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1 Introduction

This work is an investigation of the topological twisting of the (2, 0) theory which has been

suggested to be relevant in the explanation of the origin of the AGT-conjecture. Herein,

the simpler model of the free tensor multiplet is considered, and we find that the resulting

twisted theory exhibits some curious, undesirable properties. The most severe of these is

the lack of any satisfactory formulation of a stress tensor. This surprising result will be

clear eventually, but let us first start at the very beginning.

The theory known as (2, 0) theory [1, 2] is a six-dimensional superconformal theory

that continue to resist attempts at unraveling its mysteries. One way to obtain information

about the theory is to look at its different compactifications. For example, when compact-

ified on a circle it gives rise to five-dimensional maximally supersymmetric Yang-Mills the-

ory [3]. Recently a whole class of four-dimensional gauge theories have been constructed

in this way by compactifying (2, 0) theory on a two-dimensional Riemann surface with

possible defects [4–6]. This class of theories is sometimes referred to as “class S” in the

literature [7, 8]. The way these theories are obtained through compactification has led to a

conjecture about the relation of certain objects in four-dimensional- and two-dimensional

theories, the so-called AGT correspondence [9].
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More specifically, this correspondence states that the correlation functions in two-

dimensional Liouville theory are related to the Nekrasov partition function [10, 11] of

certainN = 2 superconformal gauge theories in four dimensions. One natural way to derive

it [9, 12, 13] would be to link it to a certain geometric setup in (2, 0) theory, where the

spacetime is taken to be a product of a two-dimensional- and a four-dimensional manifold.

In such a setting, compactifications could either be carried out on the two- or on the four-

manifold, after which one could search for protected quantities which have survived the

compactification. A relation should then exist between the protected quantities of both

compactifications.

However, one is here faced with the great challenge of a lack of any satisfactory def-

inition of (2, 0) theory that would permit such detailed calculations. While this is indeed

true for the full, interacting (2, 0) theory, this is not the whole story for the abelian version.

Here, a classical formulation in terms of equations of motion exists.

Moreover, it is important to notice that for a general background all supersymmetry

will be broken and such a situation cannot be expected to shed any light on the AGT-

correspondence. In order to preserve some supersymmetry, one must first perform a topo-

logical twisting [14]. In a case where the six-manifold has the product structure mentioned

previously, i.e.M6 = C×M4, andM6 is of Euclidean signature, (thus the holonomy groups

of both C and M4 are compact), such a theory admits a unique twisting, which has been

claimed [12] to be analogous to the Donaldson-Witten twist of four-dimensional N = 2

Yang-Mills theory [14]. In the literature (see for example [12, 15]), it has been stated that

the six-dimensional twist of would result in a theory which would be topological along

M4 and holomorphic along C [16]. Herein, the behaviour of the Lorentzian theory (es-

pecially along the four-manifold), is investigated explicitly by computing a stress tensor.

Our result seems to indicate that this Lorentzian twist may as conjectured coincide with

the Donaldson-Witten twist on a flat background, however it does not seem to be true in

the general case. A more detailed discussion of this shall be presented towards the end of

this work.

However, the elusive side of (2, 0) theory once again comes back to bite us here, since

not even the abelian version of this theory has a satisfactory description on a Euclidean six-

manifold, but rather only on a six-manifold with Minkowski signature. In such a situation,

the holonomy group would be non-compact, and a topological twisting that results in a

scalar supercharge cannot be performed. If the light-like direction is taken to lie in C, one

may still obtain supercharges that are scalars on M4 by a twisting procedure. One of these

charges has properties that would make it scalar along C as well, were we in the Euclidean

scenario. In this work, this is the supercharge we will consider, and the behaviour of the

theory under it is the subject of investigation. The final conclusion is that, on a general

M4, the stress tensor of the theory cannot be both Q-exact and conserved, and the theory

is thus not topological in the traditional sense.

The outline of this work is as follows: in section 2 we describe the twisting procedure

giving rise to the supercharge that is scalar onM4 and give a detailed description of the field

content in this new, twisted theory. Section 3 deals with the equations of motion as well

as the supersymmetry transformations of the twisted theory. In section 4, a stress tensor
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is computed in the flat case which is shown to have all desired properties. An attempt at

generalising this to a general M4 is made, and any Q-exact stress tensor is shown to not be

covariantly conserved. It is also shown that no modifications to either equations of motion

or supersymmetry variations may be done which would rectify these obstructions whenM4

is curved.

2 The twisting

We consider the free tensor multiplet of the (2, 0) theory on a flat six-manifold M6 ,

endowed with a product metric such that M6 = C × M4, with C some two-manifold

and M4 some four-manifold. Throughout this work, light-cone coordinates {+,−} on C,

and indices µ, ν ∈ {1, 2, 3, 4} denoting directions along M4, will be used. When needed,

M,N ∈ {0, 1, 2, 3, 4, 5} will denote indices in six dimensions.

The tensor multiplet [17] contains a symplectic Majorana-Weyl spinor Ψ transforming

in the 4 of the R-symmetry group Spin(5)R, a scalar Φ in the 5 of Spin(5)R and a self-dual

three-form HMNP . This section will deal with the decomposition of these representations

under the twist, and the next section will provide a detailed dictionary for reinterpreting

these in terms of the field content of the twisted theory.

If M6 is of Euclidean signature, as previously mentioned, the theory admits a unique

topological twisting. This since theR-symmetry group Spin(5) contains a subgroup SU(2)R×
U(1)R, which also may be found as subgroups of the Lorentz group of C ×M4: U(1) ×
SU(2)l × SU(2)r. The twisting procedure is carried out by defining SU(2)′ to be the diag-

onal subgroup of SU(2)r × SU(2)R and U(1)′ as the same in U(1)×U(1)R. By considering

the theory under the group U(1)′ × SU(2)l × SU(2)′, one finds a single supercharge which

is scalar hereunder, and thus the possibility of a topological field theory exists.

However, the lack of a satisfactory formulation of the free tensor multiplet of (2, 0)

theory in Euclidean signature forces us to work in a situation where C is of Minkowski

signature instead, with the correspondingly non-compact Lorentz group Spin(1, 1). There

will thus be no way to embed this into U(1)R, and hence it is not possible to perform a

twisting along the two-manifold C as in the above case. M4 is however still of Euclidean

signature, hence the twisting along these directions will not have been affected. This will

be described in greater detail below.

In table 1 and 2, the representations of the fields and supersymmetry parameters

before and after twisting along M4 are shown. A more detailed explanation on how the

six-dimensional field content should be translated to the fields of the twisted theory will as

mentioned follow in the next section.

The superscripts indicate the charge under U(1)R. For clarity, it should here be pointed

out that the representations for the fermions and for the supersymmetry parameters differ

in their chirality on C (which is not shown in table 1 and 2).

If we were in Euclidean signature, all of these new fields would also have charges under

the U(1) which would then be the Lorentz group of C. In the second step of the twisting

procedure previously described, these charges would combine with the charges under U(1)R.

The charge under the new diagonal subgroup U(1)′ would then be given by the sum of these

– 3 –



J
H
E
P
0
3
(
2
0
1
4
)
0
6
2

SU(2)l × SU(2)r × SU(2)R ×U(1)R

Φ (1,1,3)0 ⊕ (1,1,1)±1

Ψ (2,1,2)±1/2 ⊕ (1,2,2)±1/2

H (3,1,1)0 ⊕ (1,3,1)0 ⊕ (2,2,1)0

ε (2,1,2)±1/2 ⊕ (1,2,2)±1/2

Table 1. Representations before twisting.

SU(2)l × SU(2)′ ×U(1)R Twisted fields

Φ (1,3)0 ⊕ (1,1)±1 Eµν , σ̄, σ

Ψ (2,2)±1/2 ⊕ (1,3, )±1/2 ⊕ (1,1)±1/2 ψµ, ψ̃µ, χµν , χ̃µν , η, η̃

H (3,1)0 ⊕ (1,3)0 ⊕ (2,2)0 F−
µν , F

+
µν , Aµ

ε (2,2)±1/2 ⊕ (1,3)±1/2 ⊕ (1,1)±1/2 . . . , (ε̄), ε

Table 2. Representations after twisting.

U(1)× SU(2)l × SU(2)′ ×U(1)R

Φ (1,3)00 ⊕ (1,1)±1
0

Ψ (2,2)
±1/2
1/2 ⊕ (1,3)

±1/2
−1/2 ⊕ (1,1)

±1/2
−1/2

H (3,1)00 ⊕ (1,3)00 ⊕ (2,2)00

ε (2,2)
±1/2
−1/2 ⊕ (1,3)

±1/2
1/2 ⊕ (1,1)

±1/2
1/2

Table 3. Hypothetical Euclidean twist.

two charges. Hence the supercharge that would become scalar under such a twist would

be the one with U(1)R-charge of −1/2 whose parameter shall be denoted by ε. The other

supersymmetry scalar on M4, with U(1)R-charge of +1/2, is denoted by ε̄. That ε is the

parameter of interest can be seen by studying table 3 where the representations after the

four-twist in the Euclidean scenario is written down. The superscript here denotes the

charge under the U(1)R whereas the subscripts denote the charges under the U(1) Lorentz

group of C.

One may choose some chiral, constant spinors e± to generate the two spinor represen-

tations for the fermions which are scalar on M4, namely (1,1)
±1/2
−1/2. (Again, the subscript

denotes the charge under a hypothetical U(1) Lorentz group of C, and is what distinguishes

the two fermionic singlet representations on M4 from the ones of the supersymmetries.) In

some cases, it is convenient to think of these two new base-spinors as complex linear combi-

nations of constant symplectic Majorana-Weyl spinors, e1 and e2, such that e± = e1 ± ie2.

The two spinors e± will as mentioned need to be chiral in the six-dimensional sense to

generate the fermionic representations. Γ+e
± are then anti-chiral, constant spinors, which

generate the (1,1)
±1/2
+1/2 where the supersymmetry-charges that are of interest to us live.
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This allows for a parametrisation of the two supercharges which are scalar on M4 in

terms of some Grassmann parameters u and v, together with a Γ-matrix along C to account

for the six-dimensional chirality. These relations are given by:

ε = vΓ+e
−, ε̄ = uΓ+e

+, (2.1)

where as repeatedly mentioned, the supersymmetry parameter that would become scalar

on C as well after a hypothetical further twist is ε.

2.1 Details of reinterpreting the fields

The next order of business is to create a dictionary, translating the original field content of

the six-dimensional free tensor multiplet (table 1) to the field content of the twisted theory

(table 2).

Bosonic scalar. Let the indices i, j ∈ {1, 2, 3}. One can then quite easily see that the

self-dual two-form Eµν of the twisted theory can be related to the first three components

of the six-dimensional scalar field Φ as follows:

E4i = − Φi (2.2)

Eij = ǫijkΦ
k.

Furthermore, the two last components of the six-dimensional scalar Φ are after twisting

combined into a complex scalar σ:

σ =
1√
2
(Φ4 − iΦ5). (2.3)

Bosonic three-form. Reinterpreting the six-dimensional bosonic three-form in terms of

the new, twisted fields is only slightly more complicated than the case of the scalars above.

By using the fact that HMNP is self-dual, (with respect to the orientation and Riemannian

structure on M6), one may show that H+µν is a self-dual two-form in four dimensions, and

H−µν likewise is an anti-self-dual two-form on M4 (all with respect to the orientation and

Riemannian structure on M4). This gives us a natural interpretation of the components of

H in terms of the twisted two-form F as:

H+µν =
1

2
ǫµν

ρσH+ρσ = F+
µν (2.4)

H−µν = − 1

2
ǫµν

ρσH−ρσ = F−
µν ,

where F±
µν denotes the self-dual and anti-self-dual parts respectively.

Moreover, one may in a similar fashion interpretHµνρ andH+−σ in terms of the twisted

one-form Aσ and its dual as:

Hµνρ = ǫµνρσH
σ
+− = ǫµνρσA

σ. (2.5)
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Fermionic fields. Ψ may be expanded in terms of the twisted fields η, ψ, . . . as follows:

Ψ =

(

η + Γ+Γµψ
µ +

1

4
ΓµΓνχ

µν

)

e+ +

(

η̃ + Γ+Γµψ̃
µ +

1

4
ΓµΓνχ̃

µν

)

e−. (2.6)

The terms in the above decomposition are precisely the twisted field content of the spinor

field as given in table 2. By using how e± are related to symplectic Majorana-Weyl spinors,

one can show that Ψ indeed is a symplectic Majorana-Weyl spinor as well under the con-

dition that the fields with- and without twiddles are related by complex conjugation. This

also is consistent with the U(1)R-charges of these different fields.

However, in the case we wish to consider, namely the theory invariant under only the

one supercharge that would become scalar in a Euclidean scenario, we must loosen these

requirements on Ψ, since there is no such notion as a spinor being Majorana-Weyl on a

six-dimensional Euclidean manifold. This means that the fields with- and without the

twiddles will need to be considered as independent of one another non the less.

2.2 Some useful relations

To perform further calculations, we must first find ways to handle the Γ-matrices which

arise both in (2.6) when reinterpreting the fermionic spinor field in terms of the new,

twisted ones, as well as in the expression for how the relevant supersymmetry parameter is

written down in terms of our base spinors (2.1). In this section, some useful formulas for

handling these are presented.

The first, and maybe most important relation comes from the knowledge that our

constant base spinors are singlets under all of the SU(2)’s after twisting, which gives us

the relations

1

2

(

Γ4i −
1

2
ǫijkΓ

jk

)

e± = 0 (2.7)

1

2

(

Γ4i +
1

2
ǫijkΓ

jk

)

e± +
1

2
ǫijkΓ

jk
R e

± = 0.

Here Γ denotes the Γ-matrices of the Lorentz group, whereas ΓR denotes the gamma

matrices of the R-symmetry group. Again, the indices {i, j, k} take values in {1, 2, 3}. The
top one of the above equations enforces that the e± are singlets under SU(2)l, and the

lower one reflects the same behaviour under SU(2)′.

Furthermore, the charge under the U(1)R is known for the two spinors, and it is thus

known how the generator of this group acts on them:

iΓ4
RΓ

5
Re

± = ±e±. (2.8)

A short calculation also shows that the action of one of these, say Γ4
R, corresponds to

flipping the U(1)R-charge and thus:

Γ4
Re

± = e∓. (2.9)
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Now we move on to relations involving the Γ-matrices of the Lorentz group. The

spinors are chiral in a six-dimensional manner, thus

Γ0Γ1Γ2Γ3Γ4Γ5e
± = e±. (2.10)

This may be reduced to chirality along C and M4 individually by studying how these

representations decompose under the twisting procedure. If we let the six-dimensional

indices be divided such that {0, 1} ∈ C and {2, 3, 4, 5} ∈M4 for the moment, this may be

expressed as:

Γ2Γ3Γ4Γ5e
± = −e± Γ0Γ1e

± = −e±. (2.11)

From the above relations, all information necessary to perform our desired calculations

may be deduced.

It is convenient to define

Γ± =
1√
2
(Γ1 ± Γ0) , Γ± = Γ∓, (2.12)

since we as previously mentioned wish to use light-cone coordinates on the two-manifold,

and to consider the action of these on the spinors instead. This may be derived in a

straight-forward manner using (2.12) together with (2.11), leading to the expressions:

Γ+e
± =

1√
2
(Γ1 + Γ0)e

± =
√
2Γ1e

± , Γ−e
± =

1√
2
(Γ1 − Γ0)e

± = 0. (2.13)

The most favourable way to express these relations is not however in the form in which

they are given now, but rather in terms of the relations for some spinor bilinears which

they lead to. Below, the most commonly used ones of these are listed:

ē∓Γ−e± = 1

ē∓Γ+e± = 0

ē±Γ±e± = 0

ē∓ΓµΓνΓ+e
± = δµν

ē∓ΓµΓνΓρΓσΓ+e
± = δµνδρσ − δµρδνσ + δµσδνρ − ǫµνρσ

ē∓Γ+Γ
−Γ+e

± = 2.

(2.14)

2.3 Compactifying on C

In the construction of the class S theories [4], C is a Riemann surface of genus g with

punctures. The N = 2 Yang-Mills theory arise in the IR limit of (2, 0) theory compactified

on this surface. When considering the theory on a flat C, this simply means that we take

all derivatives in these directions to vanish. Such a compactification seems necessary in

our setup as well if we want the theory on M4 to be topological, since terms containing

derivatives on C otherwise spoil all the interesting properties of the theory: Q invariance

and exactness of Tµν as well as the nilpotency of Q.

However, it may be interesting to point out that there are two supercharges that are

Lorentz scalars on M4, described by parameters ε and ε̄. We have herein chosen to only

consider the observables which live in Q-cohomology, since we are interested in only the

supercharge which would become scalar if the signature of C was Euclidean and we thus

could twist along that direction too.
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3 The theory after twisting

After having worked out the field content in the previous section we now turn to the

formulation of the theory after the twist. Here we will use the known equations of motion

and supersymmetry variations for the abelian tensor multiplet to derive the corresponding

expressions for the twisted fields. With the explicit correspondences given in section 2.1

this is almost immediate.

3.1 Equations of motion

In the six dimensional formalism, the scalar fields fulfil the Klein-Gordon equation, and

the self-dual bosonic three-form satisfies dH = 0. Furthermore, the fermionic field satisfies

the Dirac equation.

DMDMΦ = 0 (3.1)

dH = 0 (3.2)

ΓMDMΨ = 0 (3.3)

Translated into the language of the twisted theory, the bosonic two-form and the

complex scalar also satisfies the Klein-Gordon equation. Since any derivatives in the first

two directions will vanish identically due to the compactification, what remains is the

Klein-Gordon equation along M4, that is:

∂ρ∂
ρEµν = 0 (3.4)

∂ρ∂
ρσ = 0. (3.5)

Moreover, we may split the six-dimensional equation of motion for the bosonic three-

form according to the number of indices alongM4. The six-dimensional equation of motion

are then easily reinterpreted in terms of the twisted fields as:

2∂[µAν] = 0 (3.6)

∂[µF
±
νρ] = 0

∂µA
µ = 0.

Likewise, the equations of motion for the twisted fermionic fields may, after some

calculations, be written as:

∂µψ̃
µ = 0 (3.7)

∂µη̃ − ∂νχ̃µ
ν = 0

(∂µψ̃ν)
+ = 0,

and equivalently for the fields without twiddles. The notation (∂µψ̃ν)
+ refers to the self-

dual part of ∂[µψ̃ν]. Furthermore, since all components of the six-dimensional fermions

satisfy the Klein-Gordon equation, one can show that the same applies to all components

of our twisted fermionic fields (and, as for the scalars, particularly along M4).

– 8 –
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3.2 Supersymmetry

After the twisting procedure we are left with two supercharges which are Lorentz scalars

on M4, and as explained in section 2, the one with positive U(1)R charge is the one which

we focus on herein. We now derive the component expressions for this supercharge acting

on the twisted fields starting from the six-dimensional expressions. In a flat space-time,

these supersymmetry variations for the free tensor multiplet are given by:

δHMNP = 3∂[M
(

Ψ̄αΓNP ]ǫ
α
)

(3.8)

δΦK = 2(ΓR
K)αβΨ̄

αǫβ (3.9)

δΨα =
i

12
HMNPΓ

MNP ǫα + iMβγ∂M (ΓR
K)αβΦKΓM ǫγ . (3.10)

Where K denotes an index in the vector representation of the R-symmetry group Spin(5).

Using the twisted field content of definitions (2.2)–(2.6) together with the supersymmetry

parameter ε of (2.1) , these variations induce the following variations of the twisted fields:

δσ =
√
2η̃v

δσ̄ = 0

δEµν = iχµνv

δF+
µν = 0

δF−
µν = −4∂[µψν]v

δAµ = ∂µηv

δη = 0

δψν = −vi
√
2∂ν σ̄

δχµν = 0

δη̃ = 0

δψ̃ν = ivAν − v∂µEν
µ

δχ̃µν = 2ivF+
µν

(3.11)

These can be verified to square to zero, which is equivalent to the supercharge Q consid-

ered here indeed being nilpotent. Furthermore, these variations can be shown to induce

an isomorphism on the space of solutions to the equations of motions presented in equa-

tions (3.4), (3.5), (3.6) and (3.7).

4 Stress tensor

A first step towards computing the stress tensor for the theory in a general background is

to first perform the calculations in the special case when M4 has vanishing curvature. This

is the subject of this section, and is something that will greatly facilitate the investigation

of the general case (performed in section 5).

4.1 Actions

Since the main objective of this paper is to obtain an explicit expression for the stress ten-

sor of the twisted theory, it would be highly convenient if we could formulate an action for

it. The derivation of the desired stress tensor would in principle then be straight forward,

and could be carried out by a standard metric variation of this action. However, as pre-

viously mentioned on repeated occasions, there are some well-known problems with giving

a satisfactory formulation of (2, 0) theory in general, and using a Lagrangian formalism

– 9 –
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in particular, and we cannot hope to do this here either. However, there is a well-defined

action for both the fermionic fields as well as the scalar fields of the abelian (2, 0) theory,

and by writing these down we may find an Ansatz for the contributions to the stress tensor

which arise from these fields.

Scalars. The action for the scalar field in six dimensions is given by the

standard expression

Lscalars = −∂MΦK∂MΦK . (4.1)

By exploiting the fact that all derivatives in the ±-directions vanish, together with

the relations:

ΦiΦ
i =

1

4
EµνE

µν (4.2)

Φ4Φ
4 +Φ5Φ

5 = 2σσ̄,

the action for the scalar fields in the twisted theory may be written as:

Lscalars = −1

4
∂ρEµν∂

ρEµν − 2∂ρσ∂
ρσ̄. (4.3)

Fermions. In six dimensions, the fermionic part of the action may be written on the

well-known form

L =
i

2
Ψ̄ΓMDMΨ. (4.4)

Recall that these six-dimensional fields may be reinterpreted in terms of the twisted ones

according to equation (2.6), which states:

Ψ =

(

η + Γ+Γµψ
µ +

1

4
Γµνχ

µν

)

e+ +

(

η̃ + Γ+Γµψ̃
µ +

1

4
Γµν χ̃

µν

)

e−, (4.5)

where e+ and e− as previously are constant spinors which span the two chiral spinor

representations that are Lorentz scalars on M4. From this, an expression for Ψ̄ may be

obtained as:

Ψ̄ = ē+
(

η − Γ+Γµψ
µ − 1

4
Γµνχ

µν

)

+ ē−
(

η̃ − Γ+Γµψ̃
µ − 1

4
Γµνχ̃

µν

)

. (4.6)

By using the properties (2.14) derived for the Γ-matrices, integration by parts and

the fact that all derivatives along C vanish, the six-dimensional fermionic action may be

written in terms of the twisted fields as:

LFermions = −i
(

η∂µψ̃
µ + ψµ∂µη̃ − ψµ∂νχ̃

µν + χµν∂µψ̃
ν
)

. (4.7)
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4.2 Ansatz and modifications

The stress tensor in the flat case is obtained by computing the individual contributions orig-

inating from the six-dimensional bosonic three-form, the bosonic scalar and the fermions

separately, whereupon the relative coefficients are fixed by requiring supersymmetry invari-

ance. However, which to us was somewhat unintuitive, some modifications to the terms

containing the bosonic self-dual two-forms are required in order to obtain an expression

which is both conserved (i.e. satisfies DµT
µν = 0), and Q-closed. This final expression of

Tµν may then be shown to also be Q-exact as desired.

Another important feature is that since the theory has no other definition than in

terms of the equations of motion, the stress tensor will only be considered on-shell.

For the fields where an action exists, an Ansatz of the stress tensor may be computed

in a standard way, namely by using

Tµν =
1

2
gµνL+

∂L
∂gµν

. (4.8)

For the part arising from the bosonic three-form however, we are forced to take a slightly

different approach. We may regard the action for a non-chiral 3-form in six dimensions,

taking the familiar expression

L = HMNPH
MNP , (4.9)

which may be used to compute a stress tensor by the recipe stated in equation (4.8). After

this is done, the condition that H is self-dual in six dimensions is imposed, and thus the

first term in equation (4.8) will vanish. The remaining terms on M4 will, in the language

of the twisted fields, be given by

Tµν
H = −4A(µAν) − 2F+µ

ρF
−ρν − 2F−µ

ρF
+ρν + 2gµνAρA

ρ. (4.10)

For the scalars and the fermions, one arrives at the following expressions respectively

Tµν
Φ = − gµν∂ρσ∂

ρσ̄ + 2∂(µσ∂ν)σ̄ +
1

4
∂(µEρσ∂

ν)Eρσ − 1

8
gµν∂λEρσ∂

λEρσ, (4.11)

Tµν
Ψ =

i

2
gµν

(

∂ρηψ̃
ρ + ∂ρη̃ψ

ρ
)

− i
(

∂(µηψ̃ν) + ∂(µη̃ψν)
)

(4.12)

− i

4
gµν

(

χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)

+
i

2

(

χσ(µ∂σψ̃
ν) + χ̃σ(µ∂σψ

ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)

.

It should be noted here that since we have self-dual fields, the variation of the metric

is not as straight-forward as it would appear to be in equation (4.8). This is because the

condition of self-duality contains an implicit metric dependence, and thus a variation of the

metric must be accompanied by a variation of all self-dual fields present. A term consisting

of such a self-dual field, χµν , with indices contracted with some other rank-2 tensor, Xµν ,

will under a metric variation take the form:

Xµνδgχµν = −1

4
δgµνg

µνXκλχ
κλ + δgµνX

[µσ]χν
σ. (4.13)
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The three pieces in (4.10), (4.11) and (4.12) are each conserved individually, which

may be shown by straight-forward, but yet tedious calculations that are omitted here. In

order to stand a chance of fulfilling supersymmetry invariance under the transformations

listed in equation (3.11), the relative coefficients amongst the different contributions are

fixed. The stress tensor one then finds is given by:

Tµν =
1

2

(

− gµν∂ρσ∂
ρσ̄ + 2∂(µσ∂ν)σ̄ +

1

4
∂(µEρσ∂

ν)Eρσ − 1

8
gµν∂λEρσ∂

λEρσ

)

(4.14)

+
1

8

(

−4A(µAν) − 2F+µ
ρF

−ρν − 2F−µ
ρF

+ρν + 2gµνAρA
ρ
)

+
i

2
gµν

(

∂ρηψ̃
ρ + ∂ρη̃ψ

ρ
)

− i
(

∂(µηψ̃ν) + ∂(µη̃ψν)
)

− i

4
gµν

(

χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)

+
i

2

(

χσ(µ∂σψ̃
ν) + χ̃σ(µ∂σψ

ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)

.

However, some problematic terms still exist which prevents the above expression from

being Q-closed. By a long and quite intricate calculation, one may show that this obstruc-

tion is solved if the part of the stress tensor containing the self-dual two-form which arose

from the six-dimensional scalars, namely terms containing Eµν , is altered to:

Tµν
EE-terms =

1

4
gµν∂κEρκ∂σE

ρσ − 1

2
∂ρ

(

∂κE(µ
κE

ν)
ρ

)

+
1

2
∂(µ∂κE

ρκEν)
ρ. (4.15)

Also this part is conserved on its own, and so this alteration preserves the conservation of

Tµν . This may be shown by a slightly more complicated calculation than for any of the

other terms, which requires the repeated use of the self-duality of Eµν .

That this problem of supersymmetry invariance is solved by altering the terms con-

taining the fields originating from the scalars, for which we had an action from which to

derive a stress tensor, may seem quite unintuitive. However, we must bear in mind that

even though we have an action for some fields in the theory, there is no action for the

entire theory. Hence we do not have a supersymmetric quantity from which we may derive

a supersymmetric stress tensor, and though using the actions presented in equations (4.7)

and (4.3) provides us with a good Ansatz for a stress tensor for the entire theory, we should

not expect this approach to give us a supersymmetric result.

The complete stress tensor for this theory when placed on a flat background may then

finally be written down explicitly as

Tµν =
1

2

(

− gµν∂ρσ∂
ρσ̄ + 2∂(µσ∂ν)σ̄

)

(4.16)

+
1

8

(

−4A(µAν) − 2F+µ
ρF

−ρν − 2F−µ
ρF

+ρν + 2gµνAρA
ρ
)

+
i

2
gµν

(

∂ρηψ̃
ρ + ∂ρη̃ψ

ρ
)

− i
(

∂(µηψ̃ν) + ∂(µη̃ψν)
)

− i

4
gµν

(

χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)
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dimensionality U(1)R-charge

η, ψµ, χµν 5/2 +1/2

η̃, ψ̃µ, χ̃µν 5/2 −1/2

σ̄ 2 +1

σ 2 −1

Eµν 2 0

Aµ, Fµν 3 0

Tµν 6 0

ǫ −1/2 −1/2

Table 4. Mass dimension and U(1)R charges of the fields, parameters and curvature tensors.

+
i

2

(

χσ(µ∂σψ̃
ν) + χ̃σ(µ∂σψ

ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)

+
1

4
gµν∂κEρκ∂σE

ρσ − 1

2
∂ρ

(

∂κE(µ
κE

ν)
ρ

)

+
1

2
∂(µ∂κE

ρκEν)
ρ,

where the last line above is the manually altered terms that are needed to make the stress

tensor invariant under the supersymmetry transformations in equation (3.11).

4.3 Q-exactness

The stress tensor presented above in (4.16) is after an examination found to be Q-exact

and may be written as

Tµν =
{

Q, λµν
}

, (4.17)

where

λµν =
1

2

(√
2iψ(µ∂ν)σ + ψ̃(µ∂ρEν)

ρ + ∂ρψ̃
(µEν)

ρ − ∂(µψ̃ρEν)
ρ (4.18)

+ iψ̃(µAν) − i

2
χ̃(µ

ρF
−ν)ρ − i√

2
gµνψρ∂

ρσ − 1

2
gµνψ̃ρ∂σE

ρσ − i

2
gµνψ̃ρA

ρ

)

.

To find λµν , an Ansatz was used in which all possible allowed terms were included.

These are however not as many as one may think, since there are constraints due to

dimensionality and U(1)-charge. These constraints forces us to restrict ourselves to terms

of dimensionality 11/2 and U(1) charge of −1/2, (which all of the above terms clearly

satisfy). In table 4, the dimensionality and U(1)-charge of the different fields, as well as

the supersymmetry parameter and stress tensor, are listed.

5 The case when M4 is curved

In the previous section, an expression for the stress tensor whenM4 has vanishing curvature

is obtained and shown to indeed be Q-exact. This was done by explicitly finding a λµν

such that Tµν = {Q, λµν}. Now we are faced with the question: how does this change in

the case when M4 is curved?

– 13 –
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A simple starting point here would instead be to ask the question “How may λµν change

when M4 becomes curved?”. The restrictions imposed upon λµν by dimensionality may be

used here as well. Since λµν is of fractional dimension, an odd number of fermionic fields

must be included. Also, since we wish to add terms related to curvature, the Riemann-,

Ricci-tensor or curvature scalar must be included in these, each of which is of dimension

2. The remaining part of these terms must be of dimension 1, which means that our only

option is to incorporate a derivative. Terms like these are however not bilinears in the

fields, and thus make no sense at all.

By the reasoning above, there are no terms which may possibly be added to λµν in the

case when M4 is curved. Thus, the stress tensor even in this case will still be given by the

expression {Q, λµν}.
It should be noted that there are two more places that could be modified in the curved

case: the scalar equations of motion and the fermion supersymmetry variations.

The scalar equations of motion could be modified to replace the right hand side of

the Klein-Gordon equation in both (3.4) and (3.5) with a multiple of the curvature scalar

multiplying the fields. However, such a modification in (3.5) would ruin the conservation

properties of the part of the stress tensor containing the bosonic scalars and is thus not

allowed. The same modification in (3.4),

DρD
ρEµν = aREµν , (5.1)

may be carried out, where a is some constant. However, this will not be enough to rectify

the problems arising whenM4 is curved, something which is further discussed in section 5.1.

The fermionic supersymmetry variations for the six-dimensional free tensor multiplet

in a curved background may contain an extra term of the form

δΨ = · · ·+ΦΓMDM ǫ. (5.2)

This term will not contribute to the twisted supersymmetry transformations since the

whole point of the twisting is to manufacture a covariantly constant supercharge.

Thus, in the curved case, the stress tensor cannot be subject to any modifications and

will still be given by
{

Q, λµν
}

, where all partial derivatives in λµν are now replaced by

covariant ones. This gives us Tµν as in equation (4.16) but again, with partial derivatives

replaced by covariant ones. The generalisation to a curved M4 is thus:

Tµν =
1

2

(

− gµνDρσD
ρσ̄ + 2D(µσDν)σ̄

)

(5.3)

+
1

8

(

−4A(µAν) − 2F+µ
ρF

−ρν − 2F−µ
ρF

+ρν + 2gµνAρA
ρ
)

+
i

2
gµν

(

Dρηψ̃
ρ +Dρη̃ψ

ρ
)

− i
(

D(µηψ̃ν) +D(µη̃ψν)
)

− i

4
gµν

(

χ̃ρσD[ρψσ] + χρσD[ρψ̃σ]

)

+
i

2

(

χσ(µDσψ̃
ν) + χ̃σ(µDσψ

ν) − χσ(µDν)ψ̃σ − χ̃σ(µDν)ψσ

)

+
1

4
gµνDκEρκDσE

ρσ − 1

2
Dρ

(

DκE(µ
κE

ν)
ρ

)

+
1

2
D(µDκE

ρκEν)
ρ.
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That this stress tensor is still Q-exact is obvious, but it is not completely clear that it

still fulfils the criteria of being covariantly conserved. Rather surprisingly, it would seem

that it does not. Again, the complications lie in the part containing the self-dual bosonic

two-forms. By considering the covariant derivative of these terms, the complications arising

here for a curved M4 will be apparent.

5.1 Covariant conservation of Tµν in the curved case

Consider the covariant divergence of the terms containing the bosonic self-dual two-forms:

DµT curved EE-terms
µν =+

1

2
gµνD

µDκEρκDσE
ρσ − 1

2
D[µDρ]

(

DκE(µ
κEν)ρ

)

(5.4)

− 1

2
D(µDρ)

(

DκE(µ
κEν)ρ

)

+
1

2
Dµ

(

D(µDκE
ρκEν)ρ

)

.

This can, as previously mentioned, be shown to vanish when M4 is flat, but in the

curved case, there are additional terms arising from commuting the derivatives which may

yet cause problems. A few of the above terms will give rise to terms containing derivatives

on the curvature tensors, which must cancel on their own for any chance to maintain

conservation of Tµν . Such terms will arise from terms containing three derivatives acting

on the same field, that is from the two last terms in the expression above.

Let us start by considering terms of this kind. By using two forms of the Bianchi

identity, together with a basis expansion of the self-dual two-forms according to Eµν =

EiT
i
µν , (where i ∈ {1, 2, 3} and the T i’s form a basis on the space of self-dual two-forms)

in the cases where the two bosonic fields are contracted, one may in a straight-forward

manner show that all terms containing the derivatives on the curvature tensors may be

written as:

− 1

4
DτRρκE

τκEν
ρ +

1

8
DνRµκρτE

τκEµρ +
1− 2a

4
DνREiE

i. (5.5)

To obtain this expression, the most general form of the equations of motions for Eµν on a

curved background were used, as given in (5.1).

This is in general non-zero, which may be easily shown by introducing a concrete

example in which this quantity does not vanish. An example of such a configuration is

M4 = R ×M3, where index value 1 denotes the coordinate along R, and M3 is of non-

vanishing curvature. Consider (5.5) in the case where ν = 1. In such a case, the two

last terms vanish, where as the first one in general does not. We have thus shown that

the unique, Q-exact stress tensor of the theory is not conserved when the theory is placed

upon a general four-manifold M4.

That the divergence of the suggested stress tensor is non-vanishing is deeply unsettling

since in general, conservation of the stress tensor is a direct consequence of general covari-

ance of the theory. In particular, any stress tensor for a topological field theory needs to

satisfy this, as well as being Q-exact.1 Our result thus implies that the theory obtained

herein does not appear to be topological. One should however notice that no claims are

made as to the situation when the condition of Q-exactness of Tµν is removed. Such a

setup lies outside the scope of this work.

1This is a characteristic feature of the class of topological field theories considered herein.
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6 Conclusion and outlook

Herein, we have shown that there is no possible covariantly conserved, Q-exact stress tensor

when this twisted form of the theory is placed on a general background. The twisting in

question is taken to be the one described, for example, in [12] where the free tensor multiplet

of (2, 0) theory is placed on M6 = C ×M4 with Minkowski signature. Twisting along M4

and compactification along C as described in section 2 is then performed. Furthermore, the

theory is only considered under the supercharge that would become scalar on C if it were of

Euclidean signature and further twistings could be performed. This must however remain

an “if ”, because of the problems surrounding the formulation of (2, 0) theory, especially in

Euclidean signature. Because of these problems, all of our investigations were kept on the

level of equations of motion.

The lack of a Q-exact stress tensor in general is to us a surprising result, and we shall

below discuss some potential explanations to its origin:

One obvious possible source of this unexpected result may be found in the details of

the twisting procedure itself. It should be noted that when compactifying the (2, 0) theory

on a general two-manifold, C, all supersymmetry is broken and there is thus no way to

twist the resulting four-dimensional theory. However, when the six-dimensional theory

is twisted (in the Euclidean case), one supercharge is preserved, and thus a successive

compactification on C could result in a supersymmetric theory. The moral of this is that

in general, a twist of the six-dimensional theory cannot be seen as a twisting obtained

through a four-dimensional super Yang-Mills theory.

A more explicit way to illustrate this is through the following rather simple scenario:

consider the free (2, 0) theory on a Euclidean six-manifold with a product structure, C×M4.

The simplest possible approach to obtain a four-dimensional supersymmetric theory would

be to take C to be a flat two-torus and compactify on this to obtain the well-known N = 4

Yang-Mills theory. This theory in turn admits three inequivalent topological twists [18],

resulting in three different four-dimensional theories. However, starting at the other end,

the six-dimensional (2, 0) theory admits one unique twist. After this is carried out, one may

compactify on the two-torus and obtain some particular four-dimensional theory. Hence

these two approaches cannot be considered equivalent.

The conjecture that the twisted theory along M4 should coincide with Donaldson-

Witten theory is obtained through thinking about the six-dimensional topological twist in

the manner discussed in the above paragraphs. That is, it is considered equivalent to first

compactfying down to the class S theories and then twisting these. Our arguments above,

together with the obtained result of section 5.1 would seem to indicate that the situation

may actually be more complicated.

However, the reasoning above is in full carried out in a Euclidean scenario where, as

noted on many occasions, no satisfactory formulation of the (2,0) theory exist. Rather

all the calculations presented in this paper are carried out in a Lorentzian signature, and

the twisting along C is for obvious reasons not carried out. One could then ask if this

situation finds its remedy in the hypothetical twisting along C. This will however not be

the case since this twisting would only result in different U(1)-charges of the fields, and all
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arguments done here for possible curvature corrections etc are not dependent on this, but

rather on dimensionality which remains unchanged. Moreover, it shall be noted that the

issue of signature also affects the compactification on the two-manifold, which may be a

contributing factor to the obtained result.

Another possible resolution of these difficulties may be found in a hypothetical formu-

lation of the free (2, 0) tensor multiplet in a Euclidean signature. If one requires that this

hypothetical theory should indeed give rise to a topological field theory under the twisting

described herein, this investigation of the difficulties presented for its Minkowski analog

may shed some light on desired properties of the Euclidean theory.
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