacobian form of the Lamé equation (1.1) to

the Weierstrassian form (1.2). Indeed, the change of independent variable is given by

z = (u− iK′) (e1 − e3)
− 1

2 . Then, we have19

m sn2(u|m) = m sn2
(
z(e1 − e3)

1
2 + iK′|m

)

= ns2
(
z(e1 − e3)

1
2 |m

)
=
℘(z)− e3
e1 − e3

.

19k sn(α+ iK′, k) = ns(α, k), see [1] (pg. 503, § 22·34).
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where m ≡ k2 = (e2 − e3)/(e1 − e3). Then, the transformed accessory parameter B in

eq. (1.2) is given by

B = A(e1 − e3)− κ e3 ⇔ A =
B

e1 − e3
− 1

3
κ(m+ 1).

Weierstrass ζ-function. The Weierstrass zeta function ζ(z) is defined by the equation

ζ ′(z) = −℘(z), (A.2)

along with the condition limz→∞

(
ζ(z)− 1

z

)
= 0.

In terms of the theta function θ1(z|τ) and the constant η1 the Weierstrass zeta function

can be expressed as follows

ζ(z) =
∂zθ1(z|τ)
θ1(z|τ)

+ 2η1z. (A.3)

Eisenstein series. The first few Eisenstein series can be expressed as follows

E2(q) = 1− 24
∞∑

n=1

σ1(n)q
n = 1− 24q − 72q2 − 96q3 − 168q4 − . . . , (A.4)

E4(q) = 1 + 240
∞∑

n=1

σ3(n)q
n = 1 + 240q + 2160q2 + 6720q3 + . . . , (A.5)

E6(q) = 1− 504
∞∑

n=1

σ5(n)q
n = 1− 504q − 16632q2 − 122976q3 − . . . , (A.6)

where q = e2πiτ and σk(n) is the so-called divisor function defined as the sum of the k-th

powers of the divisors of n, σk(n) =
∑

d|n d
k.

Dedekind η-function.

η(q) = q
1
24

∞∏

n=1

(1− qn), q = e2πiτ .

B Integrals Kn

The integral

K1 =

∮

A

℘(z)dz

one can compute directly using (A.2) and (A.3). The result is K1 = −2η1. In order to

compute the integrals

Kn =

∮

A

℘(z)ndz, n > 1

one can employ the following relation between powers of ℘ and its even derivatives (see [113]

and refs. therein):

℘n = B(n)
n +

n−1∑

r=0

B
(n)
r

(2n− 2r − 1)!
℘(2n−2−2r). (B.1)
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Quantities B
(n)
r above — the so-called Halphen coefficients — are given by the recurrence

relation:

B(n)
r =

(2n− 2r − 2)(2n− 2r − 1)

(2n− 2)(2n− 1)
B(n−1)

r +
2n− 3

4(2n− 1)
B

(n−2)
r−2 g2 +

n− 2

2(2n− 1)
B

(n−3)
r−3 g3

with n > 0, r = 0, . . . , n; B
(n)
r = 0 for r < 0 or r > n; B

(n)
0 = 1 and B

(n)
1 = 0 for any n.

B
(n)
r ’s are then polynomials in g2, g3 with rational positive coefficients.

For n = 2, 3, 4 the eq. (B.1) yields

℘2 = B
(2)
2 +

1

6
B

(2)
0 ℘(2) +B

(2)
1 ℘ =

1

12
g2 +

1

6
℘(2),

℘3 = B
(3)
3 +

1

120
B

(3)
0 ℘(4) +

1

6
B

(3)
1 ℘(2) +B

(3)
2 ℘ =

1

10
g3 +

1

120
℘(4) +

3

20
g2℘,

℘4 = B
(4)
4 +

1

5040
B

(4)
0 ℘(6) +

1

120
B

(4)
1 ℘(4) +

1

6
B

(4)
2 ℘(2) +B

(4)
3 ℘

=
5

336
g22 +

1

5040
℘(6) +

1

30
g2℘

(2) +
1

7
g3℘.

Then,

K2 =
1

12
g2,

K3 =
1

10
g3 +

3

20
g2K1 =

1

10
g3 −

3

10
g2η1,

K4 =
5

336
g22 +

1

7
g3K1 =

5

336
g22 −

2

7
g3η1.

Now, in order to get the coefficients (4.18)–(4.21) of the expansion of the energy eigenvalue

one has to use the following relations:

η1 =
4π2

24
E2, g2 =

4π4

3
E4, g3 =

8π6

27
E6.

C Coefficients of the torus quantum conformal block

F∆β ,1
c,∆ =

(∆β − 1)∆β

2∆
+ 1,

F∆β ,2
c,∆ =

[
4∆
(
2c∆+ c+ 16∆2 − 10∆

)]−1

[ (
8c∆+ 3c+ 128∆2 + 56∆

)
∆2

β +
(
−8c∆− 2c− 128∆2

)
∆β

+(c+ 8∆)∆4
β + (−2c− 64∆)∆3

β + 16c∆2 + 8c∆+ 128∆3 − 80∆2
]
.
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