
J
H
E
P
0
3
(
2
0
1
4
)
0
5
9

Published for SISSA by Springer

Received: November 12, 2013

Accepted: February 11, 2014

Published: March 12, 2014

Viscous asymptotically flat Reissner-Nordström

black branes

Jakob Gath and Andreas Vigand Pedersen

Niels Bohr Institute, University of Copenhagen,

Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

E-mail: gath@nbi.dk, vigand@nbi.dk

Abstract: We study electrically charged asymptotically flat black brane solutions whose

world-volume fields are slowly varying with the coordinates. Using familiar techniques, we

compute the transport coefficients of the fluid dynamic derivative expansion to first order.

We show how the shear and bulk viscosities are modified in the presence of electric charge

and we compute the charge diffusion constant which is not present for the neutral black

p-brane. We compute the first order dispersion relations of the effective fluid. For small

values of the charge the speed of sound is found to be imaginary and the brane is thus

Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the

sound mode becomes stable, however, in this regime the hydrodynamic mode associated

with charge diffusion is found to be unstable. The electrically charged brane is thus found

to be (classically) unstable for all values of the charge density in agreement with general

thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is

saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be

violated in certain regimes of the charge of the brane.

Keywords: p-branes, Classical Theories of Gravity, Black Holes, Black Holes in String

Theory

ArXiv ePrint: 1302.5480

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2014)059

mailto:gath@nbi.dk
mailto:vigand@nbi.dk
http://arxiv.org/abs/1302.5480
http://dx.doi.org/10.1007/JHEP03(2014)059


J
H
E
P
0
3
(
2
0
1
4
)
0
5
9

Contents

1 Introduction 2

2 Reissner-Nordström branes and effective zeroth order fluid 4

2.1 Reissner-Nordström black branes 4

2.2 Thermodynamics and effective blackfold fluid 5

3 The perturbative expansion 6

3.1 Setting up the perturbation 6

3.2 A digression: reduction of Einstein-Maxwell theory 8

4 First order equations 9

4.1 Scalars of SO(p) 10

4.2 Vectors of SO(p) 12

4.3 Tensors of SO(p) 13

4.4 Comment on the homogeneous solution 14

4.5 Imposing asymptotically flatness 15

5 Viscous stress tensor and current 15

5.1 First order fluid dynamics 15

5.2 Computing the effective stress tensor and current 16

5.3 Hydrodynamic bounds 18

6 Stability and dispersion relations 18

6.1 Dispersion relations 18

6.2 Thermodynamic stability 21

7 Discussion 22

A Reduction 23

A.1 Reduction of Einstein-Maxwell theory on an Einstein manifold 23

A.2 Reduction of the zeroth order solution 24

B Coefficients of the large r expansions 25

C Thermodynamic coefficients 26

– 1 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
9

1 Introduction

Black branes possess hydrodynamic properties in addition to their thermodynamic prop-

erties. Indeed, fluid dynamics is the natural local generalization of the global thermody-

namics of black branes. This is well-known and established in the hydrodynamic limit of

the AdS/CFT correspondence [1], but has also been shown to hold true for Ricci flat black

branes [2–5]. Here the effective dynamics of the black brane (collectively known as ‘the

blackfold approach’) is captured by the quasi-local stress tensor of Brown and York [6]. In

general, the stress tensor is given by a fluid-elastic derivative expansion in the collective

parameters describing the brane. To leading order, the stress tensor is that of a boosted

perfect fluid which accounts for the thermodynamics of the brane. Fluctuations in the di-

rections transverse to the brane (i.e. bending) give rise to elastic contributions [7–10] while

fluctuations in the world-volume fields longitudinal to the brane, relevant to this paper,

are captured by fluid dynamic dissipative corrections to the effective stress tensor [4].

In this paper we examine how the presence of electric Maxwell charge modifies the fluid

transport coefficients of the neutral black brane originally considered in [4]. Moreover, we

compute the transport coefficient associated to charge diffusion in the charged black brane

to first order in the fluid derivative expansion. Although many supergravity solutions

carrying lower dimensional charge on their world-volume are known [11, 12], only recently

a new family of black branes of Einstein gravity coupled to a dilaton and a single q + 1

form gauge field was found [13]. This family of solutions has both the dilaton coupling and

the (integer) dimension q as free parameters. The Maxwell charged black brane solution

can therefore straightforwardly be obtained from this family of solutions by specializing

to q = 0 and turning off the dilaton coupling. This especially means that we can study

hydrodynamic fluctuations of pure Einstein gravity coupled to a single gauge field without

a dilaton - something which is not possible for generic supergravity backgrounds. In this

way, our computation provides the simplest generalization of the neutral case. In detail, we

consider long wavelength fluctuations around the black brane solution of Einstein-Maxwell

gravity (which we shall from now on dub the Reissner-Nordström black brane) following

the method of [1, 4]. We solve the full set of coupled Einstein-Maxwell equations to first

order in the derivative expansion and compute the effective stress tensor and current. This

provides us with the charged generalizations of respectively the shear and bulk viscosity

along with the charge diffusion constant which is not present in the neutral case.

Having computed the shear and bulk viscosities we find that the bound η/s ≥ 1/4π is

saturated. This agrees with the expectation that this should hold for any two-derivative

gravity theory [14, 15]. However, we find that the bulk viscosity to entropy bound proposed

in [16] can be violated in certain regimes. Perhaps this is not too surprising since the

derivation of this bound relies heavily on holographic considerations. However, it is worth

noting that the bound is saturated for the neutral black brane [4]. Finally we mention that

the modified bound proposed in [17, 18] is found to be violated.

By computing the speed of sound in the effective fluid of the neutral black brane

ref. [3] was able to identify the unstable sound mode of the effective fluid with the Gregory-

Laflamme (GL) instability [19, 20]. This (very simple) computation can already be carried
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out at the perfect fluid level. The results of [4] allowed further refinement of this result

and showed remarkable agreement with numerical data. Performing a similar computation

for the Reissner-Nordström black brane, we find that for a given temperature, the speed

of sound becomes real above a certain threshold value of the charge density. This seems

to imply that the Reissner-Nordström black brane is not GL unstable for sufficiently large

values of the charge. However, upon closer inspection of (next-to-leading order) dispersion

relations, we find that above the threshold value of the charge, the hydrodynamic mode

associated with charge diffusion becomes unstable. The Reissner-Nordström black brane is

therefore leading order and next to leading order GL unstable below and above the charge

threshold, respectively. This complementary behavior of the instability is expected from

the general thermodynamics. Indeed, by computing the specific heat C and the isothermal

electric permittivity c we find that the conditions C > 0 and c > 0 put complementary

conditions on the charge density of the brane (recall that C < 0 for the neutral brane).

Since thermodynamic stability requires that C > 0 and c > 0, the Reissner-Nordström

black brane is never thermodynamically stable (see e.g. [21]).

In many ways, studying intrinsic fluctuations of branes in the blackfold formalism is

similar in spirit to the well-known fluid/gravity correspondence of AdS/CFT [1]. We also

mention that the computation in fluid/gravity analogous to ours (fluctuations of the AdS

Reissner-Nordström brane of co-dimension 1 with a Chern-Simons term) was carried out in

the papers [22–25]. However, we emphasize that our computation deals with asymptotically

flat branes of general co-dimension (note that extensions of the blackfold formalism to AdS

backgrounds have been made in certain regimes - see [26–29]) and that the effective fluid

stress tensor has no direct interpretation as a “dual” fluid of a QFT. Also note that the

blackfold fluid stress tensor is not that of a conformal fluid. Recently a connection between

the fluid/gravity correspondence and the blackfold formulation was established. This was

done by constructing a map from asymptotically AdS solutions compactified on a torus to

a corresponding Ricci-flat solution obtained by replacing the torus by a sphere [30]. This

was used to take the general second order results of fluid/gravity [31] and map them to

the second order blackfold stress tensor. This provides even further improvement of the

dispersion relation of the GL instability.

The outline of the paper is as follows: in the subsequent section 2 we will setup

the leading order solution and review its thermodynamics. In section 3 we discuss the

perturbation procedure and explain how the boundary conditions are handled. In section 4

the first order equations are solved and in section 5 the effective stress tensor and current are

provided. In section 6 the transport coefficients are used to analyze the dispersion relations

and the GL instability. Finally, we will discuss the results in section 7 and address some

interesting future developments.

Notation: we use µ, ν to label the D = p + n + 3 spacetime directions. Moreover, we

denote the p + 1 world-volume directions of the brane in Schwarzschild coordinates by

xa = (t, xi) and in Eddington-Finkelstein coordinates by σa = (v, σi) with a = 0 . . . p and

i = 1, . . . , p. The co-dimension of the brane is n+ 2. For simplicity of the presentation we

restrict ourselves to the cases where n > 1 due to a slightly different behavior at infinity for
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the n = 1 solution. However, treating the special case of n = 1 should be straightforward

using similar considerations as for the neutral case.

2 Reissner-Nordström branes and effective zeroth order fluid

In this section we review the generalized Gibbons-Maeda solution for q = 0 which was

found in [13]. The generalized Gibbons-Maeda solution describes a black p-brane with

horizon topology Sn+1 × R
p which has electric q-charge diluted on its world-volume. The

solution was obtained from the Gibbons-Maeda solution [32] through an elaborate double

uplifting procedure. The general solution is given in terms of a metric, a dilaton and a

(q+1)-form gauge field under which (the q-charge diluted on the) black p-brane is charged.

A particularly nice property of the generalized Gibbons-Maeda solution is that the dilaton

coupling a can be treated as a free parameter. This especially means that we are free to

set a = 0. This is of course not possible for the well-known supergravity solutions such as

the D0-Dp system [11, 12]. Moreover, in this paper we restrict ourselves to the q = 0 case

(Maxwell charge).

2.1 Reissner-Nordström black branes

As explained above, we consider branes of Einstein-Maxwell theory. The action is

S =
1

16πG

∫

dDx
√−g

[

R− 1

4
FµνF

µν

]

, (2.1)

where Fµν is the field strength of the Maxwell gauge field Aµ, F = dA. We now present the

Reissner-Nordström black brane solution. The solution is characterized by p flat spatial

directions xi, a time direction t, and finally a radial direction r along with the usual

transverse sphere Sn+1. The total spacetime dimension D is related to p and n by D =

p+ n+ 3. The metric is given by

ds2 = −h−2f dt2 + hB

(

f−1dr2 + r2dΩ2
(n+1) +

p
∑

i=1

(

dxi
)2

)

. (2.2)

The two harmonic functions f ≡ f(r) and h ≡ h(r) are given by1

f(r) = 1−
(r0
r

)n
, h(r) = 1 +

(r0
r

)n
γ0 . (2.3)

The two parameters r0 and γ0 are related to the thermal and electrostatic energy of the

solution (see below). The parameter B ≡ B(p, n) is given by2

B =
2

n+ p
. (2.4)

Finally the gauge field A is given by

A = −
√
N

h

(r0
r

)n√
γ0(γ0 + 1) dt , (2.5)

where we have defined N ≡ B + 2.
1In the blackfold literature γ0 ≡ sinh2 α.
2The full generalized Gibbons-Maeda solution has an additional parameter A. However, for the non-

dilatonic Reissner-Nordström solution one has A = 2.
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It is straightforward to apply a uniform boost ua to the solution (2.2) in the flat

directions: the metric of the non-dilatonic boosted Reissner-Nordström black brane is

given by

ds2 = hB
(

−h−Nf uaub dxadxb + f−1dr2 + r2dΩ2
(n+1) +∆ab dx

adxb
)

. (2.6)

where ∆a
b ≡ δab + uaub is the usual orthogonal projector defined by the boost ua. The

gauge field is given by

A =

√
N

h

(r0
r

)n√
γ0(γ0 + 1)uadx

a . (2.7)

In the next section we review the thermodynamics and effective blackfold description of

this solution.

2.2 Thermodynamics and effective blackfold fluid

The blackfold theory of p-branes supporting q = 0 charge was developed in [13] and further

examined in [33] where also p = q was considered in detail (in a supergravity setting). For a

uniform boost ua of the brane, it is instructive to write the effective blackfold stress tensor

in the form

T ab(0) = T s
(

uaub − 1

n
γab
)

+ΦQuaub , (2.8)

where γab is the induced metric on the blackfold. For our purposes (flat extrinsic geometry),

we have γab = ηab. Moreover T is the local temperature, s is the entropy density, Q is the

charge density and finally Φ is the electric potential conjugate to Q. The various quantities

are parameterized in terms of a charge parameter γ0 and the horizon thickness r0:

T =
n

4πr0
√

(1 + γ0)N
, s =

Ω(n+1)

4G
rn+1
0

√

(1 + γ0)N , (2.9)

Q =
Ω(n+1)

16πG
n
√
Nrn0

√

γ0(1 + γ0), Φ =

√

Nγ0
1 + γ0

.

The stress tensor in the form (2.8) immediately allows us to identify the thermal and the

electrostatic parts. Since rn0 ∼ T s, r0 gives us a measure of the thermal energy (density)

of the given solution. In a similar manner γ0 is identified with the thermodynamic ratio,

γ0 =
1

N

ΦQ
T s , (2.10)

and γ0 therefore measures the electrostatic energy relative to the thermal energy of the

black brane.

Of course, it is straightforward to cast the stress tensor into standard form (using the

Gibbs-Duhem relation w ≡ ǫ+ P = T s+ΦQ)

T ab(0) = wuaub + Pηab = ǫuaub + P∆ab , (2.11)

where

ǫ =
Ω(n+1)

16πG
rn0
(

n+ 1 + nNγ0
)

, P = −
Ω(n+1)

16πG
rn0 , w =

nΩ(n+1)

16πG
rn0
(

1 +Nγ0
)

. (2.12)
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Finally the q = 0 current supported by the p-brane is given by

Ja(0) = Qua . (2.13)

To leading order, the intrinsic blackfold equations take the form of the world-volume con-

servation equations ∇aT
ab
(0) = 0 and ∇aJ

a
(0) = 0. For flat extrinsic geometry γab = ηab, they

evaluate to the equations

ǫ̇ = −wϑ, u̇a = −w−1∆ab∂bP, Q̇ = −Qϑ , (2.14)

where ϑ ≡ ∂au
a is the expansion of ua and a dot denotes the directional derivative along ua.

The (first order) equations will be important in the perturbative analysis. As expected,

they will show up as constraint equations when solving the Einstein-Maxwell system per-

turbatively.

3 The perturbative expansion

As explained in the introduction, the aim of this paper is to solve the Einstein-Maxwell

system in a derivative expansion around the solution given in section 2. In this section we

define the appropriate coordinates to handle this problem and explain how the perturba-

tions are classified according to their transformation properties under SO(p).

3.1 Setting up the perturbation

Before perturbing the brane, we first need to cast the metric (2.6) into Eddington-

Finkelstein-like (EF) form. The reason is two-fold. First, it is essential for the compu-

tation that we can ensure regularity at the horizon and since the Schwarzschild description

breaks down at the horizon, it is clearly more useful to use EF coordinates. Secondly, since

a gravitational disturbance moves along null-lines, in order to control the perturbation, we

want the lines of constant world-volume coordinates to be radial null-curves i.e. grr = 0.

This is exactly the defining property of EF coordinates. For a general boost ua, we define

the EF coordinates σa by

σa = xa + uar⋆, r⋆(r) = r +

∫ ∞

r

(

f − hN/2

f

)

dr . (3.1)

Here r⋆ is chosen such that r′⋆ = hN/2/f and r⋆ → r for large r. The first condition ensures

that grr = 0 while the latter is chosen such that the EF coordinates reduce to ordinary

radial Schwarzschild light cone coordinates for large r. Notice that it is possible to write

down a closed form expression for r⋆ in terms of the hypergeometric Appell function F1

r⋆(r) = rF1

(

− 1

n
;−N

2
, 1; 1− 1

n
; 1− h, 1− f

)

≈ r

(

1− 1

n− 1

rn0
rn

(

1 +
Nγ0
2

))

, (3.2)

where the last equality applies for large r and is valid up to O
(

1
r2n−1

)

. It is nice to note that

the hypergeometric Appell function F1 reduces to the ordinary hypergeometric function

2F1 in the neutral limit γ0 → 0. Indeed

lim
γ0→0

r⋆(r) = r⋆(r)
∣

∣

∣

γ0=0
≡ r +

∫ ∞

r

(

f − 1

f

)

dr = r 2F1

(

1;− 1

n
; 1− 1

n
; 1− f

)

, (3.3)
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which is the r⋆ used in [4]. With this definition of r⋆ we will limit our analysis to the case

for which n ≥ 2. In EF coordinates, the metric (2.6) takes the form

ds2(0) = hB
(

−h−Nf uaub dσadσb − 2h−N/2 ua dσ
adr +∆ab dσ

adσb + r2dΩ2
(n+1)

)

. (3.4)

Here the subscript indicates that the metric solves the Einstein-Maxwell equations to zeroth

order in the derivatives. Notice that in these coordinates the gauge field will acquire a non-

zero Ar component . However, we shall work in a gauge where this component is zero. We

therefore take

A(0) =

√
N

h

(

r0
r

)n
√

γ0(γ0 + 1)uadσ
a , and in particular A(0)

r = 0 , (3.5)

Having determined the EF form of the metric and gauge field, we are now ready to set up

the perturbative expansion.

Following the lines of [4], we promote the parameters ua, r0 and γ0 to slowly varying

world-volume fields:

ua → ua(σa), r0 → r0(σ
a), γ0 → γ0(σ

a) . (3.6)

By slowly varying we mean that the derivatives of the world-volume fields are sufficiently

small. In order to quantify this, we introduce a set of re-scaled coordinates σaε = εσa, ε≪ 1,

and consider the w.v. fields to be functions of σaε . In this way each derivative will produce

a factor of ε. Moreover, two derivatives will be suppressed by a factor of ε compared to

one derivative and so on. Effectively what we are doing is to consider arbitrary varying

world-volume fields (no restrictions on the size of derivatives) and “stretching” them by a

factor of 1/ε≫ 1. In this way we will only consider slowly varying fields and the derivative

expansion is controlled by the parameter ε.3 The fields can now be expanded around a

given point P

ua(σ) = ua
∣

∣

P
+ εσb∂bu

a|P +O(ε2) , r0(σ) = r0
∣

∣

P
+ εσa∂ar0|P +O(ε2) ,

γ0(σ) = γ0
∣

∣

P
+ εσa∂aγ0|P +O(ε2) .

(3.7)

We now seek derivative corrections to the metric and gauge field denoted by respectively

ds2(1) and A(1), so that

ds2 = ds2(0) + εds2(1) +O(ε2) and A = A(0) + εA(1) +O(ε2) , (3.8)

solves the equations of motion to order ε. By a suitable choice of coordinates, we can take

the point P to lie at the origin σa = (0,0). Moreover, we can choose coordinates so that

uv
∣

∣

(0,0)
= 1, ui

∣

∣

(0,0)
= 0, i = 1, . . . , p (the rest frame of the boost in the origin).4 In these

3In the end of the computation, we of course set ε = 1 and keep in mind that the expressions only hold

as a derivative expansion i.e. for sufficiently slowly varying configurations.
4In these coordinates uv = 1 +O(ε2).
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particular coordinates, the 0th order metric ds2(0) takes the form

ds2(0) = hB
[

− 2h−
N
2 dvdr −

(

f

hN

)

dv2 +

p
∑

i=1

(dσi)2 + r2dΩ2
(n+1)

]

+ εhB
[

1

hN
rn0
rn

(

n

r0

(

1 +
2f

h
γ0

)

σa∂ar0 +
2f

h
σa∂aγ0

)

dv2

+
B

h

rn0
rn

(

nγ0
r0

σa∂ar0 + σa∂aγ0

)( p
∑

i=1

(dσi)2 + r2dΩ2
(n+1)

)

+ 2

(

f

hN
− 1

)

σa∂aui dvdσ
i − 2

hN/2
σa∂aui dσ

idr

+
B − 2

hN/2+1

rn0
rn

(

nγ0
r0

σa∂ar0 + σa∂aγ0

)

dvdr

]

,

(3.9)

where we have denoted r0|(0,0) ≡ r0 and γ0|(0,0) ≡ γ0. Clearly the system has a large

amount of gauge freedom. Following the discussion of the definition of r⋆, we want the r

coordinate to maintain its geometrical interpretation. We therefore choose

g(1)rr = 0 , (3.10)

and we moreover take

g
(1)
ΩΩ = 0 and A(1)

r = 0 . (3.11)

The background g(0) exhibits a residual SO(p) invariance. We can use this to split the

system up into sectors of SO(p). The scalar sector contains 4 scalars, A
(1)
v , g

(1)
vr , g

(1)
vv and

Trg
(1)
ij . The vector sector contains 3 vectors A

(1)
i , g

(1)
vi and g

(1)
ri . Finally, the tensor sector

contains 1 tensor g
(1)
ij ≡ g

(1)
ij − 1

p(Trg
(1)
kl )δij (the traceless part of g

(1)
ij ). We parameterize

the three SO(p) sectors according to

Scalar: A(1)
v = −

√

Nγ0(1 + γ0)
rn0
rn
h−1av, g(1)vr = hB−N/2fvr,

g(1)vv = h−1fvv, Tr g
(1)
ij = hBTrfij , (3.12)

Vector: A
(1)
i = −

√

Nγ0(1 + γ0) ai, g
(1)
vi = hBfvi, g

(1)
ri = hB−N/2fri , (3.13)

Tensor: g
(1)
ij = hBf ij , (3.14)

where f ij ≡ fij − 1
p(Trfkl)δij . The parameterization is chosen in such a way that the

resulting EOMs only contain derivatives of fab and aa and will thus be directly integrable.

3.2 A digression: reduction of Einstein-Maxwell theory

Here we explain how it is possible to treat general n and p by integrating out the transverse

non-fluid dynamic directions.

In order to work out the full set of solutions and find the general form of the stress

tensor and current, it is enough to consider fluid dynamic fluctuations in 1+ d (2 ≤ d < p)

– 8 –
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directions of the brane.5 In particular, it is enough to consider d = 2. Indeed, since the

background is SO(p) invariant, the correction ds2(1) will consist of SO(p) invariant tensor

structures. The same holds for the effective blackfold stress tensor and current. In order

to identify these tensor structures, it is enough to consider fluctuations in only 1 + d

directions (time + d flat spatial directions) of the brane. Considering only fluctuations

in 1 + d brane dimensions, the metric is of the form (reduction of the p-brane with n + 2

transverse dimensions)

ds2 = ds2(f) + e2ψ(σf )dΩ2
(n+1) + e2φ(σf )

p
∑

i=d+1

(dσi)2 , (3.15)

with the one-form gauge field of the form Aµ = Aa(σf ). Here the subscript f means

‘fluid’ since the d + 2-dimensional base space with the metric ds2(f) will contain the fluid

dynamical degrees of freedom in our computations. Integrating out the Sn+1 and T
p−d

(see appendix A), the EOMs of the system take the form

R
(f)
ab = Fab + (n+ 1) (∇aψ∇bψ +∇a∇bψ) + (p− d) (∇aφ∇bφ+∇a∇bφ) ,

�ψ + [(p− d)∇bφ+ (n+ 1)∇bψ]∇bψ = ne−2ψ + κ ,

�φ+ [(p− d)∇bφ+ (n+ 1)∇bψ]∇bφ = κ ,

∇aF
ab = jb ,

(3.16)

where the tensor Fab, vector ja, and scalar κ are given by

Fa
b =

1

2
F acFbc − κδab, j

a = F ab ((n+ 1)∇bψ + (p− d)∇bφ)) , κ =
FabF

ab

4(p+ n+ 1)
. (3.17)

Working with these effective EOMs allows us to treat a general number of transverse and

brane dimensions.

4 First order equations

In order to compute the effective stress tensor and current and thereby extract the trans-

port coefficients, we need the large r asymptotics of the perturbation functions which are

decomposed and parametrized according to equation (3.13). We denote the first order

Einstein and Maxwell equations by

Rµν −
1

2
FµρF

ρ
ν +

1

4(n+ p+ 1)
FρσF

ρσgµν ≡ εEµν +O(ε2) = 0 ,

∇ρF
ρ
µ ≡ εMµ +O(ε2) = 0 .

(4.1)

In this section we will find the solution to each SO(p) sector in turn and explain how the

regularity on the horizon is ensured.

5We thank Joan Camps for pointing this out.
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4.1 Scalars of SO(p)

The scalar sector consists of seven independent equations which correspond to the vanishing

of the components: Evv, Erv, Err,TrEij , EΩΩ,Mv,Mr.
6

Constraint equations: there are two constraint equations; Erv = 0 and Mr = 0. The

two equations are solved consistently by

(n+ 1 + pBγ0) ∂vr0 = −r0(1−Bγ0)∂iu
i , (4.2)

and

(n+ 1 + pBγ0) ∂vγ0 = −2γ0(1 + γ0)∂iu
i . (4.3)

The first equation corresponds to conservation of energy while the second equation can

be interpreted as current conservation. These are equivalent to the scalar conservation

equations given by (2.14) in the rest frame.

We now proceed to solve for the first order correction to the scalar part of the metric

and gauge field under the assumption that the fluid configuration satisfy the above con-

straints. Imposing the constraint equations will make Erv and Evv linear related and one is

therefore left with five equations with four unknowns.

Dynamical equations: the coupled system constituted by the dynamical equations is

quite intractable. One approach to obtaining the solution to the system is to decouple the

trace function Trfij . Once Trfij is known, it turns out, as will be presented below, all the

other functions can be obtained while ensuring that they are regular on the horizon.

It is possible to obtain a 3rd order ODE for Trfij by decoupling it through a number

of steps. One way is to use Err to eliminate f ′rv and then take linear combinations of the

remaining equations. The resulting combinations can then be used to eliminate f ′vv and

f ′′vv such that one is left with two equations in terms of av and Trfij which can then be

decoupled by standard means. The resulting equation is schematically of the form

H
(n,p)
3 (r) [Trfij ]

′′′ (r) +H
(n,p)
2 (r) [Trfij ]

′′ (r) +H
(n,p)
1 (r) [Trfij ]

′ (r) = STr(r) , (4.4)

where H1, H2 and H3 do not depend on the sources (world-volume derivatives) and the

source term STr only depends on the scalar ∂iu
i. The expressions for these functions are

however very long and have therefore been omitted. After some work, one finds that the

equation is solved by

Trfij(r) = c
(1)
Tr + γ0c

(2)
Tr G(r)− 2(∂iu

i)Trf
(s)
ij (r) , (4.5)

where the terms containing the two integration constants c
(1)
Tr and c

(2)
Tr correspond to the

homogeneous solution. The entire family of homogeneous solutions to equation (4.4) of

6In the reduction scheme outlined in section 3.2 we have EΩΩ = Eψ, where Eψ is the EOM for ψ given

in (3.16). Similarly, we have TrEij = TrE
(f)
ij − (p− d)hBEφ, where Eφ is the EOM for φ.
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course has an additional one-parameter freedom which has been absorbed in the particular

solution Trf
(s)
ij (r) and been used to ensure horizon regularity.7 The function G is given by

G(r) = p
rn0
rn

(

2 + pB
rn0
rn
γ0

)−1

. (4.6)

The particular solution which is regular on the horizon is given by

Trf
(s)
ij (r) = −r0

n
(1 + γ0)

N
2 αγ0G(r) +

(

r⋆ −
r0
n

(1 + γ0)
N
2 log f(r)

)

(1− βγ0G(r)) , (4.7)

with the coefficients

α = 2B

[

2(n+ 1) + pBγ0
(n+ 1 + pBγ0)2

]

and β = B

[

n+ 2 + pBγ0
n+ 1 + pBγ0

]

. (4.8)

With Trfij given, the equation Err = 0 will provide the derivative of frv,

f ′rv(r) =
r

(

2(n+ 1) + pB
rn0
rn γ0

)

h(r)
B
2

d

dr

[

h(r)
N
2 [Trfij ]

′(r)
]

. (4.9)

Since the equation is a 1st order ODE, the regularity of the horizon is ensured by Trfij .

Note that it is possible to perform integration by parts and use that the derivative of r⋆
takes a simpler form. One can thereafter obtain an analytical expression for the resulting

integral. This expression is however rather long and does not add much to the question we

are addressing for which we are in principle only interested in the large r behavior given by

frv(r) ≈ crv − γ0c
(2)
Tr

G(r)h(r)
(

2 + pB
rn0
rn γ0

) + (∂iu
i)

∞
∑

k=1

rnk0
rnk

[

α(k)
rv r + β(k)rv r0

]

. (4.10)

The first two terms constitute the homogeneous solution and the particular solution is

given in terms of the coefficients α
(k)
rv and β

(k)
rv which depend on n, p, and γ0. The first set

of coefficients are given in appendix B.

Using the expression for f ′rv in terms of Trfij , the Maxwell equation Mv = 0 becomes

a 2nd order ODE for the gauge field perturbation,

d

dr

[

1

rn−1
a′v(r)

]

=
nr2

(

2(n+ 1) + pB
rn0
rn γ0

)

d

dr

[

1

rn+1
[Trfij ]

′(r)

]

. (4.11)

This equation is solved by a double integration. The inner integral is manifestly regular at

the horizon, one can therefore work directly with the asymptotic behavior of the right-hand

side before performing the integrations. The large r behavior of the perturbation function

is thus found to be

av(r) ≈ c(1)v rn+ c(2)v +
1

2
γ0c

(2)
Tr G(r)+ (∂iu

i)

[

− n

n− 1
r +

∞
∑

k=1

rnk0
rnk

[

α(k)
v r + β(k)v r0

]

]

, (4.12)

7Note that equation (4.4) has been derived under the assumption that ∂iu
i 6= 0. This especially means

that when there are no sources the one-parameter freedom disappears in accordance with (4.5).
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where the first three terms constitute the homogeneous solution and the particular solution

is given in terms of the coefficients α
(k)
v and β

(k)
v depending on n, p, and γ0. The first set

of coefficients are given in appendix B.

The last perturbation function fvv can be obtained from Evv = 0. Using the expression

for f ′rv in terms of Trfij the equation is schematically of the form

d

dr

[

rn+1f ′vv(r)
]

= G1 [Trfij(r)] +G2 [av(r)] + Sii(r) , (4.13)

where G1, G2 are non-trivial differential operators and the source Sii depends on ∂iu
i.

Again, the full expressions have been omitted and we only provide the large r behavior,

fvv(r) ≈ f (h)vv (r) + (∂iu
i)

∞
∑

k=1

rnk0
rnk

[

α(k)
vv r + β(k)vv r0

]

, (4.14)

with the homogeneous part given by

f (h)vv (r) = c(1)vv +
c
(2)
vv

rn
+
rn0
rn

γ0
h(r)

[

2(1+ γ0)
rn0
rn

(c(2)v − c(1)v rn0 γ0)−
G(r)

2

(

1+ 2γ0−
rn0
rn
γ0

)

c
(2)
Tr

]

.

(4.15)

The solution is ensured to be regular at the horizon. The coefficients α
(k)
vv and β

(k)
vv depend

on n, p, and γ0. The first set of coefficients are listed in appendix B.

Finally, one must ensure that the equations coming from TrEii and the angular di-

rections (EΩΩ = 0) are satisfied. This will impose the following relations between the

integration constants,

c(1)vv = −2crv , (4.16)

c(2)vv = −r
n
0

4

(

(n+ p)c
(2)
Tr + 8(1 + γ0)(c

(2)
v − c(1)v rn0 γ0)

)

. (4.17)

This completes the analysis of the scalar sector. The remaining undetermined integration

constants are thus: c
(1)
Tr , c

(2)
Tr , crv, c

(1)
v , c

(2)
v for which crv and c

(1)
Tr will be fixed by requiring

the spacetime to be asymptotically flat while the rest constitute the freedom of the homo-

geneous solution. Note that the above functions reproduce the neutral case as γ0(σ
a) → 0.

4.2 Vectors of SO(p)

The vector sector consists of 3p independent equations which correspond to the vanishing

of the components: Eri, Evi and Mi.

Constraint equations: the constraint equations are given by the Einstein equations

Eri = 0 and are solved by

∂ir0 = r0(1 +Nγ0)∂vui , (4.18)

which are equivalent to conservation of stress-momentum. These are part of the conserva-

tion equations given by (2.14) in the rest frame. Similar to above we now proceed solving

for the first order corrections to the metric and gauge field under the assumption that the

fluid profile satisfy the above constraint (4.18).
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Dynamical equations: the remaining equations consist of p pairs consisting of one

Einstein equation Evi = 0 and one Maxwell equation Mi = 0. The structure of these

equations is the same as in the scalar sector. The Einstein equation Evi = 0 is schematically

of the form,

L
(n,p)
3 (r)f ′′vi(r) + L

(n,p)
2 (r)f ′vi(r) + L

(n,p)
1 (r)a′i(r) = Svi(r) , (4.19)

while the Maxwell equation Mi = 0 is,

M
(n,p)
3 (r)a′′i (r) +M

(n,p)
2 (r)a′i(r) +M

(n,p)
1 (r)f ′vi(r) = Si(r) . (4.20)

Again the functions Lk and Mk, k = 1, . . . , 3 have been omitted.

To decouple the system we differentiate Evi once and eliminate all ai(r) terms in Mi.

Doing so, one obtains a 3rd order ODE for fvi(r) which can be written on the form,

d

dr





rn+1f(r)

hN

(

1− c1
rn0
rn

)2 d

dr





rn+1hN+1

(

1− c1
rn0
rn

)f ′vi(r)







 = Svi(r) , (4.21)

with

c1 =
N − 1

1 +Nγ0
γ0 . (4.22)

It is possible to perform the first two integrations analytically and ensure regularity at

the horizon. The first integration is straightforward while the second involves several non-

trivial functions. The large r behavior of the fvi function is found to be

fvi(r) ≈ c
(1)
vi −

(

1− f(r)

h(r)N

)

c
(2)
vi − (∂vui)r +

∞
∑

k=1

rnk0
rnk

[

α
(k)
vi r + β

(k)
vi r0

]

, (4.23)

where the first two terms constitute the homogeneous solution. The first set of coefficients

α
(k)
vi and β

(k)
vi are given in appendix B. Notice that the sum vanishes in the neutral limit.

Once the solution of fvi is given we can use Evi to determine ai,

ai(r) ≈ c
(1)
i +

rn0
rn

1

h(r)
c
(2)
vi +

∞
∑

k=1

rnk0
rnk

[

α
(k)
i r + β

(k)
i r0

]

, (4.24)

where the first two terms correspond to the homogeneous solution. The first set of coeffi-

cients α
(k)
i and β

(k)
i are given in appendix B.

The remaining undetermined integration constants are thus: c
(1)
i , c

(1)
vi , and c

(2)
vi . The

constant c
(2)
vi corresponds to an infinitesimal shift in the boost velocities along the spatial

directions of the brane while c
(1)
i is equivalent to an infinitesimal gauge transformation.

The last constant c
(1)
vi will be determined by imposing asymptotically flatness at infinity.

4.3 Tensors of SO(p)

There are no constraint equations in the tensor sector and p(p+1)/2−1 dynamical equations

given by

Eij −
δij
p
Tr(Eij) = 0 . (4.25)

– 13 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
9

This gives an equation for each component of the traceless symmetric perturbation func-

tions f̄ij ,

d

dr

[

rn+1f(r)f̄ ′ij(r)
]

= −σijrn
(

2(n+ 1) + pB
rn0
rn
γ0

)

h(r)
B
2 , (4.26)

where

σij = ∂(iuj) −
1

p
δij∂ku

k . (4.27)

The solution is given by,

f̄ij(r) = c̄ij − 2σij

(

r⋆ −
r0
n

(1 + γ0)
N
2 log f(r)

)

, (4.28)

where horizon regularity has been imposed and the constant c̄ij is symmetric and traceless

and will be determined by imposing asymptotically flatness.

4.4 Comment on the homogeneous solution

We have now obtained the solution to the Einstein-Maxwell equations for any first order

fluid profile which fulfill the constraint equations. These have been provided in large r ex-

pansions and are ensured to have the right behavior at the horizon for any of the remaining

integration constants. One remark that is worth mentioning is that fri did not appear in

the analysis above and corresponds to a gauge freedom. This gauge freedom does not play

a role for n ≥ 2, but is expected to play a role for n = 1 to ensure asymptotically flatness.

We now want to provide some insight into the meaning of the remaining integration

constants. One can separate the constants into two categories; the subset that are fixed by

asymptotically flatness and the subset that corresponds to the ε-freedom of the parameters

in the zeroth order fields. The latter corresponds exactly to the remaining freedom of the

homogeneous solution. In the above the homogeneous part of the fields are given exact.

One finds that the homogeneous part of the scalar sector corresponds to shifts in

r0 → r0 + εδr0, γ0 → γ0 + εδγ0, and the gauge freedom av → av + εδav of the zeroth

order metric given by equation (2.6). Indeed, performing the above shifts and redefining

the r coordinate,

r → r

(

1− εγ0
rn0
rn
nδ log r0 + δ log γ0

n+ ph(r)

)

, (4.29)

such that the angular directions does not receive first order contributions in accordance

with the gauge choice (3.11), one can relate the integration constants to the two shifts and

gauge transformation by,

c
(2)
Tr = 2B (nδ log r0 + δ log γ0) ,

c(2)v = −nδ log r0 −
1 + 2γ0
2(1 + γ0)

δ log γ0 −
γ0

√

Nγ0(1 + γ0)
δav , (4.30)

c(1)v = − δav

rn0
√

Nγ0(1 + γ0)
.
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For the vector sector one finds that the homogeneous part corresponds to the shift of

ui → ui + εδui and the gauge transformation ai → ai + εδai. The first transformation

corresponds to global shifts in the boost velocities. In the same r-coordinate, one has

c
(2)
vi = δui ,

c
(1)
i = − δai

√

Nγ0(1 + γ0)
. (4.31)

This accounts for all the ε-freedom in the full solution.

4.5 Imposing asymptotically flatness

We now turn to imposing the boundary condition at infinity, namely requiring the solution

to be asymptotically flat. To impose this we must first change coordinates back to the

Schwarzschild-like form. Moreover, we need the fields expressed in Schwarzschild coordi-

nates for obtaining the effective stress tensor and current. In order to change coordinates,

we use the inverse transformation of the one stated in equation (3.1). The transformation

can be worked out iteratively order by order. To first order the transformation from EF-like

coordinates to Schwarzschild-like coordinates for a general r0(σ
a) and γ0(σ

a) is given by,

v = t+ r⋆ + ε

[

(t+ r⋆) (∂r0r⋆∂tr0 + ∂γ0r⋆∂tγ0) + xi (∂r0r⋆∂ir0 + ∂γ0r⋆∂iγ0)

]

+O(ε2) ,

σi = xi + ε

[

(t+ r⋆)∂tu
i + σj∂ju

i

]

r⋆ +O(ε2) . (4.32)

It is now possible to transform all the fields to Schwarzschild coordinates and impose

asymptotically flatness. This leads to

crv = 0, c
(1)
vi = 0, c

(1)
Tr = 0, c̄ij = 0 . (4.33)

We now have the complete first order solution for the black brane metric and Maxwell

gauge field that solves the Einstein-Maxwell equations.

5 Viscous stress tensor and current

In this section we will compute the effective stress tensor and current of the first order

solution obtained above. Before doing this, we shall briefly discuss the general form of the

first order derivative corrections to the stress tensor and current.

5.1 First order fluid dynamics

We write the stress tensor and the current as

T ab = T ab(0) +Πab(1) +O(∂2), Ja = Ja(0) +Υa
(1) +O(∂2) , (5.1)

where the perfect fluid terms were written down for our specific fluid in section 2.2. The

tensors Πab(1) and Υab
(1) are the first order dissipative derivative corrections to the perfect

fluid stress tensor and current, respectively. The specific form of Πab(1) and Υab
(1) are encoded
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in the first order correcting solution obtained in the previous section. As is well-known,

to any order in derivatives, it is in principle possible to write down all the terms that

can contribute to the stress tensor and current (see e.g. [34]). In this way the dissipative

corrections to the stress tensor and the current can be characterized in terms of a set of

transport coefficients. It is possible to show that the most general form of Πab(1) is given by8

Πab(1) = −2ησab − ζϑ∆ab , (5.2)

where σab is the usual shear tensor and is given by

σab = ∆ac

(

∂(cud) −∆cd
ϑ

p

)

∆db with ϑ = ∂au
a , (5.3)

The coefficients η and ζ are respectively the shear and bulk viscosity transport coefficients

and were computed for the neutral brane in [4]. The bulk and shear viscosities are associ-

ated with the scalar and tensor fluctuations, respectively. Note that although the overall

form of Πab(1) is the same as in the neutral case, the transport coefficients are now expected

to depend on both the temperature and the charge i.e. on both r0 and γ0. Also note that

the viscosities η and ζ are required to be positive in order to ensure entropy creation in

the fluid [35].

Using similar reasoning, it is possible to show that the most general form of Υa
(1) (in

the Landau frame) is given by9

Υa
(1) = −D

(QT
w

)2

∆ab∂b

(

Φ

T

)

. (5.4)

Here D is the charge diffusion constant which is associated with the vector fluctuations.

Indeed, it is possible to derive that with D > 0, the term (5.4) is the only term which can be

constructed from the fields and that is consistent with the 2nd law of thermodynamics [35].

Plugging in the values of Φ and T in terms of r0 and γ0 and using the vector constraint

equation (4.18), we find that (in the rest frame)

Υv
(1) = 0, Υi

(1) ∼ γ0(1 + γ0)∂vu
i +

1

2
∂iγ0 . (5.5)

Since the derivatives appear in a very specific combination in this expression, this in fact

provides us with a non-trivial check of the blackfold fluid description.

5.2 Computing the effective stress tensor and current

The quasi-local stress tensor τµν is obtained by background subtraction. We consider a

surface at large r (spatial infinity) with induced metric hµν and inwards pointing normal

vector and compute the components of the quasi-local tensor by,

8πGτµν = Kµν − hµνK −
(

K̂µν − hµνK̂
)

, (5.6)

8Here we have imposed the Landau frame gauge on the stress tensor uaΠ
ab
(1) = 0. Similarly one can

impose a Landau frame condition on the current. It takes the form uaΥ
a
(1) = 0.

9It is possible to include a parity violating term as was found in [25]. However, since we have no

Chern-Simons term in the theory such a term is not relevant.
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where Kµν is the extrinsic curvature of the surface and K = gµνKµν . The hatted quantities

are the subtracted terms which are computed on flat spacetime with the same intrinsic ge-

ometry on both boundaries. Notice that the transverse space bear the structure hBdΩ2
(n+1).

One finds that for the transverse directions τΩΩ = 0 while for the brane directions we obtain

the fluid stress tensor by,

Tab = lim
r→∞

Ω(n+1)

2
rn+1τab , (5.7)

where Ω(n+1) is the volume of the (n+ 1)-sphere. We find

Ttt =
Ω(n+1)

16πG
(n+ 1 + nN(γ0 + ε(δγ0 + xa∂aγ0))) (r0 + ε(δr0 + xa∂ar0))

n ,

Tij = −
Ω(n+1)

16πG

(

δij (r0 + ε(δr0 + xa∂ar0))
n

+ εrn+1
0 (1 + γ0)

N
2

[

2

(

∂(iuj) −
1

p
δij∂ku

k

)

+
2

p

(n+ p+ 1)(n+ 1)

(n+ 1 + pBγ0)
2 δij∂ku

k

])

,

Ttj = −
Ω(n+1)

16πG
rn0n(1 +Nγ0)ε(δuj + xa∂auj) , (5.8)

where the expressions are valid to order O(ε). In a similar manner the current is obtained

from large r asymptotics of the gauge fields. Ensuring that the Lorenz gauge condition

∇µAµ = 0 is satisfied, the current is obtained using

Ja = lim
r→∞

nΩ(n+1)

16πG
rnAa . (5.9)

One finds

Jt = −
Ω(n+1)

16πG
n
√
N (r0 + ε(δr0 + xa∂ar0))

n
√

γ0(1 + γ0) + ε(δγ0 + xa∂aγ0)(1 + 2γ0) ,

Ji =
Ω(n+1)

16πG
n
√
Nrn0

√

γ0(1 + γ0)

(

ε
(

δuj + xa∂auj
)

− εr0
γ0(1 + γ0)∂vui +

1
2∂iγ0

n(1 +Nγ0)γ0(1 + γ0)
B
2
+1

)

.

(5.10)

Again these expressions are valid to O(ε). It is now possible to read off the transport

coefficients. Before doing this, we require that the Landau frame renormalization conditions

Πtt(1) = Πti(1) = 0 and Υt
(1) = 0 are satisfied. Equivalently we require the shifts δr0 and δγ0

of the zeroth order solution to vanish. Notice that the stress tensor and current do not

depend on the gauge transformation δaa as they should of course not do. Also recall that

the shifts were related to the integrations constants by (4.30).

Setting δr0 = δγ0 = 0, the shear and bulk viscosities are determined using the form

given by equation (5.3),

η =
Ω(n+1)

16πG
rn+1
0 (1 + γ0)

N
2 ,

ζ

η
=

2

p

(n+ p+ 1)(n+ 1)

(n+ 1 + pBγ0)
2 . (5.11)

The second term of Ji is seen to have the right proportionality according to (5.5) and hence

using the form of equation (5.4) the diffusion constant can be determined,

D =
Ω(n+1)

4G

1 + γ0
nNγ0

rn+2
0 . (5.12)
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Notice that all the transport coefficients are found to be positive which is expected for a

consistent effective fluid dynamic theory. We have now obtained the first order derivative

corrections to the effective stress tensor and current.

5.3 Hydrodynamic bounds

We will now check the result of the shear viscosity against the expectation that the trans-

port coefficient should satisfy the bound

η

s
≥ 1

4π
. (5.13)

Using equations (2.9) and (5.11), the system is seen to saturate the bound as expected.

In addition, it is worth to investigate the bulk to shear viscosity ratio proposed by

ref. [16],
ζ

η
≥ 2

(

1

p
− c2s

)

(5.14)

where cs is the speed of sound computed below in section 6. Although one should keep in

mind that the proposal of this bound relies heavily on holographic considerations, we find

when using the value given by equation (6.5) for the Reissner-Nordström brane, that the

bound is satisfied in the range

0 ≤ γ0 ≤ −n+ 1−
√

1 + n(n+ p+ 2)

pB
, (5.15)

while for large values of γ0 the bound is found to be violated. If we instead of cs in (5.14)

use the proposed quantity [17, 18]

c2Q ≡
(

∂P

∂ǫ

)

Q

= − 1

1 + n

[

1 + 2γ0

1 + pB
n+1γ0

]

, (5.16)

computed for fixed charge density Q, we find that the bound will always be violated (except

for the neutral case where cQ = cs).

6 Stability and dispersion relations

In ref. [3] the Gregory-Laflamme instability was successfully identified with the unstable

sound mode of the neutral black brane. This analysis was further refined in [4] and consid-

ered for branes charged under top-form gauge fields in [33]. In this section we address the

issue of stability and dispersion of long wavelength perturbations of the Reissner-Nordström

black brane. Moreover, we comment on the connection to thermodynamic (in)stability.

6.1 Dispersion relations

It is straightforward to show that the first order fluid (conservation) equations take the form

ǫ̇ = −(w − ζϑ)ϑ− 2ησabσ
ab , u̇a = −∆ab∂b(P − ζϑ)− 2η∆a

b∂cσ
bc

w − ζϑ
,

Q̇ = −Qϑ+D

(QT
w

)2
(

ϑub + u̇b +∆ab∂a

)

∂b

(

Φ

T

)

,

(6.1)
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where the transport coefficients and the factor associated to D are coefficients in the deriva-

tive expansion and should be treated as constants. In order to find the speed of sound and

dispersion relations, we consider small long wavelength perturbations of the fluid

Φ → Φ+ δΦ ei(ωt+kjx
j), T → T + δT ei(ωt+kjx

j), ua = (1, 0, . . . ) → (1, δui ei(ωt+kjx
j)) .

(6.2)

The charge density Q, energy density ǫ, and pressure P are perturbed according to

Q → Q+ δQ ei(ωt+kjx
j), ǫ→ ǫ+ δǫ ei(ωt+kjx

j), P → P + δP ei(ωt+kjx
j) , (6.3)

where the amplitudes can be expressed in terms of thermodynamic derivatives that depend

on the specific equation of state. Note that δp = QδΦ + sδT as a consequence of the

Gibbs-Duhem relation. Plugging the expressions into the first order fluid equations (6.1)

and linearizing in the amplitudes, we obtain the p+ 2 equations

iω

((

∂ǫ

∂Φ

)

T

δΦ+

(

∂ǫ

∂T

)

Φ

δT
)

+ iwkiδu
i = 0 ,

iwωδuj + ikj (QδΦ+ sδT ) + kj
(

η

(

1− 2

p

)

+ ζ

)

kiδu
i + ηk2δuj = 0 ,

iω

((

∂Q
∂Φ

)

T

δΦ+

(

∂Q
∂T

)

Φ

δT
)

+ iQkiδui +DT Q2

w2

(

δΦ− Φ

T δT
)

k2 = 0 .

(6.4)

We stress that the thermodynamic derivatives are not dynamical and do only depend on

the equation of state of the fluid in question. In our case they can be computed from (2.9)

and (2.12). In order to find the ω that solves this system for a given wave vector ki,

we set the determinant of the system of linear equations in the amplitudes to zero. To

linear order in ki (i.e. at the perfect fluid level) the dispersion relation gives the speed of

sound cs = ω/k. Using the equation of state (2.12) and solving the system to linear order,

one finds

c2s =

(

∂P

∂ǫ

)

s
Q

= − 1−Bγ0
1 +Nγ0

(

n+ 1 + pBγ0

)−1
. (6.5)

As was found with the p = q branes of supergravity [33], the speed of sound only depends

on the charge parameter γ0. For zero charge γ0 = 0 we recover the neutral result c2s =

−1/(n + 1). Since a negative speed of sound squared signifies an unstable sound mode,

the neutral brane is unstable under long wavelength perturbations. Indeed, this instability

is exactly identified with the GL instability [4]. However, as we increase γ0 the speed of

sound squared becomes less and less negative and for

γ0 > γ̄0 =
D − 3

2
, (6.6)

the q = 0 brane becomes stable under long wavelength perturbations to leading order.

Notice that the condition (6.6) can be satisfied for any non-zero charge density if the black

brane temperature is low enough. Indeed, stability is obtained for T ∼ (GQ)−1/n (where

the exact numerical factor depends on the number of transverse and brane dimensions).
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0
γ̄0

1

γ0

β

α

Figure 1. The qualitative behavior of the sound mode ω = cs(γ0)k + a(γ0)ik
2 + O(k3) given by

equation (6.8) as a function of γ0. The linear term (speed of sound) is parametrized according

to c2
s
(γ0) = |c2

s
(0)|α(γ0) while the quadratic term (sound mode attenuation) is parametrized as

a(γ0) = |a(0)|β(γ0). Note that the linear and quadratic term become positive when the charge

density passes the threshold γ̄0 indicated by the vertical dashed line.

In order to check stability to next to leading order, we now work out the dispersion

relation for the fluid to quadratic order in k. We solve the system of equations to O(k2).

Solving for the longitudinal modes, we find the equation

ω − c2s
k2

ω
− i

k2

w

(

2

(

1− 1

p

)

η + ζ

)

− ik2

w
D

(

R1

(

k

ω

)2

+
R2

w

)

+O(k3) = 0 , (6.7)

where the coefficients R1, R2, and R (introduced below) are given in appendix C. Solving

for the sound mode(s), we find the dispersion relation

ω(k) = ±csk +
ik2

w

((

1− 1

p

)

η +
ζ

2

)

+ ik2RD . (6.8)

For a general fluid both the first order term (cs) and the second order term must be

positive in order for it to be dynamically stable. In this case, the above equation describes

dampening of the (long wavelength) sound waves in the fluid. Figure 1 shows the general

behavior of cs and the (second order) attenuation term in (6.8). We see that above the

threshold γ̄0, the speed of sound squared and sound mode attenuation are both positive.

The sound mode is therefore stable to second order.

In addition to the sound mode we have a longitudinal diffusion mode given by

ω(k) = − iDR1

c2sw
k2 = i

(1 + γ0)
1−N

4πT (1−Bγ0)
k2 . (6.9)
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0 γ0
γ̄0

c2s

b

Figure 2. The qualitative behavior of the charge diffusion mode ω = ibk2 as a function of the

charge parameter γ0, where b is given in equation (6.9). When b is positive c2
s
is negative and vice

versa. The critical point γ̄0 is indicated by the dashed line.

We see that in general this mode is stable if and only if R1/c
2
s < 0. In our case this

amounts to the condition γ0 < γ̄0 i.e. the opposite of the condition (6.6) as shown in

figure 2. The conditions on γ0 for dynamical stability are found to be complementary;

when the sound mode is stable the charge diffusion mode is unstable and vice versa. The

Reissner-Nordström brane thus seems to suffer from a GL instability for all values of the

charge parameter γ0.

Finally, we also have a shear mode which takes the form

ω(k) =
iη

w
k2 . (6.10)

The fluctuations of the shear mode are very simple, they are transverse displacement of

effective fluid with no variations in the charge and energy densities. Notice that this mode

is always stable.

6.2 Thermodynamic stability

The conditions for thermodynamic stability of the Reissner-Nordström black brane are

computed in the grand canonical ensemble since charge is allowed to redistribute itself

in the directions of the brane. Using the thermodynamic quantities in equation (2.9)

and (2.12), one finds the specific heat capacity C and the (inverse) isothermal permittivity

c to be,

C =

(

∂ǫ

∂T

)

Q

=

(

n+ 1 + (2− n(N − 2))γ0
(nN − 2)γ0 − 1

)

s ,

c =

(

∂Φ

∂Q

)

T

=

(

1

(γ0 + 1)(1− (nN − 2)γ0)

)

1

sT .

(6.11)
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Thermodynamical stability is obtained if the two quantities are positive. However, these

two conditions are complementary and can never be satisfied. This is also what was found

for the class of smeared Dp-branes considered in e.g. [21]. Indeed, this complementary

behavior is analogous to what was found for the dynamical analysis. However, the critical

value of γ0 where the quantities switch sign is not coinciding for the two analyses. It would

be interesting to further investigate how the instability predicted by the dynamic analysis

and the thermodynamic computation are related thus making a more precise connection

to the correlated stability conjecture in the charged case [21].

7 Discussion

We have investigated the nature of the hydrodynamic effective theory that governs the

intrinsic long wavelength fluctuations of the Reissner-Nordström black brane. Our analysis

has extended the established cases of the interrelation between gravity and fluid dynamics.

Although the analysis of section 4 is quite technical, the problem at hand provides the

purest example of a black brane carrying charge. With the extraction of the effective stress

tensor and current, our analysis has provided the generalizations of the known neutral shear

and bulk viscosities. We find that the shear viscosity receives the expected modification

such that η/s = 1/4π. Note that the entropy has the form as given in equation (2.9)

for the entire family of generalized Gibbons-Maeda black branes, we therefore expect the

result for η given by (5.11) to hold in general. In particular, this includes the case of

the D3 brane. The bulk viscosity was found to be non-zero positive for all values of the

charge as expected since the effective fluid is not conformal. The ζ/η bound proposed by

ref. [16] was found to be violated for certain values of the charge parameter while it was

demonstrated to violate the bound proposed in [17] in the entire range of non-zero γ0, thus

providing a counter-example. Finally, we computed the charge diffusion constant D of the

Reissner-Nordström black brane. We note that, as with the shear viscosity η, the value of

D given in (5.12) only depends on N which could be an indication that the result will hold

for more general cases where e.g. the black brane is charged under higher form gauge fields.

The speed of sound was found to be imaginary for small charge densities, but becomes

real for sufficiently large charge parameter γ0 > (D−3)/2. For large charge density it there-

fore seems that the Reissner-Nordström black brane is GL stable under long wavelength

perturbations. However, including the first order corrections to the dispersion relations,

one finds that the hydrodynamic mode associated with charge diffusion is unstable above

the threshold value of γ0. The Reissner-Nordström black brane is therefore GL unstable for

all charge densities, although it is worth noting that the brane is “less” unstable above the

threshold, in the sense that the instability is a next-to-leading order effect. This comple-

mentary behavior of the instability is also reflected in the thermodynamic stability analysis

where the specific heat capacity and isothermal permittivity show a similar behavior. It

would be interesting to investigate the relation between the two approaches in more detail,

that is, establish a more precise connection to the correlated stability conjecture [21]. Also,

it would be interesting for comparison to perform a numerical analysis of the long wave-
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length perturbations in the current setting as was done in the case of the neutral brane,

where excellent agreement was found.

Regarding the stability analysis, it is also worth noting that since the value obtained

for the bulk viscosity leads to violation of the ζ/η bound, one might question the validity

of the stability analysis for the case of a black brane charged under a top-form gauge field

examined in ref. [33]. Here the dispersion relations were written down using the assumption

that the ζ/η bound proposed by [16] is saturated.

An interesting computation, that has not been investigated in the blackfold literature,

is the computation of the entropy current à la [36]. Computing the entropy current could

provide a consistency check of the transport coefficients and the framework. We hope to

address this question in the future.

Another natural future direction of this work is the generalization to black branes

charged under higher form gauge fields possibly in the presence of a dilaton field. Of par-

ticular interest to string theory this would include the black Dp-branes that carry charge

under a Ramond-Ramond field for which the case of the D3-brane would be included. The

case of the D3-brane would also be interesting in the context of the AdS/CFT correspon-

dence. This could namely help elucidate possible relations between the AdS and flat space

case i.e. the connection between the blackfold approach and the fluid dynamical regime

of AdS/CFT. In this regard, it would also be interesting to understand, in a systematic

manner, how the map of ref. [30] extends when matter fields are included. This could also

work as a method for obtaining the second order transport coefficients. However, taking

the computation to second order from first principles (as in this work) is also of interest.

Finally, it would be interesting to include a Chern-Simon term in the theory. This was

considered in AdS fluid/gravity in the papers [24, 25, 37]. However, we note that black

brane solutions analogous to the generalized Gibbon-Maeda solution with such a term in

the action is to our knowledge not known in the literature.
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A Reduction

In the first part of this appendix we will show how the equation of motions for the general

case of a reduction of an Einstein-Maxwell theory on an Einstein manifold can be obtained.

In the second part we will provide the example of applying the procedure for d = 2 on the

zeroth order solution.

A.1 Reduction of Einstein-Maxwell theory on an Einstein manifold

We consider Einstein-Maxwell theory on a D-dimensional space of the form

ds2 = gµνdx
µdxν = ds2(b) + e2ψ(xb)ds2(E) . (A.1)
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Here ds2(b) denotes the metric of the base manifold M(b), x
i
(b) denotes the coordinates on

M(b), ψ is a function on M(b) and ds2(E) is the metric of an Einstein manifold M(E) with

coordinates xA(E). Since M(E) is an Einstein manifold, we have

dE R
(E) = RE g

(E) , (A.2)

where dE , g
(E), R(E) and RE are respectively the dimension, the metric, the Ricci tensor

and (constant) curvature scalar of M(E). Moreover we consider a gauge field (minimally

coupled to gravity) Aµ which only depends on xi(b) and only takes values along the base

manifold M(b). Schematically

Aµ(x) = Ai(xb) . (A.3)

The action S of the system is given by

S = Sg + SEM, Sg =

∫

dDx
√

|g|R, SEM =

∫

dDx
√

|g|
[

−1

4
FµνF

µν

]

, (A.4)

where R denotes the Ricci scalar of the full metric gµν . We can now perform a reduction

and integrate out M(E), one finds

Sg ∼
∫

Mb

ddbxb
√

|gb|edEψ(xb)
{

Rb +REe
−2ψ(x) − dE(dE − 1)(∇ψ)2

}

,

SEM ∼ −
∫

Mb

ddbxb
√

|gb|edEψ(xb)FijF ij .
(A.5)

Having worked out the reduced action, it is easy to work out the equations of motion. As

usual, the resulting system is EM theory on Mb coupled to a dynamical scalar field and a

current. The EOMs are

R
(b)
ij =

1

4

(

2F k
i Fjk −

1

D − 2
g
(b)
ij FmnF

mn

)

+ dE (∇aψ∇bψ +∇a∇bψ) ,

�ψ + dE (∇ψ)2 − FmnF
mn

4(D − 2)
=
REe

−2ψ

dE
,

∇iF
ij = dEF

kl∇lψ .

(A.6)

A.2 Reduction of the zeroth order solution

In this section we demonstrate how the reduction works for the 0th order solution with

(fluid) dynamics in two spatial directions (in other words, an ordinary boost in the (σ1, σ2)

direction). Now the base space is composed of the three fluid brane directions (one time

σ0 and two spatial directions, (σ1, σ2) along with the radial direction r). The metric has

the form

ds2 = hB

[

(

ηab +

(

1− f

hN

)

uaub

)

dσadσb +
dr2

f
+ r2dΩ2

(n+1) +

p
∑

i=3

(

dxi‖

)2
]

, (A.7)

with a, b = 0, 1, 2 and where xi‖, i = 3, . . . , p are the p− 2 static brane directions. We now

integrate out the transverse sphere and the p− 2 brane directions. The functions ψ and φ

are given by

φ(r) = ψ(r) + 2 log r = B log h(r) . (A.8)
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It is now straightforward to compute κ, jµ and Fµ
ν . Here xµ denotes coordinates of the

four dimensional base space xµ = (σ0, σ1, σ2, r). One finds

κ = −Bn
2

2

(

r0
r

)2n γ0 (1 + γ0)

r2hN (r)
,

jµ∂µ =
n2

2B

(

r0
r

)2n
√

Nγ0(1 + γ0)

hN−1(r)

(

1 +
2

B
+
p

n
h(r) + 2

(

r0
r

)n

γ0

)

ua∂σa ,

Fµ
ν∂µ ⊗ dxν =

Nκ

B

(

uaub +

(

1− 2

N
δab

))

∂σa ⊗ dσb − 2κ

B
∂r ⊗ dr .

(A.9)

It is now possible to show that, as expected, the reduced system obeys the EOMs

with these effective sources. The above sources get derivative corrections in the

perturbative expansion.

B Coefficients of the large r expansions

In this section, we list the first set of large r expansion coefficients of the metric and gauge

field given in section 4.

Scalar sector: below is listed the first set of coefficients for the large r expansions of frv,

α(1)
rv = −n((n+ p)2 + (n+ p)(2(p+ 1) + n(p+ 2))γ0 + 2p(p+ 2)γ20)

(n− 1)(n+ p)2((n+ 1) + pBγ0)
. (B.1)

Below is listed the first set of coefficients for the large r expansions of av,

α(1)
v =

n((2n+ 1)(n+ p)2 + (n+ p)(1 + n(2n+ 3)(p+ 1))γ0 + 2p(1− p+ 2n(p+ 1)γ20)

(n− 1)(2n− 1)(n+ p)2((n+ 1) + pBγ0)
,

β(1)v =
(1 + γ0)

N
2

n

[

1− pγ0B

[

2(n+ 1) + pBγ0
((n+ 1) + pBγ0)2

]]

. (B.2)

Below is listed the first set of coefficients for the large r expansions of fvv,

α(1)
vv =

1

(n− 1)

(

n(1 + 2γ0) +
4γ0(n+ p(1 + γ0))

(n+ p)2((n+ 1) + pBγ0))

)

,

β(1)vv = −(1 + γ0)
N
2

2(n+ 1)

n(n+ 1 + pBγ0)2
.

(B.3)
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Vector sector: below is listed the first set of coefficients for the large r expansions of fvi,

α
(1)
vi = (∂vβi)γ0

[

−(n+ p+ 1)(p+ n(n+ p+ 1)(1 + 2γ0)

(n− 1)(n+ p)2

]

+ (∂iγ0)

[

− n+ p+ 1

(n− 1)(n+ p)

]

,

α
(2)
vi =

n+ p+ 1

2(n− 1)(2n− 1)(n+ p)3
[(

2(n+ p)(n(n+ p) + (4n2 + n− 1− 2p+ 4np)γ0)

)

(∂iγ0)

(

γ0(4n(n+ p)2 + (n+ p)(−1− 2p+ n(−3 + 2p+ 4n(4 + 3n+ 3p)))γ0

+ 4n(1 + n+ p)(−1 + n+ 4n2 − 2p+ 4np)γ20

)

(∂vβi)

]

,

β
(1)
vi = 0 ,

β
(2)
vi = −N

4n

(

2γ0(1 + γ0)(∂vui) + (∂iγ0)

(1 + γ0)
B
2 (1 +Nγ0)

)

. (B.4)

Below is listed the first set of coefficients for the large r expansions of bi,

α
(1)
i =

1

2(n− 1)

[(

2(n+ p+ 2n(n+ p+ 1)γ0)

n+ p

)

(∂vβi) +

(

1 + 2γ0
γ0(1 + γ0)

)

(∂iγ0)

]

.

β
(1)
i = β

(2)
vi

[

n+ p

(n+ p+ 1)γ0(1 + γ0)

] (B.5)

C Thermodynamic coefficients

In this appendix we list a number of thermodynamic coefficients related to the analysis of

section 6. The two coefficients R1 and R2 are given by

R1 = Q2

[(

∂Q
∂T

)

Φ

(

∂ǫ

∂Φ

)

T

−
(

∂Q
∂Φ

)

T

(

∂ǫ

∂T

)

Φ

]−1

,

R2 = −R1

[

T
(

∂ǫ

∂T

)

Φ

+Φ

(

∂ǫ

∂Φ

)

T

]

.

(C.1)

Writing out the speed of sound given in equation (6.5) it takes the form

c2s =
R1

Q2w

[

w

(

Q
(

∂Q
∂T

)

Φ

− s

(

∂Q
∂Φ

)

T

)

−Q
(

Q
(

∂ǫ

∂T

)

Φ

− s

(

∂ǫ

∂Φ

)

T

)]

. (C.2)

Finally the coefficient associated to the dispersion relation of the sound mode is given by

R = −1

2

R2
1

Q2w3c2s

(

Q
(

∂ǫ

∂T

)

Φ

− s

(

∂ǫ

∂Φ

)

T

)(

QR2

R1
+ w

((

∂Q
∂Φ

)

Φ

Φ+

(

∂Q
∂T

)

Φ

T
))

.

(C.3)

For the Reissner-Nordström solution we have

R1

T =
Nγ0

n+ 1 + pBγ0
,

R2

sT Φ
=

1−Nγ0(1 + 2γ0) + n(1 +Nγ0)
2

1 + 2γ0 + n(1−Bγ0)
,

R w2

sT 2
= − 2N2γ20(1 + γ0)

2

(1−Bγ0)(n+ 1 + pBγ0)
.

(C.4)
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