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1 Introduction

1.1 Introduction and motivation

After more than fifteen years since the advent of the AdS/CFT correspondence [1–3],

we now have a large number of examples of this type of duality in various dimensions.

In the majority of these examples, the bulk and the boundary theories share the same

(super)conformal symmetry, showing the obvious importance of such a symmetry. On the

other hand, the behaviors of the theories in each specific correspondence are actually rather

different, especially in different dimensions. This evidently is due to different dynamics

and it in turn urges us to understand the common dynamical structure at the root of the

duality which is represented in different fashions in the bulk and on the boundary in various

examples.

With such a purpose in mind, in this article we shall study the three point functions

of certain semiclassical non-BPS states in the strong coupling regime in the context of the

duality between the string theory in AdS5× S5 and the N = 4 super Yang-Mills theory in

four dimensions. More specifically, we will deal with the string theory in the EAdS3 × S3

subspace, where EAdS3 stands for the Euclidean AdS3. It should be dual to the so-called

SU(2) sector1 of the super Yang-Mills theory. This should certainly be of great interest

in view of the fact that the results for the corresponding quantities at weak coupling have

recently become available [4–7]. Detailed comparison of the results in two regimes may

allow us to identify the common non-trivial structure beyond kinematics.

As it will be evident, the computation of the three-point functions of non-BPS states

in string theory in a curved spacetime is quite non-trivial even at the leading semi-classical

level. In the first of such attempts [8], the contribution from the AdS2 part was evaluated

for the string in AdS2 × Sk, where the string is assumed to be rotating only in Sk. Since

the contribution from the sphere part was not computed in [8], the complete answer for

the three-point function was not given. In this context, our present work can be regarded

as (the extended version of) the completion of the work initiated by [8].

At about the same time, computation of the three-point functions for different type of

heavy external states was attempted by the present authors [9]. We took as the external

states the so-called Gubser-Klebanov-Polyakov (GKP) strings [10] spinning within AdS3

with large spins. In this work, the contribution to the three-point function from the action

evaluated on the saddle point configuration was computed by a method similar to the one

in [8]. However, unlike the case of [8], the GKP string is not point-like on the boundary,

and hence the contributions from the non-trivial vertex operators were needed to give the

complete answer. Since the precise form of such vertex operators were not known, again the

computation had to be left unfinished. This difficulty was later overcome by the develop-

ment of a new integrability-based method built on the state-operator correspondence and

the contribution of the non-trivial wave functions of the external states was obtained [11].

Combined with the contribution from the action evaluated previously, this gave the full

answer for the three-point function of the GKP strings in the large spin limit [11].

1Actually the global symmetry of this sector is SO(4) = SU(2) × SU(2), as we will emphasize later.
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These works paved the way for the present investigation for more general external

states in the product space EAdS3×S3. However, the applications of our general methods

developed in [9, 11] to the present case are not quite straightforward. One difficulty is

that the external states in the S3 sector, which are taken to be general one-cut finite gap

solutions [12–15] for the purpose of making comparison with the weak coupling result, are

much more structured than the large spin limit of the GKP solutions. In particular, this

makes the analysis of the analyticity property of the basic quantities on the spectral curve

considerably more complex. Another new ingredient concerns the logic of the determination

of the internal wave functions for the S3 sector, which look rather different from those for

the AdS part. For the AdS part, the wave functions explicitly depend on the positions on

the boundary at which the external string states land and the form of the dependence is

well-known from the conformal symmetry, namely the appropriate power of the difference of

these positions. For the S3 part, such landing positions do not exist and one must reconsider

how to determine the proper wave functions. We shall develop a unified method with

which one can construct the wave function for a string in a general spacetime. Moreover,

our method cleanly factorizes the kinematical and the dynamical contributions to the wave

functions. This feature is important both conceptually and practically. Also, it should

be mentioned that this is the first time where we have to combine the contributions from

the two different sectors, S3 and EAdS3, which nevertheless are interconnected through

the Virasoro constraints. We shall see that when these contributions are put together,

considerable simplifications occur, showing the intimate interrelation between them, as

expected.

The end result of our rather involved computation is a remarkably simple formula

for the three-point function, which exhibits intriguing features. First, one recognizes the

expressions to be quite analogous to those that appear in the weak coupling result, even

before taking any special limits. A priori it is not obvious why the result in the strong

coupling limit should resemble the weak coupling answer so closely. This resemblance be-

comes more conspicuous upon taking the so-called Frolov-Tseytlin limit, where the angular

momentum J for the S3 rotation is quite large so that the ratio
√
λ/J , where λ is the ’t

Hooft coupling, is small. In this limit the integrands of the integrals expressing the answer

become almost identical. However, the integration contours do not quite match. This

is not immediately a contradiction since there is no rigorous argument why three-point

functions should agree exactly in that limit. Nevertheless, it is of interest to look for a

possible mechanism to modify the contours. One important fact to be noted in this regard

is that, in addition to the ordinary one-cut solutions we used for our external states, there

exist different types of one-cut solutions which can be obtained by taking certain degen-

eration limits of multi-cut solutions. Since the values of the infinite number of conserved

charges do not change in this limiting procedure, these solutions should be considered on

equal footing with the corresponding ordinary one-cut solutions. The important difference,

however, is that such a “degenerate solution” has one or more additional singularities on

the worldsheet. Since the determination of the contours of integration depends crucially

on the analytic structure of the saddle point configuration, this phenomenon provides an

example of a natural mechanism by which the contour of integration in the formula for
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the three-point function can be modified. This issue, however, should be studied further

in future investigations.

Now as this article has become rather lengthy due to various steps of somewhat involved

analyses, it should be helpful to give a brief preview of the basic procedures and exhibit

the main result. The next subsection will be devoted to this purpose.

1.2 Preview and the main result

1.2.1 The set-up

The three-point function we wish to compute in the semi-classical approximation has the

following structure:

G(x1, x2, x3) = e−S[X∗]ε
3∏
i=1

Vi[X∗;xi, Qi]ε . (1.1)

It consists of the contribution of the action and that of the vertex operators, evaluated

on the saddle point configuration denoted by X∗. The subscript ε signifies a small cut-off

which regulates the divergences contained in S and Vi. As we shall show, these divergences

cancel against each other and the total three-point function is completely finite. The vertex

operator Vi[X∗;xi, Qi]ε is assumed to carry a large charge Qi of order O(
√
λ) and is located

at xi on the boundary of the AdS space.

In the case of a string in EAdS3 × S3, the action and the vertex operators are split

into the EAdS3 part and the S3 part. Their contributions are connected solely through

the Virasoro constraint T (z)EAdS3 + T (z)S3 = 0 (and its anti-holomorphic counterpart).

In the semi-classical approximation, an external state is characterized by the asymptotic

behavior of a classical solution, which should be the saddle point configuration for its two-

point function. However, conformally invariant vertex operator which creates such a state

is practically impossible to construct at present. Moreover, even if one had the vertex

operator, it is of no use since the explicit saddle point solution X∗ on which to evaluate

the vertex operator (and the action) cannot be obtained by existing technology.

Such difficulties, although seemingly insurmountable, can be overcome with the aid of

the integrable and analytic structure of the system. For this purpose, it is convenient to

formulate the string theory in question as a non-linear sigma model. Since the treatment

of the S3 part and the EAdS3 part are essentially the same in this regard, we shall focus

primarily on the S3 part in this summary. The basic information is then contained in the

right-current j ≡ Y−1dY and the left-current l ≡ dYY−1, where Y is the 2× 2 matrix with

unit determinant composed of the embedding coordinates Y I (I = 1, 2, 3, 4) of S3 in the

manner

Y =

(
Z1 Z2

−Z̄2 Z̄1

)
, Z1 = Y 1 + iY 2 , Z2 = Y 3 + iY 4 . (1.2)

Y transforms under the global symmetry group SO(4)= SU(2)L × SU(2)R as Y→ VLYVR,

with VL ∈SU(2)L, VR ∈ SU(2)R. The equation of motion for Y I can then be expressed in

– 3 –
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the Lax form, with the complex spectral parameter x, as[
∂ + J rz , ∂̄ + J rz̄

]
= 0 ,

J = J rz dz + J rz̄ dz̄ , J rz =
jz

1− x
, J rz̄ =

jz̄
1 + x

,
(1.3)

which makes the classical integrability of the system manifest. The information of

the infinite number of conserved charges is encoded in the monodromy matrix Ω(x) =

P exp(−
∮
J (x)), the eigenvalues of which are given by Ω(x) ∼ diag(eip(x), e−ip(x)), where

p(x) is the quasi-momentum. One can then define the spectral curve Γ by det (y1−Ω(x)) =

0, which describes a two-sheeted Riemann surface in the variable x with a number of

cuts with additional singularities. To each such curve corresponds a classical “finite gap

solution”[12–15], which can be constructed in terms of the solutions of the so-called (right

and left) auxiliary linear problems, to be abbreviated as ALP throughout, given by

(i)

(
∂ +

jz
1− x

)
ψ = 0 ,

(
∂̄ +

jz̄
1 + x

)
ψ = 0 , (1.4)

(ii)

(
∂ +

xlz
1− x

)
ψ̃ = 0 ,

(
∂̄ − xlz̄

1 + x

)
ψ̃ = 0 . (1.5)

The solutions ψ and ψ̃ are expressed in terms of the Riemann theta functions and the

exponential functions, which depend on the data of the curve such as the location of the

branch points and other singularities. We will be interested in the “one-cut solution”, the

curve for which has a single square root branch cut of finite size,2 since the vertex operators

producing such solutions should correspond to the composite operators in the SU(2) sector

in N = 4 super Yang-Mills theory.

Now with this setup, let us sketch how one can compute the three point functions with

the above one-cut solutions3 as external legs.

1.2.2 Evaluation of the contribution of the action

First consider the evaluation of the action part. As described in [9] for the GKP string

and will be detailed for the case of our interest, the action integral can be written in the

form S ∼
∫

Σ̃$ ∧ η, where $ and η are, respectively a holomorphic 1-form and a closed

1-form defined on the double cover Σ̃ of the worldsheet. By using the Stokes theorem, this

can be rewritten as a contour integral S ∼
∫
∂Σ̃ Πη, where ∂Σ̃ is the boundary of Σ̃ and

the function Π =
∫ z
$ is single-valued on Σ̃. This expression for the action can be further

rewritten, using a generalization of the Riemann bilinear identity developed in [9], into a

sum of products of certain contour integrals. The important point is that the contours of

these integrals interconnect the vertex insertion points z1, z2, z3, thereby correlating the

behaviors around these points. Therefore, to compute the integral it is natural to study

2As already mentioned in the introduction, this class can contain solutions which are obtained from m-

cut solutions by shrinking m− 1 of them to infinitesimal size. They may play important roles in obtaining

all possible three-point functions of this category.
3When it is not confusing, we use one-cut solution to refer either to the one-cut solution of ALP or the

solution of the original equation of motion reconstructed in terms of such solutions.
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the behavior of the eigenfunctions of the ALP around zi and more importantly along the

paths connecting zi and zj .

Although we do not know the exact saddle point solution for the three-point function,

we do know the behavior in the vicinity of each zi since it should be the same as the

one-cut solution discussed above. This provides the form of the currents needed to analyze

the ALP around zi. Clearly there are two independent solutions around each zi and one

can compute the local monodromy matrix Ωi belonging to SL(2,C), which mixes these

solutions upon going around zi. Then one can take the basis of the solutions of ALP

at zi to be the eigenvectors of Ωi, denoted by i±, belonging to the eigenvalues e±ipi(x)

of Ωi. These eigenvectors are normalized4 with respect to the SL(2,C) invariant product

〈ψ, χ〉 ≡ det (ψ, χ), to be refereed to as Wronskian throughout this article, as 〈i+, i−〉 = 1.

To gain information about the solution of ALP valid in the entire worldsheet, one can

make the “WKB expansion” with ζ = (1−x)/(1+x) as the small parameter corresponding

to ~. One then finds that the same contour integrals with which the action is expressed

appear in the WKB expansion of the Wronskians 〈i±, j±〉. Therefore our task is reduced

to their computation.

The crucial information about such Wronskians is contained in the global consistency

condition of the monodromy matrices given by

Ω1Ω2Ω3 = 1 . (1.6)

Since Ωi’s cannot in general be diagonalized simultaneously, this serves as a highly non-

trivial constraint. In fact this condition allows one to express certain products of two

Wronskians in terms of the local quasi-momenta pi(x)’s, an example of which is given by

〈1+ , 2+〉〈1− , 2−〉 =
sin p1(x)+p2(x)+p3(x)

2 sin −p1(x)−p2(x)+p3(x)
2

sin p1(x) sin p2(x)
. (1.7)

It turns out that the knowledge of the Wronskians, such as 〈1+ , 2+〉, between the eigen-

functions at different insertion points is of utmost importance. All the basic quantities,

namely the contour integrals giving the contribution of the action and the wave functions,

to be discussed shortly, can be expressed in terms of the Wronskians.

Therefore the crucial task is to separate out, from the relations such as (1.7), the

individual Wronskian 〈i±, j±〉. This can be achieved if we know which of the two factors

is responsible for each zero and the pole on the spectral curve, produced by the expression

on the right hand side. This information dictates the analyticity property of the individual

Wronskian in x and by solving the appropriate Riemann-Hilbert problem we can obtain

the Wronskians.

As an example, consider the poles produced by the zeros of sin p1(x) on the right hand

side of (1.7), namely at p1(xpole) = nπ. These are the singular points of the spectral curve

where the monodromy matrix Ω1(xpole) takes the form of a Jordan block and the bigger

of the two eigenvectors 1± diverges. This means that the Wronskian on the left hand side

of (1.7) involving such a “big solution” must be responsible for these poles. Now which

4For the normalization of each eigenvector, see section 2.3.
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eigenvector is big and which is small near zi depends on the value of x. In the case of the

ordinary one-cut solution its explicit form tells us that it is dictated by the sign of Re qi(x).

This means that across the line Re qi(x) = 0, the analytic property of the eigenfunctions i±
changes. We can then extract the regular part of the Wronskian between “small solutions”

by using the well-known technique of Wiener-Hopf decomposition, which takes the form of

a convolution integral with the contour along the line Reqi(x) = 0. Due to the two-sheeted

nature of the spectral curve, the kernel of the decomposition formula must be appropriately

generalized.

Now the remaining analysis, namely that of the zeros of the right hand side of (1.7), is

similar in spirit but is much more complicated because it involves the interplay between the

three local quasi-momenta p1(x), p2(x), p3(x) and requires a certain knowledge of the global

properties of the solutions of the ALP on the spectral parameter plane. To properly deal

with this problem, we will introduce a notion of the “exact WKB curve”. Also, since each

pi(x) is double valued, the convolution kernel will be defined on an eight-sheeted Riemann

surface. Moreover it turns out that the contour of integration must be determined not just

by Re qi(x) = 0 for each i but also by certain global “connectivity conditions” expressed in

terms of the quantity Ni ≡ |Re pi(x)|. Despite such technical complexities, we will be able

to compute the desired Wronskians in terms of the quasi-momenta pi(x).

With the procedures described above, one obtains the contribution from the action for

the S3 part. Further, in an analogous manner, the corresponding contribution from the

EAdS3 part can be computed.

1.2.3 Evaluation of the contribution of the vertex operators

Let us now turn to the computation of the contribution of the vertex operators. To this

end, we extend the powerful method developed in our previous work [11] for the GKP

string to more general string. It is based on the state-operator correspondence and the

construction of the corresponding wave function in terms of the action-angle variables. If

one can construct the action-angle variables (Si, φi), the wave function can be constructed

simply as

Ψ[φ] = exp

(
i
∑
i

Siφi − E({Si})τ

)
, (1.8)

where E({Si}) is the worldsheet energy.5 Although the construction of such variables for a

non-linear system is prohibitively hard in general, for integrable systems of the present type

there exists a beautiful method [13–15], based on the Sklyanin’s separation of variables [16],

which allows us to construct them from the Baker-Akhiezer eigenvector ψ, which is the

solution of ALP satisfying the monodromy equation of the form Ω(x; τ, σ)ψ(x; τ, σ) =

eip(x)ψ(x; τ, σ). More precisely, the dynamical information is encoded in the function n ·
ψ(x, τ), where n = (n1, n2), to be specified later, is referred to as the “normalization

vector”. It is known that for an m-cut solution n ·ψ(x, τ) as a function of x has m zeros at

certain positions x = {γ1, γ2, . . . , γm} and the dynamical variables z(γi) and p(γi), where

5The sum of such energies of course vanishes for the total system due to the Virasoro constraint.
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z =
√
λ
(
x+ x−1

)
/(4π), can be shown to form canonical conjugate pairs. Then by making

a suitable canonical transformation, one can construct the action-angle variables (Si, φi),

where, in particular, the angle variables are given by the generalized Abel map

φi = 2π
m∑
j=1

∫ γj

x0

ωi , i = 1, 2, . . . ,m . (1.9)

Here, ωi are suitably normalized holomorphic differentials (with certain singularities de-

pending on the specific problem) and x0 is an arbitrary base point. In the case of the

one-cut solution of our interest, we have one angle variable φR associated with the right

ALP shown in (1.4) and one left angle variable φL associated with the left ALP described

in (1.5). Hereafter we will only refer to the “right sector” for brevity of explanation.

Now as we shall describe in section 2.2, we can write down a simple formula which

reconstructs the classical string solution from the Baker-Akhiezer vector6 ψ. Therefore,

with a choice of the normalization vector n, one can associate the angle variable φR(n) to

a classical solution, through the (zeros of the) quantity n · ψ.

Let Y denote the form of the three-point saddle solution near the vertex insertion

point zi. We will call this part of the solution the ith leg. As we have to normalize the

three-point function by the two-point function for each leg, what we wish to compute is the

angle variable φR(n) associated to Y relative to the one φref
R (n) associated to the “reference

two-point solution” Yref which is created by the same vertex operator7 at zi.

Now the vertex operators of our interest are those which correspond to the gauge-

invariant composite operators in the SU(2) sector of the super Yang-Mills theory. As

we discuss in detail in section 4, the basic operators of that category are the charge-

diagonal operators which are “highest weight” with respect to the global symmetry group

SU(2)R × SU(2)L ' SO(4). Focusing just on the SU(2)R property, one can characterize

such an operator by what we call a “polarization spinor”, in this case ndiag = (1, 0)t, which

is annihilated by the raising operator of SU(2)R. More general operator of our interest

can then be obtained from such a diagonal operator by an SU(2)R (×SU(2)L) rotation and

is characterized by the polarization spinor n, obtained from ndiag by the corresponding

SU(2)R rotation. In this way, each vertex operator is associated with such a spinor n.

What is important is that this “polarization spinor” n can be shown to be identical

to the “normalization vector” n which determines the angle variable φR(n) through the

quantity n ·ψ. As was elaborated in our previous work [11], once the normalization vector

n is specified, the relative shift ∆φR = φR − φref
R of the angle variable for the three-point

solution Y around zi from that for the two-point reference solution Yref can be computed

from the knowledge of the transformation matrix V ∈ SL(2,C) which connects Y and Yref

in the manner Y = YrefV in the vicinity of zi. As it will be shown in section 4, the allowed

form of V can be deduced from the property that both Y and Yref are produced from the

same vertex operator characterized by the polarization spinor n.

6Precisely speaking, we need the Baker-Akhiezer vectors for both the left and the right ALP, but we

ignore such a detail here.
7The same vertex operator can produce slightly different semi-classical behavior around it, depending

on whether it resides in the two-point function or in the three point function.
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Then, by using the master formula developed in [11], we can express ∆φR in terms of

n, the solutions of the Baker-Akhiezer functions corresponding to Yref , and the parameters

describing V . Applying this procedure to each leg of the three-point function and by

making use of a relation between the normalization vector n and the value of ψ at x =∞,

we can express the wave function (for the right sector) in terms of the Wronskians as

ΨS3

R =
∏
{i,j,k}

(
〈j−, k−〉

〈i−, j−〉〈k−, i−〉

∣∣∣∣
∞

〈ni, nj〉〈nk, ni〉
〈nj , nk〉

)Ri+Rj−Rk
. (1.10)

Here ni is the polarization spinor associated with the vertex operator Vi at zi and Ri is the

absolute value of the SU(2)R charge carried by Vi. Note that the kinematical part expressed

in terms of 〈ni, nj〉 is clearly separated from the dynamical part, which again is composed

of the Wronskians of the solutions of the ALP. The wave function for the EAdS3 part can

be obtained in a similar fashion. In that case, the Wronskians 〈ni, nj〉 can be expressed in

terms of the difference of the landing positions of the three legs on the boundary of EAdS3

and yield the familiar coordinate dependence of the three-point functions.

1.2.4 Final result for the three-point function

We now have all the ingredients for the evaluation of three-point functions. Substituting

the explicit expressions of the Wronskians 〈i±, j±〉 into the action and the wave function

and assembling the contributions from the S3 part and the EAdS3 part together, we find

that remarkable simplifications take place in the sum. The final result for the general

one-cut external states is thus found to be

〈V1V2V3〉 =
1

N

C123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2 ,

(1.11)

where the prefactor 1/N comes from the string coupling constant gs and the logarithm of

the structure constant C123 is given by

lnC123 =∫
Muuu
−−−

z(x) (dp1+dp2+dp3)

2πi
ln sin

(
p1+p2+p3

2

)
+

∫
Muuu
−−+

z(x) (dp1+dp2−dp3)

2πi
ln sin

(
p1+p2−p3

2

)
+

∫
Muuu
−+−

z(x) (dp1−dp2+dp3)

2πi
ln sin

(
p1−p2+p3

2

)
+

∫
Muuu

+−−

z(x) (−dp1+dp2+dp3)

2πi
ln sin

(
−p1+p2+p3

2

)
−
∫
M̂uuu
−−−

z(x) (dp̂1+dp̂2+dp̂3)

2πi
ln sin

(
p̂1+p̂2+p̂3

2

)
−
∫
M̂uuu
−−+

z(x) (dp̂1+dp̂2−dp̂3)

2πi
ln sin

(
p̂1+p̂2−p̂3

2

)
−
∫
M̂uuu
−+−

z(x) (dp̂1−dp̂2+dp̂3)

2πi
ln sin

(
p̂1−p̂2+p̂3

2

)
−
∫
M̂uuu

+−−

z(x) (−dp̂1+dp̂2+dp̂3)

2πi
ln sin

(
−p̂1+p̂2+p̂3

2

)

−2

3∑
j=1

∫
Γu
j−

z(x) dpj
2πi

ln sin pj + 2

3∑
j=1

∫
Γ̂u
j−

z(x) dp̂j
2πi

ln sin p̂j + Contact . (1.12)

The notations used in the above expressions are as follows. In the equation (1.11), ∆i is

the conformal dimension of the i-th vertex operator Vi and ni and ñi are the polarization
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spinors for Vi with respect to SU(2)R and SU(2)L. In the expression for lnC123, pi and p̂i
are the quasi-momenta for the i-th leg for the S3 part and the EAdS3 part respectively.

z(x) is the Zhukovsky variable given in (2.36). The symbols Muuu
±±±and Γuj− denote the

contours of integration for the S3 part and M̂uuu
±±± and Γ̂uj− are the contours for the EAdS3

contribution. The last term Contact stands for some special terms which depend on the

detail of the external states. It should be noted that the result above for the three-point

function for the operators corresponding to general one-cut solutions is already reminiscent

of the expression in the weak coupling regime. In section 7, we demonstrate that our

formula gives the correct result for the case of three BPS operators and that it reduces

to the two-point function in the limit when the charge of one of the operators becomes

negligibly small. Further, we analyze the Frolov-Tseytlin limit for the case of one non-BPS

and two BPS operators and find that the integrals giving the three-point coupling take

extremely similar forms, except for different contours of integration. For this issue, we

point out the existence of a natural mechanism by which the contours can be modified.

Now we briefly indicate the organization of the rest of this article: in section 2, we

begin with the description of the string in EAdS3 × S3 spacetime and discuss the one-cut

solutions we will consider in this work. In section 3, we will study the contribution of

the action for the S3 part to the three-point function and show that the action can be

re-expressed in terms of certain contour integrals. In section 4, we describe the evaluation

of the wave functions for the S3 part. Characterizing the vertex operator by a polarization

spinor and identifying it with the normalization vector determining the angle variable, we

apply the master formula for the shift of the angle variables developed in our previous

work to construct the wave functions. Section 5 will be devoted to the explicit evaluation

of the Wronskians. The main task is to find the analyticity property of the Wronskian

from the improved WKB analysis of the ALP. Using this information, we can project out

the individual Wronskian from the expression of the product of Wronskians in terms of the

quasi-momenta pi(x) by the use of the Wiener-Hopf decomposition. In section 6, all the

results obtained up to this point are put together to produce the final result for the three-

point functions of the general one-cut external states. In section 7, in addition to some

basic checks of our result, we present the analysis of the Frolov-Tseytlin limit and discuss

its outcome. Finally, in section 8 we make some important comments on our present work

and indicate possible future directions. Several appendices are provided to supply some

additional details.

2 String in EAdS3 × S3 and classical solutions

We begin by setting up the formalism to deal with the strings in EAdS3 × S3 in sub-

section 2.1 and describe the classical solutions we will use as the external states of the

three-point functions in subsection 2.2. We then give a brief account on the basic set-up

of the three-point function in subsection 2.3.
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2.1 String in EAdS3 × S3 spacetime

2.1.1 Preliminaries

In this article, we will exclusively deal with the string propagating in the product space

of the Euclidean AdS3 subspace of AdS5 (to be denoted by EAdS3) and the sphere S3.

If we describe the AdS5 in terms of the embedding coordinates by XMηMNX
N = −1,

where the superscript M is taken to run as M = −1, 0, 1, 2, 3, 4 and the metric is given by

ηMN = diag (−1,−1, 1, 1, 1, 1), then the EAdS3 subspace is defined by setting X0 = X3 =

0. Therefore we will parametrize the EAdS3 × S3 space in the following way:8

EAdS3 : XµXµ ≡ XµηµνX
ν = −1 , µ, ν = −1, 1, 2, 4 , (2.1)

ηµν = diag (−1, 1, 1, 1) ,

S3 : Y IYI ≡ Y IδIJY
J = 1 , I, J = 1, 2, 3, 4 . (2.2)

The Poincaré coordinates (xr, z) = (x0, x1, x2, x3, z) of AdS5 are defined in the usual way as

X−1 +X4 =
1

z
, X−1 −X4 = z +

xrxr
z

, Xr =
xr

z
, (2.3)

where z = 0 corresponds to the boundary of AdS5. When restricted to the EAdS3 sub-

space,9 its boundary is the Euclidean plane parametrized by (x1, x2).

The action of a string in this space is given by

S =

√
λ

π

∫
d2z

(
∂Xµ∂̄Xµ + Λ(XµXµ + 1) + ∂Y I ∂̄YI + Λ̃(Y IYI − 1)

)
, (2.4)

where Λ and Λ̃ are Lagrange multiplier fields. Upon eliminating them the equations of

motion become

∂∂̄Xµ − (∂Xν ∂̄Xν)Xµ = 0 , (2.5)

∂∂̄Y I + (∂Y J ∂̄YJ)Y I = 0 . (2.6)

For physical configurations, we must in addition impose the Virasoro constraints, which

require that the sum of the stress-energy tensors for the AdS part and the sphere part must

vanish. Namely,

TAdS(z) + TS(z) = 0 , T̄AdS(z̄) + T̄S(z̄) = 0 , (2.7)

TAdS(z) = ∂Xµ∂Xµ , TS(z) = ∂Y I∂YI , (2.8)

T̄AdS(z̄) = ∂̄Xµ∂̄Xµ , T̄S(z̄) = ∂̄Y I ∂̄YI . (2.9)

For the AdS part, we shall take the external states to be those without the two-dimensional

spins. Then near the vertex insertion point the saddle point solution should approach the

8In order to conform to the standard convention, we have chosen the range of the S3 embedding coor-

dinates Y I to be I = 1, 2, 3, 4, some of which coincide in name to the range of the EAdS3 coordinates. We

believe this will not cause confusion.
9If desired, one can also deal with the AdS3 subspace given by X2 = X3 = 0, with the Minkowski

boundary plane (x0, x1).
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two-point solution, which is known to be point-like. The forms of TAdS(z) and T̄AdS(z̄) for

such a two-point solution are uniquely determined by their transformation properties as a

(2, 0) and a (0, 2) tensor respectively and are given in terms of the conformal dimension ∆

of the vertex operator as

TAdS,2pt(z) =
κ2

z2
, T̄AdS,2pt =

κ2

z̄2
, κ =

∆

2
√
λ
. (2.10)

Therefore, taking into account the Virasoro condition, near each vertex insertion point zi
we must have

TAdS(z) ∼ κ2
i

(z − zi)2
, TS(z) ∼ −κ2

i

(z − zi)2
as z → zi , (2.11)

and similarly for the anti-holomorphic parts. In the case of three-point functions, the

information of such asymptotic behaviors suffices to determine the form of the energy-

momentum tensor exactly everywhere. For the EAdS3, the holomorphic part takes the

form

T (z) =

(
κ2

1z12z13

z − z1
+
κ2

2z21z23

z − z2
+
κ2

3z31z32

z − z3

)
1

(z − z1)(z − z2)(z − z3)
, (2.12)

zij ≡ zi − zj . (2.13)

Here and hereafter, we shall omit the subscript AdS for the stress tensor for the AdS part

and simply write T (z) and T̄ (z̄) for TAdS(z) and T̄AdS(z̄).

We now discuss the methods for constructing the solutions of the equations of motion

with the use of the classical integrability of the system. There exist two apparently different

formalisms. One is the sigma model formulation [12, 17] and the other is the so-called

Pohlmeyer reduction [18, 19]. The former deals with variables which transform covariantly

under the global symmetry transformations, whereas the latter employs invariant variables.

Because of this feature they have advantages and disadvantages depending on the problem

one would like to solve. We shall employ both. It should be remarked however that they

are actually connected by a “gauge transformation”, as shown in appendix C.2.

2.1.2 Sigma model formulation

Consider first the sigma model formulation. We will focus on the S3 part, as the EAdS3

part can be treated similarly. The embedding coordinates {YI} are conveniently assembled

into a 2× 2 matrix with unit determinant given by

Y =

(
Z1 Z2

−Z̄2 Z̄1

)
, (2.14)

Z1 = Y1 + iY2 , Z2 = Y3 + iY4 , (2.15)

which transforms under the global symmetry group SO(4) = SU(2)L × SU(2)R as

Y′ = ULYUR , UR ∈ SU(2)R , UL ∈ SU(2)L . (2.16)
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The quantities of central importance are the “right” and the “left” currents (or connections)

j and l respectively, defined by

j ≡ Y−1dY , l ≡ dYY−1 . (2.17)

Evidently, j and l are related by l = YjY−1. Under the transformation (2.16) they trans-

form covariantly as j → U−1
R jUR and l→ ULlU

−1
L . Now reflecting the classical integrability

of the system these equations can be extended to one parameter family of equations called

Lax equations given by

[∂ + J rz (x), ∂̄ + J rz̄ (x)] = 0 ,

J rz (x) ≡ jz
1− x

, J rz̄ (x) ≡ jz̄
1 + x

,
(2.18)

[∂ + J ll (x), ∂̄ + J lz̄(x)] = 0 ,

J lz(x) ≡ xlz
1− x

, J lz̄(x) ≡ − xlz̄
1 + x

,
(2.19)

where x is the complex spectral parameter. The two connections J r = J rz dz + J rz̄ dz̄ and

J l = J lzdz + J lz̄dz̄ are related by the gauge transformation of the form Y(d + J r)Y−1 =

d + J l. It is useful to note that the energy-momentum tensors and hence the Virasoro

conditions can be expressed in terms of the currents in a concise way. We have, in the

cylinder coordinate,

TS(z) = −1

2
Tr (jzjz) = −κ2 , T̄S(z̄) = −1

2
Tr (jz̄jz̄) = −κ2 . (2.20)

Central to the construction and the analysis of the solutions of the equations of motion

are the right and the left auxiliary linear problems, to be abbreviated as ALP, which are

coupled linear differential equations for vector functions:

right ALP : (∂ + J rz (x))ψ = 0 , (∂̄ + J rz̄ (x))ψ = 0 , (2.21)

left ALP : (∂ + J lz(x))ψ̃ = 0 , (∂̄ + J lz̄(x))ψ̃ = 0 . (2.22)

Compatibility of the system of ALP implies the original equations of motion. Upon devel-

oping ψ and ψ̃ from a point z0 along a closed spacelike curve, we obtain the right and the

left monodromy matrices Ω(x) and Ω̃(x) respectively as

Ω(x; z0) = P exp

(
−
∮
Jr
)

= P exp

(
−
∮ (

jzdz

1− x
+

jz̄dz̄

1 + x

))
, (2.23)

Ω̃(x; z0) = P exp

(
−
∮
J l
)

= P exp

(
−
∮ (

xlzdz

1− x
− xlz̄dz̄

1 + x

))
= YΩ(x; z0)Y−1 . (2.24)

By virtue of the flatness of the connection, expansion of Ω(x) as a function of x around

any point yields an infinite number of conserved charges as coefficients. In particular,

expansions around x = ∞ and x = 0 yield, in the leading behavior, the Noether charges

for the global SU(2)R and SU(2)L, respectively, defined by

QR ≡
√
λ

4π

∮
∗j =

√
λ

4π

∫ 2π

0
dσjτ , (2.25)

QL ≡
√
λ

4π

∮
∗l =

√
λ

4π

∫ 2π

0
dσlτ . (2.26)
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Indeed, expanding Ω(x; z0) around x = ∞ and x = 0 and using the definitions above,

we get

Ω(x; z0) = 1− 1

x

4π√
λ
QR +O(x−2) , (x→∞) , (2.27)

YΩ(x; z0)Y−1 = 1 + x
4π√
λ
QL +O(x2) , (x→ 0) . (2.28)

By diagonalizing Ω(x; z0), we can obtain a quantity independent of z0. Since det Ω(x; z0) =

1, its eigenvalues must be of the structure

u(x; z0)Ω(x; z0)u(x; z0)−1 =

(
eip(x) 0

0 e−ip(x)

)
, (2.29)

where p(x) is called the quasi-momentum. Comparing with the diagonalized form of the

expressions (2.27) and (2.28), the behaviors of p(x) around x = ∞ and x = 0 are of the

form

p(x)− p(∞) = −1

x

4π√
λ
R+O(x−2) , (x→∞) , (2.30)

p(x)− p(∞) = 2πm+ x
4π√
λ
L+O(x2) , (x→ 0) , (2.31)

where m is an integer and the right and the left charges R and L are the (positive) eigen-

values of QR and QL respectively.

For the study of the ALP and construction of the finite gap solutions of our interest,

the analytic property of the quasi-momentum is of critical importance. Such a structure is

encoded in the spectral curve defined by

Γ : Γ(x, y) = det (y1− Ω(x; z0)) = 0 , (2.32)

which is equivalent to (y − eip(x))(y − e−ip(x)) = 0. In the present case, it can be regarded

as a two-sheeted Riemann surface with various singularities. From the definition of the

monodromy matrix (2.23) and (2.24) and the constraints (2.20), it is clear that p(x) has

poles at x = ±1 with the magnitude of the residue equaling −2πκ. Since p(x) lives on a

two-sheeted surface, we specify its branch by defining the signs at these singularities. We

shall employ the definition

p(x) ∼ −2πκ

x− 1
+O((x− 1)0) , (x→ 1+) , (2.33)

p(x) ∼ −2πκ

x+ 1
+O((x+ 1)0) , (x→ −1+) . (2.34)

where the + superscript on 1+ signifies that the point is on the first sheet. Similarly,

we shall use − superscript for points on the second sheet. We will give a more detailed

discussion of the structure of p(x) for the one-cut solutions of our interest in subsection 2.2.

From the structure of the spectral curve and the quasi-momentum p(x) defined upon

it, one can extract important information. For this purpose, we first define the a- and
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b-cycles in the usual way. For the hyperelliptic curve of our interest, an a-cycle is defined

as a cycle which goes around the cut on the same sheet. On the other hand, a b-cycle is

defined as the one which starts from a point on the first sheet, goes into the second sheet

through the cut and eventually comes back to the same point on th first sheet. Clearly,

around an a-cycle, we have
∮
ai
dp = 0. In contrast, the integral along the b-cycle does not

vanish in general and gives
∮
bi
dp = 2πni, where ni is an integer called the mode number.

Now using the a-type cycles, one can define a set of conserved charges called the filling

fractions as

Si ≡
i

2π

∮
ai

pdz

(
=

∮
ai

zdp

2πi

)
, (2.35)

where

z ≡
√
λ

4π

(
x+

1

x

)
(2.36)

is the Zhukovsky variable. In particular, the filling fractions S∞ and S0 defined with

the contours a∞ and a0, which encircle the point at ∞ and 0 respectively, are of special

importance since they are related to the global SU(2)R and SU(2)L charges in the following

way, as can be checked using (2.30) and (2.31):

S∞ = −R , S0 = L . (2.37)

2.1.3 Pohlmeyer reduction for a string in S3

The sigma model formulation we have sketched above is convenient for analyzing the prop-

erty of the system under the global symmetry transformations. Hence it will be used as

the basis of the construction of the wave function corresponding to the vertex operators in

section 4. On the other hand, for the analysis of the contribution of the action, which is

invariant under the global transformation, the formalism of the Pohlmeyer reduction will

be more convenient.

The essential idea of the Pohlmeyer reduction is to describe the motion of the string

in a suitably defined moving frame. This then leads to the Lax equations in terms of

the connections which are invariant under the global symmetry transformations. Below

we shall only sketch the procedures and then summarize the basic equations we will need

later. Further details will be given in appendix B.

In what follows we shall denote a 4-component field AI simply as A and use the

notations A · B = AIBI , A
2 = AIAI . The basic moving frame of 4-component fields, to

be called qi, (i = 1, 2, 3, 4), are taken as q1 ≡ Y, q2 ≡ a∂Y + b∂̄Y, q3 ≡ c∂Y + d∂̄Y and

q4 ≡ N , where N is the unit vector orthogonal to Y, ∂Y and ∂̄Y , and the (field-dependent)

coefficients a, b, c, d are chosen so that the simple conditions q2 · q3 = −2, q2
2 = q2

3 = 0 are

satisfied. (Note that since Y 2 = 1, we automatically have q2
1 = 1, q1 · q2 = q1 · q3 = 0.) Let

us define an SO(4)-invariant field γ by the relation

∂Y · ∂̄Y =
√
T T̄ cos 2γ . (2.38)
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Then, the coefficients a, b, c, d can be expressed in terms of T, T̄ and γ, giving q2 and q3 of

the form

q2 = − i

sin 2γ

[
eiγ√
T
∂Y +

e−iγ√
T̄
∂̄Y

]
, (2.39)

q3 =
i

sin 2γ

[
eiγ√
T̄
∂̄Y +

e−iγ√
T
∂Y

]
. (2.40)

Once the moving frame is prepared, one can compute the derivatives of qi and express

them in terms of qi again. The result can be assembled into the following equations

∂W +BL
zW +WBR

z = 0 , ∂̄W +BL
z̄W +WBR

z̄ = 0 , (2.41)

where W is given by

W =
1

2

(
q1 + iq4 q2

q3 q1 − iq4

)
, (2.42)

and BL,R
z,z̄ are matrices whose components are expressed in terms of T, T̄ and γ. (Explicit

forms are given in appendix B.) From the equations (2.41) one deduces that the left and

the right connections BL and BR, given in (B.21)–(B.24), are flat, namely

[∂ +BL
z , ∂̄ +BL

z̄ ] = 0 , [∂ +BR
z , ∂̄ +BR

z̄ ] = 0 . (2.43)

These relations give the equations of motion for the invariant fields in the form

∂∂̄γ +

√
T T̄

2
sin 2γ +

2ρρ̃√
T T̄

1

sin 2γ
= 0 ,

∂ρ̃+
2∂̄γ

sin 2γ
ρ = 0 , ∂̄ρ+

2∂γ

sin 2γ
ρ̃ = 0 ,

(2.44)

where ρ and ρ̃ are defined by

ρ ≡ 1

2
N · ∂2Y , ρ̃ ≡ 1

2
N · ∂̄2Y . (2.45)

Just as in the case of the sigma model formulation, the integrability of the system

allows one to introduce a spectral parameter ζ, related to x by

ζ =
1− x
1 + x

, (2.46)

without spoiling the flatness conditions. The Lax equation so obtained is given by

[∂ +Bz(ζ), ∂̄ +Bz̄(ζ)] = 0 , (2.47)

where

Bz(ζ) ≡ Φz

ζ
+Az , Bz̄(ζ) ≡ ζΦz̄ +Az̄ ,

Φz ≡

(
0−

√
T

2 e−iγ

−
√
T

2 eiγ0

)
, Φz̄ ≡

(
0
√
T̄

2 eiγ√
T̄

2 e−iγ0

)
,

Az ≡

− i∂γ
2

ρeiγ√
T sin 2γ

ρe−iγ√
T sin 2γ

i∂γ
2

 , Az̄ ≡

 i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

ρ̃eiγ√
T̄ sin 2γ

− i∂̄γ
2

 .

(2.48)
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One can consider the auxiliary linear problem also for the Pohlmeyer connec-

tions (2.47),

(∂ +Bz(ζ)) ψ̂ = 0 ,
(
∂̄ +Bz̄(ζ)

)
ψ̂ = 0 , (2.49)

where ψ̂ denotes the solution in this formulation. As shown in appendix C.2, the Pohlmeyer

connections (2.47) are actually related to the connections in the sigma model formula-

tion, (2.21) and (2.22), by gauge transformations. Correspondingly, the solutions to the

ALP are also related by gauge transformations as

ψ = G−1ψ̂ , ψ̃ = G̃−1ψ̂ , (2.50)

where ψ and ψ̃ are the solutions to the right and the left ALP respectively and G and G̃
are the gauge transformations, the explicit form of which are given in appendix C.2. Here

and hereafter, we shall often refer to the use of the Pohlmeyer formulation as choosing the

Pohlmeyer gauge.

2.2 One-cut finite gap solutions in S3

We now describe a particular class of solutions to the equations of motion and the Virasoro

constraints, which can be constructed by the so-called finite gap integration method [13–

15]. These solutions describe the local behaviors of the saddle point solution for the three-

point function in the vicinity of the vertex insertion point. The class of our interest is

characterized by the associated spectral curve having one square-root branch cut of finte

size and will be referred to as a one-cut solution. We will first consider the “basic” one-

cut solutions, which are customarily referred to as genus 0 solutions, and study their

properties in detail. Then, we describe another class of one-cut solutions which are obtained

from multi-cut solutions by certain degeneration procedure. We show that they contain

additional singularities on the worldsheet, which may play an important role when we

compare the three point functions at strong and weak couplings in section 7.

2.2.1 Basic one-cut solution and “reconstruction” formula

A powerful method for constructing a large class of classical solutions in the sigma model

formulation is the so-called finite gap integration method. (For a comprehensive review,

see [15].) The method consists of two steps. As the first step, the solutions to the left

and the right ALP, called the Baker-Akhiezer functions, are constructed by treating the

problems as Riemann-Hilbert problems on a finite genus Riemann surface. Namely, by

proving that the function satisfying all the required analytic properties is unique, one

constructs such a function in terms of the Riemann theta functions and the exponential

functions. Then, as the second step, one develops the “reconstruction” formula,10 which

constructs the solutions to the original equations of motion from the knowledge of the

Baker-Akhiezer functions. In this subsection, we will describe the simplest class of solutions

10Although it is usually referred to as the “reconstruction” formula, in practice it is used as a solution-

generating formula. This is because the Baker-Akhiezer functions are constructed not by solving ALP with

specific known connections but by more generic methods.
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corresponding to the case of genus zero Riemann surface, or a two-sheeted surface with one

square-root branch cut. Such solutions will be referred to as the basic one-cut solutions.

Consider first the right ALP given in (1.4) and let ψ±(x, z, z̄) be the Baker-Akhiezer

vector which are at the same time the eigenvectors of the monodromy matrix Ω(x) corre-

sponding to the eigenvalues e±ip(x) respectively. According to the general theory of finite

gap integration, ψ± corresponding to the one-cut solution are given by simple exponential

functions as

ψ+(x; τ, σ) =

(
c+

1 exp
(
iσ
2π

∫ x
∞+ dp+ τ

2π

∫ x
∞+ dq

)
c+

2 exp
(
iσ
2π

∫ x
∞− dp+ τ

2π

∫ x
∞− dq

)) , (2.51)

ψ−(x; τ, σ) = ψ+(σ̂x; τ, σ) . (2.52)

where c+
i are constants, σ̂x denotes the point x on the opposite sheet, and ∞+(∞−) is the

point at infinity on the first (resp. second) sheet. The quantity dp is the differential of the

quasi-momentum p(x), while dq is the differential of the quasi-energy q(x). Just like p(x),

the quasi-energy q(x) is defined by the pole behavior at x = ±1+ of the form

q(x) ∼ −2πκ

x− 1
+O((x− 1)0) , (x→ 1+) , (2.53)

q(x) ∼ +2πκ

x+ 1
+O((x+ 1)0) , (x→ −1+) . (2.54)

The structure and the signs of the residue at x = ±1 for q(x) are determined so that the

holomorphicity of the solution (2.51) at x ' ±1 is as dictated by the ALP. For example

at x = 1 the holomorphic part of the ALP is dominating and hence the Baker-Akhiezer

vector should be holomorphic. This is in fact realized since p(x) = q(x) near x = 1 and

hence the exponent of ψ± is a function of the combination z = τ + iσ. In the same way, at

x = −1 the exponent of ψ± becomes anti-holomorphic as desired.

Now for the left ALP, the Baker-Akhiezer eigenvectors, denoted by ψ̃±(x, z, z̄), are

given by

ψ̃+(x; τ, σ) =

(
c−1 exp

(
iσ
2π

∫ x
0+ dp+ τ

2π

∫ x
0+ dq

)
c−2 exp

(
iσ
2π

∫ x
0− dp+ τ

2π

∫ x
0− dq

)) , (2.55)

ψ̃−(x; τ, σ) = ψ̃+(σ̂x; τ, σ) , (2.56)

where the notations are similar and should be self-explanatory.

We will be interested in the case where the branch cut runs between u and its complex

conjugate ū on the spectral curve. Such a cut is described by a factor of the form

y(x) ≡
√

(x− u)(x− ū) . (2.57)

We define the branch of y(x) to be such that the sign of y(x) is +1 at x = 1+. Then p(x)
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and q(x) satisfying the prescribed analyticity properties are fixed to be

p(x) = −2πκy(x)

(
1

|1− u|
1

x− 1
+ ε

1

|1 + u|
1

x+ 1

)
, (2.58)

q(x) = −2πκy(x)

(
1

|1− u|
1

x− 1
− ε 1

|1 + u|
1

x+ 1

)
, (2.59)

ε =

{
+1 for |Reu| > 1

−1 for |Reu| < 1
. (2.60)

Here we fixed p(x) and q(x) such that they vanish at the branch points although the

analyticity properties only determine the differential dp and dq. This choice is suitable for

the purpose of this paper since the solutions to the ALP in the Pohlmeyer gauge. The

forms of p(x) and q(x) depend on whether the cut is placed to the right or to the left

of x = 1. Substituting these forms into the formulas for ψ± and ψ̃± we get the one-cut

solutions for the ALP.

Let us now describe the second step, the (re)construction of the solutions of the equa-

tions of motion from the Baker-Akhiezer vectors. Although this has been discussed in the

literature [13–15], we present below a more transparent formula. Let us form a 2×2 matrix

Ψ in terms of the two independent Baker-Akhiezer column vectors ψ± satisfying the right

ALP as Ψ = (ψ+ ψ−) and consider the quantity

Ψ̃ ≡ YΨ . (2.61)

Then, by using the definitions lz = ∂YY−1 and jz = Y−1∂Y, we can easily show that(
∂ +

xlz
1− x

)
Ψ̃ = Y

(
∂ +

jz
1− x

)
Ψ = 0 , (2.62)(

∂̄ − xlz̄
1 + x

)
Ψ̃ = Y

(
∂ +

jz̄
1 + x

)
Ψ = 0 . (2.63)

If we express Ψ̃ in terms of two column vectors ψ̃± as Ψ̃ = (ψ̃+ ψ̃−), the above equations

show that ψ̃± are actually two independent solutions to the left ALP. This means that

there exist solutions ψ± and ψ̃± to the right and the left ALP respectively so that Y can

be expressed as

Y = Ψ̃Ψ−1 . (2.64)

This general relation by itself, however, is not useful since even if we provide a solution

Ψ explicitly, finding Ψ̃ which satisfies (2.64) tantamounts to finding Y itself. Now the

formula (2.64) turns into a genuine reconstruction formula when we consider the special

values of the spectral parameter x. If we set x = 0, it is evident from the form of ALP

redisplayed above in (2.62) and (2.63) that the left ALP equations for Ψ̃ reduce to ∂Ψ̃ =

∂̄Ψ̃ = 0, and hence Ψ̃(x = 0) becomes a constant matrix. Therefore the solution Y is

reconstructed from the right ALP solution Ψ as Y(z, z̄) = Ψ̃(x = 0)Ψ−1(z, z̄;x = 0), where

the constant matrix Ψ̃(x = 0) represents the freedom of making a global transformation
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from left. Similarly, by setting x =∞, we can make the right ALP equations trivial, namely

∂Ψ = ∂̄Ψ = 0. Then Ψ(x = ∞) becomes a constant matrix and Y can be reconstructed

from the left ALP solution Ψ̃ as Y(z, z̄) = Ψ̃(z, z̄;x = ∞)Ψ−1(x = ∞). Summarizing, we

have two types of simple reconstruction formulas

Y(z, z̄) = Ψ̃(0)Ψ−1(z, z̄; 0) , (2.65)

Y(z, z̄) = Ψ̃(z, z̄;∞)Ψ−1(∞) . (2.66)

By using the reconstruction formula given above, one can write down the general basic

one-cut solution explicitly. It can be written in the form [12, 15]

Y =

(
cos θ02 e

ν1τ+im1σ sin θ0
2 e

ν2τ+im2σ

− sin θ0
2 e
−ν2τ−im2σ cos θ02 e

−ν1τ−im1σ

)
, (2.67)

where the parameters νi,mi and θ0 must satisfy the following conditions expressing the

equations of motion and the Virasoro conditions:

ν2
1 −m2

1 = ν2
2 −m2

2 , (2.68)

4κ2 = (ν2
1 +m2

1) cos2 θ0

2
+ (ν2

2 +m2
2) sin2 θ0

2
, (2.69)

0 = ν1m1 cos2 θ0

2
+ ν2m2 sin2 θ0

2
. (2.70)

Applying the reconstruction formula (2.65) with the constant matrix Ψ̃(0) taken to be the

identity matrix and using the form of ψ+ given in (2.51), we easily find that the parameters

mi and νi can be expressed in terms of p(x) and q(x) as

m1 =
1

2π

∫ ∞+

0+

dp , ν1 =
1

2π

∫ ∞+

0+

dq , (2.71)

m2 =
1

2π

∫ ∞−
0+

dp , ν2 =
1

2π

∫ ∞−
0+

dq . (2.72)

The right and the left Noether charges R and L can be computed directly from the solu-

tion (2.67) and are given in terms of the parameters νi, mi and θ0 in a universal manner as

R√
λ

=
1

2

(
−ν1 cos2 θ0

2
+ ν2 sin2 θ0

2

)
, (2.73)

L√
λ

=
1

2

(
−ν1 cos2 θ0

2
− ν2 sin2 θ0

2

)
. (2.74)

Explicit expressions of R and L in terms of the position of the cut are given in appendix A.1.

As a result, we find that the charges R and L are positive irrespective of the position of

the cut. This means that they should be regarded not as the charges themselves but as

their absolute magnitudes. On the other hand, the relative magnitude of R and L depends

on the position of the cut as

R < L for |Reu| > 1 , (2.75)

R > L for |Reu| < 1 . (2.76)
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In section 4.3.4, we will see that the difference in the relative magnitude corresponds to

the difference of the class of vertex operators for which the solution is the saddle point of

the two-point function.

2.2.2 One-cut solutions from multi-cut solutions

We now discuss a more general type of “one-cut” solutions, namely the ones with additional

cuts of infinitesimal size besides a cut of finite size. As we shall discuss in section 7.5.2, this

type of solutions may play an important role in the comparison of the three-point functions

at strong and weak couplings. Besides such specific reason, as these infinitesimal cuts do

not contribute to any of the (infinite number of) conserved charges, they should, on general

grounds, be considered on an equal footing with the corresponding solutions carrying the

same charges. As a matter of fact, it is much more natural to consider solutions with

infinite number of infinitesimal cuts, as they correspond to the infinite number of angle

variables which must exist for a string theory even when their conjugate action variables

have vanishing values.11 Now adding an infinitesimal cut to the genus g Riemann surface

is equivalent to shrinking a cut in the genus g+ 1 surface.12 As we shall see, depending on

the choice of the parameters we either get back an ordinary genus g finite gap solution or

we obtain a new solution with additional singularities.

In contrast to the one-cut solution corresponding to genus zero we have been consid-

ering, for a genus g finite gap solution with g ≥ 1 the components of the Baker-Akhiezer

vector are given by the following expressions containing ratios of Riemann theta functions

Θ(z) in addition to the exponential part:

ψ1 = h+(x)
Θ(A(x)+kσ−iωτ−ζγ−(0))Θ(A(∞+)−ζγ−(0))

Θ(A(x)−ζγ−(0))Θ(A(∞+)+kσ−iωτ−ζγ−(0))
exp

(
iσ

2π

∫ x

∞+

dp+
τ

2π

∫ x

∞+

dq

)
,

(2.77)

ψ2 = h−(x)
Θ(A(x)+kσ−iωτ−ζγ+(0))Θ(A(∞−)−ζγ+(0))

Θ(A(x)−ζγ+(0))Θ(A(∞−)+kσ−iωτ−ζγ+(0))
exp

(
iσ

2π

∫ x

∞−
dp+

τ

2π

∫ x

∞−
dq

)
.

(2.78)

As it is not our purpose here to review the details of the finite gap construction, below we

will only explain the minimum of the ingredients and refer the reader to a review article

such as [15]. Also, for simplicity and clarity, we will focus on the case of the degeneration

from g = 1 to g = 0. This suffices to explain the essence of the construction and the

generalization to the case of higher genus is straightforward.

For a g = 1 two-cut solution, the Riemann theta function Θ(z) reduces to the elliptic

theta function θ(z) defined by

θ(z) ≡
∑
m∈Z

exp
(
imz + πiΠm2

)
, (2.79)

11As already emphasized in [11], in order to construct a three-point solution in the framework of the

finite gap method, which is tailored for construction of two-point solutions, inclusion of infinite number of

small infinitesimal cuts is necessary as one has to produce an additional singularity corresponding to the

third vertex operator.
12A similar discussion of this process can be found in [20].

– 20 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

where Π is the period given by the integral of the holomorphic differential w over the b-cycle

of the torus

Π =

∮
b
w . (2.80)

As usual, w is normalized by the integral over the a-cycle as
∮
aw = 1. A(x) appearing in

the argument of the Θ-functions is the Abel map defined by

A(x) = 2π

∫ x

∞+

w . (2.81)

h±(x) are normalization constants and k and ω are the “momentum” and the “energy”

defined by the integrals

k ≡ 1

2π

∮
b
dp , ω ≡ 1

2π

∮
b
dq . (2.82)

A quantity of importance is the constant ζγ±(0) defined by

ζγ±(0) ≡ A(γ±(0)) +K , (2.83)

In this formula, K is the “vector of Riemann constants”, which for a torus is simply a

number proportional to the period Π as13

K = πΠ . (2.84)

Finally γ±(0) are certain points14 on the Riemann surface, which determine the initial

conditions for the solution.

Let us now study what happens when we pinch the a-cycle. In order to keep the nor-

malization condition
∮
aw = 1 intact, w must behave near the position of the infinitesimal

cut xc as

w ∼

{
1

2πi
1

x−xc for x on the first sheet

− 1
2πi

1
x−xc for x on the second sheet

. (2.85)

This means that the imaginary part of the period Π defined by the integral over the b-cycle

approaches positive infinity in the manner

Π =

∮
b
w ∼ 1

2πi

∫ xc+ε

xc−ε

dx

x− xc
∼ − i

π
ln ε→ +i∞ . (2.86)

Now writing the θ-function as

θ(z) =
∑
m∈Z

exp
(
imz + πi(Re Π)m2

)
· exp

(
−πIm Πm2

)
, (2.87)

13For its definition for a general genus g surface, see for example [21].
14Precisely speaking, γ±(0) are certain divisors γ±(t) depending on the infinite set of higher times t =

(t0, t1, t2, . . .) evaluated at t = 0. For a detailed definition, see [15].
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we see that the last factor vanishes as Im Π→∞, except for m = 0. Therefore in this limit

we get θ(z)→ 1 and one gets the usual genus 0 solution with only the exponential part.

Now if we identify z = kσ − iωτ in the formulas for ψi given in (2.77) and (2.78), the

arguments of the θ-functions containing z are actually of the form z − a, with a constant

shift a given by a = ζγ±(0) + · · · . What is important is that ζγ±(0) diverges as we pinch the

a-cycle. First, obviously ImK diverges as πIm Π. Second, if γ±(0) is at the position of the

shrunk cut xc, ImA(γ±(0)) diverges just like πIm Π:

A(γ±(0)) = 2π

∫ xc+ε

∞+

dw ∼ 2π
1

2πi
ln ε ∼ iπIm Π→ i∞ . (2.88)

Since A(γ±(0)) is finite otherwise, we must distinguish two cases: case (a) Im ζγ±(0) ∼
2πIm Π for γ±(0) = xc and case (b) Im ζγ±(0) ∼ πIm Π for γ±(0) 6= xc. Therefore let us

write a = lImπΠ + c, where l = 2 or l = 1 and c is a finite constant. Then the θ-function

with this shift can be written as

θ(z − a) =
∑
m∈Z

exp
(
im(z − πRe Π− c) + πi(Re Π)m2

)
· exp

(
−πIm Π(m2 − lm)

)
.

(2.89)

First consider the case (a). It is easy to see that terms with negative m all vanish in

the limit Im Π → ∞. On the other hand, the terms with m = 0 and m = 2 are finite

and those with m ≥ 3 vanish in the degeneration limit while the single term with m = 1

diverges. In other words,

θ(z − a)→ Ĉeiz , Ĉ →∞ . (2.90)

As the θ-functions occur in pairs in the numerator and the denominator in ψi, their ratio

goes to a z-independent finite constant in the degeneration limit and we get back the usual

g = 0 one-cut solution. In fact, by repeating this type of process, one can produce a finite

gap solution from an infinite gap solution, which must be the generic situation for theories

with infinite degrees of freedom, such as string theory.

Next consider the case (b). For l = 1, two terms in the series survive in the limit

Im Π → ∞, namely m = 0 and m = 1. Therefore we obtain a non-trivial function of the

form

θ(z − a)→ 1 + Ceiz = 1 + Ceikσ+ωτ , (2.91)

where C is a constant. In particular, this function can vanish at certain points, the number

of which depend on the magnitude of k. Such a θ-function in the denominator of the ex-

pressions for ψi gives rise to additional simple poles on the worldsheet. In distinction to the

singularity due to a vertex operator, these singularities do not carry any charges (including

infinitely many higher charges) because the solution is obtained without changing the form

of p(x).

Although we will not explicitly make use of the degenerate multi-cut solutions discussed

above in the bulk of our investigation, they will be recognized in section 7.5.2 as providing
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an example of a concrete mechanism by which extra singularities can be naturally produced.

Existence of such singularities can modify the contours of the integrals that express the

three-point coupling and may play an important role in the interpretation of our final

result.

2.3 Some properties of the eigenvectors of the monodromy matrix

As described in the preceding subsections, the solutions of the ALP play the central role

in the construction of the two-point solutions to the equations of motion. Now for the

construction of the three-point functions, to be discussed starting from the next section,

what will be of vital importance are the special linear combinations of the solutions of

ALP, namely the eigenvectors of the local monodromy matrix Ωi, defined around each

vertex insertion point zi. We will denote such eigenvectors and eigenvalues as i± and

e±ipi(x), which satisfy the relations

Ωii± = e±pi(x)i± . (2.92)

In what follows, we will describe some important properties of i± and related states.

Of crucial importance in the computation of three-point functions will be the SL(2,C)

invariant product for i± and j± given by

〈i±, j±〉 ≡ det (i±, j±) . (2.93)

In the rest of the paper, we shall refer to this skew-product as Wronskian. Since the

Wronskians are invariant under gauge transformations, we can use the results in various

gauges interchangeably. For example, from the relation (2.50) between the eigenvectors in

the sigma model formulation and the Pohlmeyer formulation, we have the equalities

〈i±, j±〉 = 〈̃i±, j̃±〉 = 〈̂i±, ĵ±〉 . (2.94)

For later convenience, let us fix the normalization of the eigenvectors i±. We will first

impose the usual condition

〈i+, i−〉 = 1 . (2.95)

This, however, does not fully fix the normalization of the individual eigenfunctions, as we

can rescale i± as i+ → ai+ and i− → a−1i−, without violating the condition (2.95). To

determine the normalization completely, we will make use of the asymptotic behavior of i±
around the puncture zi. For this purpose, it is convenient to employ the Pohlmeyer gauge,

as it is invariant under the global symmetry transformation. Now although the explicit

form of the solution for the three-point function is not known, it can be approximated by the

solution for the two-point function in the vicinity of the vertex operators. Therefore, we can

determine the normalization of î± by demanding that they coincide with the corresponding

two-point functions at the insertion point of the vertex operator:

î±(x; τ (i), σ(i)) −→ î2pt
± (x; τ = τ (i), σ = σ(i)) . (2.96)

– 23 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

In this formula, (τ (i), σ(i)) are the local cylinder coordinates around zi, defined by

τ (i) + iσ(i) = ln

(
z − zi
εi

)
. (2.97)

Here we have chosen the origin of τ (i) to be such that τ (i) = 0 on the small circle |z−zi| = εi,

which will serve to separate the contributions from the action and the wave function in

subsequent sections. Using the results of appendix A, the eigenvectors for the two-point

function î2pt
± can be computed as

î2pt
+ (x; τ, σ) =

 eπi/8√
2

(
x−ūi
x−ui

)1/4 ( ū2
i−1

u2
i−1

)1/8

eπi/8√
2

(
x−ui
x−ūi

)1/4 (u2
i−1

ū2
i−1

)1/8

 exp

(
qi(x)τ + ipi(x)σ

2π

)
, (2.98)

î2pt
− (x; τ, σ) =

 e−πi/8√
2

(
x−ūi
x−ui

)1/4 ( ū2
i−1

u2
i−1

)1/8

− e−πi/8√
2

(
x−ui
x−ūi

)1/4 (u2
i−1

ū2
i−1

)1/8

 exp

(
−(qi(x)τ + ipi(x)σ)

2π

)
, (2.99)

where ui and ūi are the positions of the branch points of the quasi-momentum pi(x) for

the i-th puncture. The conditions (2.96), (2.98) and (2.99) determine the normalization

of i± completely. The important property of the eigenvectors so normalized is that they

transform in the following way when they cross the branch cut:15

î+(x)
∣∣∣
on 2nd sheet

= î−(x)
∣∣∣
on 1st sheet

, î−(x)
∣∣∣
on 2nd sheet

= − î+(x)
∣∣∣
on 1st sheet

. (2.100)

This relation will be used in section 5.5 to determine the normalization of certain Wron-

skians.

3 Structures of the action for the S3 part

Let us now start our study of the three-point functions. In what follows, we will denote

their structure as

〈V1V2V3〉 = exp (FS3 + FEAdS3) , (3.1)

where

FS3 = Faction + Fvertex , (3.2)

FEAdS3 = F̂action + F̂vertex . (3.3)

In this section, we focus on the contribution of the action for the S3 part, namely Faction.

First, in subsection 3.1, we rewrite the action as a boundary contour integral using the

Stokes theorem and then apply the generalized Riemann bilinear identity derived in [9]

to bring it to a more convenient form. Next we turn in subsection 3.2 to the analysis of

15Note that the extra minus sign is necessary in the second equation of (2.100) in order to retain the

condition (2.95).
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the WKB expansion of the auxiliary linear problem. We then find that the same contour

integrals we used to rewrite the action appear also in the WKB expansion of the Wronskians

of the solutions to the ALP. Using this relation, we re-express the action in terms of

the Wronskians in subsection 3.3. The resultant expression will be used for the explicit

evaluation of the contribution of the action in section 6.

3.1 Contour integral representation of the action

For the three-point function of our interest, the (regularized) action for the S3 part of the

string is given by

SS3 =

√
λ

π

∫
Σ\{εi}

d2z∂YI ∂̄YI , (3.4)

where the symbol Σ\{εi} denotes the worldsheet for the three-point function, which is a

two-sphere with a small disk of radius εi cut out at each vertex operator insertion point zi.

Such a point will often be referred to as a puncture also. In [8] and [22], such worldsheet cut-

offs are related to the spacetime cut-off in AdS in order to obtain the spacetime dependence

of the correlation functions without introducing the vertex operators. In contrast, as we

shall separately take into account the contribution of the vertex operators, εi’s can be taken

to be arbitrary in our approach, as long as they are sufficiently small and the same for the

S3 part and the EAdS3 part.

As the action is invariant under the global symmetry transformations, it is natural to

express (3.4) in terms of the quantities used in the Pohlmeyer reduction. From (2.38), we

can indeed write

SS3 =

√
λ

π

∫
Σ\{εi}

d2z
√
T T̄ cos 2γ . (3.5)

We further rewrite (3.5) by introducing the following one-forms:

$ ≡
√
Tdz , (3.6)

η ≡ −
√
T̄ cos 2γdz̄ +

2√
T

(
−(∂γ)2 +

ρ2

T

)
dz . (3.7)

The second term on the right hand side of (3.7) is added to make η closed, as one can

verify using the relation (2.44). With these one-forms, we can re-express the action (3.5)

as a wedge product of the form

SS3 =
i
√
λ

2π

∫
Σ\{εi}

$ ∧ η , (3.8)

where an extra prefactor i/2 comes from the definition of the volume form, dz ∧ dz̄ =

−2i d2z. Then denoting the integral of $(z) as

Π(z) =

∫ z

z0

$(z′)dz′ , (3.9)

– 25 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

Figure 1. The coutour ∂Σ̃ which forms the boundary of the double cover of the worldsheet Σ̃,

dipicted as the union of the first and the second sheet. There are three logarithmic branch cuts

attached to the puncture in the middle, in addition to one square-root branch cut, shown as a wavy

segment, through which the two sheets are connected.

the action can be rewritten, using the Stokes theorem, as a contour integral along a bound-

ary ∂Σ̃ of a certain region Σ̃ (see figure 1):

SS3 =
i
√
λ

4π

∫
Σ̃
$ ∧ η =

i
√
λ

4π

∫
Σ̃
d (Πη) =

i
√
λ

4π

∫
∂Σ̃

Πη . (3.10)

To determine the proper region of integration Σ̃, we need to know the analytic structure

of Π(z), which in turn is dictated by that of T (z). As already explained in section 2, in the

case of three-point functions the information of the asymptotic behavior of T (z) at each

puncture zi is sufficiently restrictive to determine T (z) exactly to be of the form

T (z) =

(
κ2

1z12z13

z − z1
+
κ2

2z21z23

z − z2
+
κ2

3z31z32

z − z3

)
1

(z − z1)(z − z2)(z − z3)
, (3.11)

zij ≡ zi − zj .

From this, one can show that Π(z) has three logarithmic branch cuts running from the

punctures zi, and one square-root branch cut connecting two zeros of T (z), to be denoted

by t1 and t2. Therefore, we should take Σ̃ to be the double cover (y2 = T (z)) of the

worldsheet Σ with an appropriate boundary ∂Σ̃, so that Π(z) is single-valued on the whole

integration region. In what follows, we will consider the case where the branch cut is located

between z1 and z3 as depicted in figure 2. In such a case, the branch of the square-root of

T (z) can be chosen so that it behaves near the punctures on the first sheet as√
T (z) ∼ κi

z − zi
as z → zi (i = 1, 3) ,

∼ −κ2

z − z2
as z → z2 .

(3.12)

Although the discussion to follow is tailored for this particular case, the final result for the

three-point function, to be obtained in section 6, will turn out to be completely symmetric

under the permutation of the punctures.
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At this point, we shall apply the generalized Riemann bilinear identity, derived in [9],

to the integral (3.10). As the derivation is lengthy, we refer the reader to [9] for details and

just present the result.16 It can be written as∫
Σ̃
$ ∧ η = Local + Double + Global + Extra , (3.13)

where the definition of each term will be given successively below.17 The first term, Local,

denotes the contribution from the product of contour integrals, each of which is just around

the puncture and hence called “local”. It is of the form

Local =
∑
i

∮
Ci
$

∮
Ci
η +

∑
i<j

(∮
Ci
$

∮
Cj
η − ($ ↔ η)

)
, (3.14)

where Ci is a contour encircling the puncture zi counterclockwise. Here and hereafter,

the symbol ($ ↔ η) stands for the contribution obtained by exchanging $ and η in

the preceding term. The second term, Double, denotes the double integrals around the

punctures given by

Double = −2
∑
i

∮
Ci
η

∫ z

z∗i

$ . (3.15)

The third term, Global, denotes the contribution from the product of contour integrals, one

of which is along a contour connecting two different punctures. It is given by

Global =

(∮
C1+C2̄−C3

$

∫
`21

η +

∮
C2̄+C3−C1

$

∫
`23

η +

∮
C3+C1−C2̄

$

∫
`3̄1

η

)
− ($ ↔ η) . (3.16)

More precisely, `ij denotes the contour connecting z∗i and z∗j , where z∗i is the point near the

puncture zi satisfying z∗i − zi = εi. The barred indices indicate the points on the second

sheet of the double cover y2 = T (z). For instance, Cī is a contour encircling the point zī,

which is on the second sheet right below zi. Finally, the term Extra denotes additional

terms which come from the integrals around the zeros of
√
T , to be denoted by tk, at which

η becomes singular, and is given by

Extra =
∑
k

∮
Dk

Πη . (3.17)

Here Dk is the contour which encircles tk twice as depicted in figure 2.

Among these four terms, Local and Double are expressed solely in terms of the inte-

grals around the punctures and are easy to compute. The explicit results, computed in

16By decomposing the contours `ij ’s in (3.13) into d and `i’s defined in [9], we arrive at the formula

derived in [9].
17In [8] and [22], the ordinary Riemann bilinear identity was applied to derive an expression similar

to (3.13) but without the terms Local and Double . In their cases, Local and Double vanish and the use of

the ordinary Riemann bilinear identity is justified. On the other hand, these two terms do not vanish in

our case and we must use the generalized Riemann bilinear identity.
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Figure 2. Definitions of the contours used to rewrite the action: the contours which enclose the

punctures (Ci) are shown in the left figure and the ones which connect two punctures (`ij) are shown

in the right figure. In both figures, the portions of the contours on the second sheet are drawn as

dashed lines. Also depicted in the right figure are the starting points and the end points of the

contours, z∗i ’s.

appendix A.3 are18 ∮
Ci
$ = 2πiκi ,

∮
Ci
η = 2πiκiΛi , (3.18)∮

Ci
η

∫ z

z∗i

$ = −2πκ2
iΛi , for i = 1, 2̄, 3 . (3.19)

Here Λi’s are given in terms of γi and ρi, defined in (A.21) and (A.22) respectively, as

Λi = cos 2γi +
2ρ2

i

κ4
i

. (3.20)

It is important to note that Local and Double are real since κi and gi are all real.

Therefore they contribute exclusively to the imaginary part of the action (3.10) and hence

only yield an overall phase of the three-point functions. We shall neglect such quantities

in this paper.

Among the remaining two types of terms, Extra can be explicitly evaluated as fol-

lows. Since the worldsheet is assumed to be smooth except at the punctures, the quantity√
T T̄ cos 2γ, which is the integrand of the action integral given in (3.5), should not vanish

even at the zeros of T (z). This in turn implies that γ is logarithmically divergent at such

points in the manner

γ ∼ ± i
2

ln |z − tk| as z → tk . (3.21)

Then, by approximating T (z) as T (z) ∼ c(z− tk) around tk, we can write down the leading

singular behavior of η around tk as

η ∼ − 2√
T

(∂γ)2dz̄ ∼ dz̄

8
√
c(z − tk)5/2

. (3.22)

18The one-forms $ and η flip the sign under the exchange of two sheets. Therefore (3.18) is odd

whereas (3.19) is even under such sheet-exchange. In (3.19), κi for i = 2̄ is set to be equal to κ2.
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Thus the integral along Dk can be computed as∮
Dk

Πη =

∮
Dk

2
√
c(z − tk)3/2

3

dz̄

8
√
c(z − tk)5/2

= −πi
6
. (3.23)

Since there exist two zeros, Extra is twice this integral and hence is given by

Extra = −πi
3
. (3.24)

For later convenience, we shall derive another expression for the action using a different

set of one-forms given by

$̄ =
√
T̄ dz̄ , (3.25)

η̃ = −
√
T cos 2γdz +

2√
T

(
−(∂̄γ)2 +

ρ2

T̄

)
dz̄ , (3.26)

and then consider the average of the two expressions. Using the forms above, the action

can be written as

SS3 = − i
√
λ

4π

∫
Σ̃
$̄ ∧ η̃ . (3.27)

As compared to (3.10), the expression (3.27) has an extra minus sign, which is due to the

property dz∧dz̄ = −dz̄∧dz. Applying the generalized Riemann bilinear identity to (3.27),

we get

−
∫

Σ̃
$̄ ∧ η̃ = −

(
Local + Double + Global + Extra

)
, (3.28)

where Local, Double and Global are given respectively by (3.14), (3.15) and (3.16) with $

and η replaced by $̄ and η̃. The integrals of $̄ and η̃ around the punctures are given by19∮
Ci
$̄ = −2πiκi ,

∮
Ci
η̃ = −2πiκiΛ̄i , (3.29)∮

Ci
η̃

∫ z

z∗i

$̄ = −2πκ2
i Λ̄i , for i = 1, 2̂, 3 (3.30)

where Λ̄i’s are given in terms of γi and ρ̃i, defined in appendix A.2, as

Λ̄i = cos 2γi +
2ρ̃i

2

κ4
i

. (3.31)

Again Local and Double are real and they contribute only to the overall phase. On the other

hand, Extra can be evaluated just like Extra and yields +πi/3. Thus, by averaging over the

two expressions (3.13) and (3.28) and neglecting terms which contribute exclusively to the

overall phase, we arrive at the following more symmetric expression:

1

2

(∫
Σ̃
$ ∧ η −

∫
Σ̃
$̄ ∧ η̃

)
= −πi

3
+

1

2

(
Global− Global

)
. (3.32)

19(3.29) is odd and (3.30) is even under the exchange of the first and the second sheets, as in the case of

the integrals of $ and η given in (3.18) and (3.19).
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The quantity (3.32) consists of various integrals along the contours Ci and `ij . Among

them, the ones along Ci can be easily computed using (3.18) and (3.29). The integral of

$ along `ij can also be computed in principle as we know the explicit form of $. Thus

the major nontrivial task is the evaluation of
∫
`ij
η and

∫
`ij
η̃. In the rest of this section,

we will see how these integrals are related to the Wronskians of the form 〈i± , j±〉, where

i± are the Baker-Akhiezer eigenvectors at zi of the ALP, corresponding to the eigenvalues

e±ipi(x).

3.2 WKB expansions of the auxiliary linear problem

We now perform the WKB expansion of the auxiliary linear problem and observe that the

contour integrals of our interest,
∫
`ij
η and

∫
`ij
η̃, appear in the expansion of the Wronskians

between the eigenvectors of the monodromy matrices.

Let us first consider the WKB expansion of the solutions to the ALP. For this purpose,

it is convenient to use the ALP of the Pohlmeyer reduction (2.49). The use of (2.49)

has two main virtues. First, as Φ’s are given explicitly in terms of T (z) and T̄ (z̄), it

is easier to perform the expansion around ζ = 0 or around ζ = ∞. Second, since the

connection (2.47) is expressed solely in terms of the quantities invariant under the global

symmetry transformation, we can directly explore the dynamical aspect of the problem

setting aside all the kinematical information.

We shall first perform the expansion around ζ = 0. To facilitate this task, it is

convenient to perform a further gauge transformation and convert (2.49) to the “diagonal

gauge”, where the ALP take the form(
∂ +

1

ζ
Φd
z +Adz

)
ψ̂d = 0 ,

(
∂̄ + ζΦd

z̄ +Adz̄

)
ψ̂d = 0 . (3.33)

In the above, ψ̂d in the diagonal gauge is defined by

ψ̂d ≡ 1√
2

(
eiγ/2 −e−iγ/2

eiγ/2 e−iγ/2

)
ψ̂ , (3.34)

and Φd’s and Ad’s are given by

Φd
z =

√
T

2

(
1 0

0 −1

)
, Φd

z̄ =

√
T̄

2

(
− cos 2γ i sin 2γ

−i sin 2γ cos 2γ

)
,

Adz =

(
− ρ√

T
cot 2γ iρ√

T
− i∂γ

− iρ√
T
− i∂γ ρ√

T
cot 2γ

)
, Adz̄ =

−ρ̃√
T̄ sin 2γ

(
1 0

0 −1

)
.

(3.35)

Note that the leading terms in the ALP equations as ζ → 0, namely Φd
z for the first

equation and Adz̄ for the second, have been diagonalized. Because of this feature, the

leading exponential behavior of the two linearly independent solutions around ζ ∼ 0 can

be readily determined as

ψ̂d1 ∼

(
0

1

)
exp

[
1

2ζ

∫ z

z0

$

]
, ψ̂d2 ∼

(
1

0

)
exp

[
−1

2ζ

∫ z

z0

$

]
, (3.36)
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By performing the WKB expansion around ζ ∼ 0 systematically, one can also determine

the subleading terms of (3.36) in ζ, as shown in appendix D.1.

The quantities of prime interest in the subsequent discussions are the Wronskians

of the eigenvectors of the monodromy matrices. To perform the WKB expansion of such

Wronskians, we need to have a good control over the asymptotics of the Wronskians 〈i± , j±〉
around ζ = 0. For this purpose, both of the eigenvectors in the Wronskian need to be

small solutions since big solutions can contain a multiple of small solutions and hence

are ambiguous [23–26]. When ζ is sufficiently close to zero, one can show that the plus

solutions i+ are the small solutions if Re ζ is positive whereas it is the minus solutions i−
which are small if Re ζ is negative. Thus, the Wronskians that can be expanded consistently

around ζ = 0 are 〈i+ , j+〉’s for Re ζ > 0 and 〈i− , j−〉’s for Re ζ < 0. The detailed form

of the expansion can be determined by employing the Born series expansion explained in

appendix D.2 and the results are given in the following simple form:

For Re ζ > 0 ,

〈2+ , 1+〉 = exp (−S2→1) , 〈2+ , 3+〉 = exp (−S2→3) , 〈3+ , 1+〉 = exp
(
−S3̂→1

)
,

(3.37)

For Re ζ < 0 ,

〈2− , 1−〉 = exp (S2→1) , 〈2− , 3−〉 = exp (S2→3) , 〈1− , 3−〉 = exp
(
S3̂→1

)
. (3.38)

In these expressions, Si→j stands for the quantity

Si→j =
1

2ζ

∫
`ij

$ +

∫
`ij

α+
ζ

2

∫
`ij

η + · · · , (3.39)

where the one-form α is given in (D.41) in appendix D.2. A remarkable feature of (3.39)

is that the integral of our interest
∫
`ij
η makes its appearance in the exponent Si→j .

Now to make use of the averaging procedure described in the previous subsection, we

need the other type of integrals
∫
`ij
η̃ which appear in Global. To obtain them, we need

to expand the Wronskians this time around ζ = ∞. Since the discussion is similar to the

expansion around ζ = 0, we will not elaborate on the details and simply give the results:

For Re ζ > 0 ,

〈2+ , 1+〉 = exp
(
−S̃2→1

)
, 〈2+ , 3+〉 = exp

(
−S̃2→3

)
, 〈3+ , 1+〉 = exp

(
−S̃3̂→1

)
,

(3.40)

For Re ζ < 0 ,

〈2− , 1−〉 = exp
(
S̃2→1

)
, 〈2− , 3−〉 = exp

(
S̃2→3

)
, 〈1− , 3−〉 = exp

(
S̃3̂→1

)
, (3.41)

Here S̃i→j is defined by

S̃i→j =
ζ

2

∫
`ij

$̄ +

∫
`ij

α̃+
1

2ζ

∫
`ij

η̃ + · · · , (3.42)

where α̃ is a one-form given in (D.42) in appendix D.2. Making use of these two types of

expansions, we will be able to rewrite the action in terms of the Wronskians, as described

in the next subsection.
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3.3 The action in terms of the Wronskians

We are now ready to derive an explicit expression of the action in terms of the Wronskians.

As shown in the previous subsection, the integrals we used to rewrite the action, namely∮
`ij
η and

∮
`ij
η̃, can be extracted from the Wronskians. For instance, consider the integral∮

`21
η, which appears in 〈2−, 1−〉. Differentiating ln〈2−, 1−〉 with respect to ζ using (3.38)

and (3.39), we get

∂ζ ln〈2−, 1−〉 = − 1

ζ2

∫
`21

$ +
1

2

∫
`21

η +O(ζ) . (3.43)

Therefore we can get the integral
∮
`21
η by subtracting the first divergent term and then

taking the limit ζ → 0. Similarly
∮
`21
η̃ can be obtained from 〈2−, 1−〉 in the ζ →∞ limit.

Such procedures can be compactly implemented if we use the variable x instead of ζ, which

are related as in (2.46). Then, we can write∮
`21

η = −4:∂x ln〈2− , 1−〉:+ ,
∮
`21

η̃ = −4:∂x ln〈2− , 1−〉:− , (3.44)

where the “normal ordering” symbol :A(x):± is defined by

:A(x):± ≡ lim
x→±1

[A(x)− (double pole at x = ±1)] . (3.45)

This precisely subtracts the divergent term mentioned above. Substituting such expressions

to the definitions of Global and Global, we can express them in terms of the Wronskians.

Then, using (3.32), we arrive at the following expression for the contribution from the S3

part of the action Faction:

Faction = −SS3 =

√
λ

6
+A$ +Aη . (3.46)

The first term in (3.46) expresses the contributions of Extra and Extra. The second term

A$ denotes the contribution of
∫
`ij
$ and

∫
`ij
$̄ in Global and Global and is given by

A$ =
√
λ

4

(
(κ1Λ1 + κ2Λ2 − κ3Λ3)

∫
`21

$ + (κ1Λ1 − κ2Λ2 + κ3Λ3)

∫
`3̂1

$

+ (−κ1Λ1 + κ2Λ2 + κ3Λ3)

∫
`23

$

)
+
(
Λi → Λ̄i , $ → $̄

)
, (3.47)

where Λi and Λ̄i are as given in (3.20) and (3.31) and
(
Λi → Λ̄i , $ → $̄

)
in the last

line denotes the terms obtained by replacing Λi and $ in the second line with Λ̄i and $̄

respectively. The third term Aη is the contribution of
∫
`ij
η and

∫
`ij
η̃, which is expressed

in terms of the Wronskians in the following way:

Aη =
√
λ
[
(κ1 + κ2 − κ3) (:∂xln〈2− , 1−〉:+ − :∂xln〈2+ , 1+〉:−)

+ (κ1 − κ2 + κ3) (:∂xln〈3− , 1−〉:+ − :∂xln〈3+ , 1+〉:−)

+ (−κ1 + κ2 + κ3) (:∂xln〈2− , 3−〉:+ − :∂xln〈2− , 3−〉:−)
]
. (3.48)

The general formula (3.46) will later be used in section 6 to compute the three-point

functions.
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4 Structure of the contribution from the vertex operators

Having found the structure of the contribution of the action part, we shall now study that

of the vertex operators.

4.1 Basic idea and framework

Before plunging into the details of the analysis, let us describe in this subsection the basic

idea and the framework, which includes a brief review of the methods developed in our

previous work [11].

As explained in detail in [9], the precise form of the conformally invariant vertex

operator corresponding to a string solution in a curved spacetime, such as AdS3 discussed

there or EAdS3 ×S3 of our interest in this paper, is in general not known. In particular,

for a non-BPS solution with non-trivial σ dependence the corresponding vertex operator

would contain infinite number of derivatives and is hard to construct. To overcome this

difficulty, we have developed in [11] a powerful method of computing the contribution of

the vertex operators by using the state-operator correspondence and the construction of

the corresponding wave function in terms of the action-angle variables. Although it was

applied in [11] to the case of the GKP string in AdS3, the basic idea of the method is

applicable to more general situations, including the present one, albeit with appropriate

modifications and refinements.

Let us briefly review the essential ingredients of the method. (For details, see sec-

tion 3 of [11].) The state-operator correspondence, in the semi-classical approximation, is

expressed by the following equation:

V[q∗(z = 0)]e−Sq∗ (τ<0) = Ψ[q∗]
∣∣
τ=0

. (4.1)

Here q∗ signifies the saddle point configuration, V[q∗(z = 0)] is the value of the vertex

operator inserted at the origin of the worldsheet z = eτ+iσ = 0, corresponding to the

cylinder time τ = −∞, the factor exp[−Sq∗(τ < 0)] is the amplitude to develop into the

state on a unit circle and the Ψ[q∗]
∣∣
τ=0

is the semi-classical wave function describing the

state on that circle. In particular, if we can construct the action-angle variables (Si, φi) of

the system and use {φi} as q, then the wave function evaluated at the cylinder time τ can

be expressed simply as

Ψ[φ] = exp

(
i
∑
i

Siφi − E({Si})τ

)
, (4.2)

where the action variables Si and the worldsheet energy E({Si}) are constant.

In the case of the classical string in R × S3, the method for the construction of the

action-angle variables was developed in [13–15], employing the so-called Sklyanin’s sepa-

ration of variables [16]. This method was adapted to the case of the GKP string in AdS3

in [11] and, as we shall see, can be applied to the present case of the string in EAdS3

×S3 with appropriate modifications. In this method, the essential dynamical information
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is contained in the two-component Baker-Akhiezer vectors ψ±, which satisfy the ALP for

the right sector and are the eigenvectors of the monodromy matrix Ω

Ω(x; τ, σ)ψ±(x; τ, σ) = e±ip(x)ψ±(x; τ, σ) . (4.3)

More precisely, the dynamical information is encoded in the normalized Baker-Akhiezer

vector h(x; τ), defined to be proportional to ψ(x; τ, σ = 0) (conventionally taken to be ψ+)

and satisfying the normalization condition

n · h = n1h1 + n2h2 = 1 , h =
1

n · ψ
ψ , (4.4)

where n is called the normalization vector. For a finite gap solution associated to a genus

g algebraic curve, h(x; τ) as a function of x is known to have g + 1 poles at the positions

x = {γ1, γ2, . . . , γg+1} and the dynamical variables z(γi) and p(γi), where z is the Zhukovsky

variable defined in (2.36), can be shown to form canonical conjugate pairs. Then by making

a suitable canonical transformation, one can go to the action-angle pairs (Si, φi), where, in

particular, the angle variable is given by the generalized Abel map

φi = 2π
∑
j

∫ γj

x0

ωi . (4.5)

Here, ωi are suitably normalized holomorphic differentials (with certain singularities de-

pending on the specific problem) and x0 is an arbitrary base point. Now since one can

reconstruct the classical string solution from the Baker-Akhiezer vector ψ (and ψ̃, which

is the solution of the left ALP) as shown in (2.65) and (2.66), with a choice of the nor-

malization vector n one can associate a set of angle variables φi to a classical solution.

In fact, the angle variables can be thought to be determined by the quantity n · ψ, since

the poles of the normalized vector h occur at the zeros of n · ψ, as is clear from (4.4).

As we are actually dealing with a quantum system using semi-classical approximation, a

classical solution should be thought of as being produced by a quantum vertex operator

carrying a large charge. Further, since in our framework the vertex operator is replaced by

the corresponding wave function, the angle variables defined through a classical solution

should be used to describe the wave function of the corresponding semiclassical state.

Now the serious problem is that we do not know the exact saddle point solution for the

three-point function. The only information we know is that in the vicinity of each vertex

insertion point zi, the exact three-point solution, to be represented by a 2 × 2 matrix Y
given by

Y =

(
Z1 Z2

−Z̄2 Z̄1

)
, Z1 = Y1 + iY2 , Z2 = Y3 + iY4 , (4.6)

which must be almost identical to the two-point solution produced by the same vertex

operator. Let us denote such a solution by Yref and call it a reference solution. As we

have to normalize the three-point function precisely by such a two-point function for each

leg, what is important is the difference between Y and Yref . Note that even if they are
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produced by the same vertex operator, they are different because Y is influenced by the

presence of other vertex operators in the three-point function.

Here and in what follows, the global isometry group G = SU(2)L × SU(2)R and its

complexification Gc = SL(2,C)L × SL(2,C)R play the central roles. Being the symmetry

groups of the equations of motion (and the Virasoro conditions), two solutions of the

equations of motion are connected by the action of G and/or Gc. The difference between

their actions are that (when expressed in terms of the Minkowski worldsheet variables)

while G connects a real solution to a real solution, Gc transforms a real solution to a

complex solution. Since the three-point interaction is inherently a tunneling process, the

saddle point solution for such a process must be complex. Therefore near zi the two

solutions Y and Yref must be connected by an element of Gc in the manner

Y = Ṽ YrefV , Ṽ ∈ SL(2,C)L, V ∈ SL(2,C)R (4.7)

This means that the angle variables associated to Y, as defined relative to the ones asso-

ciated to Yref , should be computable from the knowledge of the transformation matrices

Ṽ and V . This connection was made completely explicit in [11] and the master formulas

giving such shifts of the angle variables were obtained. Corresponding to the solutions

ψ(x) and ψ̃(x) of the the right and the left ALP respectively, there are right angle variable

φR and the left angle variable φL. Their shifts are given by20

∆φR = −i ln

(
(n · ψ+(∞))(n · ψref

− (∞))

(n · ψref
+ (∞))(n · ψ−(∞))

)
, (4.8)

∆φL = −i ln

(
(ñ · ψ̃+(0))(ñ · ψ̃ref

− (0))

(ñ · ψ̃ref
+ (0))(ñ · ψ̃−(0))

)
(4.9)

where n and ñ are the normalization vectors for the right and the left sector and ψ±(x)

and ψref
± (x) are the Baker-Akhiezer eigenvectors corresponding to the solutions Y and Yref

respectively and are related by

ψ± = V −1ψref
± , ψ̃± = Ṽ ψ̃ref

± . (4.10)

How V and Ṽ can be obtained will be described in detail in subsection 4.3.

The remaining problem is to fix the normalization vectors n and ñ, relevant for the

left and the right sectors. In the case of the string which is entirely in AdS3 [11], we fixed

them by the following argument. Consider for simplicity the wave function corresponding

to a conformal primary operator of the gauge theory sitting at the origin of the boundary

of AdS5. Such an operator is characterized by the invariance under the special confor-

mal transformation. Therefore the corresponding wave function and the angle variables

comprising it should also be invariant. Explicitly it requires that n · ψ and ñ · ψ̃ must be

preserved under the special conformal transformation and this determined n and ñ.

20These equations are obtained from the fundamental formula (3.74) of [11] by substituting the definition

of the function f(x) given in (3.62) of the same reference and noting the expression of the function h(x)

shown in (4.4) of this paper.

– 35 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

R L
Z +1/2 +1/2

Z̄ −1/2 −1/2

X −1/2 +1/2

X̄ +1/2 −1/2

Table 1. The SU(2)R and SU(2)L charges

for the basic scalar fields.

vacuum excitation

O1 Z X

O2 Z̄ X̄

O3 Z X̄

Table 2. Roles of the scalar fields for the

operators Oi.

The essence of the argument we shall employ for the case of a string in EAdS3 ×S3

studied in the present work is the same. However because the structures of the gauge

theory operators and the corresponding string solutions are more complicated, we need

to generalize and refine the argument. As a result of this improvement, not only has the

determination of the normalization vectors become more systematic but also their physical

meaning has been identified more clearly. Moreover, the entire procedure of the construc-

tions of the wave functions for the S3 part and the EAdS3 part has become completely

parallel and transparent. Below we shall begin the analysis first from the gauge theory

side.

4.2 Characterization of the gauge theory operators by symmetry properties

As sketched above, in order to construct the wave functions expressing the effect of the

insertion of the vertex operators, we must study how to characterize the global symmetry

properties of the vertex operators and the classical configurations that they produce in

their vicinity.

For this purpose, it is convenient to first look at the symmetry properties of the cor-

responding gauge theory operators. The three composite operators O1(x1),O2(x2),O3(x3)

making up the three-point functions in the so-called “SU(2) sector” are composed of the

complex scalar fields Z ≡ Φ1 + iΦ2, X ≡ Φ3 + iΦ4 and their complex conjugates Z̄ and X̄,

where ΦI (I = 1, 2, 3, 4) are four of the six real hermitian fields in the adjoint representation

of the gauge group. Under the global symmetry group SO(4) = SU(2)R × SU(2)L, these

fields transform in the doublet representations of SU(2)R and SU(2)L with the right and

the left charges R and L given in table 1. These transformation properties are succinctly

represented by the 2× 2 matrix

Φ =

(
Z X

−X̄ Z̄

)
, (4.11)

which gets transformed as ULΦUR, where UL ∈ SU(2)L, UR ∈ SU(2)R. In spite of this

SO(4) symmetry, in the existing literature [27] the operators Oi are taken to be com-

posed of a special pair of fields21 indicated in table 2. For example, O1 is of the form

21The reason for this choice is that it is the simplest one that can produce non-extremal three-point

functions.
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tr (ZZ · · ·XZZX · · ·Z). In the spin-chain interpretation, Z and X represent the up and

the down spin respectively so that O1 is a state built upon the all-spin-up vacuum state

trZ l on l sites by flipping some of the up-spins into the down-spins which represent ex-

citations. Therefore at each site there is an SU(2) group acting on a spin, and according

to table 1 it is identified with SU(2)R for this case. For the entire operator O1, what is

relevant is the total SU(2)R, the generator of which will be denoted by SiR.

Let us now characterize the spin-chain states corresponding to the operators of the

type O1 from the point of view of this total SU(2)R. First, since the constituents Z and

X carry definite spin quantum numbers, every state of type O1 carries a definite right and

left global charges. Second, every such state is actually a highest weight state annihilated

by the operator S+
R = S1

R + iS2
R. For the vacuum state |Z l〉 = |↑l〉 it is obvious. As for the

excited states, they can be written as the Bethe states
∏
i=1B(ui)|↑l〉, where B(ui) is the

familiar magnon creation operator carrying the spectral parameter ui. It is well-known [28]

that such a state is a highest weight state of the total SU(2)R and hence annihilated by the

same S+
R , provided that the Bethe state is “on-shell”, namely that the spectral parameters

satisfy the Bethe ansatz equations. Therefore we have found that kinematically all the

operators of type O1 can be characterized as the highest weight state of the total SU(2)R.

Now in order to deal with other operators built upon a “vacuum state” different from

trZ l, let us introduce the general linear combinations of ΦI as ~P · ~Φ =
∑4

I=1 PIΦI . To

discuss the transformation property under SU(2)R × SU(2)L, it is more convenient to deal

with the matrix

P ≡

(
P1 + iP2 P3 + iP4

−(P3 − iP4) P1 − iP2

)
= PIΣI , (4.12)

ΣI ≡ (1, iσ3, iσ2, iσ1) . (4.13)

Then, we have the representation

~P · ~Φ =
1

2
tr
(
σ2Ptσ2Φ

)
. (4.14)

In this notation, P corresponding to Z, Z̄,X, X̄ take the form PZ = 1−σ3,PZ̄ = 1+σ3,PX =

−(σ1 − iσ2),PX̄ = σ1 + iσ2.

As we argued above, all the on-shell states built upon a common vacuum are anni-

hilated by the same S+
R . In other words as long as the global transformation property

is concerned, the vacuum state can be considered as the representative of all the states

built upon it. Further, since the local spin state is identical at each site for the vacuum

state we can characterize the vacuum by the form of the “annihilation operator” s+
R acting

on a single spin state. As it will be slightly more convenient, instead of the annihilation

operator, we will use the “raising operator” K = exp(αs+
R), where α is any constant. The

vacuum is then characterized by the form of K that leaves its building block invariant.

Let us explain this idea concretely for the operator Z, which is the building block

for the simplest vacuum state trZ l. In the general notation (4.14), we can express Z as

Z = 1
2tr (σ2PtZσ2Φ) with PZ = 1 − σ3. Now let us look for the raising operators KZ and
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K̃Z for SU(2)R and SU(2)L respectively, which leave Z invariant. Since Φ transforms into

K̃ZΦKZ , the invariance condition reads

1

2
tr
(
σ2PtZσ2K̃ZΦKZ

)
=

1

2
tr
(
σ2PtZσ2Φ

)
. (4.15)

This is equivalent to the condition

PZ = K̃−1
Z PZK−1

Z . (4.16)

It is easy to find the solutions,22 which read

KZ =

(
1 β

0 1

)
= e

1
2
βσ+ , K̃Z =

(
1 0

β̃ 1

)
= e

1
2
β̃σ− , (4.17)

where β and β̃ are arbitrary constants.

Next we consider a general case where the vacuum state is given by tr (~P · ~Φ)l, with

arbitrary ~P . Since, in general, ~P · ~Φ does not carry a definite set of left and right charges

defined as in table 1, this state and the ones built upon it by some spin-chain type exci-

tations are not charge eigenstates. Nevertheless, we can characterize this family of states

again by the raising operators K and K̃ which leave ~P · ~Φ invariant. Just as in (4.16), this

condition is expressed as

P = K̃−1PK−1 . (4.18)

where P corresponds to ~P . Since ~P · ~Φ can be obtained from Z by an SU(2)L × SU(2)R
transformation, P can be obtained from PZ by a corresponding transformation of the form

P = ULPZUR . (4.19)

Then combined with (4.18) we readily obtain the relation PZ =

(U−1
L K̃−1UL)PZ(URK

−1U−1
R ). Comparing this with (4.16) we can express the rais-

ing operators K and K̃ in terms of the ones for the operator Z given in (4.17) in the

form

K = U−1
R KZUR , K̃ = ULK̃ZU

−1
L . (4.20)

Now these raising operators can in turn be characterized by the two-component vectors

n and ñ, which are left invariant under the following action of K and K̃ respectively:23

Ktn = n , K̃tñ = ñ . (4.21)

Since the overall factor for these vectors are inessential, we can normalize them to have

unit length as n†n = ñ†ñ = 1. We shall refer to them as polarization spinors, as they

22The most general solutions are of the form

(
α β

0 α−1

)
and

(
α−1 0

β̃ α

)
. However since we are interested

in the raising type operators, it is sufficient to consider the operators of the form (4.17).
23Intentionally we are using the same letters n and ñ for the vectors introduced here as those used

previously for the normalization vectors. This is because they will be shown to be identical.
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characterize, so to speak, the “direction of polarization” of the highest weight operator
~P · ~Φ. It should be noted that from the knowledge of n and ñ, one can reconstruct P which

is invariant under the raising operators, as in (4.18). In fact, if we set

P = −2iσ2ñn
t , (4.22)

one can easily check that this P satisfies (4.18), with the use of the defining equations (4.21)

and a simple formula σ2U
−1σ2 = U t valid for any invertible 2 × 2 matrix U satisfying

detU = 1.

Let us illustrate these concepts by computing the polarization spinors for the operators

Z and Z̄ respectively. For the operator Z we already computed the right and the left raising

operators in (4.17). Then it is easy to see that the corresponding polarization spinors nZ
and ñZ satisfying Kt

ZnZ = nZ and K̃t
Z ñZ = ñZ are given by

nZ =

(
0

1

)
, ñZ =

(
1

0

)
. (4.23)

As a check, from the formula (4.22), we immediately get PZ =

(
0 0

0 2

)
, which is the desired

form. As for the operator Z̄, repeating the similar analysis, the raising operators leaving

PZ̄ = 1 + σ3 invariant can be readily obtained to be

KZ̄ =

(
1 0

α 1

)
, K̃Z̄ =

(
1 α̃

0 1

)
, (4.24)

with α and α̃ being arbitrary constants. The corresponding polarization spinors can be

taken to be

nZ̄ =

(
1

0

)
, ñZ̄ =

(
0

1

)
. (4.25)

Finally consider the normalization spinors for a general operator ~P · ~Φ which is related to

Z = ~PZ · ~Φ through the relation of the form (4.19). Since the raising operators for such

an operator are obtained from those for Z in the manner (4.20), the polarization vectors

n and ñ are expressed in terms of nZ and ñZ as

n = U tRnZ , ñ = (U tL)−1ñZ . (4.26)

As an application of this formula, let us re-derive nZ̄ and ñZ̄ from this perspective. Since

PZ̄ = 1 +σ3 and PZ = 1−σ3, it is easy to see that they are related by an SU(2)L×SU(2)R
transformation of the form

PZ̄ = ULPZUR , UL = iσ2 , UR = −iσ2 . (4.27)

In fact this transformation realizes the mapping (Z,X)→ (Z̄,−X̄). Substituting the forms

of UL and UR into the above formula (4.26), we obtain U tRnZ = (1, 0)t and (U tL)−1ñZ =

−(0, 1)t ∝ (0, 1)t, which agree with (4.25).
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Summarizing, we can say that, as far as the global symmetry properties are concerned,

the operators of type O1 and O3 are characterized by the polarization spinors nZ and ñZ ,

while the operators of type O2 are associated with nZ̄ and ñZ̄ . For more general operators

built upon the vacuum tr (~P · ~Φ)l, the corresponding polarization spinors are obtained from

nZ and ñZ by appropriate transformations which connect P with PZ as shown in (4.26).

The importance of the above analysis is that, as we shall describe below, precisely

the same characterization scheme must be valid for the vertex operators in string theory

which correspond to the gauge theory composite operators like Oi. Moreover, it will be

shown that the polarization spinors introduced purely from the group theoretic point of

view above will be identified with the “normalization vectors” that appeared in (4.4), which

play pivotal roles in the construction of the angle variables and hence the construction of

the wave functions describing the contribution of the vertex operators.

4.3 Wave functions for the S3 part

4.3.1 Symmetry structure of the vertex operators and the classical solutions

We now begin the explicit construction of the wave functions contributing to the three-

point functions in string theory. As emphasized in the introduction, an essential ingredient

for the success of the computation of the three-point functions is the separation of the

kinematical and the dynamical factors. Although the dynamics is quite different between

the gauge theory and the corresponding string theory, the kinematical symmetry properties

correspond quite directly between the gauge theory operators and the vertex operators

of string theory. Therefore in this subsection we will describe how we can implement

the scheme of the symmetry characterization of the operators developed in the preceding

subsection for the gauge theory operators to the vertex operators and the classical solutions

produced by them. Since the analysis concerning the each factor of the symmetry group

SU(2)R × SU(2)L is completely similar and can be performed independently, after some

general discussions we will almost exclusively focus on the SU(2)R part of the symmetry

transformations and various corresponding quantities for clarity of presentations.

In the saddle point approximation scheme we are employing, we cannot directly deal

with the vertex operator: what we can deal with are the classical solutions produced by

the vertex operators carrying large charges. Therefore we need to extract the information

of the quantum vertex operators indirectly through such classical solutions.

For definiteness, we first focus on a solution with diagonal SU(2)R × SU(2)L charges

describing a two-point function of an operator built on the tr (Z l)-vacuum (O1 and O3

in section 4.2) and its conjugate.24 In what follows, we shall denote such a solution by

Ydiag. Then we can associate a pair of polarization spinors nZ and ñZ and the raising

operators (4.17) to the vertex operator that produces the solution. For convenience, we

24What is meant by “conjugation” is the usual complex conjugation of the fields, Z → Z̄ and X → X̄.
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display them again with appropriate renaming:

ndiag =

(
0

1

)
, ñdiag =

(
1

0

)
, (4.28)

Kdiag(β) =

(
1 β

0 1

)
, K̃diag(β̃) =

(
1 0

β̃ 1

)
. (4.29)

All the solutions describing a two-point function of mutually conjugate operators, 〈OO〉,
can be obtained from this basic solution Ydiag by an SU(2)R × SU(2)L transformation.

Since a normalized three-point function in the gauge theory can be obtained by dividing

an unnormalized one by 〈OO〉-type two-point functions as

〈OiOjOk〉√
〈OiOi〉〈OjOj〉〈OkOk〉

, (4.30)

the aforementioned solutions, to be denoted by Yref , can be used as reference solutions to

determine the normalization of the wave function. An important feature of such solutions is

that they are real-valued when expressed in terms of the Minkowski worldsheet variables.

This qualification will be extremely important since the equation of motion is actually

invariant under a larger group SL(2,C)R×SL(2,C)L and its action can produce “complex”

solutions which signify tunneling. Such a tunneling process is necessary for the three-point

interactions to take place, as we shall see.

From now on till the end of this subsection, we shall suppress all the left transformations

and display only the right transformations. The results for the left transformations will be

summarized in subsection 4.3.3.

Now consider a three-point function produced by vertex operators, corresponding to

the gauge theory operators, inserted at zi on the worldsheet. We will take the operators to

be those obtained by SO(4) rotations of the operators built on the tr (Z l)-vacuum. This

suffices for the present purpose since such three-point functions include25 the ones discussed

in section 4.2.

Although the saddle point solution for such a three-point function is so far not available

explicitly, let us denote the solution in the vicinity of zi by Y. Asymptotically as z → zi
such a configuration must be well-approximated by a two-point reference solution Yref ,

which is produced by the same vertex operator. Even if they are produced by the same

vertex operator, Y and Yref are different since Y is influenced non-trivially and dynamically

by the other two vertex operators present. We write the transformation between them at

z ' zi as26

Y(z ' zi) = YrefV (z → zi) , V ∈ SL(2,C)R . (4.31)

25Note that O1 and O3 in section 4.2 are built on the tr (Zl)-vacuum while O2 can be obtained from the

operator built on tr (Zl) by an SO(4) rotation (4.27), which effects (Z,X)→ (Z̄,−X̄).
26Note that Yref is the solution for the two-point function, expressed globally in terms of the cylinder

coordinate. Thus we need to express Y in terms of the local coordinate
(
τ (i), σ(i)

)
given in (2.97) to

compare two solutions.
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Figure 3. A schematic picture which explains the relation between the local three-point solution Y
and the two-point solutions Ydiag and Yref . Yref is obtained from Ydiag by a real global transforma-

tion U ref , while Y and Yref , which are produced by the same vertex operator, are related through

a complexified global transformation V .

This relative difference is the quantity of interest since we need to normalize the three-point

function by the two-point functions. In general V belongs to SL(2,C)R ⊃ SU(2)R, since

the three-point interaction is necessarily a tunneling process. In contrast the reference

solution Yref can be obtained from Ydiag by a transformation belonging to SU(2)R in the

form

Yref = YdiagU ref , U ref ∈ SU(2)R . (4.32)

The relation between Y, Yref and Ydiag is sketched in figure 3.

Now just as we did already for the solution Ydiag, we can associate to the solution Yref

the polarization spinor nref and the raising transformation Kref which leaves it invariant.

Then from the general formula (4.26) and (4.20) we can express them in terms of the

quantities associated to the diagonal solution as

nref = (U ref)tndiag , (4.33)

Kref(β) = (U ref)−1Kdiag(β)U ref . (4.34)

By the same token we can associate the polarization spinor n and the raising transformation

K to the local solution Y. However since Y is produced by the same vertex operator as

Yref , we must have n = nref . As for K, just as in (4.34), under the transformation V which

produces Y from Yref , the raising operator Kref(β) transforms into K(β) in the manner

K(β) = V −1Kref(β)V . Since this operator must leave n and hence nref invariant, we must

have

V −1Kref(β)V = Kref(β′) (4.35)

for some β′. Substituting the relation (4.34), we get(
V ′
)−1

Kdiag(β)V ′ = Kdiag(β′) ,

V ′ ≡ U refV (U ref)−1 .
(4.36)

This means that the operator V ′ transforms a raising operator into a raising operator for

the diagonal solution. It is not difficult to show that the general form of such an operator
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is

(
a b

0 a−1

)
. Note that this contains a scale transformation which is in SL(2,C)R but not

in SU(2)R. From this result we can solve for V and its inverse and obtain the following

useful representations

V = (U ref)−1

(
a b

0 a−1

)
U ref , (4.37)

V −1 = (U ref)−1

(
a−1 −b
0 a

)
U ref . (4.38)

At this stage we need not know the actual values of a and b in these formulas. b will turn

out to be irrelevant and a will be expressed in terms of certain Wronskians.

4.3.2 Construction of the wave function for the right sector

We are now ready for the construction of the wave function for the right sector using the

formula for the shift of the angle variable φR given in (4.8).

First we need to fix the normalization vector n appearing in that formula. As we shall

show, the answer is that it coincides precisely with the polarization spinor n introduced

from the group theoretical point of view in (4.21) in subsection 4.2. Recall that in the

formalism developed in [13–15], the zeros of n ·ψ(x), where ψ is the Baker-Akhiezer vector

and n is the normalization vector, determines the angle variables. When one makes a global

SL(2,C)R transformation VR on the string solution Y like Y → YVR, the Baker-Akhiezer

vector transforms like ψ → V −1
R ψ. In particular, take VR to be the raising operator K

under which the vertex operator producing the solution Y is invariant. Then the wave

function corresponding to the vertex operator and hence the angle variables comprising it

must also be invariant. This means that the zeros of n · (K−1ψ) = (Ktn) ·ψ must coincide

with the zeros of n · ψ and hence we must have Ktn ∝ n. However since K is similar to

Kdiag, it is clear that the constant of proportionality can only be unity and n must satisfy

Ktn = n. This, however, is nothing but the definition of the polarization spinor given

in (4.21). In other words, the proper choice of the normalization vector for constructing

the wave function is precisely the polarization spinor associated to the vertex operator to

which the wave function corresponds.

Having found the proper choice of the normalization vector in the formula (4.8) for the

shift of the angle variable φR, what remains to be understood is how to evaluate the inner

products n·ψ±(∞) and n·ψref
± (∞). Corresponding to the relation (4.31), in the vicinity of zi,

ψ± and ψref
± are related by the constant transformation V as ψ±(z ' zi) = V −1ψref

± (z ' zi).
Now recall the form of the ALP for the right sector given in (1.4). We see that for x =∞
the coefficients of the connections jz and jz̄ vanish and hence the solutions ψ±(x = ∞)

and ψref
± (x =∞) themselves become constant. Combining these pieces of information, we

obtain the relation

ψ±(∞) = V −1ψref
± (∞) . (4.39)
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The right hand side can be evaluated using the representation (4.38) as

ψ±(∞) = (U ref)−1

(
a−1 −b
0 a

)
U refψref

± (∞) = (U ref)−1

(
a−1 −b
0 a

)
ψdiag
± (∞) , (4.40)

where ψdiag
± (x) is the Baker-Akhiezer vector for Ydiag, which is related to ψref

± (x) by

ψref
± (x) =

(
U ref

)−1
ψdiag
± (x) . (4.41)

We now need to know ψdiag
± (∞), which are the eigenstates of the monodromy matrix

near x = ∞ corresponding to the eigenvalues e±ip(x). For a charge-diagonal solution

Ydiag, the monodromy matrix near x = ∞ is diagonal and hence is either of the form (a)

diag (eip(x), e−ip(x)) or (b) diag (e−ip(x), eip(x)), depending on the solution. For the case (a)

the eigenvectors are ψdiag
+ (∞) = (1, 0)t, ψdiag

− (∞) = (0, 1)t, while for the case (b) their forms

are swapped. Since Ydiag is produced by the vertex operator with the definite polarization

spinor specified in (4.28), there should be a definite answer. To determine the proper choice

of (a) or (b), we need to construct the wave function for each choice and see if it has the

same transformation property as the corresponding operator in the gauge theory. As it will

be checked later in this subsection, it turned out that the case (b) is the correct choice.

Therefore we will take

ψdiag
+ (∞) =

(
0

1

)
, ψdiag

− (∞) =

(
1

0

)
. (4.42)

Substituting them into (4.40), we obtain the important relations

ψ+(∞) = (U ref)−1
(
aψdiag

+ (∞)− bψdiag
− (∞)

)
= aψref

+ (∞)− bψref
− (∞) , (4.43)

ψ−(∞) = (U ref)−1a−1ψdiag
− (∞) = a−1ψref

− (∞) . (4.44)

As for the polarization spinor, observe that by inspection the following relation holds:

ndiag = (−iσ2)ψdiag
− (∞) . (4.45)

This relation is actually universal in the following sense. Let us act (U ref)t from left. Then

the relation becomes(
(U ref)tndiag =

)
nref = (U ref)t(−iσ2)ψdiag

− (∞)

= (−iσ2)(U ref)−1ψdiag
− (∞)

= −iσ2ψ
ref
− (∞) ,

(4.46)

where we used the identity σ2(U ref)tσ2 = (U ref)−1. Thus, exactly the same form of re-

lation holds for the reference solution and in fact for any solution related by an SU(2)R
transformation. Together with the formula (4.44) we get the relation

n = −iaσ2ψ−(∞) , (4.47)

which will be extremely important.
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Let us now recall the formula (4.8) for the shift of the angle variable φR. Displaying

it again for convenience, it is of the form

∆φR = −i ln

(
(n · ψ+(∞))(n · ψref

− (∞))

(n · ψref
+ (∞))(n · ψ−(∞))

)
. (4.48)

From (4.43) and (4.46), we can write n · ψ+(∞) = an · ψref
+ (∞). As for n · ψ−(∞), use

of (4.44) gives n · ψ−(∞) = a−1n · ψref
− (∞). Now due to the relation (4.46), the quantity

n ·ψ−(∞) = nref ·ψ−(∞), which appears both in the numerator and the denominator of the

formula (4.48), vanishes. Therefore we must first regularize n slightly to make the quantity

n · ψ−(∞) finite, cancel them in the formula and then remove the regularization. As for

the same quantity appearing in n · ψ+(∞), we can safely set it to zero from the beginning

since n ·ψref
+ (∞) is non-vanishing. In this way we find that n ·ψref

± (∞)’s all cancel out and

we are left with an extremely simple formula for ∆φR given by

∆φR = −i ln a2 . (4.49)

Note that the shift depends only on the quantity a, which parametrizes the scale transfor-

mation not belonging to SU(2)R, showing the tunneling nature of the effect.

Let us now write the formula (4.47) for the operator at zi with a subscript i as

ni = −iaiσ2i−(∞). Then, from the definition of the Wronskian we obtain 〈ni, nj〉 =

aiaj〈i−, j−〉
∣∣
∞. Writing out all the relations of this form and forming appropriate ratios,

we can easily extract out each a2
i . The result can be written in a universal form as

a2
i =

〈j−, k−〉
〈i−, j−〉〈k−, i−〉

∣∣∣∣
∞

〈ni, nj〉〈nk, ni〉
〈nj , nk〉

. (4.50)

Then substituting this expression into the formula (4.49) we obtain the shift of the angle

variable φR at the position zi as

ei∆φR,i =
〈j−, k−〉

〈i−, j−〉〈k−, i−〉

∣∣∣∣
∞

〈ni, nj〉〈nk, ni〉
〈nj , nk〉

. (4.51)

This formula is remarkable in that it cleanly separates the kinematical part composed of

〈ni, nj〉 and the dynamical part described by 〈i−, j−〉
∣∣
∞.

As the last step of the construction of the wave function, we need to pay attention to the

convention of [15] that we are adopting. In that work, the Poisson bracket is defined to be

{p, q} = 1 for the usual momentum p and the coordinate q. In this convention the Poisson

bracket of the action angle variables was worked out to be given by {φ, S} = 1. In other

words the action variable S corresponds to q and the angle variable φ corresponds to p.

Therefore upon quantization in the angle variable representation, we must set S = i∂/∂φ.

This means that the wave function that carries charge S is given by e−iSφ, not by eiSφ.

Recalling the relation (2.37) between the action variable S∞ and the right charge R,

namely S∞ = −R, and employing the formula (4.51), the contribution to the wave function

from the right sector is obtained as

ΨS3

R = exp

(
−i

3∑
i=1

(−Ri) ∆φR,i

)
=
∏
{i,j,k}

(
〈ni, nj〉
〈i−, j−〉

∣∣
∞

)Ri+Rj−Rk
, (4.52)

where {i, j, k} denotes the cyclic permutations of {1, 2, 3}.
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At this stage, let us confirm that the wave function so constructed indeed carries

the correct charge. To see this, it suffices to consider the U(1) transformation which

corresponds to the diagonal right-charge rotations. Let us examine the case of the charge-

diagonal operator built upon the Z-type vacuum, such as O1 or O3 in section 4.2. In such

a case the reference state is the charge-diagonal state itself, hence U ref = 1. Then if we

set a = eiθ/2, b = 0 in the formula (4.37), the SU(2)R transformation matrix V becomes

diag (eiθ/2, e−iθ/2), which is a U(1) transformation under which Z and Z̄, carrying the

right charge 1/2 and −1/2 respectively, transform as Z → eiθ/2Z and Z̄ → e−iθ/2. Now

according to (4.49), under such a transformation the wave function acquires the phase

e−i(−R) ln a2
= eiRθ. This shows that the wave function has the same (positive) charge R

as the operator of the form tr (Z2R). This proves that the choice of ψdiag
± (∞) we made

in (4.42) is the correct one. If we had made the other choice, the wave function would have

acquired the phase e−iRθ, which contradicts the fact that the corresponding operator in

the gauge theory is built on the tr (Z l)-vacuum. Similar argument can be made for the left

sector and again one can check that the wave function (4.52) carries the correct charges.

4.3.3 Contribution of the left sector and complete wave function for the S3

part

We now briefly describe the analysis for the left sector, to complete the construction of the

wave function for the S3 part.

The procedure is exactly the same as for the right sector but there are a couple of

notable differences. First, the transformation matrices act from the left and consequently

in various formulas the matrices are replaced by their inverses. In particular, the formulas

corresponding to (4.37) and (4.39) for the transformation Ṽ that connects three-point

solution and the reference solution in the manner Y = Ṽ Yref take the form

Ṽ = Ũ ref

(
a 0

b a−1

)
(Ũ ref)−1 , (4.53)

ψ̃±(0) = Ṽ ψ̃ref
± (0) , (4.54)

where Ũ ref ∈ SU(2)L is the matrix effecting the connection Yref = Ũ refYdiag. Second, the

raising matrix for the diagonal solution is now lower triangular, namely

K̃diag(β) =

(
1 0

β 1

)
. (4.55)

Thirdly, the polarization spinor for Z is ñdiag = (1, 0)t, as discussed in (4.25). Lastly,

because of the form of the ALP for the left sector, the Baker-Akhiezer vector becomes

coordinate-independent at x = 0 instead of at x =∞.
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Let us now list the basic results for the left sector, omitting the intermediate details.

Just as for the right sector, the formulas below are valid for any type of operator.

ψdiag
+ =

(
0

1

)
, ψdiag

− =

(
1

0

)
, (4.56)

ψ̃+(0) = a−1ψ̃ref
+ (0) + bψ̃ref

− (0) , ψ̃−(0) = aψ̃ref
− (0) , (4.57)

ñ = aiσ2ψ̃+(0) , ∆φL = −i ln a−2 . (4.58)

Using these formulas, we obtain the contribution to the wave function from the left sector as

ΨS3

L = exp

(
−i

3∑
i=1

Li∆φL,i

)
=
∏
{i,j,k}

(
〈ñi, ñj〉
〈i+, j+〉

∣∣
0

)Li+Lj−Lk
, (4.59)

where we used the gauge invariance of the Wronskians and replaced 〈̃i+, j̃+〉 with 〈i+, j+〉.
Together with ΨS3

R obtained in (4.52) we now have the complete wave function for the S3

part. It is of the structure

eFvertex = ΨS3

L ΨS3

R e
Venergy ,

Fvertex = Vkin + Vdyn + Venergy . (4.60)

Let us explain each term (4.60) in order. The first term Vkin stands for the kinematical

part composed of the Wronskians 〈ni, nj〉 and 〈ñi, ñj〉,

Vkin =

(R1 +R2 −R3) ln〈n1, n2〉+ (R2 +R3 −R1) ln〈n2, n3〉+ (R3 +R1 −R2) ln〈n3, n1〉
+ (L1 + L2 − L3) ln〈ñ1, ñ2〉+ (L2 + L3 − L1) ln〈ñ2, ñ3〉+ (L3 + L1 − L2) ln〈ñ3, ñ1〉 .

(4.61)

The second term Vdyn refers to the dynamical part consisting of the Wronskians 〈i−, j−〉
∣∣
∞

and 〈̃i+, j̃+〉
∣∣
0
,

Vdyn =

− (R1+R2−R3) ln〈1−, 2−〉
∣∣
∞ − (R2+R3−R1) ln〈2−, 3−〉

∣∣
∞ − (R3+R1−R2) ln〈3−, 1−〉

∣∣
∞

− (L1+L2−L3) ln〈1+, 2+〉
∣∣
0
− (L2+L3−L1) ln〈2+, 3+〉

∣∣
0
− (L3+L1−L2) ln〈3+, 1+〉

∣∣
0
.

(4.62)

The last term Venergy denotes the contribution involving the worldsheet energy shown in

the last term of (4.2). Such a term is necessary for the following reason. As explained

below (2.97) and at the beginning of section 3.1, we evaluate our wave function on the

circle defined by τ (i) = 0, corresponding to ln |z − zi| = ln εi. On the other hand, the wave

function introduced through the state operator mapping in (4.1) is defined on the unit

circle described by ln |z− zi| = 0. The term Venergy is needed to fill this gap. As the energy

of the each external state is given27 by 2
√
λκ2

i , Venergy can be evaluated explicitly as

Venergy = 2
√
λ

3∑
i=1

κ2
i ln εi . (4.63)

27The energy can be computed from the behavior of the stress-energy tensor around the puncture (2.11).
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Before ending this subsection, let us make two comments. First, it is not guaran-

teed at this stage that the wave function thus constructed produces a correctly normalized

two-point function. In addition, as discussed in [11], there may be additional contribu-

tions which come from the canonical change of variables, {Y, ∂τY} → {φi, Si}. However,

in section 7.3, it will be checked that our result for the three-point function reproduces

the normalized two-point function in an appropriate limit. Therefore we can a posteriori

confirm that the wave function is properly normalized and the additional contributions are

absent. Second, one recognizes that the power of 〈ni, nj〉, namely Ri + Rj − Rk, is the

familiar combination, made out of conformal weights and spins, for the coordinate differ-

ences in the three-point functions of a conformal field theory, except for the overall sign.

In the next subsection, we will elaborate on this structure of the power from the point of

view of the dual gauge theory. Also in section 6.2, where we construct the wave function

for the EAdS3 part, the above difference in the overall sign will be explained.

Summarizing, the product of (4.52) and (4.59) gives the general form of the wave func-

tions for the three-point function. It is expressed in terms of the two types of Wronskians.

One type is the Wronskians between the solutions of the ALP around vertex insertion

points. They will be evaluated in section 5. The others are the Wronskians between the

polarization spinors associated with the vertex operators, which are of purely kinematical

nature and hence should be common to the string and the gauge theory sides.

4.3.4 Correspondence with the gauge theory side

We shall now examine our formula for the wave function from the point of view of corre-

spondence with the gauge theory side.

First consider the question of how to distinguish the different types of gauge theory

operators Oi from their corresponding wave functions in string theory. The wave function

constructed above is expressed in terms of the polarization spinors, which depend only

on the type of the vacuum on which the corresponding gauge theory operator is built,

the eigenvectors of the ALP in the vicinity of the insertion point zi, and the charges

carried by the vertex operators. A natural question is how we can distinguish the type of

vertex operators involved from these data. Operators of O1 and O2 in section 4.2 can be

distinguished by the structure of their polarization spinors because the vacuum on which

they are built are different. On the other hand, operators of O1 and O3, which are built on

the same type of the vacuum, are characterized by the same polarization spinors and hence

it appears that one cannot distinguish them from the formula for the wave function. Since

these operators differ only in the types of excitations, X or X̄, the question is how this

is reflected. The answer is in the relation between the absolute magnitude of the charges

R and L, which are given by R and L respectively. Because the charges carried by the

operator X are (R,L) = (−1/2, 1/2), the magnitude of the total charges of the type O1

operator built upon Z-vacuum with X as excitations must satisfy the inequality R < L.

Similarly, the magnitudes of the total charges for the operator of type O2 also obey R < L.

On the other hand, for the operator of type O3, we have R > L.

Such distinction is reflected not only on the charges but also on the dynamical prop-

erty of the eigenstates i± appearing in the wave function formula. As discussed in (2.75)

– 48 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

and (2.76), the relative magnitude of R and L for a one-cut solution is determined by the

position of the cut in the quasi-momentum p(x): when the real part of the position of the

branch cut is in the interval [−1, 1] in the spectral parameter space such a solution has

R > L and hence corresponds to the operator of type O3. Contrarily the operator of type

O1 having R < L corresponds to a solution with the cut outside the above interval. Con-

ceptually this is quite intriguing. From the spin-chain perspective, O1 and O3 form distinct

types of spin chains, which cannot be transformed into each other by an SU(2)R × SU(2)L
transformation. On the other hand, in string theory the solutions corresponding to these

distinct spin chains are described in a more unified way. It would be interesting to realize

such a unified treatment on the gauge theory side as well.

Let us next examine the role and the meaning of the kinematical factor Vkin from the

point of view of the dual gauge theory. In this regard, note that the quantity 〈ni, nj〉,
being a skew product, vanishes when ni and nj coincide. This in fact happens for the

case of the operators O1 and O3 discussed in section 4.2, which are built upon the same

Z-vacuum and hence carry the same polarization spinors. There are three possibilities.

If the power Ri + Rj − Rk is positive, then the wave function and hence the three-point

function vanishes. This would express a selection rule. On the other hand, if it is negative,

the three-point function diverges. For an internal symmetry such as SU(2)R this should

not occur. The last possibility is that the power is exactly zero. In this case, we should

regularize 〈ni, nj〉 slightly away from zero and then apply the vanishing power to get the

result, which is unity.

Let us see which of these cases is actually realized for the set of operators O1,O2 and

O3 in section 4.2. Let li be the total length of the operator Oi and Mi be the number of

excitations. The number of “vacuum fields” is then given by li−Mi. There are two obvious

conservation laws for these numbers if all the fields and anti-fields of the set {Oi} are fully

contracted to form propagators. One is the conservation concerning excitations, i.e. , the

total number of X’s should equal the total number of X̄’s. The other is the conservation

concerning the vacuum fields, i.e. the total number of Z’s should equal the total number

of Z̄’s. From the structure of Oi’s it is easy to find that these two conservation laws are

expressed as

(i) M1 = M2 +M3 ,

(ii) l1 + l3 − l2 = 2M3 .
(4.64)

Now consider the right and the left charges carried by Oi. From table 1, and the compo-

sitions of Oi, we get, for example, R1 = 1
2 l1 −M1, L1 = 1

2 l1, etc. . . Then, computing the

powers of interest we get

R1 +R3 −R2 = M3 +M2 −M1 = 0 , (4.65)

L1 + L3 − L2 =
1

2
(l1 + l3 − l2)−M3 = 0 . (4.66)

Therefore precisely due to the conservation laws, (i) and (ii) above, of the number of

contracting fields, the powers that occur for the vanishing Wronskians 〈n1, n3〉 and 〈ñ1, ñ3〉
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are zero. Hence, in the computation of the three-point function of Oi’s such factors simply

produce unity.

Up to this point we have obtained the general formulas for the contribution of the action

part and the wave function part, both of which are expressed in terms of the Wronskians

of the form 〈i±, j±〉. In the next section we will evaluate these quantities to substantiate

the general formulas.

5 Evaluation of the Wronskians

In the previous two sections, we have shown that both the contribution of the action and

that of the vertex operators are expressible in terms of the Wronskians 〈i±, j±〉 between

the eigenvectors of the monodromy matrices. The goal of this section is to evaluate those

Wronskians. First, in section 5.1, we show that certain products of Wronskians are ex-

pressed in terms of the quasi-momenta. Next, in sections 5.2 and 5.3, we determine the

analytic properties (i.e. poles and zeros) of each Wronskian as a function of the spectral

parameter x. With such a knowledge, we apply, in section 5.4, a generalized version of the

Wiener-Hopf decomposition formula to the products of the Wronskians and determine the

individual factor. Finally, in section 5.5, we compute the singular part and the constant

part of the Wronskian, which cannot be determined by the Wiener-Hopf method.

5.1 Products of Wronskians in terms of quasi-momenta

To obtain the information of the Wronskian 〈i±, j±〉 between the eigenvectors of the ALP

at different points, we need some condition which governs the global property of such Wron-

skians. As we shall see, such a condition is provided by the global consistency condition for

the product of the local monodromy matrices Ωi associated with the vertex insertion points

zi. Since the total monodromy must be trivial upon going around the entire worldsheet,

we must have

Ω1Ω2Ω3 = 1 . (5.1)

Although this appears to be a rather weak condition, it is sufficiently powerful to determine

the forms of certain products of the Wronskians in terms of the quasi-momenta pi(x), as

discussed in [8, 9]. Let us quickly reproduce those expressions. Take the basis in which Ω1

is diagonal, namely

Ω1 =

(
eip1 0

0 e−ip1

)
. (5.2)

Since the set of eigenvectors j± at zj form a complete basis, one can expand the eigenvectors

i± at zi in terms of them in the following way:

i± = 〈i± , j−〉j+ − 〈i± , j+〉j− . (5.3)

Making use of this formula, Ω2 can be expressed in the Ω1-diagonal basis as

Ω2 = M12

(
eip2 0

0 e−ip2

)
M21 , (5.4)
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where the matrix Mij , effecting the change of basis, is given by

Mij =

(
−〈i− , j+〉 −〈i− , j−〉
〈i+ , j+〉 〈i+ , j−〉

)
. (5.5)

Now owing to the constraint (5.1), Ω1 and Ω2 must satisfy the following relation:

tr (Ω1Ω2) = tr Ω−1
3 = 2 cos p3 . (5.6)

Substituting the equations (5.2) and (5.4) into (5.6), we obtain an equation for 〈1± , 2±〉 of

the form

cos (p1 − p2) 〈1+ , 2+〉〈1− , 2−〉 − cos (p1 + p2) 〈1+ , 2−〉〈1− , 2+〉 = cos p3 . (5.7)

This equation, together with the Schouten identity28 for 1± and 2± given by

〈1+ , 2+〉〈1− , 2−〉 − 〈1+ , 2−〉〈1− , 2+〉 = 〈1+ , 1−〉〈2+ , 2−〉 = 1 , (5.8)

completely determines the products of Wronskians, 〈1+ , 2+〉〈1− , 2−〉 and 〈1+ , 2−〉〈1− , 2+〉.
In a similar manner, products of certain other Wronskians can also be obtained, which are

summarized as the following set of equations:29

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2 sin p1+p2−p3

2

sin p1 sin p2
, (5.9)

〈2+ , 3+〉〈2− , 3−〉 =
sin p1+p2+p3

2 sin −p1+p2+p3

2

sin p2 sin p3
, (5.10)

〈3+ , 1+〉〈3− , 1−〉 =
sin p1+p2+p3

2 sin p1−p2+p3

2

sin p3 sin p1
, (5.11)

〈1+ , 2−〉〈1− , 2+〉 =
sin p1−p2+p3

2 sin p1−p2−p3

2

sin p1 sin p2
, (5.12)

〈2+ , 3−〉〈2− , 3+〉 =
sin p1+p2−p3

2 sin −p1+p2−p3

2

sin p2 sin p3
, (5.13)

〈3+ , 1−〉〈3− , 1+〉 =
sin −p1+p2+p3

2 sin −p1−p2+p3

2

sin p3 sin p1
. (5.14)

What we need for the computation of the three-point functions, however, are the

individual Wronskians and not just the products given in (5.9)–(5.14). Such a knowledge

will be extracted based on the analytic properties of the Wronskians regarded as functions

of the complex spectral parameter x. We will analyze such properties in the next two

subsections.

28The general form of the Schouten identity is given by 〈i , j〉〈k , l〉+ 〈i , k〉〈j , l〉+ 〈i , l〉〈j , k〉 = 0. It can

be proven directly from the definition of the Wronskians.
29Note that the equations (5.9)–(5.14) appear slightly different in form from those derived in [9]. This is

because 2+ in this paper corresponds to 2− in [9] and 2− in this paper corresponds to −2+ in [9].
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5.2 Analytic properties of the Wronskians I: poles

An individual Wronskian, viewed as a function of x, is almost uniquely determined30 by its

analytic properties, namely the positions of the poles and the zeros. From the expressions

exhibited in (5.9)–(5.14), we know that the products of Wronskians have poles at sin pi = 0

and zeros at sin ((±p1 ± p2 ± p3)/2) = 0. Therefore the question is which factor of the

product is responsible for such a pole and/or a zero. In this subsection, we will describe

how to analyze the structure of the poles.

To illustrate the basic idea, we will consider the Wronskians 〈1+ , 2+〉 and 〈1− , 2−〉 as

examples, for which the product is given by

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2 sin p1+p2−p3

2

sin p1 sin p2
.

Let us focus on the pole associated with sin p1 = 0 and denote the position of the pole

by xpole. There are two types of points at which sin p1 vanishes, the branch points and

the “singular points”. First consider the case where xpole is a singular point, at which

the two eigenvalues of the monodromy matrix Ω1 degenerate to either +1 or −1. This,

however, does not mean that Ω1 is proportional to the unit matrix for the following reason:

if Ω1 ∝ 1, the monodromy condition Ω1Ω2Ω3 = 1 forces p2 to be equal to +p3 or −p3

modulo π. However, since p1, p2 and p3 can be chosen completely independently, there is

no reason for such special relation to hold. Thus, the only remaining possibility is that the

monodromy matrix Ω1 takes the form of a Jordan-block at x = xpole, namely,

Ω1(xpole) ∼ ±

(
1 c

0 1

)
. (5.15)

In this case, the eigenvectors 1+ and 1− degenerate at x = xpole and we have one eigen-

vector. To see what happens at x = xpole more explicitly, let us study the asymptotic

behavior of 1± near z1. In the vicinity of each puncture, the saddle point solution for the

three-point function can be well-approximated by an appropriate solution for a two-point

function. Consequently, the eigenvectors for the three-point function 1± can also be ap-

proximated near z1 by the eigenvectors for the two-point function 12pt
± . As shown in (2.96),

this structure can be seen most transparently in the Pohlmeyer gauge. Working out the

subleading corrections, we obtain the following expansion for the eigenfunctions 1̂±:

1̂+ = 1̂2pt
+

(
1 + c1(σ(1), x)ea1τ (1)

+ c2(σ(1), x)ea2τ (1)
+ · · ·

)
, (5.16)

1̂− = 1̂2pt
−

(
1 + c̃1(σ(1), x)eã1τ (1)

+ c̃2(σ(1), x)eã2τ (1)
+ · · ·

)
. (5.17)

Here τ (1) and σ(1) are the local coordinates near z1 given in (2.97) and ck and c̃k are 2× 2

matrices dependent only on σ(1) and x. The constants ak in the exponents are such that

successive terms are becoming smaller by exponential factors as τ → −∞. An important

30As we will discuss later, the Wronskian also contains essential singularities at x = ±1. In addition, an

overall proportionality constant cannot be determined by the positions of zeros and poles. These ambiguities

will be fixed in section 5.5.
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observation is that since 1̂2pt
± are eigenfunctions corresponding to a two-point function, they

are insensitive to the global monodromy constraint (5.1) on the three-point function and

hence non-degenerate at x = xpole. An apparent puzzle now is how exponentially small

corrections can produce the degeneracy of 1̂±.

The answer is the following. Since one of the solutions 1̂2pt
± is exponentially increasing

(i.e. big) and the other is decreasing (i.e. small) as τ → −∞, let us consider the case where

1̂2pt
+ is big and 1̂2pt

− is small. Now for 1̂± to become degenerate at x = xpole, logically there

are three possibilities

(a) 1̂+ = α1̂− , α = finite , (5.18)

(b) 1̂+ = β1̂− , β →∞ , (5.19)

(c) 1̂− = β1̂+ , β →∞ . (5.20)

First, since 1̂2pt
+ is much larger than 1̂2pt

− by assumption, the case (a) cannot occur. Now

consider the case where x is slightly different from xpole. Then β is large but finite and

the relations (b) or (c) must be realized approximately. But it is obvious that (b) is the

only consistent relation since exponentially small solution can appear in the big solution

but not the other way around. Therefore we must have the situation

1̂+ = 1̂2pt
+ + · · ·+ β1̂− + · · · , (5.21)

As x→ xpole, β diverges and (5.21) goes over to the relation (b). The situation is the same

if 1̂− is the big solution: always the big solution diverges at the degeneration point, while

the small solution remains finite.31

Similar argument can be applied to the other Wronskians, making use of the general

asymptotic behavior of the eigenvectors in the Pohlmeyer gauge, which is of the form

î± ∼ e±q(x)τ (i)
(z ∼ zi) . (5.22)

It is clear from this expression that which one of the î± diverges as z → zi is governed by

the sign of the real part of the quasi-energy q(x). Since the divergence of the eigenfunction

produces a pole on the Wronskian containing it, we can determine which Wronskian of

the product is responsible for the pole with the following general rule: at sin pi = 0, the

Wronskians behave as

Re q(x) > 0⇒ 〈i+ , ∗〉 = finite , 〈i− , ∗〉 =∞ , (5.23)

Re q(x) < 0⇒ 〈i+ , ∗〉 =∞ , 〈i− , ∗〉 = finite . (5.24)

Hence, for Re q(x) > 0 the pole occurs in 〈i− , ∗〉, while for Re q(x) < 0 it occurs in 〈i+ , ∗〉.

31Remark: This does not mean of course that there is only one solution at the degeneration point. There

must exist another independent solution of new structure, namely the structure which is different from 1̂±.

However, as long as we stick to this basis, what we see is that one of the solutions diverges and disappears.
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5.3 Analytic properties of the Wronskians II: zeros

Having determined the pole structure, let us next discuss the zeros of the Wronskians. The

determination of the zeros is substantially more difficult since, in contrast to the poles which

are local phenomena, the zeros are determined by the global properties on the Riemann

surface. As shown in previous works [24–26], the notion of the WKB curve [23] is one of

the main tools to explore such global properties. However, as its name indicates, the WKB

curve is useful only when the leading term in the WKB expansion is sufficiently accurate.

For this reason, it is not powerful enough to fully determine the zeros of the Wronskians

in the whole region of the spectral parameter space. In this subsection we shall introduce

an appropriate generalization of the WKB curve, to be called the exact WKB curve, to

overcome this difficulty.

5.3.1 WKB approximation and WKB curves

In order to motivate the generalized version, we shall first briefly review the ordinary WKB

curves defined in [23].

When the expansion parameter ζ is sufficiently small, the leading term of the WKB

expansion for the solutions to ALP (3.33) around zi is given by

ψ̂ ∼ exp

(
±1

ζ

∫ z

z∗i

√
Tdz

)
. (5.25)

Of the two independent solutions given above, one is the small solution, which decreases

exponentially as it approaches zi and the other is the big solution, which increases expo-

nentially in the same limit. In order to make the variation of the magnitude of the solution

more precise, one defines the WKB curves as the curves along which the phase of the lead-

ing term (5.25) in the WKB expansion is constant. More explicitly, they are characterized

by the equation

Im

(√
T

ζ
dz

)
= 0 . (5.26)

By analyzing the structure of (5.26), one finds the following three characteristic proper-

ties of the WKB curves. (i) At generic points on the worldsheet, the WKB curves are

non-intersecting. (ii) At a puncture, the WKB curves radiate in all directions from the

puncture. (iii) At a zero of T (z), there are three special WKB curves which radiate from

the zero and separate three different regions of the WKB curves. For details, see figure 4.

Along the WKB curve, the magnitude of the leading term in the WKB expansion (5.25)

increases or decreases monotonically, until they reach a zero or a pole of T (z). Thus, if

two punctures zi and zj are connected by a WKB curve and the spectral parameter ζ

is sufficiently small, the small solution si defined around zi will grow exponentially as it

approaches the other puncture zj . In other words, the small solution si behaves like the big

solution around zj . Therefore si will be linearly independent of sj and hence the Wronskian

between these two small solutions 〈si , sj〉 must be non-vanishing.
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Zero Pole

Figure 4. Sketch of WKB curves near a zero ( a red cross in the left figure) and a pole (a red circle

in the right figure). There are exactly three WKB curves that emanate from a zero. In contrast,

there are infinitely many WKB curves radiating from a pole in all directions.

With this logic, we conclude that the Wronskians 〈i± , j±〉 are non-vanishing if the

following three conditions are satisfied: (a) Two punctures zi and zj are connected by a

WKB curve. (b) Two eigenvectors i± and j± are both small solutions. (c) The leading

WKB solutions (5.25) are sufficiently accurate.

5.3.2 Exact WKB curves

Evidently, the analysis above is valid only in a restricted region of the spectral parameter

plane where the approximation by the leading term of the WKB expansion is reliable.

Actually, even if we improve the approximation by going to the next order approximation,

we still cannot cover the entire spectral parameter plane because such an expansion is

only an asymptotic series. It is indeed possible that as we change x the small and the

big solutions interchange their roles. Such a phenomenon is clearly non-perturbative and

cannot be captured by the usual expansion. So to understand the structure of the zeros on

the whole spectral parameter plane, it is necessary to generalize the notion of WKB curves

in a non-perturbative fashion.

In order to seek such an improvement, we need to look closely at the general structure

of the conventional WKB expansion. Let us denote the components of the solution ψ̂d to

the ALP in the diagonal gauge (3.33) as

ψ̂d =

(
ψ(1)

ψ(2)

)
. (5.27)

By substituting (5.27) into the ALP (3.33), we obtain the equations for the components ψ(1)

and ψ(2). Then, upon eliminating ψ(2) in favor of ψ(1), we get a second-order differential
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equation for ψ(1). To solve this equation, we expand ψ(1) in powers of ζ in the form

ψ(1) =

√
ρ

T
− ∂γ√

T
exp

[∫ z

z0

(
W−1

ζ
+W0 + ζW1 + · · ·

)]
. (5.28)

One can then determine the one-forms Wn order by order recursively. This procedure is

described in appendix D.1. As a result of such a computation, we find that the WKB

expansions for two linearly independent solutions to the ALP can be expressed in the

following form: (
f

(1)
±
f

(2)
±

)
exp

(
±
∫ z

z0

WWKB(z, z̄; ζ)

)
. (5.29)

Here WWKB ≡ W z
WKBdz + W z̄

WKBdz̄ is the one-form defined as a power series in ζ, with

the leading term given by
√
Tdz/(2ζ). On the other hand, the functions f

(1)
± and f

(2)
± are

defined in terms of W z
WKB by

f
(1)
± ≡ kWKB =

√
ρ−
√
T∂γ

T W z
WKB

, (5.30)

f
(2)
± ≡

−i√
W z

WKB

[
±W z

WKB +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln kWKB

2

)]
. (5.31)

With this structure in mind, we now introduce an improved notion of the WKB curve,

to be called the “exact WKB curve”, by writing the exact solutions to the ALP in the form

ψ̂d =

(
f

(1)
ex

f
(2)
ex

)
exp

(∫ z

z0

Wex(z, z̄; ζ)

)
, (5.32)

where f
(1)
ex and f

(2)
ex are given by

f (1)
ex =

√
ρ−
√
T∂γ

T W z
ex

, f (2)
ex =

−i√
W z

ex

[
W z

ex +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln f

(1)
ex

2

)]
. (5.33)

Note that the expression (5.32) is identical in form to (5.29) with the plus sign chosen.

However, there is an essential difference. While WWKB is given by the asymptotic series

in powers of ζ and is hence ambiguous non-perturbatively, Wex on the other hand is un-

ambiguous as it is defined directly by the exact solution ψ̂. Of course, if we expand Wex

perturbatively in powers of ζ, the series will coincide with WWKB. In this sense, Wex can

be regarded as the non-perturbative completion of WWKB. Now one of the virtues of the

expression (5.32) is that we can easily construct another solution satisfying 〈ψ̂d , ψ̂′d〉 = 1

by choosing the opposite the signs as

ψ̂′d =

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

Wex(z, z̄; ζ)

)
, (5.34)
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where f ′ex
(1) and f ′ex

(2) are given by

f ′ex
(1) =

√
ρ−
√
T∂γ

T W z
ex

, f ′ex
(2) =

−i√
W z

ex

[
−W z

ex +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln f ′ex

(1)

2

)]
.

(5.35)

Using the definition (5.32), let us now discuss the generalization of the WKB curves.

The quantity
√
Tdz/ζ used to define the original WKB curves is proportional to the leading

term in the expansion of WWKB. Therefore the most natural generalization of the WKB

curves would be to use Wex, which is a non-perturbative completion of WWKB, to define

them as

Im (Wex(z; ζ)) = 0 . (5.36)

Unfortunately, there is a problem with this definition. Since there are many exact solutions

to the ALP, a different choice of the solution ψ̂d leads to a different Wex and thus to different

curves. We can avoid this problem by defining the curves in terms of the small solution si
(for a general value of ζ) near each puncture zi. We shall call them the exact WKB curves

and denote them by EWKB(i).

The precise definition is given as follows: The exact WKB curves associated to the

puncture zi are defined as the curves satisfying the equation

Im
(
W (i)

ex (z; ζ)
)

= 0 , (5.37)

where W
(i)
ex is the exponential factor for the solution si, which is the smaller of the two

eigenvectors i+ and i−. Explicitly, it is defined through the expression

si ∝

(
f

(1)
ex

f
(2)
ex

)
exp

(∫ z

z0

W (i)
ex (z, z̄; ζ)

)
. (5.38)

Let us now make several comments. First, it is easy to see that this definition of the

exact WKB curves reduces to that of the ordinary WKB curves when ζ is sufficiently small.

Second, as in (5.34), with a flip of sign in the exponent, we can obtain another solution

bi ≡

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

W (i)
ex (z, z̄; ζ)

)
, (5.39)

which is big near the puncture zi and satisfies 〈si , bi〉 = 1. Such a solution bi, however,

is not guaranteed to be an eigenvector since the eigenvector distinct from si is in general

given by a linear combination of the form bi + csi.

Now the definition of EWKB(i) given above refers to a specific puncture from which

the curves emanate. In order for the notion of the exact WKB curve to be valid for the

entire worldsheet, we must guarantee that the definitions of EWKB(i)’s for i = 1, 2, 3 are

consistent in the region where they overlap. To check this, let us consider the behavior

of the small solution si as we follow an EWKB(i). Along such a curve the phase of the
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exponential factor of si stays constant, while its magnitude increases monotonically,32 until

it reaches some endpoint. Consider the case in which this endpoint is the puncture at zj .

In such a case, we know that si grows exponentially as it approaches zj and in fact behaves

like a big solution bj , up to an admixture of the exponentially small solution sj . Thus,

with sufficient accuracy, si can be expressed in the small neighborhood of zj as

si ∝ bj =

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

W (j)
ex (z, z̄; ζ)

)
. (5.40)

But since the exponent of the small solution sj , which is used to define EWKB(j), is the

same as that of bj except for the sign, we see that by definition the curve we have been

following becomes an EWKB(j) curve in the vicinity of zj , when zi and zj are connected

by such a curve. Therefore the definitions of EWKB(i) and EWKB(j) are indeed globally

consistent.

Let us now make use of the exact WKB curves to determine the analytic properties of

the Wronskians. First, by following exactly the same logic as in the case of the ordinary

WKB curves, we can immediately conclude that the Wronskian involving two small solu-

tions si and sj must be nonzero if two punctures zi and zj are connected by some exact

WKB curves. Although this is an extremely useful information, the problem seems to be

that, unlike the ordinary WKB curves, we do not know the configurations of the EWKB

curves since the exact solutions to the ALP are not available.

Nevertheless, we shall show below that by making use of a characteristic quantity

defined locally around each puncture for the EWKB curves, it is possible to fully classify

the topology (connectivity) of the curves on the entire worldsheet. The quantity in question

is the “number density” of the EWKB curves emanating from a puncture at zi. To motivate

its definition, consider two such curves which emanate from zi and end at zj and let the

constant phase of W
(i)
ex along the two curves be φ1 and φ2. Evidently the magnitude of the

difference |φ1 − φ2| is the same around zi and around zj , that is, it is conserved. If there

is no singularity in the region between these lines, we can draw in more EWKB curves

connecting zi and zj . Because of the property of the constancy of the phase difference

noted above, it is quite natural to draw the curves in such a way that the difference of the

phases of the adjacent curves is some fixed unit angle. Going around zi and counting the

number of such lines, we can define the number (density) of the EWKB(i) curves as33

Ni ≡
1

2π

∮
Ci
|Im W (i)

ex | , (5.41)

where Ci is an infinitesimal circle around zi. Although Ni is not an integer in general, we

will call it “a number of lines”. Actually we can express Ni in a more explicit way. From

32Strictly speaking the small eigenvector (5.38) also contains a prefactor in front of the exponential. This

prefactor, however, does not play a significant role in our discussion since it drops out if we consider the

ratio of two solutions si/bi. It is in fact sufficient to know the ratio in order to identify the small solution

and the big solution.
33In (5.41), we have chosen a convenient normalization of Ni.
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the asymptotic behavior of i± (2.96), we can obtain the form of W
(i)
ex near zi as

W (i)
ex ∼ ±

(
qi(x)dτ (i) + ipi(x)dσ(i)

)
as z → zi . (5.42)

Here (τ (i) , σ(i)) is the local coordinate defined in (2.97), and + or− sign is chosen depending

on which of the solutions i± is small. Substituting (5.42) into the definition (5.41), we

obtain a simple expression

Ni ≡ |Re pi(x)| . (5.43)

Since the phase around the puncture is governed by the local monodromy, it is natural

that Ni can be expressed in terms of pi(x).

Before we make use of the concept of Ni in a more global context, let us derive two

important properties of the EWKB(i)’s which will be necessary for determining their con-

figurations.

The first property will be termed the non-contractibility. It can be stated as follows:

“All the exact WKB curves which start and end at the same puncture are non-

contractible.”

In other words, such curves must go around a different puncture at least once. The proof

is simple. Recall that the Wronskians between small solutions should be nonzero if two

punctures are connected by an exact WKB curve. If we apply this statement to the same

puncture zi connected by an EWKB curve, we would conclude that 〈si, si〉 is non-zero,

which is clearly false. The only way to be consistent with the general assertion above

is that the curve is non-contractible and the solution gets transformed by the non-trivial

monodromy Ω as it goes around other punctures. In this case the Wronskian is of the form

〈si,Ωsi〉, which need not vanish.

The next property is concerned with the endpoints of the exact WKB curves. It can

be stated as follows:

“ All but finitely many exact WKB curves terminate at punctures. ”

The proof can be given as follows. As in the case of the ordinary WKB curves, the possible

endpoints are the zeros or the poles of W
(i)
ex . Concerning the former, the number of exact

WKB curves flowing into a zero is always finite, as shown in figure 4. On the other hand,

a pole can be the endpoint of infinitely many curves and thus plays a crucial role in the

study of the analyticity of the Wronskians. Now there are three different types of poles for

W
(i)
ex . The first is a puncture, at which the vertex operator is inserted. The second type

of a pole corresponds to the situation where the small eigenvector si develops a singularity

at a position different from the puncture. Since we only consider the worldsheet without

additional singularities as mentioned in section 2.3, such a singularity in si should not

occur. The last type of divergence for W
(i)
ex occurs when si develops a zero. Indeed, si

in general has several zeros on the Riemann surface. However, such points cannot be the

endpoints of the exact WKB curves for the following reason: at the zeros of si, the ratio
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si/bi of the small and the big solutions must also vanish.34 But this contradicts the basic

property of the exact WKB curve that such a ratio, determined by the exponential factor

in (5.38), monotonically increases along the exact WKB curve as we move away from zi.

From these considerations, we find that apart from a finite number of curves which can

flow into zeros of W
(i)
ex , the rest of the infinitely many exact WKB curves must end at the

punctures.

The two properties we have proved above are extremely important for the following

reason. They provide certain global restrictions for the EWKB curves for all values of the

spectral parameter, about which we only know the local behaviors explicitly in the vicinity

of the punctures. Below, they allow us to show that there are essentially two distinct classes

of configurations for the exact WKB curves.

These two classes are distinguished by whether the number of lines Ni fully satisfy the

triangle inequalities or not.35 When Ni’s satisfy the relations

Ni +Nj −Nk > 0 , (5.44)

for all possible combinations of distinct i, j, k, we refer to such a configuration as symmetric.

It is easy to show that if (5.44) is satisfied the number of lines connecting zi and zj cannot

be zero. As this holds for all the interconnecting lines, the three punctures must be piece-

wise connected to each other as in the left figure of figure 5.

On the other hand, in the second case, which we shall call asymmetric, not all the

triangle inequalities are satisfied. For example, one is violated like

N2 +N3 −N1 < 0 . (5.45)

In this case, one can readily convince oneself that, while all the curves emanating from z2

and z3 end at z1, there must exist a non-contractible curve connecting z1 to itself. This is

depicted in the right figure of figure 5.

In this way, we can completely classify the configurations of the exact WKB curves

from the local information Ni = |Re pi(x)|. Note that Ni depends on x. In fact it happens

that as x changes a symmetric configuration can turn into an asymmetric configuration

and vice versa. In an application of the present idea to the classical three-point function

in Liouville theory [29], it was checked that such a transition must be taken into account

in order to obtain the correct result. Below, we will see explicitly how the patterns of the

configurations of the exact WKB curves analyzed above can be used to determine the zeros

of the Wronskians.

5.3.3 Determination of the zeros of the Wronskians

As an example, let us focus on the factor

sin

(
p1 + p2 + p3

2

)
, (5.46)

34The big solution bi cannot vanish at such points so as to ensure the normalization condition 〈si , bi〉 = 1.
35In the case of the usual WKB curves, Wex ∼

√
T (z)dz and hence Ni is proportional to κi. Classification

by the triangle inequalities for κi already appeared in [9].
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z2

z1

z3

(a) Symmetric case (Ni +Nj −Nk > 0)

z2

z1

z3

(b) Asymmetric case (N2 +N3 −N1 < 0)

Figure 5. Two distinct classes for the connectivity of exact WKB curves. When all the triangle

inequalities are satisfied (“symmetric” case), each exact WKB curve connects two different punc-

tures. On the other hand, when some of the triangle inequalities are violated (“asymmetric” case),

there must exist non-contractible curve(s) which starts and ends at the same puncture.

and determine which Wronskians develop a zero when this factor vanishes. (The logic

below applies to all the other cases straightforwardly.) From the relations (5.9)–(5.14), we

find that the products of Wronskians that become zero are

〈1+ , 2+〉〈1− , 2−〉 , 〈2+ , 3+〉〈2− , 3−〉 , 〈3+ , 1+〉〈3− , 1−〉 . (5.47)

For convenience, let us define the following two sets of eigenvectors, namely the set S+ ≡
{1+, 2+, 3+} and the set S− ≡ {1−, 2−, 3−}. An important feature of the quantities shown

in (5.47) is that only the Wronskians of the eigenstates in the same group, S+ or S−,

appear. This is in fact a general feature and holds also for other situations.

Now, let us present two theorems, which will be useful in the determination of the

zeros. The first theorem is the following assertion, which we have already proved:

Theorem 1. When two punctures zi and zj are connected by an exact WKB curve, the

Wronskian between the two small eigenvectors 〈si , sj〉 is non-vanishing.

The second theorem classifies the possibilities of the patterns of the zeros and is stated as

follows:

Theorem 2. There are only two distinct possibilities concerning the zeros of the Wron-

skians in (5.47): either (a) all the Wronskians among the members of S+ are zero

and those among S− are nonzero, or (b) all the Wronskians among S− are zero and

those among S+ are nonzero.

The proof is as follows. Let us first note that in each product of two Wronskians appearing

in (5.47), only one of them vanishes. In fact if both factors become zero simultaneously,

the product develops a double zero, which contradicts the fact that the zeros of (5.46)

are all simple zeros. This property implies that in the list given in (5.47), at least two of

the individual Wronskians which actually vanish must be between the members belonging
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to the same set, which can be S+ or S−. Suppose they belong to S+. Since 〈i+, j+〉 = 0

means that i+ and j+ are parallel to each other, vanishing of two such different Wronskians

between the states of S+ implies that in fact all the three states in S+ are proportional to

each other. Therefore the third Wronskian from the set S+ must also vanish. Obviously

the same logic applies to the S− case. This proves the theorem.

We can now analyze the zeros of the Wronskians using these theorems. First consider

the symmetric case. Since one of the states i± must be a small solution, either S+ or S−
must contain two small solutions. For a symmetric configuration, they must be connected

by an exact WKB curve. Then by theorem 1 the Wronskian between them must be non-

vanishing. Theorem 2 further asserts that all the Wronskians for the members of that set

are non-vanishing, while the ones for elements of the other set all vanish.

Next, consider the asymmetric case. For simplicity, let us assume that N1 > N2 +N3

is satisfied.36 In such a case, there exist exact WKB curves which start from z1, go around

z2 (or z3), and return to z1. To make use of the existence of such a curve, consider the

following Wronskians:

〈1+ ,Ω21+〉 , 〈1− ,Ω21−〉 . (5.48)

To compute them, we first note that 1± can be expressed in terms of 2± in the following

manner

1± = 〈1± , 2−〉2+ − 〈1± , 2+〉2− . (5.49)

Then, applying Ω2 to (5.49) and substituting them to (5.48), we can express (5.48) in terms

of the ordinary Wronskians as

〈1+ ,Ω21+〉 = 2i sin p2〈1+ , 2−〉〈1+ , 2+〉 , (5.50)

〈1− ,Ω21−〉 = 2i sin p2〈1− , 2−〉〈1− , 2+〉 . (5.51)

Consider the case where 1+ is the small solution. Since Ω21+ can be obtained by parallel-

transporting 1+ along the exact WKB curve which starts and ends at z1, Ω21+ must behave

as the big solution around z1. Therefore, the Wronskian 〈1+ ,Ω21+〉 is non-vanishing in this

case. Then from (5.50) it follows that 〈1+ , 2+〉 must also be non-vanishing. Applying the

theorem 2, we conclude that the Wronskians between the members of S+ are non-vanishing

and those of S− all vanish. In an entirely similar manner, when 1− is the small eigenvector,

we obtain the result where the roles of S+ and S− are interchanged.

Performing similar analyses for the other cases, we obtain the general rules summarized

below.

Rule 1: Decomposition of the eigenvectors into two groups.

When a factor of the form sin (
∑

i εipi/2) vanishes, the Wronskians which vanish are

the ones among {1ε1 , 2ε2 , 3ε3} or the ones among {1−ε1 , 2−ε2 , 3−ε3}.

36Generalization to other cases is straightforward.
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Rule 2: Symmetric case.

When the configuration of the exact WKB curves is symmetric, the Wronskians

from the group which contains two or more small solutions are nonzero whereas the

Wronskians from the other group are zero.

Rule 3: Asymmetric case.

When the configuration of the exact WKB curves is asymmetric and Ni’s satisfy

Ni > Nj +Nk, the Wronskians from the group which contains the smaller of the two

solutions i± are nonzero whereas the Wronskians from the other group are zero.

In the next subsection, we will utilize these rules to evaluate the individual Wronskians.

5.4 Individual Wronskian from the Wiener-Hopf decomposition

Making use of the data for the analyticity of the Wronskians obtained in the previous

subsection, we now set up and solve a Riemann-Hilbert problem to decompose the product

of Wronskians and extract the individual Wronskians.The standard method for such a

procedure is known as the Wiener-Hopf decomposition, which extracts from a complicated

function a part regular on the upper half plane and the part regular on the lower half plane.

The typical set up is as follows. Suppose F (x) is a function which decreases sufficiently fast

at infinity and can be written as a sum of two components F (x) = F↑(x) + F↓(x), where

F↑(x) is regular on the upper half plane while F↓(x) is regular on the lower half plane.

Then, each component, in the region where it is regular, can be extracted from F (x) as

F↑(x) =

∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) (Imx > 0) , (5.52)

F↓(x) = −
∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) (Imx < 0) . (5.53)

These equations can be easily proven by first substituting F (x′) = F↑(x
′) + F↓(x

′) on the

right hand side and then closing the integration contour for F↑(x
′) (F↓(x

′)) on the upper

(lower) half plane. Now when the argument x is not in the region specified in (5.52)

and (5.53), we need to analytically continue the above formulas. For instance, F↑(x) in the

region where Imx < 0 should be expressed as

F↑(x) = F (x)− F↓(x) = F (x) +

∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) . (5.54)

Note that the first term F (x) on the right hand side can be thought of as due to the integral

along a small circle around x′ = x.

To apply this method to the case of our interest, namely to the equations (5.9)–(5.14),

we take the logarithm and represent them in a general form as

ln〈iεi , jεj 〉+ ln〈i−εi , j−εi〉 = ln sin

(
εipi + εjpj + pk

2

)
+ ln sin

(
εipi + εjpj − pk

2

)
− ln sin pi − ln sin pj . (5.55)
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Here εi denotes a + or − sign. In this process, we have neglected the contributions of the

form ln(−1), since they only contribute to the overall phase of the three-point functions.

Our aim will be to express each of the terms on the left hand side of (5.55) in terms of

some convolution integrals of the functions on the right hand side. To put it in another

way, we wish to decompose each term on the right hand side into contributions coming

from each term on the left hand side. Since the quasi-momentum pi(x) is defined on a

Riemann surface with branch cuts, we need to generalize the Wiener-Hopf decomposition

formula in an appropriate way, as discussed below.

5.4.1 Separation of the poles

Let us first decompose the terms of the form − ln sin pi, which give rise to poles of the Wron-

skians. As shown in the previous section, which Wronskian develops a pole is determined

purely by the sign of the real part of the quasi-momentum qi(x). Therefore, we should be

able to decompose the quantity − ln sin pi by using a convolution integral along the curve

defined by Re qi = 0. For the ordinary Wiener-Hopf decomposition, the convolution kernel

is given simply by 1/(x−x′). In the present case, however, we have a two-sheeted Riemann

surface and hence we must make sure that the kernel has the simple pole only when x and

x′ coincide on the same sheet. When they are on top of each other on different sheets, no

singularity should occur. The appropriate kernel with this property is given by

K̂i(x′;x) ≡ 1

2(x′ − x)

(√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

+ 1

)
. (5.56)

When x and x′ get close to each other but on different sheets, the square root factor tends

to −1 canceling the +1 term and hence the kernel is indeed regular. Furthermore, in the

limit that x′ tends to∞, the kernel K̂i(x′;x) decreases like (x′)−2, which is sufficiently fast

for our purpose.

With such a convolution kernel, we can carry out the Wiener-Hopf decomposition in

the usual way. Namely the term − ln sin pi(x) can be decomposed into the contributions of

〈i+ , jεj 〉(x) and 〈i− , j−εj 〉(x) as

〈i+ , jεj 〉(x) 3
∮

Γi+

K̂i ∗ (− ln sin pi) , (5.57)

〈i− , j−εj 〉(x) 3
∮

Γi−

K̂i ∗ (− ln sin pi) , (5.58)

where the convolution integral is defined as∫
A ∗B ≡

∫
dx′

2πi
A(x′;x)B(x′) . (5.59)

As for the contours of integration, Γi+ is defined by Re qi = 0 and Γi− stands for −Γi+ .

The direction of the contour Γi+ is defined such that 〈i+ , jεj 〉(x) does not contain poles in

the region to the left of the contour.37

37A typical form of the contour is depicted in figure 9 in section 7, where we study explicit examples.
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Now note that under the holomorphic involution x→ σ̂x, the quasi-momentum pi(x)

and the square-root contained in (5.56) simply flip sign. Making use of this property, we

can re-express the convolution integrals (5.57) and (5.58) as integrals only on the first (or

the upper) sheet.:

〈i+ , jεj 〉(x) 3 −
∮

Γui+

Ki ∗ ln sin pi , (5.60)

〈i− , j−εj 〉(x) 3 −
∮

Γui−

Ki ∗ ln sin pi . (5.61)

Here, Γui± denotes the portion of Γi± on the upper-sheet of the spectral curve and the kernel

Ki(x′;x) (without a hat) is defined by

Ki(x′;x) ≡ 1

x′ − x

√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

. (5.62)

Again we have neglected the factors of the form ln(−1) arising from the sign flip of pi(x),

as they only modify the overall phase of the Wronskians and the three-point functions.

It is important to note that (5.57) and (5.58) are valid only when x is on the left

hand side of the contours, just as in the case of the ordinary Wiener-Hopf decomposition.

When the argument x is on the right hand side of the contour Γi± , we must add − ln sin pi
to (5.57) and (5.58), as explained in (5.54). Such effects can be taken into account also

in (5.60) and (5.61), if x is on the upper sheet, by adding a small circle encircling x′ = x

counterclockwise to the integration contours. In what follows, such contributions will be

referred to as contact terms.

5.4.2 Separation of the zeros

Next we shall discuss the decomposition of the first two terms on the right hand side

of (5.55), which are responsible for the zeros of the Wronskians. To perform the decompo-

sition, again we need to determine the appropriate convolution kernel and the integration

contour.

Let us first discuss the convolution kernel. As the terms of our focus depend on all

the quasi-momenta pi(x)’s, the appropriate convolution kernel must be a function on the

Riemann surface which contains all the branch cuts of the pi(x)’s. Such a kernel can be

easily written down as a generalization of the expression (5.56) and is given by

K̂all ≡
1

8(x′ − x)

3∏
i=1

(√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

+ 1

)
. (5.63)

Since there are two choices of sign for each square root factor on the right hand side

of (5.63), K̂all is properly defined on the eightfold cover of the complex plane. In what

follows, we distinguish these eight sheets as {∗, ∗, ∗}-sheet, where the successive entry ∗ is

either “u” denoting upper sheet or “l” denoting lower sheet, referring to the two sheets

for p1(x), p2(x) and p3(x) respectively. It is clear that the kernel (5.63) has a pole with
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a residue +1 at x′ = x only when two-points are on the same sheet. Therefore it has a

desired property for the Wiener-Hopf decomposition.

Let us next turn to the contour of integration. As discussed in the previous section,

the zeros of the Wronskians are determined by the following two properties: (i) The con-

nectivity of the exact WKB-curves and (ii) the relative magnitude of the eigenvectors i±.

Therefore, curves across which these two properties change can be the possible integration

contours. Corresponding to the properties (i) and (ii) above, there are two types of integra-

tion contours; the curves defined by Re qi(x) = 0 and the curves defined by Ni = Nj +Nk.

An important point to bare in mind is that in general only some portions of these curves

will be the proper integration contours, since in some cases the analyticity of the Wron-

skians does not change even when we cross these curves. In order to determine the correct

integration contours explicitly, we need to apply the general rules derived in the previous

section. However, as the form of the contours determined through such a procedure de-

pends on the specific details of the choice of the external states, we will postpone such

an analysis until section 7, where we work out some specific examples. Thus, in what

follows we will denote the integration contours without specifying their explicit forms as

M±±±, where Mε1ε2ε3 denotes the contour we use to determine the contribution of the

factor sin (
∑

i εipi) to 〈iεi , jεj 〉. They are defined such that they flip the orientation if we

flip the signs of three indices, for example M+++ = −M−−−
Employing the kernel and the contours given above, let us perform the decomposition

of the product of Wronskians, taking that of 〈1+ , 2+〉 and 〈1− , 2−〉 as a representative

example. Applying the Wiener-Hopf decomposition to the relation (5.55) with i = 1, j = 2

and ε1 = +, ε2 = +, we obtain

〈1+ , 2+〉 3∮
M+++

K̂all ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M++−

K̂all ∗ ln sin

(
p1 + p2 − p3

2

)
, (5.64)

〈1− , 2−〉 3∮
M−−−

K̂all ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M−−+

K̂all ∗ ln sin

(
p1 + p2 − p3

2

)
. (5.65)

As in the case of the ordinary Wiener-Hopf decomposition, the expressions (5.64) and (5.65)

are valid only when x is located to the left of the integration contour. Additional terms,

to be discussed shortly, are needed when x is on the other side of the contour.

Let us now show that the kernel K̂all used in (5.64) and (5.65) can be effectively

replaced by simpler combinations of the form (Ki +Kj) /8. To explain the idea, consider

the following integral as an example:∮
M+++

dx′

2πi
K̂all(x

′;x) ln sin

(
p1 + p2 + p3

2

)
(x′) . (5.66)

As the first step, we make a change of integration variable from x′ to σ̂3x
′, where σ̂i denotes

the holomorphic involution with respect to pi, namely the operation that exchanges the

two sheets associated with pi. Although this clearly leaves the value of the integral intact,
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the form of the integral changes. One can easily verify that the following transformation

formulas for the integrand and the contours hold:

ln sin

(
p1 + p2 + p3

2

)
(σ̂3x

′) = ln sin

(
p1 + p2 − p3

2

)
(x′) , (5.67)

K̂all(σ̂3x
′;x) = K̂(3)

all (x′;x) , (5.68)∮
M+++

d(σ̂3x
′) =

∮
M++−

dx′ . (5.69)

In the second line (5.68), the “sign-flipped kernel” K̂(3)
all is defined by

K̂(3)
all ≡

1

8(x′ − x)

(
−

√
(x− u3)(x− ū3)

(x′ − u3)(x′ − ū3)
+ 1

) ∏
`=1,2

(√
(x− u`)(x− ū`)
(x′ − u`)(x′ − ū`)

+ 1

)
. (5.70)

Making such transformations, we can re-express the integral (5.66) as∮
M++−

dx′

2πi
K̂(3)

all (x′;x) ln sin

(
p1 + p2 − p3

2

)
(x′) . (5.71)

Performing similar analysis for all the possible sign-flips, we obtain 23 different expressions

for (5.66). Then averaging over all the 23 expressions, we find that the final expressions

are given in terms of the kernels Ki as follows:

〈1+ , 2+〉 3
1

16

(∮
M+++

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M++−

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)
+

∮
M+−+

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
M−++

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
,

(5.72)

〈1− , 2−〉 3
1

16

(∮
M−−−

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M−−+

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)
+

∮
M−+−

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
M+−−

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
.

(5.73)

Just as before, we neglected the contributions of the form ln(−1) as leading to pure phases.

Also, the same remarks made below equations (5.64) and (5.65) on the position of x relative

to the contour lines apply to the expressions (5.72) and (5.73) above.

Finally, for later convenience, let us further re-write the above expressions as integrals

performed purely on the {u, u, u}-sheet. Each contour Mε1ε2ε3 has parts on the eight dif-

ferent sheets denoted byMu,u,u
ε1ε2ε3 ,M

u,u,l
ε1ε2ε3 , etc., where the superscripts indicate the relevant

sheet in an obvious way. Consider for example the first integral in (5.72) along the contour

M+++. The form as given is for the portion Muuu
+++. For the portion denoted by Mulu

+++
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for example, if we wish to express its contribution in terms of an integral on the {u, u, u}-
sheet, we need to change the sign of K2 and p2. Then the integral becomes identical to

that of the first term in the second line of (5.72), except along Muuu
+−+. In similar fashions

we can re-express the contributions from the eight parts ofM+++ in terms of the integrals

on the {u, u, u}-sheet. After repeating the same procedure for the rest of the three terms

in (5.72), one finds that the net effect is that each term of (5.72) is multiplied by a factor

of eight, with each contour restricted to the {u, u, u}-sheet. In this way we obtain the

representations

〈1+ , 2+〉 3

1

2

(∮
Muuu

+++

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
Muuu

++−

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)

+

∮
Muuu

+−+

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
Muuu
−++

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
,

(5.74)

〈1− , 2−〉 3

1

2

(∮
Muuu
−−−

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
Muuu
−−+

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)

+

∮
Muuu
−+−

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
Muuu

+−−

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
.

(5.75)

The results obtained in this subsection and the previous subsection are both expressed in

terms of certain convolution integrals on the spectral curve. Thus, in what follows, we will

denote their sum by Conv〈i±, j±〉.
Before ending this subsection, let us make one important remark. Although each

convolution integral obtained so far is divergent at x = ±1, the divergence cancels38 in the

sum Conv〈i±, j±〉. Thus the contribution singular at x = ±1 must be separately taken into

account as we will do in the next subsection.

5.5 Singular part and constant part of the Wronskians

In addition to the main non-trivial parts determined by the Wiener-Hopf decomposition

described above, there are two further contributions to the Wronskians. One is the con-

tribution singular at x = ±1, coming from such structure in the connections used in ALP.

The other is the possibility of adding a constant function on the spectral curve. In this

subsection, we will determine these two contributions.

Let us first focus on terms singular at x = 1. To determine such terms, we will need

the WKB expansions around x = 1 for all the Wronskians, not just the ones that were

discussed in section 3.2, namely 〈i+ , j+〉 and 〈i− , j−〉. This is because of the following

reason: although the formulas we obtained for the contribution of the action and that of

38One can confirm this by expanding the convolution integrals around x = ±1.
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the wave function appear to contain Wronskians of the type 〈i+ , j+〉 and 〈i− , j−〉 only, we

must understand their behavior when they are followed into the second sheet as well in order

to know the analyticity property on the entire Riemann surface. As shown in (2.100), when

we cross the branch cut associated with pi(x) into the lower sheet, the eigenfunctions i+
and i− behave like i− and −i+ on the upper sheet, respectively, . Therefore the behavior

of 〈i+ , j+〉 on the {u, l, ∗}-sheet can be obtained from the behavior of 〈i+ , j−〉 on the

{u, u, ∗}-sheet, etc.

Now the WKB expansions of the Wronskians of the type 〈i+ , j−〉 can be obtained from

those of 〈i+ , j+〉 by the use of the following Schouten identities:

〈i+ , j−〉〈j+ , k+〉+ 〈i+ , j+〉〈j− , k+〉+ 〈i+ , k+〉〈j− , j+〉 = 0 . (5.76)

Indeed these identities can be regarded as the equations for the six unknown Wronskians

of the form 〈i+ , j−〉. If we consider all the combinations of i, j and k in (5.76), we obtain

three independent equations. Combining them with the equations (5.12)–(5.14) for the

products of the Wronskians, we can completely determine 〈i+ , j−〉’s in terms of 〈i+ , j+〉
in the following form:

〈1+ , 2−〉 = e−i(p1+p2−p3)/2 sin
(p1−p2−p3

2

)
sin p2

〈3+ , 1+〉
〈2+ , 3+〉

, (5.77)

〈1− , 2+〉 = ei(p1+p2−p3)/2 sin
(p1−p2−p3

2

)
sin p1

〈2+ , 3+〉
〈3+ , 1+〉

, (5.78)

〈2+ , 3−〉 = e−i(−p1+p2+p3)/2 sin
(−p1+p2−p3

2

)
sin p3

〈1+ , 2+〉
〈3+ , 1+〉

, (5.79)

〈2− , 3+〉 = ei(−p1+p2+p3)/2 sin
(p1+p2−p3

2

)
sin p2

〈3+ , 1+〉
〈1+ , 2+〉

, (5.80)

〈3+ , 1−〉 = e−i(p1−p2+p3)/2 sin
(−p1−p2+p3

2

)
sin p1

〈2+ , 3+〉
〈1+ , 2+〉

, (5.81)

〈3− , 1+〉 = ei(p1−p2+p3)/2 sin
(−p1+p2+p3

2

)
sin p3

〈1+ , 2+〉
〈2+ , 3+〉

. (5.82)

From these expressions, we can obtain the WKB-expansion for every Wronskian using the

results for 〈i+ , j+〉.
The singular term of the Wronskians is given simply by the leading term in the WKB

expansion. For instance, the singular terms for 〈i+ , j+〉 and 〈i− , j−〉 at x = 1 on the

{u, u, u}-sheet is determined from the expansion (3.37) and (3.38) as

ln〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`21

√
Tdz , ln〈1− , 2−〉

x∼1∼ 2

1− x

∫
`12

√
Tdz , (5.83)

ln〈2+ , 3+〉
x∼1∼ 2

1− x

∫
`23

√
Tdz , ln〈2− , 3−〉

x∼1∼ 2

1− x

∫
`32

√
Tdz , (5.84)

ln〈3+ , 1+〉
x∼1∼ 2

1− x

∫
`3̂1

√
Tdz , ln〈3− , 1−〉

x∼1∼ 2

1− x

∫
`13̂

√
Tdz . (5.85)
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Then by using (5.77)–(5.82) we can determine the singular terms for 〈i+ , j−〉 on the

{u, u, u}-sheet as

ln〈1+ , 2−〉
x∼1∼ 2πi(κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`2̂3̂+`3̂1

√
Tdz , (5.86)

ln〈1− , 2+〉
x∼1∼ 2πi(−κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`13̂+`3̂2̂

√
Tdz , (5.87)

ln〈2+ , 3−〉
x∼1∼ 2πi(−κ1 + κ2 + κ3)

1− x
+

2

1− x

∫
`21+`13̂

√
Tdz , (5.88)

ln〈2− , 3+〉
x∼1∼ 2πi(κ1 − κ2 − κ3)

1− x
+

2

1− x

∫
`3̂1+`12

√
Tdz , (5.89)

ln〈3+ , 1−〉
x∼1∼ 2πi(κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`12+`23

√
Tdz , (5.90)

ln〈3− , 1+〉
x∼1∼ 2πi(−κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`32+`21

√
Tdz . (5.91)

In order to determine the singular terms completely, we also need to understand the

singular behavior on other sheets. As already described, this can be done by utilizing the

fact that i+ and i− transform into i− and −i+ respectively as one crosses a branch cut

associated to pi(x). For instance, applying this rule we can easily find that the singular

term for 〈1+ , 2+〉 must behave in the following way on each sheet:

〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`21

√
Tdz (on the {u , u , ∗}-sheet) ,

(5.92)

〈1+ , 2+〉
x∼1∼ 2πi(κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`2̂3̂+`3̂1

√
Tdz (on the {u , l , ∗}-sheet) ,

(5.93)

〈1+ , 2+〉
x∼1∼ 2πi(−κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`13̂+`3̂2̂

√
Tdz (on the {l , u , ∗}-sheet) ,

(5.94)

〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`12

√
Tdz (on the {l , l , ∗}-sheet) .

(5.95)

Combining all these results, it is possible to write down the expression on the entire

Riemann surface which gives the correct singular behavior on the respective sheet. It is

given by

Sing+ [〈1+ , 2+〉] =
1

1−x

√
(x− u1)(x− ū1)

(1− u1)(1− ū1)

(
πi(κ1 + κ2 − κ3) + 2

∫
`1̂2̂+`2̂3̂+`3̂1

√
Tdz

)

+
1

1−x

√
(x− u2)(x− ū2)

(1− u2)(1− ū2)

(
πi(−κ1 − κ2 + κ3) + 2

∫
`23+`31̂+`1̂2̂

√
Tdz

)
.

(5.96)
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Here and hereafter, we will use the notation Sing± [f(x)] to denote the singular term of

f(x) around x = ±1. In an entirely similar manner, we can determine the terms singular

at x = −1 as

Sing− [〈1+ , 2+〉] =
1

1+x

√
(x− u1)(x− ū1)

(1− u1)(1− ū1)

(
πi(−κ1 − κ2 + κ3) + 2

∫
`1̂2̂+`2̂3̂+`3̂1

√
T̄ dz̄

)

+
1

1+x

√
(x− u2)(x− ū2)

(1− u2)(1− ū2)

(
πi(κ1 + κ2 − κ3) + 2

∫
`23+`31̂+`1̂2̂

√
T̄ dz̄

)
.

(5.97)

Singular terms for other Wronskians at x = ±1 can be determined in a similar manner.

The remaining issue is the ambiguity of adding a constant function to the logarithm of

the Wronskian. Such an ambiguity can be fixed by once more utilizing the property that

i± that i+ (i−) transforms into i− (−i+) as it crosses the branch cut of pi. This leads to

the following constraint for the Wronskians

〈i+ , j+〉(σ̂iσ̂jx) = 〈i− , j−〉(x) . (5.98)

It turns out that all the results obtained so far satisfy (5.98). Since this property gets lost

upon adding a constant to the logarithm of the Wronskian, it shows that our results are

already complete and we should not add any constant functions.

6 Complete three-point functions at strong coupling

Up to the last section, we have developed necessary methods and acquired the knowledge

of the various parts that make up the three-point functions of our interest. Now we are

ready to put them together and see that they combine in a non-trivial fashion to produce

a rather remarkable answer.

First in subsection 6.1, we obtain the complete result for the S3 part by putting

together the contribution of the action and that of the vertex operators. These two contri-

butions combine nicely to produce a simple expression in terms of integrals on the spectral

curve. Then, adapting the methods developed for the S3 part, we evaluate in subsection 6.2

the EAdS3 part of the three-point function. Our focus will be on the differences between

the S3 and EAdS3 contributions. Finally in subsection 6.3, we present the full answer by

combining the contributions of the S3 part and the EAdS3 part. We will see that the

structure of the final answer closely resembles that of the weak coupling result. Detailed

comparison for certain specific cases will be performed in section 7.

6.1 The S3 part

Before we begin the actual computations, let us summarize the structure of the contribu-

tions from the S3 part to the logarithm of the three-point function, which we denote by

FS3 . As was already indicated in section 2.3, FS3 consists of the contribution of the action

and that of the vertex operators, namely

FS3 = Faction + Fvertex . (6.1)
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Each contribution can be further split into several different pieces as

Faction =

√
λ

6
+A$ +Aη , Fvertex = Vkin + Vdyn + Venergy . (6.2)

Among these terms, A$, Vkin and Venergy have already been evaluated respectively

in (3.47), (4.61) and (4.63). Thus, our main task will be to compute Aη and Vdyn. As

shown in (3.48) and (4.62), Aη is given by the normal ordered derivatives of the Wron-

skians, :∂x ln〈i+ , j+〉:±, whereas Vdyn is given by the Wronskians evaluated at x = 0 and

x =∞, ln〈i+ , j+〉|∞ and ln〈i− , j−〉|0. From the discussion in section 5, we know the Wron-

skians are comprised of two different parts, the convolution-integral part Conv [ln〈i∗ , j∗〉]
and the singular part Sing± [ln〈i∗ , j∗〉]. They both contribute to Aη and Vdyn. In what

follows, we examine these two parts separately and evaluate their contributions to Aη
and Vdyn.

6.1.1 Contributions from the convolution integrals

We begin with the computation of the convolution integrals. To illustrate the basic idea,

let us study Conv [ln〈2+ , 1+〉]|∞, Conv [ln〈2− , 1−〉]|0 and :∂xConv [ln〈2+ , 1+〉] :± as repre-

sentative examples.

To compute the first two quantities, we need to know on which side of the integration

contours the points x = 0 and x = ∞ are located. This is because the convolution

integrals derived in subsection 5.4 are valid only when x is on the left hand side of the

contours. When x is on the right hand side of the contours, we must include the contact

terms, which originate from the integration around x′ = x. Unfortunately, the form of the

contours depend on the specific details of the solutions we use and hence we cannot give

a general discussion. We will therefore postpone the discussion of the contact terms until

we study several explicit examples in the next section.

Apart from such contact terms, Conv [〈2+ , 1+〉]|∞ and Conv [〈2− , 1−〉]|0 can be ob-

tained directly from (5.60), (5.61), (5.74) and (5.75) by setting the value of x in the con-

volution kernels Ki(x′;x) to be 0 and ∞ respectively.

Next, consider the evaluation of the normal-ordered derivative :∂xConv [ln〈2+ , 1+〉] :±.

This quantity does not receive contributions from the contact terms since the integration

contours pass right through x = ±1 and we can compute :∂xConv [ln〈2+ , 1+〉] :± always on

the left hand side of the contour. In addition, since the convolution integrals are nonsingular

at x = ±1, as discussed at the end of section 5.4, the normal ordering is in fact unnecessary.

Thus, :∂xConv [ln〈2+ , 1+〉] :± can be obtained from (5.60) and (5.74) by simply replacing

Ki(x′;x) with their derivatives ∂xKi(x′;x)|x=±1.

Applying similar analyses to other Wronskians and using the formulas (3.48)

and (4.62), we can obtain the contributions of the convolution integrals to Aη and Vdyn,
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which will be denoted by Conv [Aη] and Conv [Vdyn]. They are given by

Conv [Aη] =
√
λ

[∫
Muuu
−−−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉
123
∗ ln sin

(
p1 + p2 + p3

2

)
+

∫
Muuu
−−+

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉3

12
∗ ln sin

(
p1 + p2 − p3

2

)
+

∫
Muuu
−+−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉2

13
∗ ln sin

(
p1 − p2 + p3

2

)
+

∫
Muuu

+−−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉1

23
∗ ln sin

(
−p1 + p2 + p3

2

)

− 2
3∑
j=1

∫
Γuj−

(
κj ∂xKj |+ − κj ∂xKj |−

)
∗ ln sin pj

]
, (6.3)

Conv [Vdyn] =

∫
Muuu
−−−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉
123
∗ ln sin

(
p1 + p2 + p3

2

)
+

∫
Muuu
−−+

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12
∗ ln sin

(
p1 + p2 − p3

2

)
+

∫
Muuu
−+−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13
∗ ln sin

(
p1 − p2 + p3

2

)
+

∫
Muuu

+−−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23
∗ ln sin

(
−p1 + p2 + p3

2

)

− 2

3∑
j=1

∫
Γuj−

(
Sj∞ Kj |∞ + Sj0 Kj |0

)
∗ ln sin pj . (6.4)

To simplify the expressions, we have introduced the double bracket notation
〈〈
?
〉〉

, to

denote sum of three terms with designated combinations of signs, defined as〈〈
ai

〉〉
123

= a1 + a2 + a3 ,
〈〈
ai

〉〉3

12
= a1 + a2 − a3 , etc. , (6.5)

Also, we have employed the abbreviated symbols ∂xKi|±, Ki|∞ and Ki|0, which are de-

fined by

∂xKi|± ≡ ∂xKi(x′;x)
∣∣
x=±1

, Ki|∞ ≡ Ki(x
′;∞) , Ki|0 ≡ Ki(x

′; 0) . (6.6)

It turns out that the two contributions (6.3) and (6.4) combine to give a remarkably

simple expression displayed below. This is due to the crucial relation of the form

√
λκi ∂xKi|+ −

√
λκi ∂xKi|− + Si∞ Ki|∞ + Si0 Ki|0 = z(x′)

dpi(x
′)

dx′
, (6.7)

where z(x) on the right hand side is the Zhukovsky variable, defined in (2.36). Although

this equality can be verified by a direct computation using the explicit form of pi(x) for
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the one-cut solutions given in (2.58), it is important to give a more intuitive and essential

understanding. Note that the right hand side of (6.7) is proportional to the integrand of the

filling fraction given in (2.35). Therefore when integrated over appropriate a-type cycles,

it produces the corresponding conserved charges. In other words, it is characterized by the

singularities associated with such charges. Now observe that the left hand side precisely

consists of terms which provide such singularities. The first two terms are responsible for

the singularities at x = ±1, while the last two terms contain the poles at x =∞ and x = 0

associated with the charges Si∞ and Si0 respectively. Furthermore, it should be emphasized

that the formula above unifies the contributions in two sense of the word. First, it unites

the contributions from the action, represented by the first two terms, and those from the

vertex operators, represented by the last two terms. Only when they are put together one

can reproduce all the singularities of the right hand side. Second, the expression obtained

on the right hand side is universal in that all the specific data shown on the left hand

side, namely κi, S
i
∞ and Si0, are contained in one quantity pi(x). As we shall discuss in

section 6.2, this feature allows us to write down the same form of the result (except for an

overall sign) given by the right hand side of (6.7) for the contributions from the EAdS3

part, using the quasi-momentum for that part of the string.

Now, applying (6.7) we can rewrite the sum Tconv ≡ Conv [Aη] + Conv [Vdyn] into the

following compact expression:

Tconv =

∫
Muuu
−−−

z(x) (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∫
Muuu
−−+

z(x) (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)
+

∫
Muuu
−+−

z(x) (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
+

∫
Muuu

+−−

z(x) (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

− 2
3∑
j=1

∫
Γuj−

z(x) dpj
2πi

ln sin pj + Contact . (6.8)

In the last line, we included the possible contributions from the contact terms, denoted by

Contact.

6.1.2 Contributions from the singular part of the Wronskians

We now turn to the computation of the singular part Sing± [ln〈i∗ , j∗〉]. By substituting

the expressions for the singular part of the Wronskians, such as (5.96) and (5.97), into

the formulas (3.48) and (4.62), we can evaluate the contributions of the singular part in a

straightforward manner. From this calculation, we find that a part of the terms contribute

only to the overall phase of the three-point functions. For instance, the first and the third

term in (5.96), which are proportional to ±πi(κ1 + κ2 − κ3), will only yield an overall

phase owing to the factor of πi. Just as before, we will ignore such contributions in this
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work. Then the contributions of Sing+ [ln〈i∗ , j∗〉] to Aη and Vdyn, denoted by Sing+ [Aη]
and Sing+ [Vdyn], are obtained as

Sing+ [Aη] =
√
λ

[〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉3

12

∫
`21

$

+
〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉1

23

∫
`23

$

+
〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉2

13

∫
`3̂1

$

]
, (6.9)

and

Sing+ [Vdyn] =

[〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12

∫
`21

$ +
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23

∫
`23

$

+
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13

∫
`3̂1

$

]∣∣∣∣∣
x′=+1

. (6.10)

Note that in the present case, in contrast to the case of :∂xConv [ln〈i∗ , j∗〉] :± discussed

previously, the normal ordering in :∂xKi(1;x):+ is necessary since ∂xKi(1;x) is singular at

x = 1. In an entirely similar manner, the contributions of Sing− [ln〈i∗ , j∗〉] to Aη and Vdyn,

denoted by Sing− [Aη] and Sing− [Vdyn], are computed as

Sing− [Aη] = −
√
λ

[〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉3

12

∫
`21

$̄

+
〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉1

23

∫
`23

$̄

+
〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉2

13

∫
`3̂1

$̄

]
, (6.11)

and

Sing− [Vdyn] = −

[〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12

∫
`21

$̄ +
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23

∫
`23

$̄

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13

∫
`3̂1

$̄

]∣∣∣∣∣
x′=−1

. (6.12)

Now just as we did for Conv [Aη] + Conv [Vdyn], we can make use of the relation (6.7)

to rewrite the sum Sing± [Aη] + Sing± [Vdyn] into much simpler forms. The results are

Sing+ [Aη] + Sing+ [Vdyn] =:z(x)

(
dp1

dx
+
dp2

dx
− dp3

dx

)
:+

∫
`21

$

+ :z(x)

(
dp1

dx
− dp2

dx
+
dp3

dx

)
:+

∫
`3̂1

$

+ :z(x)

(
−dp1

dx
+
dp2

dx
+
dp3

dx

)
:+

∫
`23

$ , (6.13)
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and

Sing− [Aη] + Sing− [Vdyn] =− :z(x)

(
dp1

dx
+
dp2

dx
− dp3

dx

)
:−

∫
`21

$̄

− :z(x)

(
dp1

dx
− dp2

dx
+
dp3

dx

)
:−

∫
`3̂1

$̄

− :z(x)

(
−dp1

dx
+
dp2

dx
+
dp3

dx

)
:−

∫
`23

$̄ . (6.14)

The expressions :z(x) dpi/dx:± in (6.13) and (6.14) above can be evaluated using the

explicit form of the quasi-momentum, given in (2.58), as39

:z(x)
dpi
dx

:+ = −2πκi − πκiΛi , :z(x)
dpi
dx

:− = 2πκi + πκiΛ̄i . (6.15)

This provides fairly explicit forms for the expressions Sing± [Aη] + Sing± [Vdyn].

6.1.3 Result for the S3 part

We can now combine the results obtained so far and obtain the net contribution of the S3

part. Recall that the general structure of the S3 part of the three-point functions we have

computed is of the form

FS3 =

√
λ

6
+ 2
√
λ

3∑
i=1

κ2
i ln εi +A$ + Vkin + Conv [Aη] + Conv [Vdyn]

+ Sing+ [Aη] + Sing+ [Vdyn] + Sing− [Aη] + Sing− [Vdyn] . (6.16)

Among the various terms shown above, those which can be expressed in terms of the

contour integrals of $ or $̄ can be combined and evaluated using the explicit form of

:z dpi/dx:± given in (6.15). The result is

Tsing ≡A$ + Sing+ [Aη] + Sing+ [Vdyn] + Sing− [Aη] + Sing− [Vdyn]

=−
√
λ

2

[
(κ1 + κ2 − κ3)

∫
`21

($ + $̄) + (κ1 − κ2 + κ3)

∫
`3̂1

($ + $̄)

+ (−κ1 + κ2 + κ3)

∫
`23

($ + $̄)

]
. (6.17)

Since $ and $̄ behave near the punctures as

$ → κi
z − zi

, $̄ → κi
z̄ − z̄i

, (z → zi) for i = 1, 2̄, 3 , (6.18)

the expression (6.17) diverges in the following fashion as the regularization parameters εi’s

tend to zero:

Tsing → −2
√
λ

3∑
i=1

κ2
i ln εi = −Venergy . (6.19)

39Definitions of Λi and Λ̄i are given in (3.20) and (3.31).
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Notice, however, that this divergence is precisely canceled by the second term of (6.16).

Therefore, the quantity (6.16) as a whole is finite in the limit εi → 0. This is as expected

for correctly normalized three-point functions.

Let us summarize the final result for the logarithm of the three-point functions coming

from the S3 part. It can be written in the form

FS3 =

√
λ

6
+ Venergy + Tsing + Vkin + Tconv , (6.20)

where Vkin is the kinematical factor depending only on the normalization vectors given

in (4.61), Tconv is the sum of the contributions from the convolution integrals (6.8), and

Tsing, which is given in (6.17), represents the sum of A$ defined in (3.47) and the contri-

butions from the singular parts of the Wronskians.

6.2 The EAdS3 part

We now discuss the contributions from the EAdS3 part. Since the logic of the evaluation is

almost entirely similar, we will not repeat the long analysis we performed for the S3 part.

In fact it suffices to explain which part of the analysis for the S3 part can be “copied” and

which part has to be modified.

6.2.1 Contribution from the action

Let us begin with the contribution from the action integral. Since EAdS3 and S3 are

formally quite similar, the computation of the action integral can be performed in exactly

the same manner. There is, however, a simple but crucial difference. It is the overall sign

of the integral. For EAdS3, the counterpart of the matrix Y shown in (2.14) is given by

X ≡

(
X+ X

X− X̄

)
, (6.21)

where

X± ≡ X−1 ±X4 , , X ≡ X1 + iX2 , X̄ ≡ X1 − iX2 . (6.22)

The right current is then defined as

ĵ ≡ X−1dX = ĵzdz + ĵz̄dz̄ . (6.23)

Now compare the expressions of the stress tensors and the action integrals for S3 and

EAdS3, expressed in terms of the respective right current. They are given by

T (z) ≡ TAdS(z) =
1

2
tr (ĵz ĵz) = κ2 , TS(z) = −1

2
tr (jzjz) = −κ2 , (6.24)

SEAdS3 =

√
λ

2π

∫
d2z tr (ĵz ĵz̄) , SS3 = −

√
λ

2π

∫
d2z tr (jzjz̄) . (6.25)

This shows that while we have the equality tr (ĵz ĵz) = tr (jzjz̄) = κ2, the signs in front

of the action integrals are opposite. Therefore all the results for the action integral are

formally the same as those for the S3 case, but with opposite signs. This will lead to

various cancellations with the contributions from the S3 part, as we shall see shortly.

– 77 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

6.2.2 Contribution from the wave function

As for the evaluation of the contribution from the wave function, the basic logic of the

formalism developed in section 4 for the S3 still applies. However, there are a few important

modifications, as we shall explain below.

As discussed in our previous work [11], in the case of a string in EAdS3 the global

symmetry group is SL(2,C)R×SL(2,C)L and hence the the raising operators with respect

to which we define the highest weight state are the left and the right special conformal

transformations given by

V sc
R =

(
1 0

βR 1

)
, V sc

L =

(
1 βL
0 1

)
, (6.26)

where βR and βL are constants. Applying our general argument for the determination of

the polarization spinors, we readily find

(V sc
R )tndiag = ndiag , ndiag =

(
1

0

)
, (6.27)

(V sc
L )tñdiag = ñdiag , ñdiag =

(
0

1

)
. (6.28)

It should be noted that, compared to the S3 case given in (4.23), ndiag here for the right

sector is the same as ñZ for the left sector there and similarly ñ for the left sector in

the present case is identical to nZ for the right sector for the S3 case. Now the algebraic

manipulations for the construction of the wave functions are the same as for the S3 case

up to the computation of the factor ei∆φ. Therefore, for the right sector, we get the same

result for the Z-type operator in the left sector, given in (4.58). For example at z1 we have

ei∆φR,1 = a−2
1 =

〈1+, 2+〉〈3+, 1+〉
〈2+, 3+〉

∣∣∣∣
∞

〈n2, n3〉
〈n1, n2〉〈n3, n1〉

(6.29)

This is the inverse of the result for S3 obtained in (4.51) with i− replaced by i+. The result

for the left sector is similar. What this means is that the wave function for the EAdS3

is obtained from the one for the S3 case by (i) reversing the sign of the powers and (ii)

exchanging i+ and i−. Abusing the same notations for the polarization spinors and the

eigenvectors as in the S3 case, we get

ΨEAdS3
R =

∏
i 6=j 6=k

(
〈ni, nj〉
〈i+, j+〉

∣∣
∞

)−(Ri+Rj−Rk)

, (6.30)

ΨEAdS3
L =

∏
i 6=j 6=k

(
〈ñi, ñj〉
〈̃i−, j̃−〉

∣∣
0

)−(Li+Lj−Lk)

, (6.31)

where Ri and Li here are the combinations of the conformal dimension ∆i and the spin Si
given by

Ri =
1

2
(∆i − Si) , Li =

1

2
(∆i + Si) . (6.32)
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This reversal of power relative to the S3 case is what is desired. Effectively it is equivalent

to employing e+iSφ as the form of the wave function, which is what we adopted in the

previous work [11] for the three-point function of the GKP string in EAdS3 and lead to

the power structure given in (6.30) and (6.31). As we shall show below, correctness of this

power structure becomes obvious when we relate the Wronskian 〈ni, nj〉 to the difference

of the coordinates xi and xj , where xi is the position of the i-th vertex operator on the

boundary of EAdS3.

Recall that the embedding coordinates of EAdS3 are taken to be Xµ (µ = −1, 1, 2, 4),

which is a vector of SO(1, 3) with signature (−,+,+,+), while the Poincaré coordinates

are given by z = 1/(X−1 +X4), xr = zXr, (r = 1, 2), with which X−1−X4 is expressed as

z + (~x2/z). Consider approaching a point on the boundary z = 0 with finite values of xr.

Then the term z in X−1 −X4 becomes negligible compared to ~x2/z and Xµ approaches a

null vector, with large components. Such a vector can be parametrized, up to an overall

scale, by the boundary coordinates ~x = (x1, x2) as

X−1 =
1

2
(1 + ~x2) , X4 =

1

2
(1− ~x2) , (X1, X2) = ~x , (6.33)

~x2 = xrηrsx
s = xrxr , ηrs = (+,+) , r, s = 1, 2 . (6.34)

As usual, one can map Xµ to the matrix XµΣ̂µ, with Σ̂µ = (1, σ1, σ2, σ3), which transforms

from left under SL(2, C) and from right under SL(2, C)∗. Then, it is well-known that for

a null vector Xµ the matrix elements of XµΣ̂µ can be written as a product of spinors (or

twistors) as

(XµΣ̂µ)αα̇ =

(
1 x

x̄ ~x2

)
= (σ1ñ)αnα̇ , (6.35)

where

x ≡ x1 + ix2 , x̄ ≡ x1 − ix2 , (6.36)

n =

(
1

x

)
, ñ =

(
x̄

1

)
. (6.37)

These spinors can be identified precisely as the polarization spinors characterizing a ver-

tex operator which is placed at ~x on the boundary for the following reasons. First they

transform in the correct way: under the global transformation XµΣ̂µ → VL(XµΣ̂µ)VR, we

have (σ1ñ)α → (VLσ1ñ)α and nα̇ → (nVR)α̇. This is equivalent to ñ→ V t
Lñ and n→ V t

Rn,

which are the right transformation laws. Second, these spinors coincide with the polar-

ization spinors given in (6.27) and (6.28) when we bring the point ~x to the origin of the

boundary by the translation by the vector −~x. This is effected by the right and the left

translation matrices given by

V tr
R (−x) =

(
1 −x
0 1

)
, V tr

L (−x̄) =

(
1 0

−x̄ 1

)
. (6.38)
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Then we get

(V tr
R )t(−x)n =

(
1

0

)
, (V tr

L )t(−x̄)ñ =

(
0

1

)
. (6.39)

Therefore n and ñ can be identified with the polarization spinors for the vertex operator

at ~x on the boundary. Now let n′ and ñ′ be similar polarization spinors corresponding to

a vertex operator at ~x′ on the boundary. Then we immediately get

〈n, n′〉 = x′ − x , 〈ñ, ñ′〉 = x̄′ − x̄ , (6.40)

〈n, n′〉〈ñ, ñ′〉 = (x′ − x)(x̄′ − x̄) = (x′ − x)2 . (6.41)

In this way, for the EAdS3 the Wronskians formed by the polarization spinors produce

the difference of the boundary position vectors. Therefore the relevant part of the wave

function becomes ∏
{i,j,k}

〈ni, nj〉−(Ri+Rj−Rk)〈ñi, ñj〉−(Li+Lj−Lk)

=
∏
{i,j,k}

(xi − xj)−(Ri+Rj−Rk)(x̄i − x̄j)−(Li+Lj−Lk) . (6.42)

In particular, for the case of spinless configurations that we are considering, this becomes∏
{i,j,k}

1

|xi − xj |∆i+∆j−∆k
, (6.43)

which exhibits the familiar coordinate dependence for the three-point function in such a

case.

6.2.3 Total contribution from the EAdS3 part

As we have seen, the structure of the contribution from the EAdS3 part is essentially the

same as that from the S3 case, except for the important reversal of signs in the powers in

the contributing factor (or the terms contributing to the the logarithm of the three-point

coupling.) This change of sign occurred both for the action and for the wave function.

As we compute the basic Wronskians in exactly the same way as before and use them to

compute the contributions to the logarithm of the three-point function from the action

part and the wave function part, we again obtain the expression of the form of the left

hand side of (6.7), with the overall sign reversed. Therefore, we can use the identity (6.7)

again to obtain the result −z(x′)dp̂i(x′)/dx′, where p̂i denotes the quasi-momentum for

the EAdS3 part of the string. One can check that in fact this rule of correspondence,

namely pi(x) → p̂i(x) and the reversal of sign for the convolution integrals, applies to all

the contributions. Thus, combining all the results for the AdS part, the contribution to

the logarithm of the three-point function is given by the following expression:

FEAdS3 = −
√
λ

6
+ V̂energy + T̂sing + V̂kin + T̂conv . (6.44)

Here, V̂energy and T̂sing are equal to −Venergy and −Tsing respectively, V̂kin is the kinematical

factor given in (6.43), and T̂conv is the convolution integrals obtained from the unhatted

counterpart for the S3 case with the substitution rule described above.
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6.3 Complete expression for the three-point function

We are finally ready to put together the contributions from the S3 part summarized

in (6.20) and those from the EAdS3 part given in (6.44) and present the full answer for the

three-point function. As we have already discussed, the divergent terms cancel with each

other for the S3 part and the EAdS3 part separately. On the other hand, the constant

terms proportional to
√
λ/6 cancel between S3 and EAdS3 contributions. Thus we are left

with the kinematical factors and the contributions from the convolution integrals which

are of the same structure except for the overall sign. Therefore, factoring the kinematical

structure as

〈V1V2V3〉 =
1

N

C123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2 ,

(6.45)

the logarithm of the structure constant C123 is finally given by

lnC123 =∫
Muuu
−−−

z(x) (dp1 + dp2 + dp3)

2πi
ln sin

(p1 + p2 + p3

2

)
+

∫
Muuu
−−+

z(x) (dp1 + dp2 − dp3)

2πi
ln sin

(p1 + p2 − p3

2

)
+

∫
Muuu
−+−

z(x) (dp1 − dp2 + dp3)

2πi
ln sin

(p1 − p2 + p3

2

)
+

∫
Muuu

+−−

z(x) (−dp1 + dp2 + dp3)

2πi
ln sin

(−p1 + p2 + p3

2

)
−
∫
M̂uuu
−−−

z(x) (dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 + p̂2 + p̂3

2

)
−
∫
M̂uuu
−−+

z(x) (dp̂1 + dp̂2 − dp̂3)

2πi
ln sin

(
p̂1 + p̂2 − p̂3

2

)
−
∫
M̂uuu
−+−

z(x) (dp̂1 − dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 − p̂2 + p̂3

2

)
−
∫
M̂uuu

+−−

z(x) (−dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(
−p̂1 + p̂2 + p̂3

2

)

−2
3∑
j=1

∫
Γu
j−

z(x) dpj
2πi

ln sin pj + 2
3∑
j=1

∫
Γ̂u
j−

z(x) dp̂j
2πi

ln sin p̂j + Contact , (6.46)

where Contact stands for the contribution from the contact terms. We find it truly remark-

able that, in spite of the complexity of both the analysis and the intermediate expressions,

the final answer takes such a simple form. Moreover, it exhibits essential similarity to the

form of the weak coupling result [4–7] even before taking any further limits. In the next

section, we shall evaluate the structure constant (6.46) more explicitly, including the quan-

tity Contact, for several important examples and compare with the weak coupling results

more closely.

7 Examples and comparison with the weak coupling result

The results obtained in the previous section are quite general and applicable to three-point

functions of arbitrary one-cut solutions on EAdS3×S3. In this section we focus on several

explicit examples, make some basic checks and discuss the relation with the results at weak

coupling.

In subsection 7.1, we first explain the basic set-up, which will be used throughout this

section. Then, in subsection 7.2, we study the correlation functions of three BPS operators

– 81 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

and see that the contributions from the S3 part and the EAdS3 part completely cancel

out in this case. The results thus obtained fully agree with the results obtained in the

gauge theory. In subsection 7.3, we study the behavior of the three-point function under

the limit where the charge of one of the operators becomes negligibly small while the other

two operators become identical. We confirm that the result reduces to that of the two-

point function, as expected. Next, in subsection 7.4, we study three-point functions of one

non-BPS and two BPS operators, which were studied on the gauge theory side in [4]. We

will focus on certain explicit examples and show that the full three-point functions can be

expressed in terms of simple integrals which resemble the semi-classical limit of the results

at weak coupling [4–7]. Then, in subsection 7.5, we discuss the Frolov-Tseytlin limit of such

three-point functions. In this limit, the integrands in the final expression approximately

agree with the ones in the weak coupling, whereas the integration contours are rather

different. Lastly, we discuss the possible origin and the implication of this mismatch.

7.1 Basic set-up

Before starting the detailed analysis, let us clarify the basic set-ups to be used in this

section.

The three-point functions studied extensively on the gauge theory side are those of the

following three types of operators (see also table 2.):

O1 =tr
(
Z l1−M1XM1

)
+· · · , O2 =tr

(
Z̄ l2−M2X̄M2

)
+· · · , O3 =tr

(
Z l3−M3X̄M3

)
+· · · .

As explained in section 4.3.4, such three-point functions vanish unless the conservation

laws40 for the charges, (4.64), are satisfied. Due to these conservation laws, one cannot in

general take the operators to be simple BPS states, such as tr (Z l) or tr (Z̄ l), which are

the highest-weight vectors of the global SU(2)R×SU(2)L symmetry. Instead, we need to

use descendants of the global symmetry to satisfy the conservation laws when we study

three-point functions involving BPS operators [4, 27]. While this can be done without

problems on the gauge theory side, it leads to certain difficulty on the string theory side.

This is because all the classical solutions of string are known to (or believed to) correspond

to some highest-weight states. To circumvent this difficulty, below we will utilize the

global transformations to make all three operators to be built on different “vacua”. On

the string theory side, this corresponds to taking the polarization vectors of the three

operators, ni’s and ñi’s, to be all distinct. Then no conservation laws will be imposed

and we can safely take the limit where some of the operators become BPS while keeping

them to be of highest-weight. Since the correlation functions involving descendants can be

obtained from the correlation functions involving the highest-weight states by simple group

theoretical manipulations, knowledge of the three-point functions for the highest weight

states is sufficient. In addition, replacing the highest-weight operator with its descendant

only modifies the kinematical factor, Vkin, of our result and the dynamical parts of three-

point functions, which are main subjects of study in this section, will not be affected.

40As we have shown in section 4, such conservation laws can be derived also on the string theory side.
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After making the global transformations, the operators O1, O2 and O3 can be treated

almost on the same footing. However, there is an important difference between O3 and

the other two in string theory: as explained in section 4.3.4, the quasi-momenta for the

operators O1 and O2 contain branch cuts in the |Rex| > 1 region, whereas the quasi-

momentum for the operator O3 contains a branch cut in the |Rex| < 1 region. This

difference is important in the analysis to follow, since the position of the branch cuts

affects the contours for the convolution integrals.

7.2 Case of three BPS operators

Let us first study the correlation functions of three BPS operators. In order to apply the

general formula for the three-point functions of one-cut solutions obtained in the previous

section, we need the explicit forms of p(x) and q(x) for the BPS operators, which in

particular determine the integration contours. Within the bosonic sector, the characteristic

feature of a BPS state is that, as it should correspond to a supergravity mode, it is “point-

like”, meaning that its two-point function is σ-independent. In the language of the spectral

curve, it means the absence of a branch cut, since a branch cut corresponds to a non-trivial

string mode with σ-dependence.

Now in fixing the forms of p(x) and q(x), there is a subtle problem with the configu-

ration without a branch cut. In the case of one-cut solutions corresponding to non-BPS

operators, the constant parts of p(x) and q(x) are fixed in such a way that they vanish at

the branch points. Obviously, for configurations without a branch cut, this prescription

cannot be applied. One natural remedy would be to start with a non-BPS solution, apply

the usual method above to fix the constants and then shrink the cut to obtain a BPS

solution. This idea, however, still does not cure the problem since the resultant p(x) and

q(x) depend on the points on the spectral curve at which we shrink the branch cut. The

existence of such an ambiguity possibly implies that the semi-classical three-point func-

tions are affected by the presence of infinitesimal branch cuts. Although such an assertion

sounds counter-intuitive, it is not totally inconceivable since similar effects were already

observed in the study of “heavy-heavy-light” three-point functions41 in [30].

Below we shall fix the ambiguity by employing a prescription which is quite natural

from the viewpoint of the correspondence with the spin chain on the gauge theory side.

The prescription is to shrink the branch cuts either at x = 0 or at x = ∞ in producing

BPS operators. This choice is based on the following fact: in gauge theory, adding a

small number of Bethe roots at x = 0 or x = ∞ correspond to performing a small global

transformation and keeps the operator to be BPS, whereas adding a small number of

Bethe roots at generic points on the spectral curve creates nontrivial magnon excitations

and makes the operator non-BPS.

Having identified the classical solutions corresponding to BPS operators, let us now

determine the integration contours. First we focus on the S3-part of three-point functions.

As discussed in section 4.3.4, for O1 and O2, pi(x) and qi(x) can have branch cuts only

in the the |Rex| > 1 region and hence we take the infinitesimal branch cut to be placed

41In [30], such effects were called back reactions.
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at x = ∞. Then from the general form of the one-cut solution given in (2.58) and (2.59),

we get

pi(x) = −2πκi

(
1

x− 1
+

1

x+ 1

)
, qi(x) = −2πκi

(
1

x− 1
− 1

x+ 1

)
, (7.1)

which vanish at x = ∞, as desired. On the other hand, for O3, since the branch cuts can

only be in the |Rex| < 1 region, we place an infinitesimal branch cut at x = 0. Then

from (2.58) and (2.59) we get

p3(x) = −2πκ3

(
x

x− 1
− x

x+ 1

)
= −2πκ3

(
1

x− 1
+

1

x+ 1

)
(7.2)

q3(x) = −2πκ3

(
x

x− 1
+

x

x+ 1

)
. (7.3)

These expressions vanish at x = 0.

As discussed in detail in section 5, the contours for the convolution integrals consist

of two types of curves. The first type are those defined by Re qi(x) = 0, across which

the relative magnitude of i+ and i− changes. They determine the integration contours

Γui− defined in section 5.4 and are depicted in figure 6. Note that in the present case, the

contours Γu1− and Γu2− coincide since q1(x) = q2(x). The second type are the curves defined

by Ni = Nj+Nk, across which the connectivity of the exact WKB curves changes. Now for

a BPS operator, Ni = |Re pi(x)| is given by a common function |Re ((x+ 1)−1 + (x−1)−1)|
times the factor −2πκi, as shown above. Since κi’s satisfy the triangular inequalities, this

means that Ni = Nj +Nk cannot be satisfied. Hence the second type of curves are absent

and the integration contours are determined solely by the first type of curves.

With this knowledge, we can now apply the general rules given at the end of section 5.3

to determine the integration contoursMuuu
±±±. As an example, consider the contourMuuu

−−−,

which is used for the convolution integral involving sin 1
2(−p1(x) − p2(x) − p3(x)). From

the Rule 1, either Wronskians among S− = {1−, 2−, 3−} vanish or those among S+ =

{1+, 2+, 3+} vanish. Then we must apply Rule 2, since the triangle inequalities are satisfied

in the present case. It states that if two of the members of S− (resp. S+) are small solutions,

then the Wronskians for the members of S+ (resp. S−) vanish. Now consider the curve Γu1−.

From its definition, it is along Re q1(x) = 0 with the direction such that to the left of this

curve 1− is the small solution. The curve Γu2− is identical, as we already remarked. These

curves are depicted in the left figure of figure 6, together with the states which are small

in the three regions separated by these curves. Together with the rules mentioned above,

we see explicitly that the analyticity of Wronskians change across such curves and hence

we can identify Γu1−(= Γu2−) as the contour Muuu
−−−. Similarly, the curve Γu3−, identified as

Muuu
+−−, is shown in the right figure of figure 6. In this way, we find the contours Muuu

±±±
to be given by

Muuu
−−− = Γu1−(= Γu2−) , Muuu

+−− = Γu3− ,

Muuu
−+− = Γu3− , Muuu

−−+ = Γu1−(= Γu2−) .
(7.4)
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Figure 6. The contours Γu
i−

, defined by Re qi = 0. In each region, we showed which of the

eigenvectors is the small solution.

(a) Putting a small branch cut

away from x = 0.

(b) Shrinking the cut and

deforming the contour.

Figure 7. An example of the contour deformation. The contour depicted in (b) can be further

deformed into the contour on the unit circle.

Let us next consider the effects of the contact terms. As argued in section 6, such

contribution must be taken into account when x = 0 (x = ∞) is on the left (right) hand

side of the integration contours. The effect is most conveniently done by adding a small

circle around x = 0 (x = ∞) to the contour for each integration in (6.8). However, in

the case of BPS operators, the integration contours terminate right at x = 0 or x = ∞.

Therefore we need to first regularize them by putting a small branch cut slightly away

from x = 0 or x = ∞ and then take the limit where the branch cut shrinks to x = 0 or

x =∞. An example of such a procedure is depicted in figure 7. Since the sine-functions in

the convolution integrals (6.8) turn out to vanish only on the real axis in the case of BPS

operators, we can further deform the contours into those on the unit circle. As a result,

we find that the S3-part of the three-point function is given by∮
U

z (dp1+dp2+dp3)

2πi
ln sin

(
p1+p2+p3

2

)
+

∮
U

z (dp1+dp2−dp3)

2πi
ln sin

(
p1+p2−p3

2

)
+

∮
U

z (dp1−dp2+dp3)

2πi
ln sin

(
p1−p2+p3

2

)
+

∮
U

z (−dp1+dp2+dp3)

2πi
ln sin

(
−p1+p2+p3

2

)
− 2

3∑
j=1

∫
U

z dpj
2πi

ln sin pj ,

where U denotes the contour which goes around the unit circle clockwise.
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Next consider the EAdS3-part of the three-point function. The quasi-momenta and

the quasi-energies for the operators without spin in AdS are given in [8] by42

p̂i(x) = −2πκi

(
1

x− 1
+

1

x+ 1

)
, q̂i(x) = −2πκi

(
1

x− 1
− 1

x+ 1
− 1

)
. (7.5)

Then, performing a similar analysis as in the case of S3-part, we find that the result is again

given by the integrals along the unit circle. As the quasi-momenta pi(x) for the S3-part

and the ones p̂i(x) for the EAdS3-part coincide in the case of BPS operators, we see from

the general formula (6.46) that the contributions form these two parts cancel each other

completely. Therefore, the three-point function for three BPS operators is given purely by

the kinematical factors as

〈V1V2V3〉 =
1

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2 ,

(7.6)

This is consistent with the result in the gauge theory that the three-point functions of BPS

operators are tree-level exact and have no dependence on the ’t Hooft coupling constant λ.

7.3 Limit producing two-point function

Having seen that the BPS three-point functions are correctly reproduced from our general

formula, let us next discuss the limit where the three-point functions are expected to reduce

to two-point functions. As an example, we take two of the operators O1 and O2 to have

identical quasi-momenta and quasi-energy, while O3 is a BPS operator with vanishingly

small charge.43

To understand what happens in such a limit, let us draw the two types of curves,

namely Re qi = 0 and Ni = Nj +Nk. The first type of curves are depicted in the first and

the second figures of figure 8. As for the second type, the only curve we need to consider

is the curve given by N3 = N1 + N2. This is because the inequalities N1 + N3 ≥ N2 and

N2 +N3 ≥ N1 are always satisfied since N1 = N2 in the present case. When the operator

O3 is sufficiently small, the curve defined by N3 = N1 + N2 almost vanishes and we can

practically ignore the effects of such a curve. Thus the integration contours are given

purely by Re q1 = Re q2 = 0. Applying the rules given in the previous section and taking

into account the contact terms, we find that the convolution integrals for the S3-part are

given by

42The spectral parameter x used in (7.5) is related to the spectral parameter ξ used in [8] by ξ =

(x− 1)/(x+ 1).
43Although the case considered here appears similar to the one studied in the gauge theory [30] with O3

taken to be small but nonvanishing, there is a difference: in [30], O1 and O2 must have slightly different

quasi-momenta in the presence of O3, due to the conservation law for the magnons. In the present case,

however, as we performed the global transformation, no conservation law is imposed and we can take O1

and O2 to have identical quasi-momenta.
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(a) (b) (c)

Figure 8. The curves which determine the integration contours in the limit where three-point

functions reduce to two-point functions. In the left and the middle figures, the contours Γu
i−

,

determined by Re qi(x) = 0 are depicted. The segment represented by a wavy line is the branch

cut. In the rightmost figure, the curve defined by N3 = N1 +N3 is drawn in blue. For convenience,

we redisplayed the curves in figures (a) and (b) as dotted lines.

∫
Γu
1−

+C∞

z (dp1+dp2+dp3)

2πi
ln sin

(
p1+p2+p3

2

)
+

∫
Γu
1−

+C∞

z (dp1+dp2−dp3)

2πi
ln sin

(
p1+p2−p3

2

)
+

∫
Γu
3−

+C0

z (dp1−dp2+dp3)

2πi
ln sin

(
p1−p2+p3

2

)
+

∫
Γu
3−

z (−dp1+dp2+dp3)

2πi
ln sin

(
−p1+p2+p3

2

)

−2

2∑
j=1

∫
Γu
j−

+C∞

z dpj
2πi

ln sin pj − 2

∫
Γu
3−

+C0

z dp3

2πi
ln sin p3 , (7.7)

where C∞ is the contour encircling x =∞ counterclockwise and C0 is the contour encircling

x = 0 clockwise. Setting p1 = p2 and p3 = 0 in this formula, we see that in this limit all the

terms in (7.7) completely cancel out with each other. Similar cancellation occurs also for

the EAdS3-part. Therefore the structure constant C123 of the three-point function in this

limit becomes unity and the result correctly reproduces the correctly normalized two-point

function given by

〈n1 , n2〉2R〈ñ1 , ñ2〉2L

|x1 − x2|2∆
. (7.8)

Here, ∆, R and L are, respectively, the conformal dimension, the (absolute values of the)

right and the left global charges, which are common to O1 and O2.

7.4 Case of one non-BPS and two BPS operators

Having checked that our formula correctly reproduces the known results in simple limits,

let us now study more nontrivial examples. In this subsection, we take up the three-point

functions of one non-BPS and two BPS operators, which were studied on the gauge-theory

side in [4]. As in [4], we take O2 to be non-BPS and O1 and O3 to be BPS. In this case,
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Figure 9. Typical configuration of the curves produced by the conditions Re qi = 0 and Ni =

Nj +Nk, for the three-point functions of one non-BPS operator and two BPS operators. In the left

figure, Re q1 = 0, Re q2 = 0 and Re q3 = 0 are drawn respectively in black, orange and brown. In

the right figure, N1 = N2 +N3 is drawn in blue and N2 = N1 +N3 is drawn in green.

the typical forms of the curves corresponding to Re qi = 0 and Ni = Nj +Nk, are given in

figure 9.

To perform a more detailed analysis, we need to specify the properties of the operators

more explicitly, since the precise form of the integration contours depend on such details.

As we wish to analyze the so-called Frolov-Tseytlin limit and make a comparison with the

results in the gauge theory in the next subsection, we will take as a representative example

the following set of operators carrying large conformal dimensions:

O1 : BPS , 2πκ1 = 2500 ,

O2 : non-BPS , 2πκ2 = 3250 ,

p(u)− p(∞+) = −16π , p(0+)− p(∞+) = −2π ,

O3 : BPS , 2πκ3 = 3000 .

(7.9)

Here u denotes the position of an end of the branch cut for the non-BPS operator O2. For

these operators, the curves defined by Re qi = 0 and those defined by Ni = Nj + Nk are

depicted respectively in figure 10 and figure 11.

As in the case of the three BPS operators, we must now apply the general rules

of section 5 to determine the integration contours. As an example, consider the contour

Muuu
−−− in the region where |Rex| � 1. Focus first on the left figure of figure 10. Compared

to the typical configuration shown in the left figure of figure 9, the curve determined by

Re q3 = 0 (shown in brown in figure 9) is depicted here as a point in the middle since we

are considering the region where |Rex| � 1. Since the inside of the shrunken region is

where 3+ is small, we have 3− as the small solution everywhere in this figure. From the

direction of the curves Γu1− and Γu2−, we can easily tell which of the states 1± and 2± are

the small solutions in each of the region separated by these curves.

Now, in distinction to the case of three BPS operators, we must also take into account

the possible change of the analyticity of the Wronskians as we cross the lines defined by

Ni = Nj + Nk. Thus, we must analyze relevant curves drawn in figure 11 (a), where the
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Figure 10. The contours Γu
i−

, defined by Re qi = 0. The left figure shows the configuration of

contours in the |x| � 1 region, where as the right figure depicts the configuration of contours in

the |x| < 1 region.

(a) (b) (c)

Figure 11. The curves defined by Ni = Nj +Nk. The figure (a) shows the configuration of curves

in |x| � 1 region where as the figure (b) shows the configuration of N1 = N2 +N3 in |x| < 1 region

and the figure (c) shows the configuration of N2 = N1 +N3 in |x| < 1 region. In the present case,

the curve N3 = N1 +N2 does not exist.

one in green corresponds to N2 = N1 +N3 and the one in blue represents N1 = N2 +N3.

Across these lines the configuration changes from symmetric to asymmetric. Accordingly,

the rule to find the non-vanishing set of Wronskians changes from Rule 2 to Rule 3. Let

us focus on the green curve, which is re-drawn in figure 12, with additional information.

It turns out that the configuration is symmetric inside the green circles and asymmetric

outside, indicated by the letters S and A respectively. Now in the region outside of the

arc of the large green circle bordered by the lines representing Γu1−, shown in figure 12 by

the red straight lines, 1−, 2+, 3− are the small solutions, as indicated in the figure. As this

is the asymmetric region we apply the Rules 1 and 3 and conclude that the Wronskians

among the states {1+, 2+, 3+} are non-vanishing. As we cross the arc into the shaded

region inside of the green circle where the configuration is symmetric, still 1−, 2+, 3− are

the small solutions but now we must apply the Rules 1 and 2. Then we learn that the

Wronskians among the states {1−, 2−, 3−} are non-vanishing instead. In other words, the
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Figure 12. Magnified view of a part of the figure (a) of figure 11, with data necessary for deter-

mining the contour of integration. In each region separated by lines and/or the cut (wavy line),

the set of “small” eigenvectors are indicated. The green circle separates the symmetric (S) and

the assymetric (A) regions, to which different rules of analysis apply. The result is that across the

boundary of the shaded area, the analyticity of the Wronskian changes. For details of the analysis

using this figure, see the explanation in the main text.

Figure 13. The integration contours Muuu
±±± in the region |x| � 1. From left to right, Muuu

−−−,

Muuu
−−+, Muuu

−+− and Muuu
+−−.

analyticity property of the Wronskians change across this portion of the green curve and

hence it serves as a part of the contour for the convolution integral. This explains the

portion of the contour along the arc of the large circle shown in the left-most figure in

figure 13. Now consider what happens when this contour meets the Γu1− line. Across this

line, the small solution changes from 1− to 1+. Thus when we cross this line from inside

the large circle, the set of small solutions change from 1−, 2+ and 3− to 1+, 2+ and 3− as

shown in figure 12. As we are still in the symmetric region, the Rules 1 and 2 apply and

hence we learn that set of non-vanishing Wronskians change across this line. Therefore this

portion must constitute a part of the contour. This explains the straight red line starting

from the the point of intersection with the large circle. In this fashion, we can uniquely

obtain the integration contour Muuu
−−−, shown in the leftmost figure of figure 13, across

which the analyticity property of the Wronskians change. All the other contours Muuu
±±±

can also be determined in an entirely similar manner, the result of which are depicted in

figure 13 and figure 14.

The contours shown in figure 13 and figure 14 can be simplified by continuous defor-

mation as long as we do not make them pass through the singularities of the integrands.
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Figure 14. The integration contours Muuu
±±± in the region |x| < 1. From left to right, Muuu

−−−,

Muuu
−−+, Muuu

−+− and Muuu
+−−.

Figure 15. The contours obtained after the deformation. On the left figure, we depicted
(

Γu
2−

)′
.

On the right figure, we depicted
(
Muuu
−−−

)′
in black and

(
Muuu
−+−

)′
in blue.

We can determine the positions of the singularities numerically and find that most of the

singularities lie on the real axis. Avoiding them, we can deform each contour into a sum of

the contour along the unit circle and the one which is far from the unit circle. The results

of this deformation are summarized as

Muuu
−−− 7−→

(
Muuu
−−−

)′
+ U , Muuu

−−+ 7−→
(

Γu2−

)′
+ U ,

Muuu
−+− 7−→

(
Muuu
−+−

)′
+ U , Muuu

+−− 7−→
(

Γu2−

)′
+ U ,

Γu1− 7−→ U , Γu2− 7−→
(

Γu2−

)′
+ U , Γu3− 7−→ U ,

(7.10)

where, as before, U denotes the unit circle and the primed contours are as depicted in

figure 15.

Let us make a remark on the separation of the integration contours into the unit circle

and the large contours. It is intriguingly reminiscent of the expressions for the one-loop

correction to the spectrum of a classical string [31]. In that context, the integration along

the unit circle is interpreted as giving the dressing phase and the finite size corrections.

Since our results do not include one-loop corrections, it is not at all clear whether our

results can be interpreted in a similar way. However, the apparent structural similarity

calls for further study.
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7.5 Frolov-Tseytlin limit and comparison with the weak coupling result

7.5.1 Frolov-Tseytlin limit of the three-point function

We are now ready to discuss the Frolov-Tseytlin limit of the three-point function and

compare it with the weak coupling result. Let us briefly recall how such a limit arises. As

shown in [32], the dynamics of the fluctuations around a fast-rotating string on S3 can be

mapped to the dynamics of the Landau-Lifshitz model, which arises as a coherent state

description of the XXX spin chain. In such a situation, the angular momentum J of the S3

rotation can be taken to be so large that the ratio
√
λ/J becomes vanishingly small, even

when λ is large. For the spectral problem, it has been demonstrated that such a limit is

quite useful in comparing the strong coupling result with the weak coupling counterpart.

We would like to see if it applies also to the three point functions. For this purpose, we

need to know how such a limit is taken at the level of the quasi-momenta. Since the SO(4)

charges of the external states are proportional to κi, the appropriate limit is to scale all

the κi to infinity while keeping the mode numbers
∮
bi
dp finite. As already indicated, we

have chosen the example in the previous subsection to be such that we can readily take

such a limit.

Upon taking the Frolov-Tseytlin limit, two simplifications occur in our formula. First,

since the branch points are far away from the unit circle, we can approximate p2(x) on the

unit circle by a quasi-momentum for a BPS operator, namely

p2(x) ' pBPS
2 (x) = −2πκ2

(
1

x− 1
+

1

x+ 1

)
. (7.11)

Now recall that the contribution from the EAdS3 part is such that it precisely canceled the

S3 part in the case of the three BPS operators. Since the EAdS3 part is unchanged for the

present case, again the same exact cancellation takes place as far as the integrals over the

unit circles are concerned. Therefore we can drop such integrals and obtain∫
(Muuu
−−−)

′
+C∞

z (dp1+dp2+dp3)

2πi
ln sin

(
p1+p2+p3

2

)
+

∫
(

Γu
2−

)′
+C∞

z (dp1+dp2−dp3)

2πi
ln sin

(
p1+p2−p3

2

)
+

∫
(Muuu
−+−)

′
+C∞

z (dp1−dp2+dp3)

2πi
ln sin

(
p1−p2+p3

2

)
+

∫
(

Γu
2−

)′
+C∞

z (−dp1+dp2+dp3)

2πi
ln sin

(
−p1+p2+p3

2

)
−2

∫
(

Γu
2−

)′
+C∞

z dp2

2πi
ln sin p2 , (7.12)

Second simplification occurs because on the large contours the integration variable x is

of order κi. This is precisely the situation where we can approximate the quasi-momenta

of the classical strings by the corresponding quantities for the spin-chains. Indeed, as

explained in [12], the quasi-momentum for the string can be identified with that of the

Landau-Lifshitz model, which describes the spin-chain on the gauge theory side in the

above limit. More precisely, we can use the following identification of the quasi-momenta

on the large contour:

pstring(x) ' pspin(z(x)) . (7.13)
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The use of the Zhukovsky variable z(x) on the right hand side is motivated by the fact that

in the all-loop asymptotic Bethe ansatz equation [33, 34], the rapidity of the spin-chain on

the gauge theory side is identified with the Zhukovsky variable on the string theory side.

In the present situation, however, since z(x) ' x for large x, the quasi-momenta in (7.12)

can be replaced simply with the quasi-momenta for the corresponding spin-chain states at

the same value of x.

With such a replacement, the expression (7.12) already appears rather similar to

the weak-coupling result. To make the resemblance more conspicuous, we can regard

the integral of sin ((−p1 + p2 + p3)/2) along (Γu2−)′ on the upper sheet as the integral of

sin ((p1 + p2 − p3)/2) along the reversed contour on the lower sheet for p2, which we denote

by (Γl2−)′. Combining this with the integral of sin ((p1 + p2 − p3)/2) along (Γu2−)′ already

present and defining
(
Γ2−

)′
to be the sum of (Γu2−)′ and (Γl2−)′, we can write (7.12) as∫

(Γ2−)
′
+C∞

z (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)
−
∫

(Γ2−)
′
+C∞

z dp2

2πi
ln sin p2 + Mismatch ,

(7.14)

where Mismatch is given by

Mismatch =

∫
(Muuu
−−−)

′
+C∞

z (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∫
(Muuu
−+−)

′
+C∞

z (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
. (7.15)

Now the corresponding weak-coupling result obtained in [4] can be re-cast into the following

form by the use of integration by parts,

∫
−A2

z
(
dpspin

1 + dpspin
2 − dpspin

3

)
2πi

ln sin

(
pspin

1 + pspin
2 − pspin

3

2

)
−
∫
−A2

z dpspin
2

2πi
ln sin pspin

2 ,

(7.16)

where A2 is the contour which encircles the branch cut of p2 counterclockwise. Compar-

ing (7.14) and (7.16), one notes the following: (i) The terms denoted by Mismatch in the

strong coupling result are not present in the weak coupling expression. (ii) The integrands

of the rest of the terms are precisely of the same form as for the weak coupling result, but

the contours of integrations are different. This makes a difference in the answer since in

deforming the contours from those for the strong coupling to those for the weak coupling

picks up non-vanishing contributions from the singularities of the integrands. Concerning

the three-point functions, there is no firm argument that the Frolov-Tseytlin limit must be

universal for all the observables. Therefore the discrepancies that we found above do not

immediately imply the breakdown of the duality. However, it is certainly of importance to

clarify the origin of these differences. As a part of the possible understanding, below we

shall offer a natural mechanism which can change the contours of integration.
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7.5.2 A mechanism for modifying the contours

The mechanism that we wish to point out is based on the possibility of having extra

singularities on the worldsheet. To see this, let us first recall that in the derivation of

the important rules which determine the analyticity of the Wronskians, we have made an

important assumption that the only singularities on the worldsheet of the solutions of the

ALP occur at the positions of the vertex insertion points. This in turn means that if there

exist extra singularities this assumption breaks down and affects the rules for determining

the contours of the convolution integrals.44 Depending on the number and the positions

of the extra singularities, the contours can be modified in various ways and it might be

possible to obtain the contour which appear in the weak coupling result.

Now we can provide some arguments which indicate that indeed the existence of ad-

ditional singularities is not uncommon. First, recall that the usual finite gap method

is capable of constructing solutions which correspond to the saddle point configurations

for two-point functions. As such they contain only two singularities, normally placed at

τ = ±∞ in the cylinder coordinates. In such a formalism designed to deal with two-point

functions, description of three-point solutions would require additional singularities. In

our treatment, due to the inability to construct genuine three-point saddle solutions, we

describe the effect of the three vertex operators separately except for imposing the global

monodromy condition that reflects the essence of their interaction. However, as already

emphasized in our previous work [11], if we wish to deal properly with the three- and

higher- point functions using algebraic curve setup for a theory with infinite degrees of

freedom, one should actually start from the infinite gap solutions and then consider the

limits where the infinite number of cuts on the spectral curve degenerate to zero size. This

process is rather non-trivial and it should be possible to produce some extra singularities

on the worldsheet. Although we cannot demonstrate this phenomenon explicitly for the

three-point solution, we know that already at the level of two-point solution such a mech-

anism exists, as discussed in some detail in section 2.2.2. There we saw explicitly that

a “one-cut” solution obtained from a multi-cut solution in a certain degeneration limit

can produce extra singularities without affecting the infinite number of conserved charges

carried by the solution. It is certainly expected that such a mechanism would exist also in

the case of higher-point solutions. An interesting question is which of the saddle points,

those with extra singularities or those without, describe the correlator of the gauge-theory

operators. In any case, further studies are definitely needed to clarify this issue.

8 Discussions

In this paper, we have succeeded in computing the three-point functions at strong coupling

of certain non-BPS states with large charges corresponding to the composite operators in

the SU(2) sector of the N = 4 super Yang-Mills theory. As we have already given a sum-

mary of the main result in section 1.1, we shall not repeat it here. Instead, below we would

like to give some comments and indicate some important issues to be clarified in the future.

44A similar mechanism of changing the integration contour by the extra singularities is discussed in the

context of the so-called ODE/IM correspondence [35].
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One conspicuous feature of our result is that even for rather general external states

the integrands of the integrals expressing the structure constant exhibit structures quite

similar to the corresponding result at weak coupling. This is quite non-trivial since the

weak coupling result in the relevant semi-classical regime is obtained from the determinant

formula for the inner product of the Bethe states, which is so different from the method

employed for strong coupling. This suggests that we should seek better understanding by

reformulating the weak coupling computation in a more “physical” way. As a step toward

such a goal, an attempt was made in [36], where the inner product of the Bethe states is

re-expressed in terms of an integral over the separated dynamical variables. As the notion

of the wave function is clearly visible in this formulation, it may give a hint for the common

feature of the strong and the weak coupling regimes, if an efficient method to identify the

semi-classical saddle point can be developed.

In contrast to the similarity of the integrands, there is a rather clear difference in the

contours of the integrals expressing the three-point coupling in the weak and the strong

coupling computations. This is not just a quantitative difference but rather a qualitative

one. Reflecting the fact that the determinant formula deals with the Bethe roots, the

contour of integration in the weak coupling case is around a cut formed by the condensation

of such Bethe roots. Information of such a cut is contained in the quasi-momentum p(x).

On the other hand, the principal quantity which determines the integration contour is the

real part of the quasi-energy q(x), which is conjugate to the worldsheet time τ . Apparently,

this notion is not present in the weak coupling formulation. Together with the possible

extra singularities on the worldsheet discussed in section 7.5.2, the question of the contour

requires better understanding.

There are a couple of further interesting questions that one should study concerning

our result. One is about the limit of our formula where one of the operators is much smaller

than the other two. Such three-point functions were first studied on the string-theory side

in [37–39] assuming that the light operator does not change the saddle-point configuration

of the other two operators. However, a systematic study on the gauge-theory side [30]

reveals that the light operator in some cases modifies the saddle-point substantially. By

examining the limit of our formula, it would be possible to understand in detail when

and how such a “back-reaction” occurs. Another important problem is to understand the

physical meaning of the integration along the unit circle in our formula and clarify if it can

be interpreted as the contribution from the dressing phase and the finite size correction as

in the case of the one-loop spectrum of a classical string [31].

Finally, let us go back once again to the rather simple structure of the integrand we

found, similar to the weak coupling result. The simplicity of such a result suggests that

there should perhaps be a better more intrinsic formulation for computing the three-point

functions. In the existing literature, including this work, the calculation of the three-point

function in the strong coupling regime is divided into the computation of the contribution

of the action part and that of the vertex operator (wave function) part. As we have seen

in section 6, in the process of putting these separate contributions together there occurs

a substantial simplification, besides the usual cancellation of divergences. This strongly

indicates that such a separation is not essential and one should rather seek relations which

– 95 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

reflect the structure of the entire three-point function based on some dynamical symmetry

of the theory including the integrable structure. This is of utmost importance since the true

understanding of the AdS/CFT duality lies not just in the comparison of the calculations

of various physical quantities in the strong and the weak coupling regimes itself but rather

in identifying the common principle behind such computations and agreements.

To make the above remark somewhat more concrete, let us recall that the most impor-

tant ingredient in the computation performed in this paper at strong coupling is the global

consistency relations for the monodromy of the solutions of the auxiliary linear problem

around three vertex insertion points. Together with the analyticity property in the spec-

tral parameter, the important quantity 〈i±, j±〉, which relates the behavior of the solutions

around different insertion points, is extracted and serves as the building block for the three-

point coupling. On the other hand, in the weak coupling computations so far performed,

the computation of the three-point coupling is reduced to those of the inner products of

the Bethe states and their combinations. Although this is an efficient method, it is based

basically on the picture of the two-point function and not on some principle which governs

the entire three-point function. Therefore we believe that an extremely important problem

is to find some functional equations (or differential equations) satisfied by the three-point

function, from which one can determine the coupling constant more or less directly. We

hope to discuss this type of formulation elsewhere.
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A Details on the one-cut solutions

In this appendix, we will provide some further details on the one-cut solutions.

A.1 Parameters of one-cut solutions in terms of the position of the cut

In section 2.2 we have given generic expressions for the parameters which characterize the

one-cut solutions in terms of the integrals involving p(x) and q(x). If we now use the

explicit forms of p(x) and q(x) given in (2.58) and (2.59), one can evaluate the parameters

νi, mi and θ0 in terms of the position of the cut specified by u. The results take several

different forms depending on the region where the cut is located. It is convenient to express

them in universal forms by introducing two additional sign factors η1 and η0,1. Together

with the factor ε already introduced in (2.60), we give their definitions in table 3.
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Reu < −1 −1 < Reu < 0 0 < Reu < 1 1 < Reu

ε + − − +

η1 + + + −
η0,1 + + − +

Table 3. Sign factors to distinguish between the positions of the cut.

Then, ν1 and ν2 are obtained as

ν1 = κ

[
−η1 + η0,1|u|
|u− 1|

+ ε
η1 − η0,1|u|
|u+ 1|

]
, (A.1)

ν2 = κ

[
η1 − η0,1|u|
|u− 1|

− εη1 + η0,1|u|
|u+ 1|

]
= εν1(u→ −u) . (A.2)

As for mi, we can immediately obtain them form νi by the substitution ε→ −ε, because,

as seen in (2.58) and (2.59), this interchanges q(x) and p(x):

m1 = ν1(ε→ −ε) , (A.3)

m2 = ν2(ε→ −ε) . (A.4)

Now cos2(θ0/2) and sin2(θ0/2) can be deduced from the Virasoro condition (2.70) as

cos2 θ0

2
=
|u| − η1η0,1Reu

2|u|
, sin2 θ0

2
=
|u|+ η1η0,1Reu

2|u|
. (A.5)

The right and the left charges are obtained from (2.30) and (2.31) to be

R = −κ
√
λη1

2

(
Reu− 1

|u− 1|
+ ε

Reu+ 1

|u+ 1|

)
, (A.6)

L =
κ
√
λη0,1

2|u|

(
|u|2 − Reu

|u− 1|
+ ε
|u|2 + Reu

|u+ 1|

)
. (A.7)

From the definition of R and L as the Noether charges, they must be expressed in terms

of the parameters νi and θ0 in a universal manner independent of the position of the cut.

Indeed by using the formulas already obtained for the parameters and the charges in terms

of u, we can check the universal expressions

R√
λ

=
1

2

(
−ν1 cos2 θ0

2
+ ν2 sin2 θ0

2

)
, (A.8)

L√
λ

=
1

2

(
−ν1 cos2 θ0

2
− ν2 sin2 θ0

2

)
. (A.9)

Finally, let us discuss the signs and the relative magnitudes of the parameters and the

charges. The signs and the relative magnitude of νi depend on u. From the formulas for

νi we can check that

|Reu| > 1 : ν2 < ν1 < 0 , (A.10)

|Reu| < 1 : ν1 < 0 < ν2 , (|ν1| < ν2) . (A.11)
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As for the angles, we always have

cos2 θ0

2
> sin2 θ0

2
. (A.12)

The signs of R and L can be checked to be always positive. ( R for the case |Reu| > 1 and

L for the case |Reu| < 1 are somewhat non-trivial to check.)

The relative magnitude of R and L can be deduced easily from the difference

1√
λ

(R− L) = 2ν2 sin2 θ0

2
. (A.13)

As the sign of ν2 has already been obtained in (A.10) and (A.11), we immediately get

R < L for |Reu| > 1 , (A.14)

R > L for |Reu| < 1 . (A.15)

A.2 Pohlmeyer reduction for one-cut solutions

Let us next consider the variables appearing in the Pohlmeyer reduction, ρ, ρ̃ and γ for

one-cut solutions. From their definitions, we can express them in terms of the parameters

of the one-cut solution as

cos 2γ =
ν2

1 −m2
1

4κ2
=
ν2

2 −m2
2

4κ2
, (A.16)

ρ =
1

8
cos

θ0

2
sin

θ0

2

(
(ν1 +m1)2 − (ν2 +m2)2

)
, (A.17)

ρ̃ =
1

8
cos

θ0

2
sin

θ0

2

(
(ν1 −m1)2 − (ν2 −m2)2

)
, (A.18)

where we used z = τ + iσ coordinate when we compute these quantities.45

Using the results in the previous subsection, we can re-express (A.16), (A.17)

and (A.18) in terms of the branch points u and ū. They are given by

cos 2γ = ε
|u|2 − 1

|u2 − 1|
, sin 2γ =

2Im u

|u2 − 1|
, (A.19)

ρ = −κ2 Im u

|u− 1|2
, ρ̃ = κ2 Im u

|u+ 1|2
. (A.20)

The ALP in the Pohlmeyer gauge can be solved in a similar manner and the result is given

in (2.98) and (2.99).

In the case of three-point functions, we can compute these quantities separately for

each puncture as

γi =
1

2
arcsin

(
2Im ui
|u2
i − 1|

)
, (A.21)

ρi = −κ2 Im ui
|ui − 1|2

, (A.22)

ρ̃i = κ2 Im ui
|ui + 1|2

. (A.23)

They will be used in the computation of three-point functions.

45Note that γ is invariant under the coordinate change z → z′ = f(z), whereas ρ and ρ̃ transform

respectively as ρ→ ρ′ = ρ/(∂f)2 and ρ̃→ ρ̃′ = ρ̃/(∂̄f)2.
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A.3 Computation of various integrals

Using the above results, let us compute various integrals which appear in Local and Double

in section 3. Around a puncture, one can approximate the behavior of the world-sheet

by that of the two-point functions. Thus, when three string states are semi-classically

described 1-cut solutions, we expect the following asymptotic behavior of the one-forms:

λ
z→zi∼ κidwi , ω

z→zi∼ −κi cos 2γi
2

dw̄i +
2ρ2

i

κ3
i

dwi , (A.24)

where wi is the local coordinate wi ≡ τ (i) + iσ(i) around the puncture zi.

Using (A.24), one can evaluate various integrals. First, the contour integrals of λ and

ω along Ci’s are given by∮
Ci
λ = 2πiκi ,

∮
Ci
ω = 2πi

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
i = 1, 2̄, 3 . (A.25)

On the other hand, the double contour integral, which appears in Double can be computed

as follows: ∮
Ci
ω

∫ z

z∗i

λ =

∫ σ=2π

σ=0

(
−κi cos 2γi

2
dw̄i +

2ρ2
i

κ3
i

dwi

)∫ σ′=σ

σ′=0
κidw

′
i

= −
∫ 2π

0
dσ

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
κiσ

= −2π2

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
κi . (A.26)

These results are used in section 3.1 to explicitly evaluate Local and Double .

B Pohlmeyer reduction

In this appendix, we will give some details of the Pohlmeyer reduction for the string on S3.

In terms of the embedding coordinate YI (I = 1, . . . , 4), S3 is realized as a hypersurface

in R4 satisfying
∑

I Y
2
I = 1. The basic idea of the Pohlmeyer reduction is to describe the

dynamics of the string in terms of a moving frame in R4 consisting of four basis vectors

{YI , ∂YI , ∂̄YI , NI}, which satisfy the following properties:

N INI = 1 , N IYI = N I∂YI = N I ∂̄YI = 0 . (B.1)

Then, using the equation of motion, ∂∂̄Y I+
(
∂Y J ∂̄YJ

)
Y I = 0 and the Virasoro constraints,

∂Y I∂YI = −T (z) and ∂̄Y I ∂̄YI = −T̄ (z̄), we can express the derivatives of these basis

vectors, ∂N I , ∂2Y I , etc. again in terms of the basis vectors:

∂N I =
2ρ

T sin2 2γ
∂Y I +

2 cos 2γρ√
T T̄ sin2 2γ

∂̄Y I , (B.2)

∂̄N I =
2ρ

T̄ sin2 2γ
∂̄Y I +

2 cos 2γρ̃√
T T̄ sin2 2γ

∂Y I , (B.3)
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∂2Y = TY I +
∂ ln

(
T T̄ sin2 2γ

)
2

∂Y I +

√
T̄

T

2∂γ

sin 2γ
∂̄Y I + 2ρN I , (B.4)

∂̄2Y = T̄ Y +
∂̄ ln

(
T T̄ sin2 2γ

)
2

∂̄Y I +

√
T

T̄

2∂̄γ

sin 2γ
∂Y I + 2ρ̃N I , (B.5)

∂∂̄Y = −
√
T T̄ cos 2γY , (B.6)

where ρ, ρ̃ and γ are defined by

∂Y I ∂̄YI =
√
T T̄ cos 2γ , ρ ≡ 1

2
N I∂2YI , ρ̃ ≡ 1

2
N I ∂̄2YI . (B.7)

Using the equation of motion, one can also show that γ, ρ and ρ̃ satisfy the generalized

sin-Gordon equation, which is given in (2.44).

Let us next derive a flat connection associated with the system of equations (B.2)–

(B.6). For this purpose, it is convenient to introduce the following orthonormal basis:

q1 ≡ Y , q2 ≡ −
i

sin 2γ

[
eiγ√
T
∂Y +

e−iγ√
T̄
∂̄Y

]
, (B.8)

q3 ≡
i

sin 2γ

[
eiγ√
T̄
∂̄Y +

e−iγ√
T
∂Y

]
, q4 ≡ N , (B.9)

which satisfy the following normalization conditions:

q2
1 = q2

4 = 1 , q2q3 = −2 . (B.10)

With these orthonormal vectors, (B.2)–(B.6) can be re-expressed as the following set of

equations,

∂q1 =

√
T

2

[
eiγq2 + e−iγq3

]
, (B.11)

∂q2 = e−iγ
√
Tq1 + i∂γq2 −

2iρ√
T sin 2γ

eiγq4 , (B.12)

∂q3 = eiγ
√
Tq1 − i∂γq3 +

2iρ√
T sin 2γ

e−iγq4 , (B.13)

∂q4 =
iρe−iγ√
T sin 2γ

q2 −
iρeiγ√
T sin 2γ

q3 , (B.14)

∂̄q1 = −
√
T̄

2

[
e−iγq2 + eiγq3

]
, (B.15)

∂̄q2 = −eiγ
√
T̄ q1 − i∂̄γq2 −

2iρ̃√
T̄ sin 2γ

e−iγq4 , (B.16)

∂̄q3 = −e−iγ
√
T̄ q1 + i∂̄γq3 +

2iρ̃√
T̄ sin 2γ

eiγq4 , (B.17)

∂̄q4 =
iρ̃eiγ√
T̄ sin 2γ

q2 +
iρ̃e−iγ√
T̄ sin 2γ

q3 . (B.18)

By expressing the basis in a matrix form,

W ≡ 1

2

(
q1 + iq4 q2

q3 q1 − iq4

)
, (B.19)
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we can convert the above equations into the following form:

∂W +BL
zW +WBR

z = 0 , ∂̄W +BL
z̄W +WBR

z̄ = 0 , (B.20)

where BL,R
z,z̄ are matrices defined by

BL
z ≡

 − i∂γ
2

ρeiγ√
T sin 2γ

−
√
T

2 e−iγ

ρe−iγ√
T sin 2γ

−
√
T

2 eiγ i∂γ
2

 , (B.21)

BR
z ≡

 i∂γ
2 − ρeiγ√

T sin 2γ
−
√
T

2 e−iγ

− ρe−iγ√
T sin 2γ

−
√
T

2 eiγ − i∂γ
2

 , (B.22)

BL
z̄ ≡

 i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

+
√
T̄

2 eiγ

ρ̃eiγ√
T̄ sin 2γ

+
√
T̄

2 e−iγ − i∂̄γ
2

 , (B.23)

BR
z̄ ≡

 − i∂̄γ
2 − ρ̃e−iγ√

T̄ sin 2γ
+
√
T̄

2 eiγ

− ρ̃eiγ√
T̄ sin 2γ

+
√
T̄

2 e−iγ i∂̄γ
2

 . (B.24)

(B.20) is equivalent to the flatness conditions of the connections BL and BR,

∂BL
z̄ − ∂̄BL

z + [BL
z , B

L
z̄ ] = 0 , ∂BR

z̄ − ∂̄BR
z + [BR

z , B
R
z̄ ] = 0 . (B.25)

Owing to the classical integrability of the string sigma model, we can “deform” the above

connection without spoiling the flatness by introducing a spectral parameter ζ = (1 −
x)/(1 + x) as

Bz(ζ) ≡ Φz

ζ
+Az , Bz̄(ζ) ≡ ζΦz̄ +Az̄ . (B.26)

Φ’s and A’s are defined by46

Φz ≡

(
0 −

√
T

2 e−iγ

−
√
T

2 eiγ 0

)
, Φz̄ ≡

(
0

√
T̄

2 eiγ√
T̄

2 e−iγ 0

)
, (B.27)

Az ≡

 − i∂γ
2

ρeiγ√
T sin 2γ

ρe−iγ√
T sin 2γ

i∂γ
2

 , Az̄ ≡

 i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

ρ̃eiγ√
T̄ sin 2γ

− i∂̄γ
2

 . (B.28)

The deformed connection (B.26) evaluated at ζ = 1 or ζ = −1 is related to the original

connection BL,R in the following way:

BL = B(ζ = 1) ,
(
BR
)t

= σ2B(ζ = −1)σ2 . (B.29)

Furthermore (B.26) is related to the usual left/right connection by an appropriate gauge

transformation as will be shown in appendix C.

46(B.26) is equivalent in form to the SL(2)-Hitchin system. However, the boundary conditions we impose

around the punctures are different from the ones used in the usual analysis of the Hitchin system.
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C Relation between the Pohlmeyer reduction and the sigma model for-

mulation

In this appendix, we explain how the Pohlmeyer reduction and the sigma model formulation

are related.

C.1 Reconstruction formula for the Pohlmeyer reduction

In section 2.2 we presented the simple formulas (2.65) and (2.66) which reconstruct the

solution Y of the equations of motion from the eigenfunctions of the ALP in the sigma

model formulation. We now describe a similar formula for the Pohlmeyer reduction and

by comparing such reconstruction formulas we can relate the two formulations. Consider

the left and the right ALP associated with the Pohlmeyer reduction,(
d+BL

)
ψL = 0 ,

(
d+BR

)
ψR = 0 , (C.1)

and let ψL,R1 and ψL,R2 be two linearly independent solutions satisfying the normalization

conditions

det
(
ψL1 , ψ

L
2

)
= 1 , det

(
ψR1 , ψ

R
2

)
= 1 . (C.2)

Then, similarly to the sigma model case, the embedding coordinates Y can be reconstructed

by the formula

Y = q1 =

(
Z1 Z2

−Z̄2 Z̄1

)
=
(
ΨL
)t

ΨR , (C.3)

where ΨL,R are 2× 2 matrices with a unit determinant, defined by

ΨL ≡
(
ψL1 , ψ

L
2

)
, ΨR ≡

(
ψR1 , ψ

R
2

)
. (C.4)

Concerning the property under the global symmetry transformations, we should note the

following. Since the Pohlmeyer connections BL and BR in the equation (C.1) are invariant,

ΨL and ΨR must also be invariant under such transformations acting from left. However,

as for transformations from right, they may transform non-trivially. In fact, as we shall see

shortly, they must transform covariantly from right so that the solutions of the ALP for

the Pohlmeyer and the sigma model formulations are connected consistently by a gauge

transformation.

Furthermore, one can check that the quantities q2 and q3, which consist of the deriva-

tives of Y, can be reconstructed as

q2 =
(
ΨL
)t( 0 2

0 0

)
ΨR , q3 =

(
ΨL
)t( 0 0

2 0

)
ΨR . (C.5)

From these formulas the derivatives of Y can be obtained as

∂Y =

√
T

2

[
eiγq2 + e−iγq3

]
, ∂̄Y = −

√
T̄

2

[
e−iγq2 + eiγq3

]
. (C.6)
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Note that, in distinction to the case of the sigma model, the reconstruction formulas for

the Pohlmeyer reduction does not use the eigenvectors of the monodromy matrices, namely

ψ̂±. The solutions ψL,Ri used are simply two linearly independent solutions to the ALP,

which are not necessarily the eigenvectors of Ω.

C.2 Relation between the connections and the eigenvectors

We now discuss the relation between the connections and the eigenvectors of the the

Pohlmeyer reduction and those of the sigma model.

First consider the relation to the right connection of the sigma model. From the

formulas for ∂Y and ∂̄Y given in (C.6), we can form the right connection j as

jz =
√
T
(
ΨR
)−1

(
0 eiγ

e−iγ 0

)
ΨR , jz̄ = −

√
T̄
(
ΨR
)−1

(
0 e−iγ

eiγ 0

)
ΨR . (C.7)

Then, comparing (C.7) with (B.26)–(B.28), we find that the following gauge transformation

connects the flat connections of the two formulations:

1

1− x
jz = G−1Bz(ζ)G + G−1∂G , (C.8)

1

1 + x
jz̄ = G−1Bz̄(ζ)G + G−1∂̄G , (C.9)

where

G = iσ2ΨR . (C.10)

The eigevectors ψ± of the sigma model formulation and those of the Pohlmeyer reduction,

denoted by ψ̂±, are related as

ψ± = G−1ψ̂± . (C.11)

Note that the factor of i in (C.10) is needed to reproduce the correct normalization condition

〈ψ+ , ψ−〉 = 1. Under the global SU(2)R transformation UR, ψ± transform as ψ± →
U−1
R ψ±. From the above formulas (C.10) and (C.11) we see that this corresponds to the

transformation ΨR → ΨRUR, as remarked previously.

In an exactly similar manner, we can construct the left current l’s by

lz =
√
T
(
ΨL
)t( 0 eiγ

e−iγ 0

)[(
ΨL
)t]−1

, lz̄ = −
√
T̄
(
ΨL
)t( 0 e−iγ

eiγ 0

)[(
ΨL
)t]−1

,

(C.12)

Comparing (C.12) with (B.26)–(B.28), we find that the following gauge transformation

connects the two connections:

x

1− x
lz = G̃−1Bz(ζ)G̃ + G̃−1∂G̃ , (C.13)

− x

1 + x
lz̄ = G̃−1Bz(ζ)G̃ + G̃−1∂̄G̃ , (C.14)

– 103 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

where

G̃ =
[
(ΨL)t(−iσ2)

]−1
= iΨLσ2 . (C.15)

The eigenvectors are related as

ψ̃± = G̃−1ψ̂± . (C.16)

Using (C.11) and (C.16), one can show the equivalence between the reconstruction formu-

las (2.65), (2.66) and (C.3).

D Details of the WKB expansion

In this appendix, we explain the details of the WKB expansion for the solutions to the ALP.

We will describe two approaches, each of which has its own merit. First in subsection D.1,

we will perform a direct expansion in the small parameter ζ, which is useful for clarifying

the general structure of the expansion. This method, however, turned out to be not quite

suitable for deriving the explicit formulas for the expansion of the Wronskians. Therefore,

in subsection D.2, we take a slightly different approach based on the Born series expansion.

This allows us to derive the expressions for the Wronskians up to the O(ζ1) terms with

relative ease, with the results given in (3.37), (3.38), (3.40) and (3.41).

D.1 Direct expansion of the solutions to the ALP

In this subsection, we will perform a direct expansion of the ALP in the “diagonal gauge”

introduced in section 3.2. In this gauge the ALP equations become(
∂ +

1

ζ
Φd
z +Adz

)
ψ̂d = 0 ,

(
∂̄ + ζΦd

z̄ +Adz̄

)
ψ̂d = 0 . (D.1)

Denoting the components of ψ̂d as

ψ̂d ≡

(
ψ(1)

ψ(2)

)
, (D.2)

and substituting the expressions for Φd
z , A

d
z , etc. given in (3.35), the ALP equations above

take the form

∂ψ(1) +

√
T

2ζ
ψ(1) − ρ√

T
cot 2γψ(1) + i

(
ρ√
T
− ∂γ

)
ψ(2) = 0 , (D.3)

∂ψ(2) −
√
T

2ζ
ψ(2) +

ρ√
T

cot 2γψ(2) − i
(

ρ√
T

+ ∂γ

)
ψ(1) = 0 , (D.4)

and

∂̄ψ(1) − ζ
√
T̄ cos 2γ

2
ψ(1) − ρ̃√

T̄ sin 2γ
ψ(1) + i

√
T̄ sin 2γ

2
ψ(2) = 0 , (D.5)

∂̄ψ(2) + ζ

√
T̄ cos 2γ

2
ψ(2) +

ρ̃√
T̄ sin 2γ

ψ(2) − i
√
T̄ sin 2γ

2
ψ(1) = 0 . (D.6)

– 104 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
2

Let us examine the first two equations (D.3) and (D.4). To perform the WKB expan-

sion, it is useful to introduce a coordinate w defined by

dw =
√
Tdz . (D.7)

By this coordinate transformation we can absorb the factor
√
T and bring the equations

to the simplified form

∂wψ
(1) +

1

2ζ
ψ(1) − ρ

T
cot 2γψ(1) + i

( ρ
T
− ∂wγ

)
ψ(2) = 0 , (D.8)

∂wψ
(2) − 1

2ζ
ψ(2) +

ρ

T
cot 2γψ(2) − i

( ρ
T

+ ∂wγ
)
ψ(1) = 0 . (D.9)

Let us express ψ(2) in terms of ψ(1) using (D.8). We get

ψ(2) = −i
( ρ
T
− ∂wγ

)−1
[
∂wψ

(1) +

(
1

2ζ
− ρ

T
cos 2γ

)
ψ(1)

]
. (D.10)

Substituting (D.10) into (D.9), we obtain a second order differential equation for ψ(1) of

the form

∂2
wψ

(1) − ∂w ln
( ρ
T
− ∂wγ

)
∂wψ

(1) −Aψ(1) = 0 , (D.11)

where A is given by

A =

(
1

2ζ
− ρ

T
cot 2γ

)2

+ ∂w

( ρ
T

cot 2γ
)

+ ∂w ln
( ρ
T
− ∂wγ

)( 1

2ζ
− ρ

T
cot 2γ

)
+ (∂wγ)2 −

( ρ
T

)2
. (D.12)

We now make the WKB expansion of ψ(1) in powers of ζ in the form,

ψ(1) =

√
ρ

T
− ∂wγ exp

[
W−1

ζ
+W0 + ζW1 + · · ·

]
, (D.13)

and substitute it into (D.11). Then, at order ζ−2, we get the equation

(∂wW−1)2 =
1

4
, (D.14)

with the solutions given by ∂wW−1 = ±1/2. At the next order, we get the equation

∂2
wW−1 + 2∂wW−1∂wW0 =

1

2
∂w ln

( ρ
T
− ∂wγ

)
− ρ

T
cot 2γ . (D.15)

From this ∂wW0 is determined as

∂wW0 = ±
[

1

2
∂w ln

( ρ
T
− ∂wγ

)
− ρ

T
cot 2γ

]
, (D.16)
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where the plus sign is for ∂wW−1 = +1/2 and the minus sign is for ∂wW−1 = −1/2.

Similarly, we can determine ∂wW1 as

∂wW1 =±
[
(∂wγ)2 −

( ρ
T

)2
+ ∂w

( ρ
T

cot 2γ
)
− 1

2
∂2
w ln

( ρ
T
− ∂wγ

)]
− 1

2
∂2
w ln

( ρ
T
− ∂wγ

)
, (D.17)

where the choice of the sign should be the same as in (D.16). Continuing in this fashion

using (D.5) and (D.6), we can determine ∂̄W−1, ∂̄W0 and ∂̄W1 to be

∂̄W−1 = 0 , ∂̄W0 = ±
[

1

2
∂̄ ln

( ρ
T
− ∂wγ

)
− ρ̃√

T̄ sin 2γ

]
,

∂̄W1 = ±
[
η

2
− 1

2
∂̄∂w ln

( ρ
T
− ∂wγ

)]
− 1

2
∂̄∂w ln

( ρ
T
− ∂wγ

)
.

(D.18)

The results obtained above can be reorganized into a compact form. In fact we can

write the expansion (D.13) as

ψ(1) = exp [Wodd +Weven] , (D.19)

where Wodd (resp. Weven) denotes terms which (do not) change sign under the sign-flip of

∂wW−1. Then, by substituting (D.19) into (D.11) and extracting the terms odd under the

above flip of sign, we can obtain the following simple equation expressing Weven in terms

of Wodd:

Weven = −1

2
ln ∂wWodd . (D.20)

As is clear from the analysis above, the WKB expansion of Wodd is given in terms of the

integrals of certain functions of the worldsheet variables, such as γ, ρ and ρ̃. On the other

hand, the even part Weven, which depends only on the derivatives of Wodd, is expressed

purely in terms of the local values of the worldsheet variables. With such classifications,

we can recast the WKB expansion of the two linearly independent solutions of the ALP

into the following form:

ψ̂d =

(
f

(1)
±
f

(2)
±

)
exp

(
±
∫ z

z0

WWKB(z, z̄; ζ)

)
. (D.21)

Here we renamed Wodd to WWKB and the functions f
(1)
± and f

(2)
± are defined in terms of

W z
WKB by

f
(1)
± ≡ kWKB =

√
ρ−
√
T∂γ

T W z
WKB

, (D.22)

f
(2)
± ≡

−i√
W z

WKB

[
±W z

WKB +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln kWKB

2

)]
. (D.23)
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D.2 Born series expansion of the Wronskians

In this subsection, we will derive the explicit form of the expansion for the Wronskians up

to O(ζ1) using the Born series method, which turned out to be more convenient compared

to the direct expansion described above. In particular, with this method it is much easier

to take into account the normalization conditions of the eigenvectors i± given in (2.96).

Although the method has been described in appendix B of [22], we will spell out the details

of the derivation since several additional considerations are necessary in our case.

To illustrate the basic idea, let us take the Wronskian 〈2+ , 1+〉 as an example and

discuss its expansion. To compute 〈2+ , 1+〉, we need to parallel-transport the eigenvector

1+, which is defined originally in the neighborhood of z1, to the neighborhood of z2 using

the flat connection and compute the Wronskian with 2+. In the diagonal gauge, this

procedure can be implemented in the following way:

〈2̂d+ , 1̂d+〉 = 〈2̂d+(z∗2) ,P exp

[
−
∫ 1

0
dt

(
1

ζ
H0(t) + V (t)

)]
1̂d+(z∗1)〉 . (D.24)

In this expression t parametrizes the curve joining z∗1 (at t = 0) and z∗2 (at t = 1) and H0

and V are defined in terms of the connection in the diagonal gauge, given in (3.35), as

H0(t) ≡ Φ̃z ż , V (t) ≡ Ãz ż + Ãz̄ ˙̄z + ζΦ̃z̄ ˙̄z , (D.25)

with ż and ˙̄z standing for dz/dt and dz̄/dt respectively. The equation (D.24) is similar in

form to the transition amplitude in quantum mechanics, where H0(t)/ζ is the unperturbed

Hamiltonian and V (t) is the time-dependent perturbation. Therefore we can derive the

expansion of (D.24) by applying the familiar Born series expansion.

As the first step toward this goal, let us determine the expansion of the “initial states”,

1̂d+(z∗1) and 2̂d+(z∗2). As explained in section 2.3, the eigenvectors can be well-approximated

near the puncture by those of the corresponding two-point functions. Thus, the expansion

of the initial states can be obtained from the explicit form of î2pt
± given in (2.98) and (2.99) as

1̂d+(z∗1) ∼ 1̂2pt,d
+ =

(
O(ζ1)

1 +O(ζ2)

)
, 2̂d+(z∗2) ∼ 2̂2pt,d

+ =

(
1 +O(ζ2)

O(ζ1)

)
. (D.26)

Let us now study the leading terms (i.e. the O(V 0) terms) in the Born series expansion

of (D.24). They can be expressed as

1
(2)
+ (z∗1)2

(1)
+ (z∗2)〈e2|e−

∫ 1
0 H0dt/ζ |e2〉 − 1

(1)
+ (z∗1)2

(2)
+ (z∗2)〈e1|e−

∫ 1
0 H0dt/ζ |e1〉 , (D.27)

where |e1〉 and |e2〉 stand for the unit vectors

|e1〉 =

(
1

0

)
, |e2〉 =

(
0

1

)
, (D.28)

and i
(1)
± and i

(2)
± are the upper and the lower component of îd± respectively, which can be

expressed as

îd± = i
(1)
± |e1〉+ i

(2)
± |e2〉 . (D.29)
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Using (D.26), we can evaluate the expression (D.27) explicitly as

(
1 +O(ζ2)

)
exp

(∫
`12

1

ζ
$

)
−O(ζ2) exp

(
−
∫
`12

1

ζ
$

)
, (D.30)

where `12 is the contour that connects z∗1 and z∗2 , defined in section 3.1. Note that the

second term in (D.30), which has an overall O(ζ2) factor can be safely neglected only when

Re
(∫

`12
$/ζ

)
is positive so that the exponential exp

(
−
∫
`12
$/ζ

)
becomes vanishingly

small. The positivity of Re
(∫

`12
$/ζ

)
is guaranteed when the following two conditions

are satisfied:

1. The eigenvectors, 1+ and 2+, are small solutions.

2. z1 and z2 are connected by a WKB curve z(s) defined to be satisfying the condition

Im

(√
T
dz

ds

)
= 0 , (D.31)

where s parameterizes the curves.

This can be deduced in the following way: first, from the definition (D.31), one can show

that the real part of the integral
∫
$/ζ monotonically increases or decreases along the WKB

curve. Second, when 1+ and 2+ are both small solutions, Re
(∫
$/ζ

)
increases as we move

away from z1 in the vicinity of z1 while it increases as we approach z2 in the vicinity of z2.

From these two observations, one can conclude that Re
(∫

`12
$/ζ

)
is positive when both

of the eigenvectors are small and the punctures are connected by a WKB curve. Actually,

in practice the second condition above is inessential. This is because all the punctures are

always connected with each other by WKB curves, except at discrete values of Arg (ζ), due

to the triangular inequalities, ∆i < ∆j + ∆k (or equivalently κi < κj + κk), which hold in

all the cases we study in this paper.

Let us now move on to the study of the O(V 1) contributions. When 1+ and 2+ are

small solutions, the O(V 1) terms in the Born series expansion are given by

− 1
(2)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0
dt1〈e2|e

−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉

− 1
(1)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0
dt1〈e2|e

−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e1〉

+ 1
(2)
+ (z∗1)2

(2)
+ (z∗2)

∫ 1

0
dt1〈e1|e

−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉 .

(D.32)

Note that we have omitted the terms of the form, 〈e1| ∗ |e1〉, since they are proportional to

the factor exp
(∫

`12
$/ζ

)
, which, as discussed above, is exponentially small when 1+ and 2+
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are small solutions. Since |e1〉 and |e2〉 are the eigenvectors of H0, we can evaluate (D.32) as

− 1
(2)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)
∫ 1

0
dt1〈e2|V (t1)|e2〉

− 1
(1)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)
∫ 1

0
dt1〈e2|V (t1)|e1〉e−

∫ t1
0 $/ζ

+ 1
(2)
+ (z∗1)2

(2)
+ (z∗2)e

∫
`12

$/(2ζ)
∫ 1

0
dt1〈e1|V (t1)|e2〉e

−
∫ 1
t1
$/ζ

.

(D.33)

In the limit ζ → 0, the integral over t1 in the second term will be exponentially suppressed

by the factor exp
(
−2
∫ t1

0 $/ζ
)

, except when the interval is short, i.e. 0 < t1 < O(ζ1).

Thus, to O(ζ1), one can take $ in
∫ t1

0 $/ζ to be constant and replace V (t1) with V (0).

We can thus approximate the second term in (D.33) as

−ζ 1
(1)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)〈e2|V (0)|e1〉
(√

T (z∗1) ż(t = 0)

)−1

. (D.34)

Since the factor 1
(1)
+ (z∗1) is of O(ζ1), (D.34) as a whole is of O(ζ2) and thus can be neglected

to the order of our approximation. Similarly, one can also show that the third term

of (D.33) is of O(ζ2). Thus, up to O(ζ1), the contribution comes only from the first term

proportional to

−e
∫
`12

$/(2ζ)
∫ 1

0
dt1〈e2|V (t1)|e2〉 . (D.35)

Lastly let us examine the O(V 2) terms. The only term which contributes at O(ζ1) is

1
(2)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0
dt2

∫ t2

0
dt1〈e2|e

−
∫ 1
t2
H0dt/ζV (t2)e−

∫ t2
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉 .

(D.36)

Inserting the identity 1 = |e1〉〈e1|+ |e2〉〈e2|, this quantity can be computed as

1
(2)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)

(
1

2

[∫ 1

0
dt1〈e2|V (t1)|e2〉

]2

+

∫ 1

0
dt1

∫ t1

0
dt2e

−
∫ t1
t2
$/ζ〈e2|V (t1)|e1〉〈e1|V (t2)|e2〉

)
. (D.37)

As in the discussion of the O(V 1) terms, we can take $ in
∫ t1
t2
$/ζ to be constant and

replace V (t2) with V (t1) in the second term of (D.37), thanks to the suppression factor

exp
(
−
∫ t2
t1
$/ζ

)
. Then (D.37) can be evaluated as

e
∫
`12

$/(2ζ)

(
1

2

[∫ 1

0
dt1〈e2|V (t1)|e2〉

]2

+ ζ

∫ 1

0
dt1
〈e2|V (t1)|e1〉〈e1|V (t1)|e2〉

ż
√
T

)
. (D.38)
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Putting together the expressions (D.30), (D.35) and (D.38), we find that the result can be

grouped into an exponential in the following way:

〈2+ , 1+〉 ∼ exp

(
1

2ζ

∫
`12

$ −
∫ 1

0
dt〈e2|V (t)|e2〉+ ζ

∫ 1

0
dt1
〈e2|V (t)|e1〉〈e1|V (t)|e2〉

ż
√
T

)
.

(D.39)

Thus we have obtained the expansion of 〈2+ , 1+〉 to be given by

〈2+ , 1+〉 = exp

(
− 1

2ζ

∫
`21

$ −
∫
`21

α− ζ

2

∫
`21

η +O(ζ2)

)
, (D.40)

where the one-form α is given by

α = − ρ√
T

cot 2γdz − ρ̃√
T̄ sin 2γ

dz̄ . (D.41)

The expansion of other Wronskians can be worked out in a similar manner leading to (3.37)

and (3.38). Furthermore, we can apply the same argument to the expansion around ζ =∞
and obtain (3.40) and (3.41), where the one-form α̃ appearing in the O(ζ0) term is given by

α̃ = − ρ√
T sin 2γ

dz − ρ̃√
T̄

cot 2γdz̄ . (D.42)
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