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ABSTRACT: For the N = 4 superconformal coset theory described by %&?) (that con-
tains a Wolf space) with N = 3, the N' = 2 WZW affine current algebra with constraints
is obtained. The 16 generators of the large N’ = 4 linear superconformal algebra are de-
scribed by those WZW affine currents explicitly. By factoring out four spin—% currents and
the spin-1 current from these 16 generators, the remaining 11 generators (spin-2 current,
four spin—% currents, and six spin-1 currents) corresponding to the large ' = 4 nonlinear
superconformal algebra are obtained.

Based on the recent work by Gaberdiel and Gopakumar on the large N” = 4 holography,
the extra 16 currents, with spin contents (1, %, %,2), (%,2,2, %), (%,2,2, %), and (2, %, %,3)
described in terms of NV = 2 multiplets, are obtained and realized by the WZW affine
currents. As a first step towards N’ = 4 W algebra (which is NOT known so far), the
operator product expansions (OPEs) between the above 11 currents and these extra 16
higher spin currents are found explicitly. It turns out that the composite fields with definite
U(1) charges, made of above (11 + 16) currents (which commute with the Wolf space
subgroup SU(N = 3) x SU(2) x U(1) currents), occur in the right hand sides of these
OPEs.
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1 Introduction

Gaberdiel and Gopakumar [1] have proposed that the large N’ = 4 higher spin theory on
AdSs based on the higher spin algebra is dual to the 't Hooft limit of the two dimensional
large N = 4 superconformal coset theory. The N' = 4 higher spin algebra contains 8 fields of
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is the largest finite dimensional subalgebra of this A/ = 4 higher spin algebra. The N = 4

coset theory is described by the coset Sg{%ﬁ ) with the level which is equal to the sum of

spin s = and 7 fields of spin s = 1 and the exceptional superalgebra D(2, llﬁ)

each level of two SU(2) affine algebras. The 't Hooft coupling constant A is identified with
the free parameter of the large A = 4 superconformal algebra (this additional parameter is
due to the fact that there exist two SU(2) affine algebras rather than one) and furthermore
this ’t Hooft parameter A is equal to the above p parameter which is related to the mass
of scalar field in the AdS3 bulk theory, according to this proposal [1]. See also previous
works on the minimal model holography [2-5].

More specifically, the large A/ = 4 linear superconformal algebra is generated by spin-2
stress tensor, four spin—% supersymmetry generators, seven spin-1 currents (six of them are
the generators of two SU(2) affine algebras and one of them is U(1) current) and four spin-1
currents [6]. Although the wedge algebra of the large N' = 4 linear superconformal algebra
is also D(2, l\ﬁ) together with a central generator, the large A/ = 4 linear superconformal
algebra is not a subalgebra of the extended algebra of higher spin currents because four
fermions of Spin—% do not occur in the above higher spin algebra. By factoring out the

1

spin-1 current and four spin-3 currents from the above large ' = 4 linear superconformal

algebra, the remaining 11(= 16 — 5) generators consist of the nonlinear version of the large



N = 4 linear superconformal algebra [7].! The levels of two SU(2) affine algebras are
reduced by one and the central charge appearing in the Virasoro algebra is reduced by
three. Furthermore the central term in the operator product expansions (OPE) between
the spin—% currents is also changed and the quadratic terms in the first-order poles of the
OPEs occur.

In [15], the N/ = 4 extension of Kazama-Suzuki model [16, 17] is described and the
N = 4 coset model has the form Wolf x SU(2) x U(1) where Wolf is a Wolf space (or
quaternion-Kahler symmetric space) [18-20].2 The fourteen currents of the large N = 4
linear superconformal algebra are expressed in terms of affine Kac-Moody currents (the
remaining two currents can be obtained from the A/ = 1 Sugawara construction) and the
relative tensorial structures appearing in these expressions satisfy the particular identities.
They also found the nonlinear algebra by factoring out the spin-1 and spin—% currents that
live in the U(1) and the coset is given by Wolfx SU(2). The remaining three spin-3 currents
living in SU(2) can be decoupled further.

For the simplest case where the N' = 4 coset is given by SU(2) x U(1) [22, 23] cor-
responding to the first entry of the table 1 in [15], using the above identities between the
tensorial structures, the 16 generators of the large ' = 4 linear superconformal algebra are
written in terms of the affine Kac-Moody currents with constraints in ' = 2 superspace.?
Furthermore, following the work of [15], by imposing on the above large N' = 4 nonlinear
superconformal algebra in the AV = 4 coset theory, the coset turns out to be a Wolf space
itself in [24].

In this paper, we would like to construct the 16 generators of the large NV = 4 linear
superconformal algebra in the coset?

Wolf x SU(2) x U(1) = w (1.1)

(that is the third entry of the table 1 in [15]) theory with N = 3. By factoring out the

spin-1 current and four spin—% currents, the 11 generators of the large A/ = 4 nonlinear

algebra in the Wolf space coset are obtained.’> One of the findings in [1] is that the lowest

!Sometimes this algebra is called by N = 4 quasi superconformal algebra because this is generated
quadratically (nonlinearly). On the other hand, the small (or regular) N' = 4 superconformal algebra [8, 9]
can be obtained by taking one of the level as zero and the other level as an infinity in the large N' = 4
linear superconformal algebra (therefore there exists only a single SU(2) affine algebra rather than two).
Also in [10], the large N = 4 linear superconformal algebra was studied. See also [11-14].

2The Wolf space appeared in A’ = 2 supergravity in four dimensions [21].

3 Although we use the A = 2 description in this paper, due to the constraints for the N' = 2 WZW affine
currents, effectively our description is the same as the N' = 1 approach in [15].

4Of course, the bosonic coset can be obtained by introducing the extra SO(4N+44) (generated by (4N 4-4)
free fermions) at level 1 in the numerator of the coset as in [1, 25]. The number (4N + 4) is the dimension
of the coset Sgg;’;f) That is, (N +2)?> =1 — (N? — 1) = 4N + 4.

5Let us emphasize that one can combine the spin-1 current and one spin-% current and express them as

a single A/ = 1 super current which corresponds to the U(1) factor in the left hand side of (1.1). However,
the remaining three spin—% currents are part of the N’ = 1 superconformal affine SU(2) algebra. In other
words, the superpartners of these three spin—% currents, i.e. three spin-1 currents do not play an important
role in the denominator subgroup. When one divides SU(2) x U(1) factor both sides of (1.1), then one
obtains Wolf = % where the SU(2) factor in the denominator refers to only the above three

spin—% currents. Their superpartners, three spin-1 currents appear in the group SU(N + 2).



nontrivial multiplet of the higher spin algebra has one spin-1 current, four spin—% currents,

six spin-2 currents, four spin—g currents and one spin-3 current and let us denote them by
spin contents as follows:

L329) 0 (2222), (2222),  (22.23). (12)
272 2 2 2 2 2°2

We construct these 16 currents (1.2) in terms of N/ = 2 affine Kac-Moody currents in
the above Wolf space coset theory explicitly. Furthermore, we calculate the various OPEs
between the 11 generators of the large N/ = 4 nonlinear superconformal algebra and the 16
higher spin currents.’

By construction, the 16 higher spin currents (anti)commute with the eight spin—%
currents (and its superpartner eight spin-1 currents) living in the effective A' = 1 subgroup

SU(N = 3) of the Wolf space coset, the three spin—% currents living in the bosonic subgroup

SU(2) of the Wolf space coset and the remaining spin—% current and its superpartner spin-
1 current living in the effective A/ = 1 subgroup U(1) of the Wolf space coset. The 16
currents are primary under the stress energy tensor of N/ = 4 nonlinear superconformal
algebra.

In the OPEs between the four spin-% currents and 16 higher spin currents, the right
hand sides of these OPEs have special features. If one describes (1.2) as four rows for 4 x 4
matrix, then one writes the OPEs between the above four spin—% currents and this 4 x 4
matrix which has 16 components. Let us concentrate on the linear terms on the higher
spin current appearing in the right hand side of OPEs (There are also linear or nonlinear
terms containing 11 currents of large N = 4 nonlinear superconformal algebra in the full
expressions). It turns out that there are no higher spin currents, at the linear level, in the
second row, third column, second column and third row in the above each 4 x 4 matrix,
respectively. These vanishings of the rows and columns are quite related to the locations of
four spin—% currents in the N = 2 superspace multiplets. One can describe the 16 currents
of large N = 4 linear superconformal algebra as 4 x 4 matrix also as done for 16 higher
spin currents: (1,%,%,2), (%,1,1,%), (%,1,1,%) and (0,%,%,1). The first, second, third
and fourth spin-3 currents are (1,2), (1,3), (2,4) and (3,4) elements of 4 x 4 matrix and
play the role of vanishing second column, third column, second row and third row above
respectively.”

In section 2, the 16 currents of N' = 4 linear superconformal algebra are obtained in
the coset model (1.1).

In section 3, the 11 currents of A/ = 4 nonlinear superconformal algebra are determined

in the Wolf space coset (1.1).

5The N = 4 W; algebra in different context was considered in [26, 27]. One example of W algebra with
Wolf space was found in [28]. Recently, the higher spin theory with extended supersymmetries where the
two dimensional coset theory contains Wolf space was studied in [29].

"That is, when the particular spin—% current acts on the 16 higher spin currents described by 4 x 4
matrix, one does not see any higher spin currents in the given row or column containing that spin—% current
in 4 X 4 matrix. For example, for the first case where the spin-% current is an (2,4) element of 4 x 4 matrix,
the second multiplet of (1.2) appears in the first- and fourth-rows in the right hand side of OPEs and both
first- and fourth-multiplets of (1.2) appear in the third row in the right hand side of OPEs:(6.1). One sees
the vanishing of second row in the right hand side of OPEs. See the section 6 for more detailed descriptions.



In section 4, the extra 16 currents in (1.2) are obtained in the Wolf space coset (1.1).8

In section 5, the OPEs between the 11 currents in section 3 and 16 currents in section 4
are obtained.

In section 6, we summarize what has been done in this paper.

In appendices A—C, some details which are necessary in sections 2-5 are presented.
They contain the complete higher spin algebra.

The mathematica package by Thielemans [30] is used all the times.

2 The large N = 4 (linear) superconformal algebra in the coset minimal
model

Before we construct the large A = 4 nonlinear superconformal algebra using the N' = 2
WZW affine currents, we would like to describe its linear version first. After that, in next
section, the large A/ = 4 nonlinear superconformal algebra will be constructed explicitly.

2.1 N =2 WZW affine current algebra

Let us consider the particular N/ = 4 superconformal coset theory described in [1, 15] which
can be described as”

_ SU(N +2)

Wolf x SU(2) x U(1) = where  Wolf — SU(N +2)

SU(N) SU(N) x SU(2) x U(1)"

(2.1)

The central charge of this coset model [16] is given by

3 2(N+2 3 2N
suive) ~ esun) = 3 [(V+2)7°-1] [1_3(k(+;+)2)} L {1_3<k+N +2>}
_ S(k+1)(NV+1)
~ (k+N+2) (22)

The level of the currents in the numerator and denominator of the coset model (2.1) is
(k+ N +2) respectively. Note that the general expression of the central charge of the large
N = 4 linear superconformal algebra ¢ = (5131717;_) where k™ = (k+ 1) and k= = (N + 1)
are the levels of two SU(2) affine algebras. We will see that the central charge (2.2) occurs
in the OPE between the spin-2 currents (and the OPE between the Spin—% currents) in the
large N' = 4 linear superconformal algebra.

Furthermore, the central charge of the Wolf space (for the time being we assume the

contributions from the superpartners of three spin—% fermions described in the footnote 5)

8When we say “the higher spin currents” in this paper, they are given by these 16 currents (1.2). Some
of the spins are less than 2. In other words, they consist of all the extra currents besides the large N' = 4
nonlinear algebra currents.

9Usually the U(1) factor in (2.1) in the denominator of Wolf space is missing for other types of Wolf
space. The details for using this U(1) factor to other types are given in [31]. Furthermore, one can see the
related works on other types (orthogonal or noncompact) of Wolf space in [32, 33].



can be obtained as follows:

CWolf = CSU(N42) — €SU(N) — €su(2) — Cu(1)

6(k+1)(N+1) 3 s 3
k+N+2) 2 3k+N+2)] 2
6kN
CEN TSk (2:3)

where the above level (k+ N +2) appearing in the coset (2.1) is taken in the SU(2) factor in
the denominator in (2.1). In the second line of (2.3), the result of (2.2) is used. Compared
to the central charge in the large N' = 4 linear superconformal algebra, this central charge
will appear in the OPE between the two spm—f currents in the large A/ = 4 nonlinear
superconformal algebra in next section. For the other central term appearing in the stress
tensor, the contribution from the central charge cgy(g) in (2.3) will be —3.10

We would like to construct the large N' = 4 linear superconformal algebra for the coset
theory (2.1). For the A/ = 2 currents where the N/ = 2 superspace coordinate Z = (z,6,0)
is given by the bosonic coordinate z and two Grassman coordinates 6 and , the component

currents are given by!!

K™(Z) = K™(2) +0 DK™|g_g_o(2) + 0 DK™|y_g_o(2) + 00 (*D%[Dvb]Kmb:é:o(Z)a

K™(Z) = K™(2) +0 DK™|g_g_o(2) + 0 DK™|p_g_o(2) + 00 (—1)%[D7E]Km|9=é:0(z)a

<
B
XN

I

JH(2) + 0 DJ|g—_g_o(2) + 0 DJg_g—o(2) + 00 (=1)5[D, D]J|p_g—o(2),

<
I
N

I

JU(2) + 0 DJ%g_g_o(2) + 0 DJ%|g_g_o(2) + 00 (=1)5[D, D]J"|g_g—(2), (2:6)

where two complex spinor covariant derivatives D and D satisfy the algebra DD + DD =
—0;. The SU(N + 2) indices are decomposed into the SU(N + 1) indices and others: the
former is denoted by m,m and the latter is denoted by a,a. We will come to this issue of
the indices soon.

19As described in [1], the Wolf space can be generalized to the following coset model

SU(N + M)
SU(N) x SU(M) x U(1)’

(2.4)

which appears in the standard A/ = 2 Kazama-Suzuki model [16, 17]. Then the central charge of this
coset (2.4) can be obtained from

CKS = CSU(N+M) — CSU(N) — Csu(M) — Cu(1)
3 2 2(N + M) 3 2N
= - |(N+M)"—=1| |1— = 1l—-
5 (VM) }{ ] 3 | { 3(k+ N+ M)
§ 3kM N
2 (k+M+N)’

3k+N+M
312 2M
— M -1 |1 | - 2.5
> 0= - gy 25)
where the level in each factor of the coset is given by (k+ N + M). Of course, this will become the previous
central charge (2.3) for M = 2.
" One finds the explicit component expressions in (19) of [22] or (24) of [34].



The nonlinear constraints, by taking 6, # independent terms from (2.8) of [34, 35], are

given by!?
DK™o-ieol?) = ~gr gy ol K locacol2),
D locioole) = ~ gy ™ K locso2),
DE™y_i-0() = 55553y P O K i)
DI lycinols) = ~ gyl "I K oio(2) (28)

Then the #- and #9-components of K™(Z) and J*(Z) in (2.6) are not independent and
they can be written in terms of the 6, 6-independent term and #-components according
to (2.8) and (2.7). Similarly, the - and §f-components of K™(Z) and J%(Z) in (2.6) can
be written in terms of the 6, f-independent term and #-components.'® The on-shell current
algebra in A = 2 superspace for the supersymmetric WZW model on a group SU(N + 2)
of even dimension can be written in terms of components of spin s = %, 1 [35].

For N = 3, the 24 adjoint indices of SU(5) are divided into 12 unbarred indices and
12 barred indices. Then the 8 adjoint indices of the subgroup SU(3) are given by 4,5,6
and some combination between the index 7 and the index 8 (and their barred indices).!4
Then the remaining indices, 1,2,3,9,10,11,12 and some combination between the index 7
and the index 8 (and their barred indices) live in the coset gg—g We follow the convention
of [35]. However, some currents (K™ or K™) living in the subgroup SU(4) of [35] live in

ggg In other words, one classifies the 24 basic NV = 2 WZW affine currents as

the coset

2Then it is easy to obtain the following relations, which can be obtained from (2.9) of [35] by putting
9=06=0,

m m 1 Ny el ny
[D,D] K™|g_g_o(2) = —0K™|g_g—o(2) + mfmnp(DK K” — K"DK”)|p—5-0(2),
m m 1 AP n p
[D,D] K™|g_g—0(2) = OK™|g_g_o(2) — mfmnp(DK K? — K"DK")|g_5-0(2),
a a 2 my m T om
[D, D] J%g—g=0(2) = —0J"|g—g—o(2) + mfab (DJ'K™ — J"DK™)|g—g—0(2),
a a 2 m b m b m
[Dﬂ Jo—a=0(2) = 0J"g—g—0(2) — mfaz} (DJbK — J"DK MNo=g=0(2)- (2-7)

13As one computes the OPEs in the component approach in the whole paper, for simplicity, one ig-
nores the notation |y_s_o acting on the A" = 2 superfields from now on [36]. That is, DK™|,_g_o(2) =
DK™ (z), DK™ |g_g—o(2) = DK™ (2), DJ%|y_5—o(z) = DJ(2), and DJ*|y_5_o(z) = DJ(2).

The convention of [1] for the subgroup SU(3), around (3.1) of [1], is different from ours because the
first 3 x 3 block of 5 x 5 corresponds to the their subgroup SU(3) (the unbarred indices 1,2,4 and some
combination between the index 7 and index 8 and their barred ones will describe their SU(3)) while the
middle 3 x 3 block of 5 x 5 corresponds to our subgroup SU(3). Moreover, the adjoint representation 24 of
SU(5) breaks into 24 — (8,1) ® (1,3) @ (1,1) ® (3,2) @ (3,2) under the SU(3) x SU(2). The first three
representations are given by the currents with the indices 4,5,6,7,8 and 9 (and conjugated ones). The
last two representations are given by the currents with indices 1,2,3 and 10,11, 12 (and conjugated ones).
Note that the subgroup SU(4) having the indices 1,---,8 (and conjugated ones) cannot be broken into
SU(3) x SU(2).



follows:

K™ = (Kl, K? K3 K* K° K°® K", K%): coset and subgroup currents,
K™ = (KI, KQ, Kg; Ki, KS, Ké, K7, KS) : coset and subgroup currents,
Jo = (J°, J9O, gt g2y . coset currents,
JO = (J°, JO, g g2y, coset currents. (2.9)

Of course, one can write down the currents having the indices 1,2,3 (and their barred
indices) J!, J? and J? (and their barred currents) respectively but one cannot split the
currents having the indices 7 and 8 in terms of coset and subgroup currents at the moment.

For the Wolf x SU(2) x U(1) = SU(2) x U(1) WZW model with kT = k+1and k~ =1,
as described in the introduction, the 16 generators of the large N' = 4 linear superconformal
algebra are expressed in terms of N' = 2 super stress energy tensor of super spin-1, two
super spin—% currents and a super spin-0 current [22]. In other words, the total 16 currents
are given by their spin contents

33 1 3 1 3 11
1,5,5,2 -, 1,15 =, 1,15 ~, 1) 2.1
<72727 >7 (27 ) 72)7 (27 ) 72)7 (072727 ) ( O)

Note that the spin-1 current appears as a derivative of spin-0 field which is the first com-
ponent field of the last N' = 2 super current of (2.10). See also relevant work [37] where
the SU(2) x U(1) group appears in the subgroup of the coset model.

2.2 Large N = 4 linear superconformal algebra realization

We would like to construct the 16 generators in terms of the numerator SU(5) currents in
the coset (2.1) explicitly.

2.2.1 Construction of two spin—% currents

Let us consider the spin—% current which is the last component field of the second N' = 2 su-
per current in (2.10). Among the coset indices of 1,2,3,9,10, 11, 12 and some combination
of the index 7 and the index 8, it is natural to consider the index 9 corresponding to the
above spin—% current by taking the appropriate derivative or spinor covariant derivatives.
One can write down the following quantity!?

Gi1(2) = V2i (—; [D,D] J? - MaJE’) (2). (2.11)

'"We denote the four spin-2 currents G11(2), G12(2), Ga21(z) and G22(2) here, along the line of [38], for
the G4k (2), G4 (z), G_(z) and G_k(z) in [39]. That is, the vector (or fundamental) representation of
SO(4) is written in terms of two SU(2)’s fundamentals. The three spin-1 currents A™¢(z) where i = 1,2, 3
in [39] correspond to Ai(z), A2(2) and As(z) here. The three spin-1 currents A~%(z) of spin-1 over there
correspond to Bi(z), B2(z) and Bs(z) here. The four spin- currents I'yx(z), T+ (2), [ (2) and I'_x(2)
over there correspond to F11(z), Fi2(z), Fa1(z) and Fha(z) with two SU(2)’s. We use the same notations
for the spin-2 and the spin-1 currents as T'(z) and U(z) respectively.



With the second term of (2.11), the G1;(z) transforms as a primary field under the stress

];;2; can be written as E’Zi;i’;:g with kT =k + 1

—

energy tensor TSU(5).16 The coefficient
and k= = N 4+ 1 =417
Similarly, one can construct the following primary field of spin-

—~

2 , corresponding to

the last component field of the third N/ = 2 super current in (2.10), under the Tsy(s) as

follows:18

Gao(z) = ( [D, D] J° + 5 " k)) aJ9> (2). (2.12)

2.2.2 Construction of three spin-1 currents

What about the spin-1 currents which are the superpartner of the above spm—f currents
G11 and G23? One expects that two linear combinations between DJ? and DJ? provide
the two spin-1 currents. Note that there are no singular terms in the OPEs D.J%(z) D.J%(w)
and DJ?(z) DJ®(w). With the identifications

41(2) = 5 (-D+ D) (2)

2
_ (g 5
Aa(2) = 3 (DJ +DJ ) (2), (2.13)
one calculates the following OPEs
1 1
Ai(D)Aj(w) = ———— (=) =(k+ 1)+, =12, 2.14
() Ailw) = = (D5 (k 1)+ i (2.14)

where the second order pole can be written as —1kT because of k™ = (k + 1).
Let us calculate the third spin-1 current by calculating the OPE A;(2) Aa(w) with (2.13).
It turns out that

1
A1(2) A = —A . 2.15
1(2) Az (w) =) s(w) + -+, (2.15)
where the spin-1 current is given by
, (12,12)
As(w) = —m ( _;9 ; J*J*(w) + other quadratic and linear terms. (2.16)
a,a)=(9,

S Among N' = 2 WZW affine currents, the primary currents under the spin-2 stress tensor (Tsu(s) —
Tsu(s))(z) are given by J?(w) and J”(w). Here Tsus) can be obtained from the last component of
N = 2 superfield m[D7ﬁ] (J“Ja + K"K™ — (fad + fan )DK™ — (fma + fmﬁﬁ)EKm) (Z) [35]
which is equal to Tsyp)(z) = ﬁ (K1K4KTKZ1 + %K1K4K§K7) + other quartic, cubic,

quadratic and linear terms.Similarly, one has Tgsym)y = ﬁ (K4K6K'21K6 + %K4K6K5K7) +
other quartic, cubic, quadratic and linear terms. The indices for the fields in Tsy(s)(2) are given by 4,5,6

and 7 and 8 (and their conjugated ones).
17By substituting ~ (2.7)  into  the  equation = (2.11), one  obtains  Gii(z) =

e (K™DJ* — DK™J%) (2) + G5 (K"DJ? —~ DK"J°) (2) +

(5+k (m,a)=(1,10) 3v2(5+k)
(v3- gfk)f 2 (K¥DJ® = DK®J%) (2) + {53 0.7°(2).
Furthermore, the constramt (2.7) implies that the current (2.12) can be written in terms
of Gum(x) = -G5S0 o) (K"DJ" = DK™J%) (2) — SH0 (K7DJ§ —DK7J§) (2) —
(EraidE) (KSDJg - DK8J9) (2) — &2 9.°(2).



Furthermore one obtains

) 1
Ai(z) Aj(w) = G—w? (z—w)

Therefore, the OPEs (2.14), (2.15), and (2.17) provide the SU(2),+ current algebra of
N = 4 large superconformal algebra. That is, the OPEs (2.17) coincide with the OPE
Ati(2) AT (w) appearing in (C.3) of [39)].

1
(=15 (k+1)di; + €ijiAr(w) + -+, €123 = 1. (2.17)

2.2.3 Construction of four spin—% currents and other two spin—% currents

How does one determine the four spin—% currents appearing in (2.10)? Let us compute the
OPE A;(z) G11(w) explicitly. It turns out, from (2.13) and (2.11), that

1 i 1 i
—— —2(1 —9) F - =
(z —w)? 2 (1=7) Far(w) (z —w) 2

where the parameter is introduced

Ai(2) Gui(w) = Go(w) +---,  (2.18)

k- 4
Ttk T Gk (2.19)

and the new spin—% current and the spin—% current are

 (Bi+V3) L, 1 ) g
o (w) = — Vi K'(w) — 122(\[—32\/5)[( (w), (2.20)
(12,12)
\/Q a a
Goi(w) = 5k Z J*DJ*(w)
(a,a)=(9,9)
+ other cubic and quadratic terms. (2.21)

The OPE (2.18) corresponds to the OPE AT (z) Gy (w) in (C.3) of [39].1

Let us consider the OPE A;(2) Ga2(w). It turns out, from (2.13) and (2.12) together
with (2.19), that

1 ] 1
= 91—y F S
G_w??2 (1 =) Fia(w) + G w)

where?? one can read off the following currents

Fia(w) = —(_?’é;ﬁ K™(w) + 1—12¢(\/§ +3iVB) K8 (w), (2.23)
V2 (12,12)
>

54k i
(a,a)=(9,9)

+ other cubic, quadratic and linear terms. (2.24)

Again, this OPE (2.22) corresponds to the OPE A% (2) G,(w) in (C.3) of [39].

Ar(2) Goa(w) = — %Glg(w) b, (222)

Gia(w) = DJ*J%(w)

More explicitly, their quantity o} appearing in the right hand side of this OPE, in this particular

case, becomes a "’ = ai}{ = 57cai}<,c = 20[1},{’_F which is equal to 2 x £ = £. Here the index a stands
for +K, the index b can be 4+, —, + K, or —K and the index i stands for 1. Their nonzero d, are given by
64— =064 =04k,—Kk =0_k+Kk = % (not 1). Similarly, 6t~ =6+ =5 = 55K =2 (not 1). The

quantity ai}j are antisymmetric under a <+ b. The 12 nonzero independent quantity aaibi can be obtained
from the table 3 of [39].

0The quantity af™ in [39] leads to af}{’f = % and the normalization in the first-order pole in (2.22) is
fixed.



How does one determine the remaining spin—% currents? Let us consider the following

OPE As(z) G11(w). It turns out, from (2.16) and (2.11), that

1 ) 1 )
where?! the spin—% current is given by
1
Fii(w) = —= J(w). (2.26)

V2

Furthermore, the following OPE, which can be obtained from (2.16) and (2.12), provides

o1
other spin-5 current

1 1 1 1
where?? the spin—% current is
Foo(w) = —\L& JO (w). (2.28)
The nontrivial OPEs from (2.20), (2.23), (2.26) and (2.28) are
1 1 c
F F - _ =
B el = ey T
Fio(2) Fon(w) = ——— X ¢ (2.29)
P e 260(1 - ) ' '

2.2.4 Construction of other three spin-1 currents

Let us continue to determine the remaining spin-1 currents. From the OPEs Fj1(2z) Ga1(w)
and Fia(z) Goa(w), one obtains

Fi1(2) Ga1(w) = ) (=iB1 — Ba) (w) +-- -,

= =) (—iBy + By) (w) + -+ -, (2.30)

where the two new spin-1 currents are?® obtained from the first-order poles in (2.30)

(3,12)

1
Bi(w) = —~ Z K™J%w) + other quadratic terms,
2(5 + ]{7)
(m,a):(l,lo)
; (3,12)
By(w) = ——~ Z K™ J%(w)+ other quadratic terms. (2.31)
2(5+ k)
(m.a)=(1,10)
2Tn this case, the quantity o*® becomes ai%ﬁK = —i' Which agrees with the result of [39].

*2Furthermore, one has consistent expression at% LK =g

?3One obtains the quantities a;}( _=jand a;i _ = 1. Similarly one uses a+1_K = ; and a;Q_K =—1

All these results are consistent with the results in [39].
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Now one obtains the third spin-1 current from (2.31) as follows:

Bi(z) Ba(w) = =) By(w) +- -, (2.32)
where the spin-1 current can be read off
; (12,12)

Bs(w) = )] . a)z%g ) JJ%(w) + other quadratic terms. (2.33)

One obtains the following OPEs from (2.31) and (2.33)

1 1
Bi(2) Bj(w) = —————26;; + ————
(Z) ](w) (Z—’LU)2 ]+(z—w)
Therefore, the OPEs (2.32) and (2.34) provide the SU(2),- current algebra with k= =4

of large N = 4 linear superconformal algebra. That is, the OPEs (2.34) coincide with the
OPE A~%(z) A~/ (w) appearing in (C.3) of [39].

e,»jkBk(w) + - (2.34)

2.2.5 Construction of other spin-1 current

Finally, the undetermined spin-1 current can be obtained from the OPE Fi1(2) Gaa(w)

FH(Z) GQQ(U}) = (Z — w) (*iAg —1B3 + U) (w) + - (235)

where?* the first-order pole with previous expressions for Az(w) and Bs(w) in (2.16)
and (2.33) provides the information of U(w) and the spin-1 current is given by

Ulw) = 75 (~3i ~ VB)DK(w) - W DK*(w) + 75(~3i + V3) DK (u)
+M DK3(w). (2.36)

12v/2
From (2.36), the following OPE can be obtained

U() Ulw) = _1w)2 127(16— S (2.37)

Note that one can reexpress the spin-1 currents using the superpartner of Fia(z) and Fy;(z),
i.e. DF15(z) and DFy(z). Then one sees that

Uls) = Jli (DFs — DFy) (2). (2.38)

—+ and o % _; = % which agree with the ones in [39].

**In this case, one reads off o} _ =

— 11 —



2.2.6 Construction of spin-2 current

One obtains the stress tensor as a difference between the stress tensor of the group SU(5)
and the stress tensor of the subgroup SU(3):

T'(2) = Tsus) (2) — Tsus)(2)- (2.39)

Then one can obtain the following OPEs

T(2)sues) T(w)sue) = (Z_lw)4 683(5)+(2_1w)2 QT(w)SU(5)+( _1w) OT (w)sy(s)+- -+
T(2)sues) T(w)su@) = (z_lw)4 ng(g) + (Z_lw)2 2T (w)su(s)+ (Z_lw) T (w)sy@)+ - »
T(2)sue) T(w)su) = (Z_lw)4 cs{;(g) + (Z_lw)g 2T (w)suy(3)+ (Z_lw) OT (w)su(3)
+---, (2.40)
where the central charges are given by
e = 12((55j k3>k>’ suE = 1?5(3:1{];)’ ©T U T suE = 2?551:1-61)6)' (241

Then the standard OPE between the stress tensor T'(z), that can be obtained from (2.40),
has the following form

1 c 1 1
(z—w)t2 " (z—w)? 27 (w) + (z —w)

T(2) T(w) = OT(w) + -, (2.42)

where the central charge is given in (2.41).

One can easily check that there are no singular terms in the OPEs between the gener-
ators of the large N' = 4 linear superconformal algebra and the subgroup stress tensor as

follows:25

TSU(B) (Z) <I)(w) =+, (243)

where ®(w) is 16 currents of large N' = 4 linear superconformal algebra. There are no

singular terms in the OPEs between the generators of the large N' = 4 linear superconformal

algebra and the two subgroup spin-3 currents, G?g (3)(2) and GSF (3)(3).26

ZSInstead, there exist the singular terms in the OPEs between 16 currents of large A = 4 linear algebra
and AN/ = 2 WZW affine currents (having the indices 4,5,6 and some linear combination of the index 7
and the index 8 and their conjugated ones) living in the subgroup SU(3). In next section, by factoring out
spin-1 current and four spin—% currents and modifying the remaining 11 currents correctly, the 11 currents
of the large N/ = 4 nonlinear superconformal algebra commute with the SU(3) WZW affine currents. See
also the footnote 53.

26That is, Gf;j@)(z) d(w) =+--- and G§F<3)(z) d(w) = +---, where ®(w) is defined in (2.43).

— 12 —



One can rearrange the 16 currents in terms of four A/ = 2 multiplets as follows:

<1 % % 2> . (—Qi’)/Ag — 2 (1 — ’y) Bg, Ggl, G12, T),
1 3
(2, 11, 2) L (2Fy, 2i(Bi —iBs), —i(Ai +iAs), Gu+(1—27)0F),
1 3
<2,1,1,2> : (2F22, —2i(A1 —iAQ), Z(Bl —i—iBg), —Gog + (1 —2(1 —’y))aFgg),
1

1
(0, 5, 5, 1> : <2 / Udz, —2F21, F12, —i(Ag - B3)> . (244)

In the first N' = 2 multiplet of (2.44), the OPE between G2;(z) and G12(w) provides N = 2
U(1) current of spin-1 and the stress tensor. For given lowest component of second N = 2
multiplet in (2.44), the third component can be read off from the OPE between Gia(2)
and Fip(w). Similarly, the second component can be obtained from the OPE between
G21(z) and Fi1(w). The last component can be obtained from the OPE between Gia(2)
and i(B; — iBs)(w).?” For given lowest component of third A" = 2 multiplet in (2.44), the
third component can be read off from the OPE between G12(z) and Fa(w). Similarly, the
second component can be obtained from the OPE between Go;1(z) and Fhe(w). The last
component can be obtained from the OPE between Gi2(z) and i(A; — iAs)(w).?8

Therefore, the large NV = 4 linear superconformal algebra is realized by the spin-
2 current, (2.39), the four spin-3 currents, (2.11), (2.12), (2.21) and (2.24), the spin-1
currents, (2.13), (2.16), (2.31), (2.33) and (2.36), the spin-% currents, (2.20), (2.23), (2.26)
and (2.28). Some of the algebra consist of (2.14), (2.15), (2.17), (2.18), (2.22), (2.25), (2.27),
(2.29), (2.30), (2.32), (2.34), (2.35), (2.37) and (2.42). The remaining OPEs can be obtained
similarly.??

3 The large N = 4 nonlinear superconformal algebra in the Wolf space
coset minimal model

The large N' = 4 nonlinear algebra can be obtained from the linear one described in

previous section by factoring out the four fermions and a spin-1 bosonic current.3?

*"In other words, one has the following OPEs: Gai(2) Fi1(w) = Sl e w)z(Bl —iBy) (w) + -,
Gi2(z) Fii(w) = e=mn w) i (Ay +iAs) (w) + -+, and Gia(2)i(By — iBa)(w) = - w)g <5+k>FH( o
e S P + G (w) + -

2881m11ar1y one has Ga(z)Fa(w) = —giyi(Adi—ids)(w) + -, Gu()Pa(w) =
G-w) w) i(B1+iB2)(w) + -+ and  Gi2(2)i(A1 — iAd)(w) - (Z_lw)2 2((51-+—+kk)) Fas(w) +
(z—lw) [2((51_;5)) 0F11 + Gzz] (w) + -

There exists the middle A = 4 linear superconformal algebra where SU(2) x U(1)* affine algebra is
present in [40].

39The main reason why we should decouple these five currents is that they do not appear in the
D(2,1]1%;) wedge subalgebra and therefore also in the higher spin theory of [1]. In the CFT compu-
tations characterized by any OPEs obtained in this paper, because the number of independent currents
is reduced from 16 to 11, there are no computational complications in the calculations of the OPE. In
particular, we do not have to consider any spin—% currents in the composite fields of any spin appearing in
the singular terms of the OPE.

,13,



3.1 Construction of spin-2 stress tensor

The additional terms in the stress energy tensor of spin-2 consist of the quadratic term
of spin-1 current and the 16 quadratic terms of spin—% currents with derivative. Then
the total 19 unknown coefficient functions can be determined from the following regular
conditions between the U(z), F11(z), Fi2(2), F21(z) and Fhs(2) and the stress energy tensor
T =T+ Trnoa [7, 41, 42]:

U)T(w) =+, F()T(w)=4---, a=11,12,21,22. (3.1)

For N = 3, the stress energy tensor of the large A' = 4 nonlinear algebra can be written
as [7, 41, 42]

1
T(z) =T(z)+ 7UU(Z) + (OF11Fog + OF19F9) + 0F51 Fia + 0F5F11) (2)

G+k) G +k)
= T (2) ~ Tougw () + s UV +0F7F) (). (3.2

The general N case can be obtained by putting (5+&) — (k+ N +2) and T — Tgy(n42) —
Tsy(n) in (3.2) similarly. One can read off the corresponding central charge appearing
in the Virasoro algebra by calculating the OPE T'(z) T'(w).3! Therefore, the total central
charge is given by

s SEADWNY) o Bt N 2EN) 33+ 7R)

(k+N+2) k+N+2)  Gik)

(3.3)

where the N = 3 is substituted in the last stage.

3.2 Construction of six spin-1 currents

Let us determine the other currents. For the spin-1 current, one can add 6 additional
terms coming from four fermions, Fi1(z), Fi2(z), F21(z) and Fya(z). The relative coefficient
functions, as done in (3.1), can be determined by the regular conditions [7, 41, 42]

U(z) A1(w) = + -+, Fo(z) Aj(w) =+ -, a=11,12,21,22. (3.4)

It turns out that the spin-1 current is given by

A 1 7 7 ) )
Ai(z) = Ai(z) — )] <2 Fi1Fo — 3 FioFyq + 3 Fy1Foo — 3 F22F21> (2). (3.5)

One can further simplify (3.5) using the fact that Fy; Fia(z) = —Fi2F11(2) and Fa Fas(z) =
—F22F21 (Z)
31The OPE between UU(z) term and itself contributes to 1 for the central charge while the OPEs between

the fermions and itself contribute to 2. The OPE between T'(z) and the UU(w) (and the OPE between
UU(z) and T'(w)) contributes —2 and similarly the contributions from the 7'(z) and fermion terms give to

—4. This can be seen from the (2.3) by realizing that the central term coming from the three fermions in
SU(2) is given by 3 x 3 = 2 while the one from the spin-1 and spin-3 fields in U(1) is given by 2. Therefore,
the sum of these is equal to 3.

— 14 —



Similarly, the other currents of spin-1 can be obtained as follows:

A 1 i a b .
Ai(2) = Ai(z) — 5 Qi FUFY =23, a,b=11,12,21,22.  (3.6)
It is straightforward to calculate the following OPEs from (3.5) and (3.6)
. . 1 1~ 1 A A
A;(2) A; = kT ik A dii = 1, .
() A) = — = R+ gy e Ak -+ (37)

where the new level is given by kt = kT — 1 = k. The three quadratic terms appearing
in (3.5) and (3.6) satisfy the SU(2); current algebra of (3.18) in [1]. It is obvious that
the OPEs between these three currents and Aj(z), As(z) and As(z) (that correspond
to J(z) around the equation (3.18) in [1]) do not have the singular terms due to the
conditions [7, 41, 42] like as (3.4):

U)Aj(w) = +---,  Fu2)Aw)=4---, i=2,3,  a=11,12,21,22(3.8)
Similarly, the currents A;(z), A2(z) and As(z) correspond to J(z) appearing around the
equation (3.18) of [1].32 Compared to (2.13) and (2.16), the currents A;(z) and Ay(2)
contain the quadratic parts in the fermions while the quadratic parts in the fermions with

the indices 7 and 8 appearing in A3(z) disappear in the current As (2).33

32More explicitly, by substituting (2.13), (2.16), (2.26), (2.23), (2.20) and (2.28) into the equations (3.5)
and (3.6), one obtains

R I 1 .5 (Bi+v3) 7, (iV3+3V5) 5] .5
Ai(z) = ngJ (2) + §D'] (z) + {12(5_”{) K 12725 1+ F) K } J7 (=)
(=3i+V3) 7 (=iV3+3V5) 5] 0
{ 2GR T 12v2(5 + k) K]J @,
i _ =19 i 9 TBi+v3) 7 ((V3+3V5) 5] 5
Asz(z2) = §DJ (z)—l—iDJ (2) +1 {12(5+k) K"+ 12305 + k) K ] J(2)
[(=3i+v3) .7, (=iV3+3V5) 5] 0
_Z{ Gk T G R ] 7@,
As(z) =i [1—12(31—1- V3) DK™ + (i\?;\/:;/g) 5K8} (2) +1i [%(—:wr V3) DK
(~iv3+3v5) s i 05, N .
+ NG DK } (z) — ) (2J°0 +(a,a>zz<m,1-0)J JH)(2)
. (3.3) i
] Z K"K™(z). (3.9)

(m,m)=(1,1)

33 As observed in (2.13) and (2.16), the currents A, (z), A2(z) and Az(2) contain the linear spin-1 currents
(not quadratic fermions). Then one knows its superpartners, J°(z), J(z) and a linear combination between
K'(2), K%(2),K"(z) and K%(z). These are the three fermions in su(2),({1) of [1]. Note that from (2.31)
and (2.33) there are no linear spin-1 currents. All of the expressions are written in terms of quadratic
fermions. Note that A;(z) and As(z) contain the Wolf space subgroup indices in their expressions while
the As(z) contains both Wolf space subgroup indices and Wolf space coset indices. Therefore, the SU(2)y
algebra of large N' = 4 nonlinear algebra comes from two currents from the Wolf space subgroup and one

current from both the subgroup and the coset of Wolf space. Note that the SU(2)x1 algebra of large N' = 4
linear algebra comes from three currents from the coset gggg

of [15].

This is consistent with the equation (3.7)
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Let us move on the other type of spin-1 currents. As done before, the spin-1 currents,
Bi(z), B2(z) and Bs(z)(that correspond to K(z) appearing around the equation (3.18)
of [1]) can be modified under the factoring out the fermions and spin-1 current. One
obtains [7, 41, 42]

N 1 .
Bi(z) = Bi(z) — m ay FeF®, 1=1,2,3, a,b=11,12,21,22. (3.10)
Their current algebra can be summarized by
A A 1 1. & 1 5

where the new level k= = k= —1 = N = 3. Three of four in K*?(z) defined in the equation
(3.14) [1] correspond to the present Bj(z), By(z) and Bs(z). The three quadratic terms
appearing in (3.10) satisfy the other SU(2); current algebra of (3.18) in [1] and therefore
the OPEs between these three currents and the three currents appearing in (3.5) and (3.6)
(satisfying other SU(2); current algebra) do not have the singular terms.?* Compared
to (2.31) and (2.33), the quadratic parts having the indices 7,8 or 9 disappear in (3.12).%°

3.3 Construction of four spin-% currents

One can construct four spin-3 currents (7, 41, 42)]

R ) 2
Ga(2) = G, UF,(2) — ———— eapeaFPFEF?
(2) (2) + ) (2) 305+ I €abed (2)
4 b o +i 4 i A ,
+(5 s FP(oft A; — ot By), i=1,2,3, a,b,---=11,12,21,223.13)

The expressions in (3.21) of [1] correspond to the extra fields in (3.13). The relative

coefficient functions in (3.13) are determined completely by requiring that they should

commute with U(1) current and four fermions of spin-3.%6

34Furthermore, by substituting (2.31), (2.33), (2.26), (2.23), (2.20) and (2.28) into the equations (3.10),
one has

1 (3,12) (3,172) o

(m,a)=(1,10) (m,a)=(1,10)

i (3,12) (3,12) o
Bz(z):m oo KM - Y KM (2),

(m,a)=(1,10) (m,a)=(1,10)
. (12,12) (3,3)
Bs(z) = —m ( Z JUJY + Z Kme> (2). (3.12)
(a,a)=(10,10) (m,m)=(1,1)

35Note that all the currents B (z), Ba(z) and Bs(z) contain the Wolf space coset indices only. Therefore
the SU(2)3 algebra of large N' = 4 nonlinear superconformal algebra comes from the currents in the Wolf
space coset. This is consistent with the result for the structure of J™~ in (3.18) of [24]. Recall that the
SU(2)4 algebra of large N/ = 4 linear superconformal algebra comes from the currents in the coset 238;
This is consistent with the equation (3.7) of [15]. The spin-1 currents in (3.12) satisfy the following regular
conditions, as in (3.8), as follows: U(z) Bi(w) = +--- and F,(z) Bi(w) = + - --

3%In other words, U(2) Gu(w) = 4+ -+ and F,(2) Gp(w) = +---.
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By substituting the expressions (2.26), (2.23), (2.20), (2.28), (2.36), (2.11), (2.24),
(2.21), (2.12), (3.9) and (3.10) into the equations (3.13), the following results can be ob-
tained

A i3 (3,12) B B
Gll(Z) = —m Z (KmDJa — DKmJa) (Z)
(m,a)=(1,10)
+ other cubic and linear terms, (3.14)
. (3,12)
A 2 m 1y 7a m 7a
G22(Z):—(5+k) > (K™DJ*- DK™ (z)
(m,a)=(1,10)
+ other cubic and linear terms, (3.15)
(12,12)
a \/ﬁ 7 70 70
Ga(z) = “G1k) Z DJ*J%(2)
(a,a)=(10,10)
+ other cubic, quadratic and linear terms, (3.16)
(12,12)
a \/§ a a
tn(®) = 5 g > JDJY(z)

(a,a)=(10,10)
+ other cubic and quadratic terms. (3.17)

The quadratic parts having the indices 7,8, or 9 in G11(z) disappear in G 11(2) and similarly,
those having the indices 7, 8, or 9 in Gay(2) disappear in Ggo(z). Furthermore, the quadratic
parts having the indices 7,8, or 9 (and 7,8 or 9) in G12(z) disappear in G12(z). The cubic
terms containing the indices 9,9 in G12(z) disappear. Similarly, the quadratic parts having
the indices 7,8, or 9 (and 7,8 or 9) in Ga1(z) disappear in Ga1(z). The cubic terms
containing the indices 9,9 in Ga;(2) disappear in Ga(2).37

The full algebra can be obtained from the OPEs between 11 currents. For example,
from the explicit expressions in (3.16) and (3.17), the following OPE can be described as

. R 1 2 1 . A . s
G12(Z) Ggl(’w) = m gCWolf + m [42 YA Ag + 43 YB B3:| (’LU)
1

.1 - 1 N
2T 4 4iyaDAs + = divp OByt
(z —w) 2 2

4oen (3.18)

3TFor the G11(2) and Gas(z), the terms having the indices 7 and 8 can be rewritten using Fia(z) (2.23)
and the terms having the indices 7 and 8 can be expressed using the Fb1(z) (2.20). The Fi2(z) and Fa1(2)
are currents of SU(2) and U(1) factors in the denominator of the Wolf space coset (2.1). See also the
footnote 42. However, for e (z) and G21(z), it is not obvious to see whether the terms including the
indices 7,8,7 and 8 can be rewritten in terms of the currents with indices of the subgroup of the Wolf
space coset. Because the currents K7(z), K7(z), K®(z) and K®(z) can be expressed in terms of two SU(3)
currents, one SU(2) current and one U(1) current, one realizes that any spin—% fermion terms including the
indices 7,8,7 and 8 have the subgroup SU(3),SU(2) or U(1) indices in the Wolf space coset. See also the
footnote 53. All the spin—% currents have both subgroup indices and coset indices of Wolf space.
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where the central charge in the highest pole of this OPE (3.18) is cwoir = % which
coincides with (2.3) for N = 3. One can easily check that the central terms from the extra
three OPEs coming from the left hand side of (3.18) except G12(z) G21(w) can be written as

6((54::)) which is exactly the same as the contributions from SU(2) and U(1) in (2.3). The
k kt k

parameters 4 ancAl B are given by va4 = l%++kl%_—+2 = (5ik) and yg = e~ G
The stress tensor 7'(z) is given by (3.2). Compared to the OPE G12(z) Ga21(w) described in
previous section, the nonlinear terms occur in the first-order pole in (3.18).38 This is due
to the fact that the OPEs between the extra terms in (3.13) contribute to these nonlinear
terms in the right hand side of (3.18).

3.4 U(1) charge
As in U(1) current of (2.44), one can describe the U(1) current here. By realizing that the
U(1) current appears in the second-order pole of the OPE G (2) G12(w), the U(1) current

is identified with (—2¢7AA3 - 21'7333) (2) from the OPE (3.18). Then one obtains the
following first-order poles for the 11 currents as follows:

(—22'%213 - 2@731%3) (=) As(w)| s = e _1 3 [¢(5 i k)} i, (w),
<_2i7AA3 - 21”7313’3) (2) Bﬁ:(w)’ﬁ = _1 o) [$(52fk)} By (w),

. . ox G B 1 (=3 +k) G
(—21’}/AA3 — QZ'YBB?,) (2) <G22> (w)] =i (z —w) [ (5+k) :| (é22> ),
. . on Go 1 3+ k) Gz
(—QZ’yAAg — 217333) (2) <G21> (w)] (Ziw> - (z —w) |::F (5+ k‘):| (égl ) )
(—21'7 A As — 2y Eg) () T(w)] =0 (3.19)

For the nonzero U(1) charges, we present the correspoding two expressions together in
order to emphasize the fact that they have opposite U(1) charges.>® We present the U(1)
charges for those currents in the table 1. This definite U(1) charges will play an important
role in any OPEs in this paper because the U(1) charge conservation holds for any OPEs.
For example, in the OPE between the spin—% current and the spin-3 current (the most
complicated OPE in this paper), the first-order pole contains the spin—% field. Without
the U(1) charge conservation, in general, the possible spin—% field has too many terms.

38Using the following values aii = —i, aiiK = —i and af?ﬁK = —i (therefore, we present all the
12 independent quantities with previous footnotes), this particular OPE coincides with (A.7) of [42]. Note
that our Glg(z) and é21(2) correspond to their \/§G+(z) and V2G_ (z) respectively because their dqp is
normalized by 1 (not by 1).

39Tf one takes the notations for the spin—% currents in [1] using (++,+—, —+, ——), then one can ex-

press (3.19) more concisely rather than column notation.
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U(1) charge | 11 currents of large AN/ = 4 nonlinear superconformal algebra
(Ska) B_ (= B) —iBy)
o A (= Ay — idy)
0 Az, Bz, T
-5 A (= A +idy)
_(52Tk:k?) B (= B +iBy)

Table 1. The U(1) charges for the 11 currents from (3.19). The U(1) charge conservation can be
seen from the equations in appendix (A.3), (A.5), (A.7) and (A.9). The first four currents with
positive (k > 3) U(1) charges have their conjugated currents with each opposite (negative) U(1)
charge.

However, the U(1) charge assignment will choose the right candidate for the above spin—%
field by removing the unwanted terms which do not have the correct U(1) charge.%?

Therefore, the large N/ = 4 nonlinear algebra is generated by (3.2), (3.5), (3.6), (3.10)
and (3.13) and some of the algebra are given in (3.7), (3.11) and (3.18). The complete
algebra is summarized in appendix A.%!

4 Higher spin currents in the Wolf space coset minimal model

According to the observation of [1], the 16 lowest extra currents, appearing in the equation

(2.33) of [1], consist of single spin-1, four spin—%, six spin-2, four spin-3, and single spin-

3 currents. Rearranging them in terms of N = 2 multiplets [47], one has four N' = 2

490ne finds the U(1) charges for the WZW affine currents. The fields having U(1) charge ﬁ are given
by K™(z) and J%(z) where m = 1,---,3 and @ = 10, - ,12. The fields with U(1) charge *ﬁ are their
conjugated ones K™ (z) and J%(z) where m =1,--- ,3 and @ = 10,--- ,12. The fields with vanishing U(1)
charge are given by K™(z), DK™ (z) and J%(z) where m = 4,---,8 (and their conjugated ones K™ (z),
DK™ (z) and J°(z) where m = 4,---,8). The U(1) charges of the remaining WZW affine currents are
undecided.

41n particular, when Et =k (or k = 3), the N' = 4 nonlinear superconformal algebra becomes the
SO(N = 4) Knizhnik-Bershadsky algebra [43, 44] with central charges ¢ = 9 and cwolrr = % along the line
of [15, 24]. Therefore, the higher spin currents in next section will lead to an extension of SO(4) Knizhnik-
Bershadsky algebra at ¢ = 9. Furthermore, according to [7, 45, 46], the N' = 3 linear superconformal algebra
can be reduced to the SO(N = 3) Knizhnik-Bershadsky (nonlinear) algebra by decoupling the fermion of
spin—%. The central charge is reduced with % The exact field redefinitions in order to see this in the present
context should be done. See also [38] in the A/ = 2 superspace approach.
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supercurrents

<1;’;2> (T, 7P 7 7)),
(3.023) - v v v,
<22;3> . (wO,w® S o), (4.1)

This section will consider the particular supersymmetric Wolf space coset minimal
model (2.1) and the higher spin currents in (4.1) will be determined.*?

4.1 Construction of higher spin currents of spins (17 %, %, 2)

How does one determine the spin-1 current in (4.1)? The basic 24 N = 2 WZW affine
currents of spins % are given in terms of K™ (2), K™(z), J%(2) and J%(2) in (2.9). Then
the general spin-1 current can be obtained from these by considering the quadratic ex-
pressions. Furthermore, the basic spin-1 N' = 2 WZW affine currents are given by
DK™ (z), DK™(z),DJ%(2) and D.J%(z). The linear combinations of these currents should
be added into the most general spin-1 current 70)(z) we are looking for. Then one can

write down, with 300 coefficient functions which depend on the level k, as

8 8 8 8 12
TW(z) = > nnK™K™(2)+ > Y emak™K"(2)+ > > cmoK™J(2)
m,n=1 m=1p=1 m=1a=9
8 12 8 8 12
+ Z Zcm,@KmJ‘i(z) + Z cmaK™K™(2) + Z Zcm,aKmJ“(z)
m=1ag=9 m,n=1 m=1a=9
8 12 12 12 I ) 2
+ Z cmaK™J%(2) + Z capJ I (2) + Z an’gJan(z) + Z caDJ%(2)
m=1a=9 a,b=9 a=9 p=9 a=9
12 ) 8 8 12
+ > pd T2 + D emDE™(2) + > eq DK™ (2) + > caDJ(2).  (4.2)
a,b=9 m=1 =1 a—9

We would like to determine the coefficient functions appearing in (4.2) explicitly. Since

the regularity conditions between the spin-1 current U(z) and the spin-1 currents, Fi1(z),

42 Let us emphasize that in the Wolf space coset model (2.1) written in terms of ' = 2 superspace
(effectively N = 1 superspace due to the constraints), the higher spin currents should commute with the
N =2 WZW affine currents (of spin-% fields and its superpartner spin-1 fields) living on the denominator
SU(3) (the explicit 8 + 8 fields will be described in the footnote 53), commute with those of three spin-1
currents living on the denominator SU(2) (the fields Fi1(z), Fha(z) and (Fa1 + Fi2)(z)), and commute
with the spin-1 and its superpartner spin-3 currents living on the denominator U(1) (i.e. the field U(z)
with (2.38) and the field (F; — Fi2)(z)). Once again, the OPEs between the higher spin currents and the
three SU(2) currents, [DFi1(z), DFs2(2) and (D Fs1 + DFi2)(2)], which are the superpartner of above three
spin—% currents DO have singular terms. Therefore, the 11 + 16 = 27 (higher spin) currents commute with
16 + 3 + 2 = 21 Wolf space denominator currents among 48 currents in the group SU(5).
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Fi5(2), Fo1(2) and Fy(z) that live in section 2 and the spin-1 current 7" (w) are preserved
in this extended nonlinear algebra, the following relations, together with (2.36), (2.26),
(2.23), (2.20), (2.28) and (4.2), should satisfy

U)TOw) =+,  F()TOw) =+, a=11,12,21,22.  (4.3)

Then the remaining undetermined coefficient functions can be fixed by the following pri-
mary field condition under the stress tensor (3.2)

1

T()TW — 7ML ) e 4.4
BTV W) = g TOw) + 2 0TV (w) + (44)

This OPE (4.4) implies the following result
T T(w)| 1 =0. (4.5)

(z—w)

In other words, the commutator [To(l),T] between the zero mode of TW and T’ vanishes.
Then we are left with seven unknown coefficient functions.

All the first-order singular terms between the above spin-1 current and other six spin-1
currents can be obtained from the defining equations (3.9), (3.12) and (4.2) and by requiring
that the commutators between the zero mode Tél) and six spin-1 currents should vanish [1]

TO) Aj(w)] o+ =0,  TW()Bij(w)|_1_ =0, (4.6)

(z—w) (z—w)

all the remaining coefficient functions are completely determined except an overall constant.

It turns out that the lowest higher spin-1 current (4.2) can be obtained as follows:*3

T (z) = —WDW@) + (_65\"/‘5/?519];;5) DE3(2) — WDsz) (4.7)
(5’“/3_'— 9\/5) 8 1 (12’172) a 7a (373) m -m
FOWVITIVI) by JeJa - KEmKE™ | (2).
6V2(5 + k) (5+k) (ma)zz(;o,m (m,n%;(l,l)

The field contents of (4.7) look similar to those of As(z) in (3.9) except that the former does
not have the term of J%J%(z). One can easily check that this spin-1 current is new primary
current in the sense that this cannot be written in terms of given six spin-1 currents: A;
and B;. Furthermore, the OPE between the spin-1 currents (4.7) does not have a first-order
pole:44

TOHTO (W) 1 =o0. (4.8)

(z—w)

“3The first four terms of (4.7) can be written as — ?;}r/gU(z)+ (, (15¢+5\g(§;;€/>5+\/ﬁ) DK™ + 32(5/33) ﬁKS) +

_ (C15i5VB4IVEHVIS) 1 7 + 2V/10 DKg) where the last two fields correspond to the Wolf space denom-

6(5+k) 3(5+k)
inator SU(3) current. This spin-1 current has both subgroup indices and coset indices of Wolf space.
44 One obtains the OPE T(1>(z) T<1>(w) = ﬁ [%] 4.
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Therefore, this spin-1 current will play an important role in the construction of higher spin
currents because this will generate, in principle, all the higher spin currents with the help
of the currents in the A/ = 4 nonlinear algebra described in previous section.

Consider the next OPE between the spin—% current (3.17) and the spin-1 current (4.7)
to determine the other current in the higher spin currents of spins (1, %, %, 2). Usually,
the A/ = 2 description for this particular OPE produces the second component of N' = 2
superprimary current. The result can be expressed as

Go1(2) TW (w) =

G _1 m {Gm + 2T§>] (w) + -+, (4.9)

where the new spin—% current (in the sense that this cannot be written in terms of combi-

nation of known currents) can be obtained

J*DJ%(w) + other cubic terms. (4.10)

o) (12,12)
>

@, .
S

(a,d)=(10,10)

The field contents of this current can be seen from the current Goi(z) (3.17) where there
are quadratic and cubic terms with the two indices among 1, 2, 3, 1, 2 and 3. From the
right hand side of (4.9), the U(1) charges of two currents appearing in the first-order pole
are the same.

There are no singular terms in the OPE between this spin—% current (4.10) and the
spin-1 current (2.36). The OPEs between the spin-3 current (4.10) and the spin-3 cur-
rents (2.26), (2.23), (2.20), and (2.28) (also the spin-1 current (2.36)) do not contain any
singular terms as in (4.3):

3
U TP W) =+, FE)TPw) =+, a=11,12,21,22. (4.11)

Note that the normalization of spin-1 current 7V (z) in (4.7) (i.e. the footnote 44) was
fixed by the following OPE*

TON T (w) = — TP (w) 4+ . (4.12)

3
That is, the right hand side of (4.12) can be described as (5 + k)A(N, k)TiQ)(w) with

normalization A(N, k). By taking the U(1) charge under the T} spin-1 current to be

1, the normalization constant is given by A(N,k) = (5le) which appears in (4.7). The

OPE (4.12) implies that the U(1) charge of 7™ (2) is equal to zero.

The next OPE between the spin-3 current (3.16) and the spin-1 current (4.7) can be

calculated to obtain the other remaining spin—% current in the higher spin currents of spins

(1, %, %, 2). As observed before, the reason why one considers this particular OPE is the

45We will not consider the OPEs between the higher spin currents themselves in this paper. Of course,
they should be calculated to complete the full structure of the extended large A/ = 4 nonlinear algebra and
will appear near future [48].
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fact that the AN/ = 2 description of this OPE provides the third component of N' = 2
superprimary current. The result can be expressed as follows:

~ 1 ~ (§)
T () = - 272 4.1
G12(2) (w) G- [ Gia + 271" ] (w) 4+ , (4.13)
where the new spin—% current can be written as

. (12,12)
T3 () = - V2 3

- G+k) DJJ%(w) + other cubic and linear terms. (4.14)

(a,a)=(10,10)

The field contents of this current can be seen from the current Gy2(z) (3.16) where there
are quadratic and cubic terms with the two indices among 1, 2, 3, 1, 2 and 3. The U(1)
charge of two currents in the first-order pole of (4.13) are the same. The OPE (4.13) is
conjugated to the OPE (4.9).

No singular terms in the OPE between this spin—% current (4.14) and the spin-1
current (2.36) exist. The OPEs between the spin-3 current (4.14) and the spin-3 cur-
rents (2.26), (2.23), (2.20), and (2.28) do not contain any singular terms as in (4.3)
and (4.11):

@y =40, a=11,12,21,22.  (4.15)
Consider the spin-3 current (3.17) and the spin-3 current (4.14) to determine the last

component spin-2 current. The result can be expressed as

1 6k 1 [(1)+ 2i

(z—w)3 (5+k) * (z —w)? (5+k) (_SAB B ké?’)] (w)

! [( Gk T+T(2)+;8<T(1)+ 2 (—3A3—k1§3)>](w)

Cion(2) T (w) =

(z—w) | (3+7k) (5+k)
NE (4.16)
where the last component of the higher spin current of spins (1, %, %, 2) can be described as
5 (12,12) .
T(2) - = 9 7a 79 70
(w) e _Z_JJJJ(w)
(a,a)=(10,10)
+ other quartic, cubic, quadratic and linear terms. (4.17)

The complete expression is not presented here. In the first-order pole of (4.16), the new
spin-2 current arises and another primary spin-2 current (3.2). The relative coefficient %
in the descendant field of the spin-1 current in the second-order pole can be obtained from
the formula in the OPE of two (quasi) primary fields. Of course, this spin-2 current cannot
be written in terms of other known currents. The U(1) charges for the currents in the
first-order pole of (4.16) should be the same.

No singular terms in the following OPEs exist as in (4.3), (4.11) and (4.15):

UNTPw) =+, F()TOWw)=4+---, a=11,12,21,22. (4.18)
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As in (4.5), (4.6) and (4.8), the commutator between the zero mode Tél) and the spin-2

current T2 vanishes:46

TOE)TH(w)| 2 =o0. (4.19)

(z—w)

Therefore, the higher spin currents of spins (1, %, %, 2) are determined completely: (4.7),
(4.10), (4.14) and (4.17). Some of the OPEs between these higher spin currents and the cur-
rents from the large A/ = 4 nonlinear superconformal algebra are presented in (4.9), (4.13)

and (4.16). The remaining OPEs are given in appendix B.1 and appendix C.1.

4.2 Construction of higher spin currents of spins (%, 2,2, %)

What happens when the other spin—% current én(z) or Goo (z) rather than é21(2) or 6112(2)

DRIDR]
G11(2) T (w). From the explicit expressions (3.14) and (4.7), the following OPE can be
calculated easily

)
acts on the lowest component of previous multiplet (1, 3,2,2)? Let us focus on the OPE
7)

Gui(z) TW (w) =

A 3

G 2U(5)} e 4.20
o G+ 20D )+ (4.20)
where the new spin—% current which cannot be written in terms of other currents can be

expressed as

U (w) = ——Y=

. (12,12)
7’\/§ a ja
e > T (w)

(a,a)=(10,10)
+ other cubic, quadratic and linear terms. (4.21)

Some of the fields in (4.21) can be seen from the Gy1(w) but the following three terms
K2K471(w), K3K®J1%(w) and K*K5.J' (w) occur in (4.21) newly. The U(1) charges in
the first-order pole of (4.20) should be the same. As stated before, the following regularity
conditions, as in (4.18), satisfy

U U (w) =+,  F(2)UD(w)=+--, a=11,12,21,22. (4.22)

Consider the next OPE between the spin-3 current (3.14) and the spin-3 current (4.10).

The result is as follows:

. () 1 2k .
G T = B_
nG) W) = s G R [2 } (w)
1 (2) 1 A A 1 2k -
— |-U) — —~4A3B_ + -——i0B_
U e e
4+ (4.23)
46More explicitly, one has the OPE T™W (2) T (w) = ﬁ [—ﬁiz&g— %ié3+ ((;:;C,C))T“q (w)+---
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where the new spin-2 current is given by*”

2 5 - -
UJ(FQ) (w) = 5 +Zk)3 <—K1J9J10J9 LR g0 g0 Iy K1J10J12J12) (w)
+ other quartic, cubic and quadratic terms. (4.24)

Note that the second term As(B; — iBs) in the first order pole of (4.23) is primary field
under the stress tensor (3.2) because the current As(z) and the current (B; — iBy)(z) are
primary and commute with each other. Furthermore, each term of the spin-2 current (4.24)
contains K'(z), K2(z) or K3(z). There are no composite terms consisting of J%(z), J%(z),
DJ%(z) or DJ%(z).

As in (4.22), the following OPEs satisfy the regular conditions

U UPw) =+, F@UPw) =+, a=11,12,21,22. (4.25)

Furthermore, from the equations (4.7) and (4.24), one checks, as in (4.19), the following
vanishing first-order pole

TW(2) Uf)(w)\(i =0 (4.26)
Now let us consider the spin-3 current (3.14) acting on the spin-3 current (4.14)
16
Gll(Z) T (w) - (Z — ’UJ)2 (5 + k‘) |:ZA+] (w)
w16 i 49
(z—w){ U= +2(5+k‘)18 +](w)+ , (4.27)

where the other spin-2 current which obtained by subtracting the descendant fields can be
described as*®

9 (12,12)
2 7 70 TG
(a,a)=(10,10)
+ other quartic, cubic, quadratic and linear terms. (4.28)

Compared to the previous spin-2 current (4.24), the first six terms (and the last term)
of (4.28) contain only J%(2), J%(z2), DJ%(z) or DJ%z). One realizes that the U(1) charge
of UEQ)(Z) is the same as the one of (A; +iA)(z) from the OPE (4.27).

4"From the OPE

1 2k
2(5+k)

GV D) = g 8] w0+ g [0 -

it is natural to consider the extra spin-2 current in the first-order pole (i.e. the first-order pole subtracted

iaé_} (w) + -,

by the descendant terms) as a second component of higher spin currents of spins (%, 2,2, g)
4811 this case, one has also

Cha(2) UD (w) = ﬁﬁ [iA:] w)+ (Z_lw) {U@ +%(5ﬁk)iazx+} (W) + - .

After subtracting the descendant term in the first-order pole, the extra spin-2 current with plus sign is the

third component of the higher spin currents of spins ( %, 2,2, g)
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As one expects in (4.25), the following OPEs are satisfied
U UPw) =+, F()UPw)=+---, a=11,12,21,22. (4.29)
One also checks that the first-order pole of the following OPE vanishes as in (4.26)

T UD (w) L =o0. (4.30)

(z—w)

As in (4.16), the last component spin—g current can be calculated from the follow-
ing OPE

- 1 (3 + 2k) - 42+k), (3
Gor(2) U (w) = U 431
21(2) — (w) (Z _ w)z (5—|—/<J) 11 (5—|—k) 2 (w) ( )
sy 1, ((342k) ~ 424 k), (s
UG 4+ o 2" a =M i)
+(z—w)[ 3 ((5+k) nt ey U)Wt
where the new spin—% current can be described as
U(%)(w) — 4iV/2 <J9J10J11J1’0J1’1 4 g9 g0 y12 510 jT2 | J9J11J12J1’1J1’2) (w)
(5+ k)4
+ other quintic, quartic, cubic, quadratic and linear terms. (4.32)

Again, the U(1) charge conservation leads to the fact that the three currents in (4.31) in
the first-order pole have the same U(1) charge. The complete expression for (4.32) is not
presented here. Moreover, the following regularity conditions which are similar to (4.29),
satisfy

U U (w) =+,  F(2)USD(w)=+---, a=11,12,21,22. (4.33)

Therefore, the higher spin currents of spins (%, 2,2, %) are determined com-
pletely: (4.21), (4.24), (4.28) and (4.32). Some of the OPEs between these higher spin
currents and the currents from the large A/ = 4 nonlinear superconformal algebra are pre-
sented in (4.20), (4.23), (4.27) and (4.31). The remaining OPEs are given in appendix B.2
and appendix C.2.

4.3 Construction of higher spin currents of spins (%, 2,2, g)

In this subsection, we consider the second case when the other spin—% current Gy (2) acts
on the lowest component of previous multiplet (1, %, %, 2):

Giaa(2) T (w) = |[~Goo +2v | (w) + -, (4.34)
(z —w)
where the lowest component spin—% current can be expressed as
) (12,12)
D) = V2 a1 ya
V) (w) = 1 72 U (w)
(a,a)=(10,10)
+ other cubic, quadratic and linear terms. (4.35)
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The field contents of (4.35) look similar to those of (4.21). The barred and unbarred indices
in (4.21) are replaced by unbarred and barred ones in (4.35) respectively. The U(1) charges
of the two currents in (4.34) are the same. The OPE (4.34) is conjugated to the OPE (4.20).
As in previous results in (4.33), the spin—% current satisfies

U VE () =+, F)VO@) =+, a=11,12,21,22. (4.36)

Consider the next OPE

6n T ) = gy -]
G _1 > [—Vf) + ;(5 i k)iafl_] (w) + -, (4.37)

where the new spin-2 current occurs in the first order pole of (4.37) and the result is as

follows:*?

(12,12)
S I DI (w)
(a,a)=(10,10)
+ other quartic, cubic, quadratic and linear terms. (4.38)

21

VW) = 5

The field contents of (4.38) can be obtained after the barred and unbarred indices in (4.28)
are replaced by unbarred and barred ones respectively. The OPE (4.37) looks very similar
to (4.27): they are conjugated to each other under the U(1) charge.

One can see immediately that the following regularity conditions hold, as in (4.33)
and (4.36),

U VP W)=+,  Fl)VPw) =+, a=11,12,21,22. (4.39)

Furthermore, the first-order pole in the OPE T()(z) Vf) (w) vanishes, as in (4.30),

T (2) VP(w)y( i =0 (4.40)

One describes the following OPE

A () B 1 2k A
G22(z) T (w) - (Z — w)g (5 + k‘) |:ZB+:| (w)
1 e 1 2k .~ 1 A
7(2 — ) [ V¥ + > 7(5 n k)Z8B+ + 7(5 s 4A33+] (w)
T (4.41)
490ne obtains

A 3 _ 1 6 A 1 @,1 6 4
G21(2) v )(w) = (z—w)? (5+k) [ZA—] (w) + (z—w) Vi + 2 (5+k)Z8A_:| (w) +

As before, the spin-2 current with plus sign appears in the first-order pole after subtracting the descendant

term.
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where the other spin-2 current can be described as®®

Vw) = 5 iik)3

+ other quartic, cubic and quadratic terms. (4.42)

(_KIJQJQJID + KiJllJfOJfl + K1J12J170J172) (’U))

The OPE (4.41) is conjugated to the OPE (4.23) under the U(1) charge. As before in (4.39),
one has the following OPEs
U VP W) =+, FEVIPw =+, a=11,12,21,22, (4.43)

and along the line of (4.40) the following relation holds

T (2) sz)(w)|( L =0. (4.44)
Let us calculate the last component spin-3 current, as in (4.31),
= — 4.4
Ga1(z) V27 (w) G w)? [ 6+ k)GQQ + G+ R V| (w) (4.45)
(3) 1 _(6+k) A 2(7+ k) (3)
e-w [VQ +3a( Grh 2T 5am ) T

where the new spin—% current after subtracting the descendant fields can be described as

V(%)(w) _ (54:_\/5)4 (J10J11J§J1‘0J1‘1 4 g0 y12 59 510 jT2 | J11J12J§J1‘1J1‘2> (w)
+ other quintic, quartic, cubic, quadratic and linear terms. (4.46)

Furthermore one has the regularity conditions, similar to (4.36), (4.39) and (4.43), as
follows:

UV (W) =+, F()VO(w)=+-, a=11,12,21,22. (4.47)

Therefore, the higher spin currents of spins (%, 2,2, %) are determined com-
pletely: (4.35), (4.38), (4.42) and (4.46). Some of the OPEs between these higher spin
currents and the currents from the large A/ = 4 nonlinear superconformal algebra are pre-
sented in (4.34), (4.37), (4.41) and (4.45). The remaining OPEs are given in appendix B.2
and appendix C.2.

*00ne obtains the following OPE

Gra(2) V) (w) = ﬁ% [—iB+] (w) + (Ziw) v _

2k

1 o
P R A

where the spin-2 current with plus sign appears in the first-order pole.
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. . . . 5 5
4.4 Construction of higher spin currents of spins (2, 3539 3)

In this subsection, the final N = 2 multiplet can be determined. One way to see the
presence of new spin-2 current is to calculate the following OPE, together with (3.15)

and (4.21),

1 6k 1 21
(z—ww(a+m*xz—wy[w+k)

Cna(2) UD (w) = — <m%—kaa+Tm]w>

+---, (4.48)
where the new spin-2 current can be written as
w® (w) = G _fk;)?) (J9J10J§J1’0 4 o1 g0 g 4 g9 y12 59 512

| g10 y11 710 711 | 710 712 710 yI2 4 J11J12J1'1J1'2) (w)
+ other quartic, cubic, quadratic and linear terms. (4.49)

The full expression of (4.49) is not presented here. As in (4.44) and (4.47), the above spin-2
current satisfies

U)WH(w) =+,  F)WHw)=+---,  a=11,12,21,22, (4.50)
and
TW(2) W(Q)(w)](j =0 (4.51)
Let us consider the following OPE
A 1 1 A 3
@) () = 2(2 34 BT 4.52
Ca() W) = oy s 224 WG + (3407 (0) (4.52)

1 1 (g) 1 ) (%)
=0 1R [W+ +30 (2(2+l<r)Gz1+(3+k)T+ )] (W) -,

where the new spin-2 current is given by

2

2iv/2
(5+ k)4
+ other quintic, quartic, cubic, quadratic and linear terms.  (4.53)

5 o o
Wj?)(W) _ (K1K4K7K1K4+K1K5K7K1K5>

The U(1) charges of three currents in (4.52) are the same. One can check that the spin-5
current commute with the subgroup currents, as in (4.50), as follows:

U)W (w) =+, Fl)WP W)=+, a=11,12,21,22. (4.54)
Let us consider the following OPE
G12(Z) w (w) = (Z — ’U))2 (5 n k) 2(2 + k‘)Glg — (—3 + k‘)Tf (w) (4.55)

LS S PEO I 2 — T DY ] (w) e
w0 G1F) [W_ +38(2(2+k)G12 (B+k)T- )]( )+,
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where the new spin—% current can be obtained

(2) 2i\/2
W = —Frme
+ other quintic, quartic, cubic, quadratic and linear terms.  (4.56)

w' (K KAKTKAKT +K1K5K1K5K7)

The two OPEs (4.52) and (4.55) are conjugated to each other. Also one obtains the follow-
ing regularity conditions (i.e. the higher spin current should commute with the subgroup
currents) as in (4.54)

5 5
UOW D w) =+,  F )W) =+, a=11,12,21,22. (4.57)

Finally, the highest higher spin current of spin-3,°! can be obtained from the follow-
ing OPE

. (8 1 8i(1+ 3k) - 80ik - | 8(=3+k),
W2 (w) = 3+ 3+ TV (w)
G (2) (z —w)? [ (5 + k)2 3(5 + k)2 3(5 + k)
N 1 4(15 465k +22k%) o 4(=3+K), (o 4(4+1<;)W(2)
(z—w)? | 3B+7k)(5+k) 3(5+ k) (5+k)
16(=1+k) ; - 16(=14+Fk) . . 413 —4k) . -
T A - A A+ A A
361 k2 N T B3GR 2T 3R B
4 o - L A(=542k) 4 -
- BB - ByBy+——"""B. B
364k 0 T 3G R 22T 3E Rz 8
4 o 8(—4+k) ;- 4i A
) g, 4 =2 TF) __ M 4
MGy 3+3(5+k)2 BT ER 3]“”
1 24i(1 + 3k) U
S Ay — 024
+(z—w)[ PHCn W) ot (19+23/~c)(5+k)< 3759 3)
80ik U P 8(-3+k) (. 1
T B3—=0Bs |+ ———— 2 (TTW =271
19238 (54H) < 339 3>+(19+23k) < 57
+W(a)} (w) + -, (4.59)

where the new spin-3 current can be described as

4(—27 + 23k + 2k?)
5+ k)5(19 4 23k)
+ other sextic, quintic, quartic, cubic, quadratic and linear terms. (4.60)

W — — (KR KK KK+ KKK KR

! The OPE of two quasi-primary fields, of spins h; and h; respectively, takes the form [49-55]

Di(z) ©j(w) = WW

- hy + i+
+Zczgkz h+h —hp—n |:nl U Qhk+;) x)

The ;5 corresponds to a metric on the space of quasi-primary fields. The structure constant C;;, appears in
the three-point function. The index k specifies all the quasi-primary fields occurring in the right hand side
of (4.58). The relative coefficient functions [n, ) %] in the descendant fields depend on the
spins and number of derivatives. For the fixed Cjji, the relative coefficient functions in the descendant fields

0" (w). (4.58)

using (4.58) can be obtained. It is quite nontrivial to rearrange those expressions in terms of determined
(and known) higher spin currents.
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Note that because the relative coefficient functions for the descendant fields of the spin-1
currents appearing in the third-order pole in (4.59) vanish, there are no descendant fields
in the second-order pole. In the first-order pole in (4.59), the total derivative terms with
the coefficient % are descendant fields of the spin-2 currents in the second-order pole. The
remaining three terms containing T(w) are quasi-primary fields of spin-3 under the stress
tensor (3.2).52

Therefore, the higher spin currents of spins (2, g, 3,3) are determined com-
pletely: (4.49), (4.53), (4.56) and (4.60). Some of the OPEs between these higher spin
currents and the currents from the large N' = 4 nonlinear superconformal algebra are pre-
sented in (4.48), (4.52), (4.55) and (4.59). The remaining OPEs are given in appendix B.3

and appendix C.3.

5 Extension of large N/ = 4 nonlinear superconformal algebra in the
coset minimal model

In section 3, the 11 currents of large N' = 4 nonlinear superconformal algebra were con-
structed and in section 4, the 16 higher spin currents were found. For the extension of
large N' = 4 nonlinear superconformal algebra, one should calculate the OPEs between the
11 currents in section 3 and the 16 currents in section 4 as follows:

7 T(l),Ti%),TE%),T(Q)
Ay, Ay, Ag U(%),USFQ),UEQ),U(%)
Bubas || vveve e [ oy
Gi1, Gra, Gor, Gao W@, WJ(F%), Wﬁg), W)

In other words, the OPEs between 11 currents in the left hand side of (5.1) and the 16
currents in the right hand side of (5.1)% are needed.

°20ne has the following regularity conditions between the spin-3 current and four spin—% currents and
spin-1 current, as in (4.57)

U)W W) =+, FeWOwWw) =+, a=11,12,21,22.

Furthermore, compared to (4.51), the first-order pole between the spin-1 current and the spin-3 current
doesn’t vanish

TW (2) W(3)(w)|< i #0.

53 One can easily check that the OPES between (11 + 16) cur-
rents and four quantities 55 (431 + V3K + (—iv/6 — 3vV10)K®) (w),
12f( (=3i + V3)K" +i(\/6 + 3iv/10 )KS)( ), s (43i + VB)DK™ + (=iv/6 — 3vI0) DK®) (w),
and 12\[ ( (=3i +V3)DK™ +i(v/6 + 3iv/1 )DKB)( ) do not have any singular terms. The first and

second fields look similar to Fb;(z) and Fi2(z). The only difference appears in the coefficient of K7 (z)
and K7(z). These are N' = 2 WZW affine currents for the denominator SU(3) in the Wolf space coset
model. Furthermore, the OPEs of above (11 + 16) currents and [K™(z), K™, DK™(z), and DK™ (z)]
where m =4,--- ,6 and m = 4,--- ,6 do not have any singular terms. Therefore, these eight currents (and

its superpartners) consist of the Wolf space denominator SU(3) N' = 2 WZW affine currents.
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5.1 TU(1) charges of higher spin currents

It is straightforward to calculate the various U(1) charges under the U(1) current introduced
in previous section. The result is as follows:

(207443 — 2i7883) (2) TOW) 2 =0,

(~2ivads — 207585 (2) 2>< Nt = o :igi:ﬂTﬁ)(w),
(—2ivads = 2i78Bs) (:) TP ()] 1 =0,
( QZ'YAA3_2Z’YBB3 (gz > . (le) _i((;:_kl;)] (gg) (w),
( 22’YAA3—2WBBg (XU;g) L= (Z_lw) :4_—(53?1{:)} (?;g) (w),
N
( QWAA3—22’YBB3 (g ?) 1w> = (Z_lw) _i((;):kl;)] (gii) (w),

(- 2wAA3—2wBBg) ()W (w)| 1 =0,
N ) A (3) 1 (3+k) (3)
“2iadAs — 2y B 2 - + 2
(~2inda = 2ivn) (YW ) o = s [+ 22D W),
(—2@'%4143—22"}/333) WO W) 1 =o. (5.2)

We present these U(1) charges in the table 2 explicitly.>* Then the U(1) charges of all the
composite fields coming from the (11 + 16) currents can be determined by the assignments

in table 1 and table 2. The necessary U(1) assignments in this paper are presented in
table 3-table 7.

5.2 Structure of OPEs

The 16 higher spin currents are primary fields under the stress energy tensor 7(z) (3.2).
Then the remaining nontrivial OPEs between the 16 currents and the 11 currents are given
by 1) the OPEs between the six spin-1 currents and the 16 higher spin currents described
in appendix B and 2) the OPEs between the four spin—% currents and the 16 higher spin
currents described in appendix C. It is nontrivial to extract all the structures in the right
hand sides of above OPEs. Because the left hand sides of these OPEs are known in terms
N =2 WZW affine currents, we would like to express them in terms of known currents. If
one cannot write them with the known currents, then one should obtain the new primary
fields appearing in the right hand sides along the line of footnote 51. One should write down

41f one uses the notations (++,+—, —+, ——) for the fermion currents and (4, —,3) for the bosonic
currents which tansform as triplet under the SU(2), then the expression (5.2) will be simpler.
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the correct terms, which preserve the right U(1) charge described before via tables 1-7,
with arbitrary coefficients at the specific pole (with fixed spin) in the given OPE.

For example, in the OPEs between the spin-1 currents of large N' = 4 nonlinear algebra
and the largest spin-3 higher spin current, by dimensional analysis of spin, the first-order
pole contains the spin-3 fields in appendices (B.29)—(B.32). One can rearrange these OPEs
in terms of descendant fields with known coefficients and (quasi) primary fields at first-order
pole terms. The U(1) charges of composite spin-3 fields are presented in table 5. The U(1)
charge of the left hand side of appendix (B.29) is the sum of the U(1) charge of (A; +iAy)(2)
and the one of W®)(w). The former is given by —ﬁ
table 2. Therefore, the total U(1) charge, —%, should appear in the right hand side
of appendix (B.29). Then from the first row of table 5, there exist 26 possible composite
spin-3 fields with U(1) charge —ﬁ. Because the left hand side of appendix (B.29) is
written in terms of N' = 2 WZW affine currents explicitly, let us subtract the above 26

and the latter is given by 0 from

terms with arbitrary k-dependent coefficients from the left hand side of appendix (B.29). In
order to vanish these quantities, one should solve this equation. This is equivalent to solve
many linear equations with respect to the above undetermined k-dependent coefficients. It
turns out that the unknown coefficient functions can be obtained completely and they are
given in appendix (B.29). Of course, when the order of any product is changed, the extra
derivative terms arise either in table 6 or in the OPE of appendix (B.29).

What about the OPEs between the spin-% currents of large N' = 4 nonlinear su-
perconformal algebra and the above spin-3 higher spin current? They are presented in
appendix (C.43)—(C.46). One can have the composite spin-Z fields in the first-order pole
of appendix (C.43) by dimensional analysis as before. The total U(1) charge of this OPE
should be preserved. Because the U(1) charge of the left hand side is given by (_5?:;@ from
the table 2, the possible 68 composite fields with this U(1) charge are presented in the first

row of table 7. As performed in previous paragraph, it turns out that the unknown 41

coefficient functions can be obtained completely and they are given in appendix (C.43).

In these examples, there are no new (quasi) primary fields in the first-order pole. As
in (4.59), when one cannot solve the linear equations completely due to the appearance of
new (quasi) primary fields, one should resort to the procedure described in the footnote 51.
That is, one should check that any singular terms consist of a couple of descendant fields
(with determined coefficient functions using the formula in the footnote 51) and a couple
of (quasi) primary fields.

As in an abstract, the result from appendices B and C shows that the right hand
sides of all the OPEs contains the composite fields which can be obtained from the known
(11 + 16) currents. There exist no new primary fields. One expects that the new primary
fields will appear in the OPEs between the 16 currents and themselves [48].

6 Conclusions and outlook

As in an abstract, the 16 higher spin currents given in (1.2) and 11 currents of large N' = 4

SU(5
><SU((2))><U(1)' Part

of this extended large N' = 4 nonlinear algebra are described in appendices A, B and C.

nonlinear algebra are found explicitly in the Wolf space coset model SUE)
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U(1) charge 16 higher spin currents 11 currents in table 1
(389 . s i B-
(BHh) ) wlY Cian
((5%) v, gk G
S v A
0 7O, 7@ W@ W As, Bs, T
—ﬁ v Ay
_% v, V(%) Gloo
@t s, w G
- (52+kk) v B,

Table 2. The U(1) charges for the 16 currents from (5.2). For convenience, the U(1) charges for
the 11 currents of large A = 4 nonlinear superconformal algebra in table 1 are presented also. The
fields appearing in the first-order poles of (B.4), (B.5), [(B.1) and (C.1)], (B.3), (B.9), (B.3), (B.2),
[(B.6) and (C.2)] and (B.4) correspond to the above ones located at each row, respectively.

U(1) charge Composite fields of spin-2
2(3+k) —
(51k) A_B_
o TOB U, 8B, AsB., B_Bj
2(—3+k) —
G+k) AyB-
(Eﬁk) TWA_, V+(2), DA_, A_A;, A_Bs
0 TWA,, TOBy, T, 7@, w@ 17OTO 9§45 9By, oTD
A+A_, 12131213, Agég, B+B_, Bng
2 TWA, U® 0A., Acds, AiBy
2(—3+k) —
(G+k) A_B,
_% TWB,, V¥, 8By, AsB, BB
2(3+k) A
D) ALB,

Table 3. The U(1) charges for the spin-2 fields which can be obtained from the U(1) charges
in table 2. The fields appearing in the first-order pole in [(B.8) and (C.5)], [(C.3) and (C.12)],
[(B.7), (B.12) and (C.10)], (C.6), [(B.10), (C.4) and (C.13)], [(B.21) and (C.11)], (B.8), (B.22)
and (B.11) correspond to the above ones respectively. One sees that the fields located at the first
four rows have their conjugated ones in the last four rows.

If one says the last statement of the abstract precisely, the (11 + 16) currents commute
with the N' = 2 (effectively N' = 1) WZW affine currents living in the A/ = 1 subgroup
SU(3) x U(1) and the bosonic subgroup SU(2). The regular conditions of these currents
with the four spin—% currents and spin-1 current were very crucial. Three of four spin-%
currents live in the above bosonic subgroup SU(2) while one of them and spin-1 current
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U(1) charge Composite fields of spin—%

3(1+k A A A m(3)
e B-Cn, BTy
3(—1+k e 3 5
ReTon B-Gn, B.U®
e:y iGn, AT
+ — ’ _
5 — " — s -
% WJ(rQ)a A Gn, A U2, A3Gy, ASTJ(rQ)’ B_Go
R . e R 3 . 3
B_V%7 BsGoy, B3T_E_2), T(I)GZL T(I)T_%)a aG217 8T-$-2)
— 3 — " -
((75%5) A1 G, A+T4(r2)7 UG, A3Gu, AUB), B_Gyy
. (3 . R R R
B.T?, By, BU®, TOG,, TOUD, oG, oUu®
- — P
% A Gn, AU®
_((_5%@];) A_Go, AV
— —z — " —
- AGry, ATH V3 3G, AV, BiGy
A R R R
B+Ti2), B3Clas, B3V, TWGy, TOVE, 9Gs, ovG)
5 — " — —3 —
_811’3 W A G, AVE, AGre, AT, BiGn
R . . (3 . 3 . 3
B+U%, B3G12, B3T£2), T(l)Glz, T(l)T£2); 8G12a 8T£2)
— —3
58 Ay, A1
3(—1+k B A s 3
,W B+G22, B+V(§)
— BiGra, BT

Table 4. The U(1) charges for the spin-2 fields which can be obtained from the U(1) charges
in table 2. The fields appearing in the first-order pole in (C.16), (C.14), (C.19), (C.17),
[(C.7), (C.15), (C.20) and (C.33)], (C.18), (C.18), [(C.9), (C.27) and (C.28)], [(C.8), (C.21)
and (C.34)], (C.19), (C.14) and (C.16) correspond to the above ones respectively. Similarly,
the fields appearing in the first-order pole in (B.26), (B.16), (B.24), [(B.14) and (B.20)], [(B.23)
and (B.28)], (B.13), (B.18), [(B.25) and (B.27)], [(B.15) and (B.17)], (B.24), (B.19) and (B.26)
correspond to the above ones respectively. The fields in the first six rows are conjugated to each
other in those in the last six rows.

live in the N' = 1 subgroup U(1). The two SU(2) affine algebras are embedded in the
N = 4 coset theory in nontrivial way. The SU(2)3 algebra is realized by the Wolf space
coset currents while the SU(2) algebra is realized by two currents from the Wolf space
subgroup and one remaining current from both Wolf space subgroup and Wolf space coset.

Compared to the work of [35] where the N' = 2 W5 algebra with spin contents of
(1, %, %,2), (2, g, 2,3), (3, %, %,4) and (4, %, %,5) is realized on the coset CP* = %&%m,
the present Wolf space coset model has more higher spin currents in the sense that there
exist the additional second and third multiplets of (1.2). This is because the dimension of
the subgroup in Wolf space coset is less than the one of the above CP* model and there
exists more room for construction of higher spin currents.

From the OPEs between the 11 currents and 16 higher spin currents, one realizes that

some of the OPEs have special features. Let us consider the OPEs between four spin—%
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U(1) charge Composite fields of spin-3

((6;2,6’“)) AsA_B_,BsA_B_.TWA_B_, A_ Uf), A_0B_,B_ Vf), B_0A_,
N A~ N 3 3 3
G21G217G21T(2) T(Q)T(2)
w2 TOUP TOIB_, AU A;0B_,B_T,B_T?, B.W® B 9As, B_0Bs,
§

B oTM, BsU? | BsoB_,0UD 0?B_, Gy Gy, Gy UB), Gy T\
T( US), A_A,B_ AsAsB_, AsBsB_, B_B_B,, BsBsB_, T") A3B
(1)BgB,,T( )T(I)B

5 AsAs B BsA, B TOA, B, B.UD, B 0A,, A, U, 4,08,
GG, GUB), UG U%
55 TOVE TOIA A T A T A W2 A 9As, A 0Bs, A 0TV,

AV, 0V 924 Gy Gag, Gy V) GQQT( D By A AfA_,
A_A3As,A_A3Bs, A _B,B_, A_B3Bs, BsV® A_TW Az, A_ T By,
A_TOTW A0A_, B39A_

0 w® 7O 7T 7MW TMYA, TWHBy, TW TV TOTM ),
AV® AL0A_ AU A_0A,, AsT, AsT@, Asw @, 737
AgaAg,Agaég AzoT®, BLUY, BLoB_,B_V® B 0B, BsT, BsT®),
BsW @), B30 As, B3dBs, BsoTW, 07,07, oW ) 7(1) aT<1> 0% A5, 0% B, 02TM)
OTW Ay, 7MW By, Gy Gon, Gy V3 G12G21,G12T2> G TE) GouUD) UG VD),
A A_Ag, AL A_Bs, AsA3 Ay, AsA3Bs, As B3 By, By B_Bs, B, B_As, B3B3Bs,
TWAL A TWA3A;, TWA3By, TOB, B_, TV By By, TOTW Ay, 7T By
- 5% TOUD TWYA, AT, A, TP A, WD, 4,045, A,0B;, A, oT®

AUP 0P 924, GhaCiir, GroU D), G T2 703 AL A A,
Ay AsAs, Ay AsBs, AL B_B., AL B3B;, BsU?,
A TM A5 A, TW By, A, TOTM | As9A L BsOA,

- AsA_By, ByA By, TWA_B., BV, B0A_,
AVP AL0B,, GoaGan, CaaV D VAV )
- (52Jfkr) T(l)Vf(Q)’ T(1)83+7 A3V£2)a ASaB+7 B+T(2)7 B+W(2)7 BJraA?,, B+8B3, B+8T(1),

N A N A~ N ~ A~ ~ ~ 3 3 ~ N N
BV BT, BsoB,, 0V P, GraClas, GraV D), G TV AL A B,
A3AASB+782B+7A3B3B+ﬂ B+B+B*uBSB3-B+7 T(I)A3B+7 T(1)33B+7T(1)T(1)B+7
R0 AsA Br BsA B TOA B, A VD, A, 0B,

3 3
B.U® BLOA,, ChaChg, GroT® T T

Table 5. The U(1) charges for the spin-3 fields which can be obtained from the U(1) charges in
table 2. The fields appearing in the first-order pole in appendix (C.37), [(C.24) and (C.35)], (C.22),
[(B.30), (C.31) and (C.38)], [(C.25), (C.29), (C.36) and (C.41)], [(B.29), (C.23) and (C.39)], (C.32),
[(B.31), (C.30) and (C.42)] and (C.40) correspond to the above ones respectively.
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U(1) charge Composite fields of spin-Z

Egjrg A A+G*21,A_A+T§),A_U(%>, A_AsGh1, A_AsUB), A_B_Ghs,

D A_ByC, A B, 406G, A-0u®, B B Gor, B BT\,
B A5G, BLAsV (), B_B3Gas,
B_B3V3) B_TW oy, B T( >V 3), B_0G 0,
B_ov®), A;w'S) | A3 A3Gar, AsAsT'D | Ay ByGioy, A BT,
AsdGoy, Az By ),BngGm,B3B3T§),BgT<1>C:21,B3T<1>T§),
B30Gay, BsoT® TOWE) 17 A_Gyy TWA_UR), 7O Ay,

T A7) TOTO Gy TOTOTE) TWaGy, TP oW P 94 Gy,
DA_UD 043G, 04572 0B_Clan, 0B_VE), 083G,
0BT 0TV Goy, 0TOTE) 092Gy, 02T | Gy T, Gy T® , Gy W, T,
Tf) 2) T(é) (2) eV UV Gau® v ®

— & A+A G AL AT A VD) AL AyCron, AL AV (D), AL B, Gy,
A ByT® A ByGoo, A BV D) A, 0Gay, A 0V, BB, Gy, BB, T,
BLUB), By A3Ghy, By AU, By BsGhy,

B, BsU®) B, TWG, B,TOUR) B, oG,
B+8U<%>,A3W () Ay 435G, AsAsT'®) | Ay ByGrra, As BT,
A30Ch0, As0T D BaW' P By ByClig, BaBsT'®), BsTM Gy, BsTOTS)
B30Cha, B30T TOWE TW A, Gy, TW A, V), TO A5G,

T AP TOTO G, TOTOTD TMad,, TOTD aw'® 9A (s,
DA VD) 04300, 047D 0B, C11,0B,.UD), 9By Chs,

BT 9T Gra, 0TOTE 92615, 2T D) G, GraT @), W@, T,
T3 >T<2>,T£ W@, Gopu? vEOUP G v vy ®

Table 6. The U(1) charges for the spin—% fields. The fields appearing in the first-order pole in
appendix (C.45) and (C.44) correspond to the above ones respectively. The fields in the first row
are conjugated to those in the second row.

currents and 16 currents. In the right hand side of these OPEs, we only focus on the linear
higher spin current terms. See also appendix C where one obtains all the detailed results.
The first result is as follows:

T, Ti%)y T(%) 72
. v, u?, U@, U

R R N e AR C
D) D
w®@, W2, Wi, w3
U, Uf), U, USRS
0, 0, 0, 0 o)
— 5 5 .
w70 w® 70 w® 10 70w, we)
UG) (](2)7 U£2), U i)
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U(1) charge Composite fields of spin—z

<(—53jk’§> A+G11, _AU®) BB G, B,B_.U®) B A+GQ2 B_A, V&),
Bw® B A3G12,B AT D B ByGro, B BT BTG,
B T<1>T( B_0G1s, B_ 8T( AW A+A3G21,A+A3T( 2)

A+33021,A+33Ti A TGy A TOTY | A, 0G0, ALoT'?,
AsUR) | Ay AsGry, AsAsUG) | A3 BsGhy, AsBsUR), AsTWG
AsTOUE) | 430G, A30UR), BsUR), B3BsGyy, BsBsU ), Bs TGy,
BsTOUE) | B3dGyy, BsoU ), TMy(B) 7T én
TOTOY ), T<1 0G11, TOIUE) 94, oy, 0A, T ?)
0B_ Glg,aB T2 8BgG11,8BgU< ), 0TM Gy, aTU)U( ),
92G11,2UD),0U D, Gy U? TP 6,0 TP 6 7T, G11T(2),
GuW® G045, UCT, UG T®), U< Iw ) U< VDA

-G ALA_Gyy ALA_VE) B B+G22 B_B,VE) B A_Gy,BLA_UD,
B+W§)7B+A3G21,B+A3 T, ),B+B3G217 B+B3TJ(F2),B+T(1)G217
BT BLoGy,, Boor A W'D A_AyGra, A AT
A_ByGro, A_BsT'H  A_TW Gy, A_TOT®)
A_0G 1, A_0T'®) | A;v(D), A3 AsCra, AsAsVE), Ay ByGios,
AsBsV 3 AsTW Gay, AsTOVE) | 430G, As0V ()| BsV(3) | By B3Glas,
By BV E) BaTW Gy, BsTWVE) B30Gas, B3oVE), TV () 7TTM Gy
T<1>T<1>v<%>,T<1>aé22,T<1>av<§> OA_ Gy, 0A_TS),
OB, Cioy, 0BT | 0By Gan, 085V D), 0T M Gy, 8T(1)V(
82G22,62V(%),6V(%),Cllzvf),TS%)Vf),G21V_(2),TJ(F v ,G22T,G22T(2),
GooaW @ Gy As, VEIT VEIT@ v WE V(3)9A,

Table 7. The U(1) charges for the spin—% fields. The fields appearing in the first-order pole in
appendix (C.43) and (C.46) correspond to the above ones respectively. The fields in two rows are
conjugated to each other.

There are no higher spin currents, denoted by zeros in (6.1) corresponding to the row
containing G1;(w) when one writes (2.44) in terms of 4 x 4 matrix, in the OPEs between
the current Gn(z) and the four currents living in the second multiplet of (4.1). These
four currents appear in first and last rows in the final expression of (6.1). Also the current
U (%)(w) appears in the last columns of these rows by conformal dimensional analysis.
Finally, the first and last multiplets of (4.1) appear in the third row in (6.1). Of course,
the currents T (w) and W) (w) can appear in the last column of this row.
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Similarly, it turns out that the following result for the spin-3 current and 16 currents

is given by ’

T, 70, 73 1@

. v®, v?, v?®, u®

Gz x| Ly Vfg)j v @
we, ws W we
7, T, 7@) 0, 1%
U v, u® 0, UW?

- V_Z): V(%>:V<%>, 0: y 62

There are no higher spin currents, denoted by zeros in (6.2) corresponding to the column
containing G1a(w) in (2.44), in the OPEs between the current G12(z) and the four currents
living in the third component of each multiplet of (4.1). These four currents appear in the
3 (

first and the last columns in the final expression of (6.2). Also the current 7'

w) appears
in the last rows of these columns. Finally, the first and last components in each multiplet
of (4.1) appear in the second column in (6.2). Of course, the currents 7™M (w) and W) (w)
can appear in the last row of this column.

One has the following result

G2 X V(%), Vf), VE2): v
we, Wi w® e
7%, o, M, 7O, )
= v, o, U, U, v (6.3)
v, o, vE), v, v
Ti%)j ig)’ 0, 7TV, 7@ W@ 1) TJ(r%)7 J(rg)

There are no higher spin currents, denoted by zeros in (6.3) corresponding to the column
containing Ga1(w) in (2.44), in the OPEs between the current Go1(z) and the four currents
living in the second component of each multiplet of (4.1). These four currents appear in
the first and the last columns in the final expression of (6.3). Also the current T’ J(r%)(w)
appears in the last rows of these columns. Finally, the first and last components in each
multiplet of (4.1) appear in the third column in (6.3). Of course, the currents 7" (w) and
W® (w) can appear in the last row of this column.
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Finally, one obtains the following result

T, T3 T

+ —
Gao X V(%), V_‘(_Q)7 V_Q), V(g)
we, wid w® e
ve,  vP, v, IR
3 5 3 5
70 w@ 7% @ G G 0 p@ e e
— , W, + 7W+ A ) W W (64)
0, 0, 0, 0
v, v, v, UERRE)

There are no higher spin currents, denoted by zeros in (6.4) corresponding to the row
containing Gao(w) in (2.44), in the OPEs between the current Gaz(z) and the four currents
living in the third multiplet of (4.1). These four currents appear in first and last rows in
the final expression of (6.4). Also the current V(%)(w) appears in the last columns of these
rows. Finally, the first and last multiplets of (4.1) appear in the second row in (6.1). Of
course, the currents TW (w) and W) (w) can appear in the last column of this row.

We present some future interesting research directions.

e The OPEs between the higher spin currents themselves.

Because the 16 higher spin currents are found explicitly, it is natural to calculate the
OPEs between them [48]. The next higher spin currents are specified by the following
spin contents by adding one more spin to the spin contents in (1.2):

55 5 7 5 7 77
2,2,2 2.3,3,= 23,3, = L4, .
<727273>7 <273737 2)7 <273737 2>7 <372727 > (65)

One expects that some of the new higher spin currents in (6.5) should arise in the
OPEs between the higher spin currents in (1.2). For N = 3, there exist finite higher
spin currents consisting of (1.2) and (6.5) besides the higher spin currents in the short
representation [1]. One expects that the most complicated OPE is given by the OPE
between the spin-3 current and itself. It would be interesting to study the complete
structure of these higher spin currents. Eventually, it is an open problem, after the
work of [48] is done, to obtain the two dimensional boundary conformal field theory
(in the context of higher spin theory) dual to the string theory in AdS3 x S3 x S3 x S1
compactification [56-59], as suggested in [1]. See also [60] in the context of alternating
spin chain [61, 62].

e For general N, how the extended currents arise?

Eventually one should have the higher spin currents for general N. In doing this, the
first step is to write down the 16 currents in the large N/ = 4 linear superconformal
algebra or 11 currents in the large A/ = 4 nonlinear superconformal algebra for general
N. Some of the information are given in [15, 24]. One expects that the calculations

— 40 —



of OPEs for general N, by hand, are based on the component OPEs along the line
of [63-67]. Then one should know the various identities between the products of f
symbols in the complex basis. One can extract some tensor structures from the OPE
results in appendices A, B and C because the fermionic currents transform as (2,2)
under the two SU(2)’s from the observation of [1]. Of course, it is quite nontrivial
and complicated to obtain the full algebra like as appendices A, B and C but at least
one should find the currents themselves (not the whole algebra).

Inserting the four spin—% and spin-1 currents

What happens when we substitute T'(z), A;(z), [A2(z) and As(z)], [B1(z), Ba(z) and
Bs(2)], and [G11(2), G1a(2), Go1(2) and Gaa(2)] using the equation (3.2), (3.5), (3.6),
(3.10) and (3.13) in the large N = 4 nonlinear superconformal algebra? Then one
expects that one obtains the large N' = 4 linear superconformal algebra. See also the
work of [24]. It would be interesting to study the other OPEs by reintroducing the
four spin—% currents and a spin-1 current.

Other group realization.

In the classification of N' = 4 coset theory in [15], there exists a coset model

Wolf x SU(2) x U(1) = ¢ OS((])V()N; +sf})(2) < U(1). (6.6)

As described in [55], the central charge for this coset model is given by ¢ = %
which is equal to the one in (2.2). The first nontrivial case is for N = 4. At least, the
large N' = 4 (non)linear superconformal algebra should exist. But the spin contents
for the higher spin currents will be different from those in the coset model (2.1)
in this paper. Therefore, it would be interesting to study the higher spin currents
in the above Wolf space for (fixed) general N. The corresponding N' = 2 current
algebra in N' = 2 superspace for the supersymmetric WZW model, with level &, on
a group G = SO(N +4) of even dimension (for the odd dimension one can introduce
the extra U(1) in the both numerator and the denominator of the coset), can be
obtained from [35]. In general, the component expression of N’ = 2 current algebra

in the above coset model (6.6) looks different. The previous works [68-70] in this
SO(N+4)

SO(N+2)xS0(2)

Kazama-Suzuki model. In this case, one can also construct the higher spin currents

direction will be helpful. Note that the similar coset appears in the

of even spins as well.

The general Kazama-Suzuki model and nonabelian generalization

As observed in [1], the Wolf space can be generalized to the Kazama-Suzuki coset
model in (2.4)

SU(N + M)

SU(N) x SU(M) x U(1) (6.7)
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In this coset model, the central charge ¢ = % in (2.5) depends on k, M and N.
Then in the stringy limit where the three quantities k, M and N go to infinity simul-
taneously, the central charge behaves N? which is appropriate for a stringy model.
It would be interesting to study the higher spin currents in this generalized coset
model. For general M and N, this coset model has at least A/ = 2 supersymmetry.
Note that the coset (6.7) for M = 2 case is the coset model considered in this paper.
The immediate question is how to construct the M? fermions which can be decoupled

from the algebra.

e Extension of N' =2 U(3) or U(2|1) Knizhnik-Bershadsky algebras and others.

In [71], the two N = 2 superconformal algebras were found. Decoupling of four spin—%
currents appropriately, the U(3) [43, 44] or U(2|1) [72] Knizhnik-Bershadsky algebras
were reproduced. Furthermore, the NV = 2 WZW affine current superalgebra has
been found. Then it is an open problem to obtain the extension of unitary Knizhnik-
Bershadsky algebras in the higher spin current context.

For N' > 4, there exists a coset construction. For example, in [73], the N' = 7 and
N = 8 nonlinear superconformal algebras were studied. See also [74-76]. It would be
interesting to see whether these algebras can be extended or not in the context of minimal
model holography even though the cosets of these models do not have any group parameters
like as the rank of the group.

It would be interesting to see whether one can express the (11 + 16) currents in terms
of N' = 2 superspace as done in [35] or even further N' = 4 superspace in [10]. For the
16 currents of the large N' = 4 linear superconformal algebra in [6], the explicit field
redefinitions in [6] provide that these 16 currents are transformed into those currents in
O(4) extended superconformal algebra given in [10]. Then the 16 currents presented in
section 2 can be combined into one single N' = 4 superfield in [10]. It is not obvious how
one can express the 11 currents of large N' = 4 nonlinear superconformal algebra in terms
of a single N' = 4 superfield after decoupling one spin-1 current and four spin—% currents.

We clarify the difference between the 16 higher spin currents in this paper and the ones
in [1]. One can find the particular basis where the 16 higher spin currents transform under
the two SU(2) currents characterized by A;(z) and B;(z) in very simple form.?> For exam-
ple, one redefines the four spin-3 currents appearing in (4.20), (4.13), (4.9) and (4.34) by
absorbing the spin—% currents Ga(w) of large N' = 4 nonlinear algebra. Then in this new ba-
sis, there are no spin—% current Gy (w) dependences in the right hand side of appendix (B.2)
and (B.6). Furthermore, the OPEs between G,(z) and these redefined (primary) spin-3
currents transforming as (2,2) under the SU(2) x SU(2) do not contain the third-order
singular terms.

For the spin-2 currents in this new basis, one can write each (redefined) hatted spin-
2 current in terms of each unhatted spin-2 current found in (4.1) with coefficient 1 and
other composite spin-2 fields with undetermined coefficients in table 3. Then the relative

coeflicients can be determined by the vanishing of second-order pole in the OPEs between

% We would like to thank the referee for raising this issue.
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the six spin-1 currents, A;(z) and B;(z), and each hatted spin-2 current, 73 (w), Uf) (w),
f/f)(w) and W® (w). These hatted spin-2 currents should be again primary under the
stress energy tensor T'(z) and be (3,1) and (1,3) under the SU(2) x SU(2).

For the Spin—g currents, as before, each hatted spin—% current (should be (2,2) under
the SU(2) x SU(2)) can be written as each unhatted one in (4.1) and other spin-3 composite
fields with undetermined coefficients appearing in table 4. By requiring that the OPEs
between G’a(z) and these redefined spin—% currents do not contain the third-order singular
terms and the OPEs between the above six spin-1 currents and those hatted spin—% currents
do not contain the second-order singular terms (and also they should be primary under
the stress energy tensor T(z)), most of the relative coefficients are fixed. The remaining
ones are determined by the condition that the OPEs between the spin-1 current 7()(z)
and these hatted spin—% currents do not contain the second-order singular terms [48].

For the spin-3 current, the hatted spin-3 current can be written as the unhatted one
in (4.1) and other spin-3 composite fields with undetermined coefficients appearing in
table 5. By requiring that the OPEs between A;(z) (and Bj(z)) and the hatted spin-3
current do not contain any singular terms, the relative coefficients can be fixed.

The higher spin-1 current remains unchanged because it commutes with the above six
spin-1 currents in SU(2) x SU(2)(i.e., The OPEs do not contain any singular terms) and
both the spin-1 and the spin-3 currents, 7™ (z) and W®)(2), play the role of (1,1) in
SU(2) x SU(2) respectively as in [1].

Now we present the final 16 higher spin currents in this new basis explicitly as follows:

T (z) = 7O (2),

(3 3 G 7(3) (3) G
D) = 1P+ <G> (2). (g()> () = (%) ()5 <G> (3,

3(3 + k)(13 + 9k)
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1 3i(—3+ 3k + 2k~ i(—2T+k)
G+ { GG+ BT SE
3(=3+3k +2k7)

(24 k)(3 + 7k)

3(—3+3k+2k2) . . . -
- AgAy + 245 By + H2THE)
PR CE ) B R A o

@ ue P 5

(2) )
- (U ) (2) £ LT AL (2) £ —2 AL By(2),

T () = 7@ (2) + %TU)AS(Z) + %T(l)Bg(z) 7O ()

k .
n 0Bs
k(=27 +k) o -

AjA 4221
T EE TR
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3 A oa PN k. . ko~
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1 A
+1(1398k4 + 15711k + 37024k* — 4925k — 32900)G 152Gy

3
2

1 T .
+ (1398K" 4 2433k” — 4957k — 3500)(5 + k) (GraT' ) 4 Gon T3 4 GopU )

(1098K* + 13589k° + 60394k + 59365k — 27850) A, A_ Bs
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The corresponding algebras between the 10 currents, fli(z), 1213(2), Bi(z), B’g(z) and

. N (3
Gq4(2), from large N = 4 nonlinear algebra and 16 higher spin currents, 7! (w), Tj(["’)(

~ N ~ ~ ~ ~ A ~ ~ (5
7O (w), U (w), U (w), 03 (w), VE (w), VP (w), VO (w), WO (w), W2 (w) and
W) (w), in (6.8) are given at the end of appendices B and C.
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A The OPEs of the large N = 4 nonlinear superconformal algebra from
WZW affine currents

In section 3, the stress tensor is given by (3.2) and the OPE between this stress tensor and
itself can be described as

o) o)+, (A

~ 1 é
z—w)*2 (z—w)

T(2)T(w) =

(z — w)

where the central charge ¢ is given by (3.3).
The 10 currents which are given in (3.14)—(3.17), (3.9) and (3.12) are primary fields
under this stress tensor (3.2) as follows:
. 1 1

T(z)®(w) = —— h®(w) +

E= OB (w) +--- (A.2)

(z — w)

Whereh:%forszéa andhzlforq):fli,ﬁ’,-.

— 46 —



Let us present the nontrivial remaining OPEs between these 10 currents as follows:

° spin—% spin—% OPEs
From the explicit expressions in (3.14)—(3.17), the following OPEs can be obtained

A A — 1 2 5 1 16 i 44 L ita-in,
Ga(2) Gy(w) = G—wp 3 CWolt Oab R {k a, Ai + kT ay) Bl (w)
[ L 16 o figi it —inh
+(z—w) 2T 6ap 5 (5+k:)(k ay 0A; + kT ay 0B;)+
16 +i A -1 +7 A —7i D \cC
~ (5+k) (a7 Ai = a ' Bi)ea(a™? 4 — o ]Bj)b)] (w) 4+, (A3)

where 3ab is normalized to be 1. The central charge cwoir appearing above is given
by eworr = % (2.3) for N = 3. In general, this central charge is different from the
one in the OPE (A.1) of stress energy tensor and itself. Note that compared to the

linear case, the nonlinear terms of (A.3) are nontrivial.

e spin-1 spin—% OPEs
From the relations (3.9) and the above spin—% currents, one obtains the following
OPEs between them:

1

(z —w)

Ai(2) Ga(w) = ali G w) + - (A.4)

Compared to the linear case, the right hand sides of (A.4) look similar to the one

in linear case by ignoring the spin—% currents over there. Note that the OPEs

AL (2) Gri(w), Ay(z) Gra(w), A_(2) Gor(w) and A_(z) Gaa(w) do not contain the
singular terms. This can be understood from the U(1) charge assignment described

in table 1. Furthermore, one has, from (A.4),

o éll . 1 . GQl
Az (2) <G> () = F oy (G> (@) +-.

A Gra - 1[G
Ax(2) ( @21><w>—i<z_wﬂ ( ou)“”” . (A5)

One can easily check that the U(1) charge from table 1 is preserved in (A.5).

For the other spin-1 currents (3.10), the similar OPEs can be described as

N ~

BZ(Z) Ga(w) =

oo a sl GPw) 4+ (A.6)

Similarly, the OPEs B_(z) G11(w), By (2) Gia(w), B_(z) Go1(w) and B (z) Gaa(w)
do not contain the singular terms due to the U(1) charge conservation. Instead, one
has the following singular OPEs, from (A.6),

5 G _ 1 G
) <022> = i('z_w)z (Gm) (W)t
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B=(2) (?12>(w):i ! i(gll>(w)+---. (A7)
22

In this case also, the U(1) charge from table 1 is preserved in (A.7).

e spin-1 spin-1 OPEs
Finally, the OPEs between the spin-1 currents in (3.9) and (3.10) are as follows:

S 11, 1 '

Aie) Aj(w) = = 5a gh" 0+ oy i Aw)

o I 1 .

Bi(2) Bi(w) = ==y o & O Ty ciok Brw) o (A.8)

where kT = k and k= = 3. One also has, from (A.8), the following OPEs

A(z)A_(w) = G _1w)2 k*— G _1 w)zz'Ag(w) +-

Asle) Ailw) = 2 —ide )+

Bi(2) B-(w) = & _1w)2 G - oy 2iBs(w) + -

Bo(2) Bs(w) = j:(z_lw)iBi(w) b (A.9)

The U(1) charge from table 1 is preserved in (A.9) also.

Therefore, the equations (A.3), (A.4) and (A.6) correspond to the ones in (A.7) in [42]
(or (4.3) in [41]). There are also (A.1) and (A.2).

B The OPEs between the large N/ = 4 nonlinear algebra currents and
the higher spin currents-I

In this appendix, we present the OPEs between the six spin-1 currents in section 3 and the
16 higher spin currents in section 4.

B.1 The OPEs between six spin-1 currents and the higher spin current of
spins (1,%,%,2)
. 3
It is easy to see that there are no singular terms in the OPEs AL(z) Tj(f)(w) and

. 3
B-(2)T j(f)(w) due to the U(1) charge conservation. Furthermore, one has the following

OPEs,

. &, . 1 ~u®
A1) = L ( o ><w>+ , (B.1)
) T w) = b 5T )+ = B9 T ),
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A (3
R @, . 1 [Gn-VE
Byi(2) Ty (w) = oo w)z (Gn L p® (w)+---. (B.2)

One can check the U(1) charge conservation in these OPEs from table 2.

As before, one obtains the following OPEs as follows:?°

@ L [3(343k+ Y] o 1 u® .
Ae(@)TOW) =~ { B+TE)G+E) ]Ai( U P <V+(2> (w)

R — 2y . . i
A=) TH) = 7 —1w)2 [_ 353 i?;ﬁ;fi)) G i noet 2T(1)] S

A B 1 (—27+k)k -
BT = o [ e ) 2

1 [ (v 4
+m 1 (U_(’_Q) > F mAgBi (w) + - (B.4)

By(z) T¥(w) = ¢ —1w)2 {(3(; 27;)+(5k)+kk) Byt gy st ;T(l)} (w)+---

The U(1) charge conservation in these OPEs from tables 2 and 3 can be checked again.

B.2 The OPEs between six spin 1 currents and two higher spin currents of
spins (%,2,2,%)

One has the following OPEs between the spin-1 currents and the spin—% currents:

A U(%) 1 (é) él?
Bi(z w) = —1 | T2 — [ .
£(2) (V(g)> (w) (z —w) i G2

One can check the U(1) charge conservation from table 2.

As performed before, one has the OPEs between the spin-1 currents and the spin-2

currents,
A AR 1 2 P
4+(2) V@ (w) = (2 —w) (5+k) [%A’LB:F] (w4, (B.7)
(2)
/AL(Z) (g_?g) ) (w) = (2 _1 w) (5 _‘2_ k) [iiA*Bﬂ (w) 4+, (B.8)

%The spin-2 current T (2) is not to be confused with the spin-2 stress tensor 7(z) in (3.2).
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2
As(2) (Ug)) (w) =+ ! ; B ] (w) ++-

v —w)* (5+k)
(2)
. Uy B 1 6 (1)
By(z) (V_(2)> (w) = G w) [:I: (5+k)A3:FZT (w) (B.9)
1 2i(15 + 23k + 4k?) -
_ T 72 2)
+(z—w)[ BrhG+R LTI HW
o (<A A+ 245 By — By B) | (w) + -
(5+]{3) 1 L1 3 D3 ] )

) o U
O

One can check the U(1) charge conservation in these OPEs from tables 2 and 3.
Furthermore, the remaining OPEs can be rewritten as

2)
A+ (2) (U )(w) - ! [i(52fk)33j:iT(l)} (w)

n [ 6ik
(z—w) [ (3+Tk)

T +iT® — iW(z)] (w)+---, (B.10)

A U A -U®

As(2) (V(2)> (w) = (2 _1 w) ? < V(2) ) (w) + )
+ +
(2)

B (2) (%) W) = ot o [ALB] )+ (B.11)
+
(2)

B (2) (5;2)) (W) = 2 gy [AsB] (W) oo (B.12)
+

One can check the U(1) charge conservation in these OPEs from tables 2 and 3.
The following OPEs between the spin-1 currents and the spin—g current can be ob-
tained as

AU D) = s [2AGn + U] )+ (B.13)
A v = o 5 G+ WT@] (“’)

oW [‘ZWP (541 ) 3(54j B or?

+(5ik)( 24 (G +UD) — 2BV ))](w)+---, (B.14)
AUOw = o ey e e VY @ g P
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B U (w) = 0 [ 3(5 + k) 2t S5 gm - | )
1 e - 43 (2)
+(Z —w) |: 1W_ 36+ ) 0G19 + 73(5 yy o1 (B.15)
3
& <2A+G22—4A3 (Gr1a—T (2)>+2B+(G11—U<3>>>] (w)+-+- ,
S 5 1 1 PN
(3) -
B@UPW) = - 5D [zB_GH} (W) + -, (B.16)
A (2) _ 1 2i(6+k3) . 4i(2+/€) (2) 1 2 (3)
Bs(2) U (w) = =0 [3(5+k) A TN R GO o G R
One can check the U(1) charge conservation in these OPEs from tables 2 and 4.
Then the following nontrivial remaining OPEs hold as follows:
) CY 29+k) ,  Ai(T+k), (2
A v D) = g |5 8En + JTE w)
g 43 ()
[ 305+ k:) 8G12 + 36+ ) — 07" (B.17)
3
67 ( 24 )+G22)—QB+G11+4B3T(2)>] (w)+ -,
N 5 1 1
(3) —
A@VPW = c—n e [2A Gm}( . (B.18)
A (3) - 1 _2i(3+2k) A 2i(7+k) (2) 1 1 (3)
As(2) V2= (w) (z —w)? [ 3(b+k) 2t 3(54—1{)‘/2 (w)+(z—w)2 #(w),
_|_ LI
: D) = ! 3. (6 )
Bi(z)Vi2(w) = eI [—23+(G22 -V )} (w) +---, (B.19)
. Gy L [4i8+E) . 4i(1142k) (%)
B-)Vilw) = oy [ 3648 0t 3 | W
1 (5 A ()
e {’W+ 3Gk
! ) 128 (C &)
+(5+k)( 24_UG +2B_(G22—V2)> (W) + -, (B.20)
Ba(2) V2iw) = [ 36540 2 3w | WGy W
T

One can check the U(1) charge conservation in these OPEs from tables 2 and 4.

B.3 The OPEs between six spin 1 currents and the higher spin current of
spins (2, g, 3,3)

The nontrivial OPEs between the spin-1 currents and the spin-2 current can be described as

2)
Ai(z) W(Q)(w) = (z _1w)2 (5 _?_ k)Ai(w) - (z _1 w)i (ii(_z)) (w)+---, (B21)
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Al W) = o | == o 370 @)

2)
Bi(z) W (w) = G _1w)2 (5ik)Bi(w> + (z—lw)l (Zi2)> (w)+--+, (B.22)
Bs(2) WP (w) = G _1w)2 [— (5ik)213+ (5f_k)33+;:r<1>} (w) + -

One can write the OPEs between the spin-1 currents and the spin—g currents as follows:

APy = L {2;@” + W (g>] )

(z —w)
1 44 A 41 3 (B

! 1, (G (3) 5 (3)
+ Gih 244 (G +T42) —2B_T" (w) + -,

)
. &, 1 2 i Gor + T4 B9
A$(z) Wi (U]) - (Z _ w) (5 + k‘) + G’m B T(%) (w) + ) ( : )

As(2) er%)(w) T (z —1w)2 [

2i(—4+k),  209+EK), (3 ()
36+k) 2 3(B5+k)t
1 i

N

(z —w)
1 4i(1+k) . 4i(9+ 2Kk) v@)] ()

A (3) _
By (2) W2 (w) = (z —w)? [3(5+k’) G- 3G+ k)

1 44 A 44
+ [3( L 3Gy — —— V3 4 i)

(z—w) [3(b+k) 35+ k)
bt (22A G+ TPy 2B, 7 | (w) + - (B.25)
: (3) 1 1 5 m(3)
N ) B 1 2i(8+k) A 4i(3+k)T(g) Li o (3)
By(z) W, (w) = (z—w)? |:3(5-‘rk) 21+ 3(5+k) T (w)+(z—w) 2W+ (w)+
In this case, the four remaining OPEs can be rewritten as
. (2) B 1 214 10i(3 + k) (3
AW w) = 03 { g2t 5Ey VW
LY 56y, — - v piv® (B.27)
(z—w) | 36+k) 2 36+k) '
1 PN - PN N
54 (24-Gro + 445 VD) — 2B, G — 4By V@))] (w)+ -+,
- ) 1 L 2i(—4+k) s 2i(9+k)T(g) I
AW = = [ - S |0 e
+. EEEN
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B oW = o | o s v @
(2 —1 w) [ (54% k)aG” + @A:rk)aU( D) —iy(3) (B.28)
+ ( Jlrk) (—221+C¥21 +4A3UG) 2B Gy — 4B U(3)>] (W) + -,
bW = s e G g T 0 - g
b

Finally the six nontrivial OPEs between the spin-1 currents and the spin-3 current can
be described as

. 1 2(35 — 20k + 33k2
A2 WO(w) = (z — w)3 [_ (§>+k)2(19+23k))] +(w)

1 (13+2k) . (o) 6(1+41k+12k%) .
e mE {_ Gtk (5+k2(19+23k) "
2(76 + 311k + 63k?) 8
5+ k)2(19 + 23k) (5+ k)2
(=32 + 143k + 3K7) (=139 — 7k + 8k?)

(5+ k)2(19 + 23k) L - (54 k)(19 + 23k)

1 1 . 8(48 + 97k 4+ 29k%) . -
oW [(5+k:)T() A BT T B G LR
4

) 9 . ok
S ) N R ) P LA
e T a0t e

1 A 2 A 4 .
S P B 1" P %77 C)
(5+k) +0 (5+l<:)QZ 304+ FSECLE

—— A, B

A+B3 —+

TOA, | (w)

iAL0Bs

_ (54_8]{:)2A+33B3 (B.29)
4 A s 8

~ (5+k)?  (5+k)? AgA Ay = BAB (w) 4+

A o 2(35 — 20k + 33k?)

A_) WO (w) = Gz —w)? [(5+k)2(19+23k)

(5+k)

A_(w)

1 (15+4I<:)Z, @ 6(1+41k+12k2)iA
(z w2 | 5+k) T (5+k)2(19423k)

AT6+31K+632) . o 8 i s
T k2(19+23k) T Bk
(—32+ 143k +3k%) , « (=139 — Tk +8k?) ) ;
A — VA
(5 + k)2(19 + 23k) 0 (5+ k)(19 4 23k) (w)
1 1 . 2

— TWoA - = A w®

e W
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4(96 + 251k + 127k?)
(34 7k)(19 + 23k) (5 + k)
2k

3,

(B.30)

3

8
G+ k)
Aydy — 2(—173 + 69k + 82k?)

(5 + £)2(19 + 23k)
2A—1+k) - -
G+ k)2 272
2(4+ k)
G+k)

iT®

(z — w)

iAsAs

3= 1

w®

+ iB3B3 —

2
+ k)

3_(5 T(l)gs](w)+...7

iB By

L - M A

A~ A~

TWoB

_.I_

)
2(2 + k)
5+ k)2

S 14k PR
| BL0A3 + ——=1B,10B
iB.+0 3+3(5+k)21 +0B3

- 1
Asv @ 4 mmv_‘”

2=34+kk . (1+k).
[ ((5+k>2) EHkiZTm] ()
2(—57 + 350k + 699k2) .
2 [_(3+7k)(19+23k)(5+k)1
4(-2+k) .
N GEYAP
—76 — 173k +3k2) . ~  2(—=1+4+k). o -
5+ k)2(19 + 23k) " ° G+k2Z !
(=3+kk_ . (1+k) .
(5+ k)2 (G+k2 2(5+k)“9T(1) +
~2(=79 — 15k +4k2)T(1) .
(5 + k)(19 + 23k)
1 Ak(—167 +101k) | 4
(z — w)3 [_3(5 T R)2(19 + 23k)} B+ (w)

1 [(7+4k), )  2(79 + 253k + 82k?) . . B
z—w? | (G+k) (5+k)2(19 + 23k) >0 F
20+k). 1 5 2k(181+17k)

G+ k)2 37T B+ k)2(19 + 23k)
k(=877 + 151k) (=101 + 39k + 8k?)
3(5 + k)2(19 + 23k) (5 + k) (19 + 23k)

1 1 8(—27 + k)k
(z —w) [_(5+k T B+ Tk)(19+23k)(5+ k) T

4 ® 2
T B+T( ) _

1

)

B.orTM 4~
+ + (5+ k)

~ ~

5k e

. 4 2(—8 + k)
— = B.B.B +— =2
+3(5+k:)2 U +(5+k:)2

(5+k)?

A~ A~

A AB,+
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2k - Bk~ o oa 2(-84k) 4 ;-

— = B/ ByBs——— _B B B, —
L A T O A i e S OV A PRt )
% . . 2 .
— m333+33 + MZG12G22:| ('LU) =+ .- 5 (B31)

5 ! 4k(—167 + 101k) ] -
(z —w)? {3(5 +k)2(19 + 23/@] -(w)
1 [_<15+4k). () 2079+ 253k +82K?) .
(2 —w)?

G+k) T (5tk219+23k) 0T
21+ k) - - oh(181 +17k)  ~ -

TN AB B
(51 k)23 (5+ k)2(19 + 23k) °

[e— A — 2 A
E(-8TT 4+ 151k) o5 (1014 39k +84%) ) 5 ()
3(5 + k)2(19 + 23k) (5 + k)(19 + 23k)

1 ) A 4
— 1 AsOB_
(z—w)[(5+k)223 NG

2
4(57 + 199k + 90k?) By 2
(3+ 7k)(19 + 23k)(5 + k) (5+ k)
2k o o2 2(—6+F) o - 1 .
= _iB_9As— >~ iB 9By — ———B_oTW
MG 04 3(5+ k)2 ' 0Bs (5+ k) 0

3,02 + ioU? +

+

4(—3 + 2k)
3(5+ k)2

0?B_

AU +

B .T®

2k 4
(5+k) (5+k) (54 k)2

2 4.
- A3 AsB_ —
B 1R cnla t popedsdsB- — mrs
8 . oo o 4 ..
—— = _A3B_ B3+ -———B B3B3+ ——
GrRE 3-8t gzt
+ mlk)iT@)B_Bg — iBgT(l)B_} (w) + -, (B.32)
. 1 6(=3+k) ;4
G—wpP | G+kZ > (B+k)
N 1 72(399+1234k—|—859k2+184k:3)iA+2(1—|—k)i
(z — w)? (34 7k)(19 + 23k) (5 + k) (5+k)
A24k) . 5 & A2+R).; 5 2042k o 2044k) .o
— AlA) — AgAy — -T2 AA |14
G2 N T G T R T 5y
4(46 + 15k +5k%) .+~ 2(7T+Ek) . ~ ~  2(7T+Ek) ~ -
AsBs — 2B By — B,B
G+E219+23k) 32 T k2 T Bk 2
_2(133+361k+40k2)ié B 2(—41 + 31k + 4K*) 1) 5
(5+k)2(19+23k) °° " (5+ k)(19 + 23k) s
. 3(=3+k)

TWA, 4+ 22T M54
Gk BT BT 5 R

iT‘”] (w)

72

- 0TV | (w) +--- .

One can check the U(1) charge conservation in these OPEs from tables 2, 3 and 5.
As done in the OPEs between the four spin—% currents and 16 higher spin cur-
rents, (6.1)—(6.4), one obtains the following results between the spin-1 currents and the

16 higher spin currents by focusing on the linear terms of higher spin currents in the right
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hand side of the OPEs

70, 72 7® e 0 U, 0, U?
N (%)7 U(2)7 U2)7 U(g) 07 07 07
A | Do) o) e v | 7 e @ 3 |
V(g)’ VJr , V7 V(g) T2 ,T(l),T(z),W(z), 0, T2 ,W72
we, W W we v?, v®ud, o, v®
o, 7P, 7 re 0, 0, V&, v
iy U, Uf), v B . TJ(F%)707 T(l),T@),W(?),TJ(f),WJ(Fg)
T ve, v, v ve) 0, 0, 0, 0 ’
we, w ws e v 0, v, vE) v
3 3 3 3
TO, T T e 0o, 1% 7', T
| UB U e e o, o v?, v o
Tve, v, v® v v, v, 0, v y®
we, W W we 70, 7 W 70 w® 10 70 e
70, 7 73 1) 0 ve, o, v®
s | TR U2 0P e 73 70, 7@ W@ o 73w
X b
T ve, ve, v@ pe) 0, 0, 0, 0
we, w w e v v@vd, o v®
70, 72 7® e 0, 0, U®), vl
. v, v? u® p® 0, 0, 0, 0
Box| ) o oy | 7| 0 @ 3 |
ve v v ve) 72,0, 7MW, 7@ W, 172 W2
we, w® wk we v? 0, U®,Ud ul?
0, 72 7% 1) 0, T 7', T
) uv®. u® y® v y® 0 U3 y®
B3 % bl + — N I 9 9
v, Vf), v y® v, 0, V@ vE) y3)
we, w® w we 0, 72 w2 10 w® 70 7e) e

Note that the zeros of the right hand sides for the OPEs between Ay and By acting on the
16 higher spin currents are located at the row and column containing the corresponding
spin-1 current in (2.44).
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B.4 The OPEs between six spin 1 currents and the higher spin currents in
different basis

In other basis described in section 6, the OPEs between the six spin-1 currents and the

four (redefined an hatted) spin-3 currents in (6.8) can be summarized by

A 7(3) (3
Az(2) (g()) () = F oy 1T ) -
. ) 1 i [UD . )
- o ()
By(z) (V(§)> (w) = :I:(Z _w)ZT¥ (w) + (B.33)

(3 . .
The four spin-2 currents, Tj(f)(z), U(%)(z) and V(%)(z), in (B.33) transform nontrivially

under the two SU(2) currents. It is easy to see that there are no Gy(w)-dependences

in the right hand side of (B.33). Furthermore, if one writes the above four spin—% cur-

. (3 (3 N
rents, U(%)(w), TEQ)(U)), TJ(FQ)(w) and V(%)(w) as 11-,12-21-22-components of (2,2) in

SU(2) x SU(2) respectively, then the half of (B.33) will lead to the equation appendix (A.4)
where G’a(w) is replaced with the above four quantities and the remaining equations of ap-
pendix (B.33) become the equation appendix (A.6) with same replacement of G (w).

The OPEs between the six spin-1 currents and the six spin-2 currents in (6.8) can be
described by

0% 0

A [ 10— | @)= =0 | 202 @)
v (A V)
o (A 0%y,

A() [ 7O W | (w) = <z_1w> 207 | (w)
v 0
o R

Aste) | 70— @ | (w) = (Z_lw)z 0 |+,
Vf) Af)
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. N 1 .
Byi(2) | T® + W@ | (w) = - w) 2: V2 (w) + -+,
o (B, 0P}
v o (T
B_(2) | 7@+ W@ | (w) = — 27 | (w) -,
AR 0
7 o
Bs(z) | T® + W@ [ (w) = o w)i 0 (w) 4 - . (B.34)
Uf) Uf)

The first half of (B.34) implies that the spin-2 currents, u® (w), (T — W) (w) and
Vf)(w) transform under the SU(2) current A;(z) nontrivially and the OPEs between the
other SU(2) current B;(z) and these three spin-2 currents do not contain any singular
terms (i.e., singlet under the second SU(2) realized by B;(z)). Note that the OPE between
the fl+(z) and the top component A (w) does not produce any singular term, the OPE
between the A, (z) and the middle component (7 — W?)(w) produces the above top
component 17£2)(w) and the OPE between the A (z) and the bottom component Vf) (w)
produces the above middle component (72 — W®))(w) and other nonlinear terms which
will be determined soon.

Similarly, the remaining equations of (B.34) imply that the spin-2 currents, @ (w),
(T + W) (w) and Uf) (w) transform under the SU(2) current B;(z) nontrivially and
the OPEs between these three spin-2 currents and the other SU(2) current A;(z) do not
contain the singular terms (that is singlet under the first SU(2) realized by A;(z)). One
can also analyze the raising and lowering operators of the second SU(2) acting on the three
representations of SU(2) as above. In summary, the above six spin-2 currents transform as
(3,1) ® (1, 3) under the SU(2) x SU(2). All the second-order poles appeared in previous
basis are disappeared in this new basis (B.34).

The nonlinear terms appearing in (B.34) are given by

- - 6tk =

(AL V() = {A- 0P (w) =i(T®) = W) ) + g T(w),
(B2 0P a(w) = (B VD) aw) = 00 + W) w) - A2 T )

where the spin-2 primary field (under the T(z)) is given by

- 39+ 13) 21y 1
Tw) = |T -2 2pMp)
(w) 20(k + 2) + (k+2)

3 3
> AiAi+ 2> BiBi| (w). (B.35)
i=1 i=1

The presence of TWT O () makes the fourth-order pole in the OPE between T'(z) and

T(w) to vanish. The third-order pole in the OPE between 7'(z) and each term of (B.35)
vanishes.

— 58 —



Finally, the nontrivial OPEs between the six spin-1 currents and the four spin—% cur-

rents in (6.8) can be given by

A (2) (gii) () = F (Wi W)+
A(2) (ZE; ) ) = F = 5 (gi; ) o= —By(2) (gii ) (w)
B.(2) (gii ) () = F W )
O (gi;) W)+
A2 W ) = s G @) - = By WD ),
Ba(2) W'D (w) = i(z_lw)i <gz; ) (W) +--- . (B.36)

The four spin-5 currents, Wig)(z), U(g)(z) and V(%)(z), in (B.36) transform nontrivially
under the two SU(2) currents as in (B.33). There are sign changes in the OPEs between
Ei(z) and these spin—% currents. All the second-order poles appeared in previous basis are
disappeared in this new basis (B.36).

Note that the OPEs between the six spin-1 currents and the spin-1 current T(l)(w) =
T m(w) do not have any singular terms and similarly the OPEs between those six spin-1
currents and the spin-3 current W) (w) do not contain any singular terms. This reflects the
fact that these two higher spin currents transform as (1, 1) under the SU(2) x SU(2) respec-
tively. In other words, A;(2) TW (w) = B;(2) TW(w) = A;(2) WO (w) = B;(2) W& (w) =
+---. The OPEs between the four spin—% currents G’a(z) and the 16 higher spin currents
in this new basis will be given at the end of appendix C'.

C The OPEs between the large N/ = 4 nonlinear algebra currents and
the higher spin currents-II

In this appendix, we present the OPEs between the four spin—% currents in section 3 and
the 16 higher spin currents in section 4.

C.1 The OPEs between four spin % currents and the higher spin current of
spins (1, %, %, 2)

From the explicit expressions (3.14)—(3.17) and (4.7), the following OPEs between the

spin—% currents and the spin-1 current can be derived

G 1 Gy + 203
) () TW (w) = WS ) w) e (C.1)
G2 (z—w) \ =Gy +2VE)
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A (3)
G2 AT () — 1 Gro+ 277 w o C
(@21>”T ) = )(G21+2T( 3 )( Yo ©2)

One can check the U(1) charge conservation in these OPEs from table 2

For the spin-3 currents (4.10) and (4.14), one obtains the following OPEs between the
spin—% currents and the spin—% currents as follows:

Gu @, 1 ok T .
<G22> (2) T (w) = CENEICE) [zB;} (w) (C.3)

(w)_|_...

A
_ V£2) + 7(5 s <:|:4A3BjF + kz@B;)

G1a (3) _ 1 6k 1 2 A ;
< A > ) =3 o * e B (k) 470 @

1 6k A 7 N .
+ =) [:F G+ 7k:)T F7® 4 iR (—38A3 - kaBg)
+ ;6T(1)] (W) + -, (C.4)
G (3) 1 2 A
<G12> (BT (w) = (z—w)(5+k) [zFA?Bi} (W) +-- (C.5)

L
(2 —w)

(w) +---. (C.6)

()
Vi 3
- 0A
(zﬂ)) D
The U(1) charge conservation in these OPEs can be checked from tables 2 and 3.
For the last component spin-2 current, one calculates the following OPEs between the

spin—% currents and the spin-2 current as follows:

A 1 (12—11k+5k?) » | (B3+k) s
Gll(z) T(Q)(w) - (z—w)2 |: <3+7k)(5+k) Gu+ (5—|—k) U( ):| (’LU)
1 sy k(39+5k) . (T+k) s
oy |V m%’“*s@ma‘““
+(5ik) <22A3 (Gu+U3)— BT@))]( )+ (C.7)
Gia B 1 [ (-3+38k+9k?) [ Gi2 (11+43k) %)
<021>(Z)T(2)(w)_ (z—w)?* | (3+T7k)(5+Fk) (G21> Grg) x| (©8)
N 1 ( —|—22k—|—3k‘2 012 %
(z—w) | BHTR)(+HR) T\ Gy
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AL B (3)
:FZA:E & +i1A4 U(%) +iB4 V(%) (w)

3+7k) 5+k Gz (5+1<;)V }( )
(394+5k) . (1+k)
9+21k)(5+k)8G22_ 3(5+k)

Gl (2) TP (w) )2

v

4 av(3) (C.9)

. [ (12—11k+5k?) -
e w>[

§
+ < AT —9i Ay Goy+iBy Gy +2iB5 VG >)] (w)+- -

(5+k:)
The U(1) charge conservation in these OPEs can be checked from tables 2, 3 and 4.

C.2 The OPEs between four spin 2 currents and two higher spin currents of
pm 5

spins (%,2,2,%)
From (3.14)~(3.17), (4.21) and (4.35), the following OPEs between the spin-3 currents and

the Spin—% currents can be obtained

Gn U®) 1 9 o
<@22> = <V(3)> W) = o B w FALBe] ()4 (C.10)

Gy U 1 6 .-
<G21> (Z) <V(g)> (w) = (z _w)2 (5+k‘) [ZA:E} (w)

1 UEQ) 3 )
ey (VP) by iAo e
C3121 U(%) 1 2% .
<@12> =) <V(§)> (w) = (z—w)2 (5+ k) [_ZBqE] (w)
1 v koo
(z —w) (VE)) s Raad AORBEE (C.12)

B 1 6k
5 ) W =T s B

1 2i ; | (w
A Py [(5 k)(3A3 kBs) + T }( )
31 A ik

(2)
z—w) [$W2+(5+k) ST Gk
. (C.13)

—— _OB3+ aT< >}( )

The U(1) charge conservation in these OPEs can be checked from tables 2 and 3.
For the spin-2 currents (4.24) and (4.42), one calculates the nontrivial OPEs between
the spin—% currents and the spin-2 currents

G\ (Ve L2 o
(Gm)(z)(v_@’)(w)_ (z—w) (5+ k) (w) +---, (C.14)

2 <é11+U( )
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- @, v 1 (6+Fk) - 2(7+ k) s
Gra(2) U (w) = G w2 [(5+k)G11+(5+k)U( M (w)
1 s (64k) . 2114k) . s
W [‘U(”* 3610 e U
+(5J2rk) <—z‘A+T( ) 25 A, U —iB_(Chy — T
+ 2iBs U(%N (W) + -+, (C.15)
G oy (Y e b2 (o] e
<G>< ) (V_@)><w>—¢(2_w)(5+k) i1 )+ (©16)

3y (8+k) . [ Gau 2094 k) . (3)
el == ol . — oT'}?
(z —w) = T 35+k) \ Gy 35+k) F

2 (U@ T
+(5—|—k)<iZA:F V(%) :Fz’lB3T:E:2)

It is easy to check that the spin-2 fields in (C.15) and (C.17) after subtracting the descen-
dant fields (the derivative terms for the fields in the second-order pole with coefficient %)
in the first-order pole are primary under the stress energy tensor (3.2). The U(1) charge
conservation in these OPEs can be checked from tables 2 and 4.

Similarly, from the expression (4.28) and (4.38), the following remaining OPEs can be

described as
G ) U? w) 1 2[4, G +U®
R z W)= ————————
Ga2 VE) (z—w) (5+k) Gy — V(3)

A 2) A )
G12 ( ) U= ( ) 1 2 A G12 T

R z W)= ——--"— |1 A 3
Ga1 Vf) (z—w) (5+Fk) - Go1 + Tj_g)

(W) +---. (C.17)

(w)+---, (C.19)

G (2) U (w) = E _1w)2 [(?512:)) 11 WU@] (w) (C.20)
5y (3+2k) A (2+K) (3
TGRS e U e L [OR
Giza v o B3+2k) (G2 42+k), (3
<éll> =) (VP) W = C=wr T+ ((;Ql) “aw F | W
1 (5, (T+2) (G2 AB+kK) (%)
o T <5+k>8<@m)_3<5+k>8T¢
. § 3 . (3)
D <_2iA3 (gm> £ 2475 1By <€<3> ))] (w)
NI (C.21)
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5

As above, the spin-3 fields in (C.21) after subtracting these descendant fields (the derivative
terms for the fields in the second-order pole with coefficient %) in the first-order pole are
primary. The U(1) charge conservation in these OPEs can be checked from tables 2 and 4.

For the last current of spin—g (4.32), one also has the OPEs between the spin-% currents

and the spin—% current

én<z>U<%)<w>:< 1 2??1?5) A )

(
(
{ 5+kA+U(2) e

A, O0B_
(54 k)2 +0
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1 I S Ry
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1 2(29 + 4k) @) 12 A s
— = A A
’Wz—wﬂ[3@+k) N GEN ) Einn
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1 4 PN 2 A 10 . .
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teo )[@+kﬁ+ Gtk F TR
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L A0B; —

4 I S
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+(5+k)22+33+ 1AzAL Az +
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— AT A
Grh) s ++@+k)
5 1 16k A
(VW) =~ =351 7 iB-] (w)
n [ 16( 2+k)U() 323+ k)

8
(5+kﬂ

szﬂ”]()+-~,

(5+ k)

@— 3(5+ k) 3(5 + k)A3_
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————i0B_ )
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@+k) (2) 2k o
w2 ouP y N _igrp
) “36+m 0t T2
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+

(5+k)

Gaa(2) U(g)(w) = B —1w) [(5 16k) i(As — 4iB3) — WT(I)
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where the W®) (w) is given by (4.60) and the other spin-3 field which is primary can be
written in terms of known currents as follows:
29

+ iB U +
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(5 k)
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U
(5+ k)
— 0TM A3 + 0T By — TMOBs + %T<1>A+A, - %A,T<1>A+ (w). (C.26)

A ~ N o 27 ~ A A
B 0B, — B30As — — = B0B; —i0T +iow®
+ 3 3 (5 T k) 3 3—1 “+1

The U(1) charge conservation in these OPEs can be checked from tables 2, 3 and 2.
For the spin-2 current (4.38), one obtains

. O (w) = — B+2k) e | A2HE) )
GaVE ) = o [ O+ TV P
1 5y (3+2k) 4 444 Ek) .3
& BF2R) 444k o
(z —w) [ 2 3(5+k)6G22 3<5+k)8v 2
(3 . o 3 A
+ (5ik) <iAT(2) + 2i A3 v _ iBy (G _|_TJ(FQ)) — 2iBs V(§)>] (w)
A (C.27)

As above, the spin—% fields after subtracting the descendant fields (the derivative terms for
the fields in the second-order pole with coefficient %) in the first-order pole are primary.
The U(1) charge conservation in these OPEs can be checked from tables 2 and 4.

For the other spin-2 current (4.42), the following OPEs can be described as

| 6+k) -~ 27+k)
w2 [_(5+1<;) 2+ i )}()

! 5 (64k) s 204k
+(Z —w) [V(z) — mang + 3(5%8‘/(2)} (w) + - - -(C.28)

Gm (Z) V_(Q) (w) =

As above, the spin—g fields after subtracting these descendant fields (the derivative terms
for the fields in the second-order pole with coefficient %) in the first-order pole are primary.
The U(1) charge conservation in these OPEs can be checked from tables 2 and 4.
For the spin-% current (4.46), one has the following nontrivial OPEs between the spin-%
currents and the spin—% current
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where P3(w) is given by appendix (C.26). The spin-3 field for the first three OPEs after
subtracting the descendant fields (the derivative terms for the fields in the second-order
pole with coefficient i) in the first-order pole are quasi-primary and those for the last OPE
is primary. The U(1) charge conservation in these OPEs can be checked from tables 2, 3
and 5.

C.3 The OPEs between four spin % currents and the higher spin current of
spins (2, g, 3,3)
From the explicit expressions (3.14)-(3.17), and (4.49), the following four OPEs between

the spln—f currents and the spin-2 current can be obtained
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As above, the spin—g fields after subtracting the descendant fields (the derivative terms for
the fields in the second-order pole with coefficient %) in the first-order pole are primary.
The U(1) charge conservation in these OPEs can be checked from tables 2 and 4.
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For the spin—% current (4.53), one has the following OPEs between the spin—% currents

and the spin—% current
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where P3(w) is given by appendix (C.26). The spin-3 field for the third OPE after sub-
tracting the descendant fields (the derivative terms for the fields in the second-order pole
with coefficient i) in the first-order pole is primary and those for the remaining OPEs are

quasi-primary. The U(1) charge conservation in these OPEs can be checked from tables 2, 3
and 5.

For the other spin—% current (4.56), the following OPEs between the spin—% currents
and the spin—% current can be obtained
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The spin-3 field for the second OPE after subtracting the descendant fields (the derivative
terms for the fields in the second-order pole with coefficient %) in the first-order pole is
primary and those for the remaining OPEs are quasi-primary. The U(1) charge conservation
in these OPEs can be checked from tables 2, 3 and 5.
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Finally, from the explicit for the spin-3 current (4.60), the following complicated OPEs
between the spin—% currents and the spin-3 current can be obtained
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The U(1) charge conservation in these OPEs can be checked from tables 2, 4, 6 and 7.

C.4 The OPEs between four spin % currents and the higher spin currents in
different basis

Let us present the OPEs in different basis as we did in appendix (B.4). The OPEs between

the spin-3 currents Ga(z) and the spin-1 current 7'M (w) = T (w) given by (C.1) and (C.2)
can be rewritten in terms of hatted higher spins in (6.8) as follows:

) (w)+---. (C.4T)
'y

There are no Gq(w) dependences in the right hand side of (C.47). The spin-1 current
T (z) acting on the four spin-3 currents of large N = 4 nonlinear algebra leads to the
four currents with same spins but they are located at higher spin multiplet.
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The OPEs between the spin-3 currents G (z) and the four spin—% currents in the right

2
hand side of (C.47) or (6.8) can be described by
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T (C.48)

All the third-order poles appeared in previous basis are disappeared in this new basis (C.48).
From appendix (C.48), one sees the six higher spin-2 currents appear in the right hand
side. Note that the fields TM AL (w) and TMW B (w) are primary fields under the stress
energy tensor 7'(z) because ™M (z) commutes with both A4 (w) and B+ (w) and these five
spin-1 currents are primary. The spin-1 current T(l)(w) appears in the second-order poles
of second and sixth OPEs in appendix (C.48).

The first-order poles in appendix (C.48) are given by
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In (C.49), each five term is primary field except the descendant field %8T(1) (w) which

should be present due to the second-order pole term, 7 (w), and moreover T'(w) was

defined in (B.35) previously.
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Now one calculates the OPEs between the spin—% currents Ga(z) and the above six
spin-2 currents in the right hand side of appendix (C.48) or (6.8)
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The k-dependent structure constants appearing in the second-order pole (in the right hand
side) of appendix (C.50) for the (3,1) are common up to the signs and those for the
(1,3) have same value up to the signs. The nonlinear quadratic terms (AJrﬁ(g)(w), )
appearing in the first-order poles in appendix (C.50) are primary fields because the OPEs
between the corresponding spin-1 currents and the corresponding spin—% currents do not
have any singular terms. For example, A (2) U3 (w) = +---

The nonlinear spin—% fields appearing in (C.50) are given by as follows:
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21
In each OPE of appendix (C.51), the first line contains spin—% current and the derivative

(descendant) term from the spin—% current in the second-order pole. The next lines in the
OPE consist of a primary field which is a quadratic expression between the higher spin
currents and the currents from large A" = 4 nonlinear algebra. The other primary field
which is also a quadratic in A;(w), B;(w) and G,(w) (as well as a derivative term and a
product between the higher spin currents) appears in other OPEs.

L (5
For example, in table 4, the fourth row describes the spin—% current WJ(FQ)(w) and other
12 (hatted) composite fields corresponding to the first-order pole {Ga1 (T — W)} _; (w)
in appendix (C.51). Among those composite fields, six of them participate in one spin-

% primary field where the OPE between the spin-1 and the spin—% currents contains the

(3)

first-order pole term T+ (w) (therefore the ordering between these currents involves the

(3
derivative term 0T J(f)(w)) and the remaining ones do in other spin—% primary field contain-

(3
ing the product of two higher spin currents 77T J(f ) (w). One can easily check that the OPE

TM(2) Ti%) (w) provides the first-order pole term —%Ggl(UJ) and therefore the ordering be-
tween two currents can give the derivative term 8@21(111). One can see the similar features
in the first-order poles of {G1; Vf)}_l(w), {Gan [}f)}_l(w) or {Goy (T + W)} (w).
Furthermore, the table 4 describes the remaining spin—% currents, Wﬁg)(w), U (g)(w) and
V(g)(w). Similar analysis corresponding to the remaining 12 OPEs of appendix (C.51) can
be done without any difficulty.

The OPEs between the spin—% currents éa(z) and the above four spin—% currents in
appendix (C.50) or (6.8) can be obtained by

Gz o) B 1 64k(k + 1)(k + 8) 7¢)
(ém ) ) (f/@) ) (w) = i(,z — w)? {(k‘ +5)(38k2 + 41k — 25)] % (w)

+ G w) [spin-3 composite fields| (w) + - -,

Gar\ (09N 01 960k -1k + D@k +5)] (OF
<é12> - <v<3>) ) = *o o | e k=) g ) @

+ =) [spin-3 composite fields] (w) + - -,

G\ ) (09 oy~ i)
Gu =) v (w) = (z —w)? (k+5)(38k2 + 41k — 25)
" [_ 96(—5 + 3k)(3 + 4k + 2k2)T:

(Tk + 3)
+48(k —1)(2k + 5)(T® + W)
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+ 32k(k + 8)(T™® — W@))} (w)

+ e E w) {:FW(Q%) + spin-3 composite ﬁelds} (w) + -,
G (3N 1 96(k —1)(k +1)(2k +5) e
<é22> FIWT0) =250 [(k +5)(38K2 + 41k — 25)] (V_& > (w)
+ (2 _1 w) [spin-3 composite fields] (w) + - -,
612 T (%) _ 1 (k + 1)
<G21> (2) W (w) = (z — w)Z (k+ 5)(38k2 T 41k — 25)

y ~ 96(10K° 4 34k> — 11k — 15)%
(7k + 3)

+48(k —1)(2k +5)(T® + W)

— 32k(k + 8)(T® — W@))} (w)

+

(z — w) [:FW(?’) + spin-3 composite ﬁelds} (w) + - --

G\, o 1 64k(k + 1)(k + 8) v
( . ) (2) W (w) = jF( [(k +5)(38k2 + 41k — 25)] (U@)) (w)

[spin-3 composite fields] (w) + - -, (C.52)

where the primary field T(w) is given by appendix (B.35) and we do not present the
complete expressions for the spin-3 composite fields consisting of 11 currents and 16 higher
spin currents appearing in the first-order poles [48]. All the third-order poles appeared in
previous basis are disappeared in this new basis (C.52).

Finally, the OPEs between the spin—% currents Ga(z) and the above four spin-3 currents
in appendix (C.52) or (6.8)

: . 2 _ 7(2)
(C:‘u> (W) = ! 2 [4((327k+859)(38k + 41k — 25) ] (U >(w)

Clao (z — w)? | 4(786k3 + 3727k2 + 2920k — 1925) | \ 17(3)
1
—}—( ] [spin-I composite fields] (w) + - - ,
Z—w
Gha - 1 (327k + 859)(38k2 + 41k — 25) ] . (%)
W(3) = 4+ W- 2
(éz1 > RIWH ) = £ [4(78614:3 372TkE + 2000k —1925) | " F (W)
1
+ G—w) [spin—% composite ﬁelds} (w) 4 - . (C.53)

Note that the structure constants appearing in the second-order poles have same values in

appendix (C.53) and we do not present the complete expressions for the spin—% composite

fields [48]. All the third-order poles appeared in previous basis are disappeared in this new
basis (C.53).
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