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1 Introduction

The spectrum of singlet operators of a three-dimensional N -vector model corresponds to

the spectrum of higher spin particles in four dimensions [1]. This observation suggests that

(large N , zero ’t Hooft coupling) conformal points of singlet vector models, defined more

precisely below, possess gauge/gravity duals given by Vasiliev theories of classical higher

spin gauge fields [1–6]. Neither the quantum Vasiliev theory nor its tentative dual, the finite

N singlet vector model, are fully understood. Recent work has shown that singlet vector

models exhibit thermal phase transitions [7] and possess light topological states [8] that are

not present in the original Vasiliev theory. These results are data that can be used in order

to understand the quantum (possibly stringy) nature of Vasiliev gravity. In this paper we

add to these data a detailed study of topological configurations in the singlet vector model

on lens spaces L(p, 1) = S3/Zp.

We use the phrase “singlet vector model” to refer to a theory of N complex scalar fields

whose spectrum is restricted to operators invariant under U(N) rotations in the target

space. Variations on this theme can be considered, but the analysis will be the same. A

singlet vector model on a three-dimensional space with a compact spatial manifold can be

given a local Lagrangian formulation in terms of a U(N) Chern-Simons (CS) theory at

infinite level coupled to fundamental matter [7, 9, 10]. The non-singlet states are projected

out by Gauss’ law, and the infinite level is intended to ensure that the fluctuations in the

gauge field do not couple to matter. If we desire to formulate a duality between higher-

spin gravity and a local quantum field theory, then it seems that it is this infinite-level

CS-matter theory — not just the matter sector — that should be regarded as the dual to

the Vasiliev theory in the bulk. This is an important distinction, as putting a gauge theory

on a topologically nontrivial space, e.g. S1 × S2 or R×T2, will give rise to nontrivial flat

connections [7, 8, 11]. These flat connections impact even the zero-coupling regime and

cannot be ignored. For instance, when studying the CS-matter theory on S1 × S2, one

must sum over all gauge holonomies along S1 when path-integrating; only then does the
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low-temperature (large S1) partition function correctly reduce to the partition function of

a gas of higher-spin particles in the bulk.

In this short note we analytically compute the free energy of the U(N) singlet vector

model on the family of lens spaces L(p, 1). As expected, we find a nontrivial structure of

light, topologically induced configurations or “states,” as we will call them for convenience

(even though these are not the usual quantum states, since the lens space lacks a time

direction). In particular, a pN -like abundance of such states is found to always appear at

very small volume (large p) lens spaces. The calculation of the free energy on this family

of spacetimes also allows us to comment on a naïve but inconsistent extrapolation of the

dS/CFT correspondence [12–14] to nontrivial topologies.

2 Weakly coupled CS-matter theory on a lens space

A lens space is a smooth three-manifold obtained by quotienting the sphere S3 = {(z1, z2) ∈
C
2
∣
∣ |z21 | + |z22 | = 1} by the freely acting, Zp-isomorphic group whose single generator

can be taken to act as (z1, z2) 7→ (z1e
2πi/p, z2e

−2πi/p). If we let zi = rie
iϕi , we may

parametrize the sphere with Euler angles (θ, φ, ψ) given by φ = ϕ1 + ϕ2, ψ = ϕ1 − ϕ2 and

r2/r1 = tan(θ/2+ π/4). The geometry of S3 in these coordinates can then be expressed as

ds2 =
1

4

(
dθ2 + dφ2 + dψ2 + 2 sin θdφdψ

)
, θ ∈

[

−π
2
,
π

2

]

, φ ∼ φ+2π, ψ ∼ ψ+4π. (2.1)

The definition of the Zp action implies that the lens space L(p, 1) = S3/Zp is the same

manifold as above, except with ψ ∼ ψ + 4π/p. In the rest of the paper we will refer to the

quotienting procedure as “orbifolding,” and the ψ circle will be the “orbifolded circle.” This

is convenient nomenclature, but it should be stressed that it is slightly misleading: there

are no orbifold singularities on a lens space.

We wish to study CS-matter theories on L(p, 1) in the limit of infinite level and at

large N (much larger than unity but much smaller than the CS level). We will keep

track of the 1/N corrections. Similar gauge theories have already been studied in different

contexts, and the computation in this paper relies heavily on the methods of [15–19]. The

infinite level breaks the path integral over gauge fields into a sum of fluctuations around

flat connections (“vacua”). The vacua correspond to nontrivial holonomies on L(p, 1), which

are in turn indexed by the set of homomorphisms from π1(L(p, 1)) = Zp to U(N), modulo

conjugations. Thus, each flat connection corresponds to a Wilson loop operator V =

exp
{
i
∮
Aψdψ

}
along the orbifolded circle. These Wilson loops inherit the group structure

of Zp and hence they must satisfy V p = 1; moreover, quotienting by conjugations allows us

to focus only on diagonal matrices V . Therefore, we may identify the set of flat connections

(i.e. the moduli space of vacua) with the set of diagonal matrices specified by a p-component

vector N = {NI},

V =

p−1
⊕

I=0

e2πiI/p INI
= diag

(

1, . . . , 1
︸ ︷︷ ︸

N0

, . . . , e2πi(p−1)/p, . . . , e2πi(p−1)/p

︸ ︷︷ ︸

Np−1

)

. (2.2)
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Henceforth the indices I, J , etc. will always run from 0 to p − 1. The set of vacua is thus

indexed by all the partitions of N into p summands. Within each vacuum the gauge group

is broken down to
∏

I U(NI), and the N -vector model splits into a direct sum of NI -vector

models, each having different boundary conditions along the orbifolded circle due to the

existence of a nontrivial gauge holonomy. The discreteness of the set of vacua implies

that, up to the just described sensitivity on the boundary conditions, matter completely

decouples from the gauge fields at infinite level.

The partition function of the singlet vector model on L(p, 1) is thus simply the sum of

the products of the pure gauge partition function and the matter partition function in each

vacuum separately,

ZL(p,1) =
∑

N

ZCS(N)ZM(N). (2.3)

It is now possible to analyze the gauge and the matter sectors separately.

Before proceeding with the separate analyses of the two sectors, we pause to comment

on the nature of the infinite level limit in the above CS-matter theory. At finite level,

the CS theory remains topological and there are no additional gluon states, but monopole

configurations start to enter the partition function. Once monopoles are present, they can

serve as endings of flux lines from non-singlet matter operators, leading to additional singlet

states that do not have known duals in the spectrum of higher-spin particles. At finite N ,

these operators are saddle points of the partition function, and the partition function is

non-analytic in the CS level; however, at infinite N (i.e. in the ’t Hooft limit), the partition

function becomes just an analytic function of the ’t Hooft coupling. Of course, it is in

principle possible to study the spectra of monopole operators from the boundary side. We

leave this to future work: if our purpose is studying boundary duals of Vasiliev gravity,

monopole operators are undesirable. In the remainder of this paper, we focus on the one

infinite-level saddle with no monopoles.

2.1 The gauge sector

The gauge sector in a particular gauge holonomy can be reduced to a matrix model [16–18],

and its partition function can be expressed as the integral

ZCS(N) =
e
− i

g
Scl(N)− ig

12
N(N2−1)

∏

I NI !

∫
dNx

(2π)N
e

i
2g

(x−2πin(N)/p)2
∏

1≤i<j≤N

(

2 sinh
xi − xj

2

)2

,

(2.4)

where k is the CS level, g = 2π/p(k+N) is the “string coupling,” Scl(N) = (2π2/p2)
∑

I I
2NI

is the classical CS action in the vacuum N, and n(N) is an N -vector whose first N0 entries

are 0, the next N1 entries are 1, and so on. The above formula is exact. We are interested in

the limit of zero ’t Hooft coupling, k ≫ N ≫ 1, where we only need the leading order behav-

ior in the saddle point approximation, and where we may approximately take g ≈ 2π/kp.

Upon analytic continuation to the complex plane, we may let x = 2πin(N)/p + ξ
√
g and

take g → 0, reducing the integral in (2.4) to

∏

off b. d.

(

2i sin
π

p
(ni(N)− nj(N))

)2 ∫

dNξ

(√
g

2π

)N

eiξ
2/2

∏

on b. d.

((
ξi − ξj

)2
g
)

, (2.5)
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where “on/off b. d.” refers to the pairs of numbers (i, j) with 1 ≤ i < j ≤ N that label

elements of an N ×N matrix that, respectively, do/do not fall into block-diagonal entries

with p blocks of dimensions NI ×NI . There are (N2 −N)/2 factors of g in the product of

“on block diagonal” entries, and hence the entire integral scales as gN
2/2. The gauge sector

thus has the free energy − lnZCS(N) whose real part, the weight of the vacuum N in the

partition function, is given by

FCS(N) =
N2

2
ln
kp

2π
−

∑

I<J

2NINJ ln

{

2 sin
π

p
(J − I)

}

−
∑

I

ln

{
NI∏

n=1

n!

}

, (2.6)

where we have computed the integral over ξ’s by analytically continuing and transforming

it into a Gaussian integral over N ×N Hermitian matrices Ξ,

1

N !

∫
dNξ

(2π)N
e−ξ

2/2
∏

1≤i<j≤N

(ξi − ξj)
2 =

1

Vol(U(N))

∫

dΞ e−
1

2
Tr Ξ2

=

∏N
n=1 n!

(2π)N/2
. (2.7)

Note that we have dropped the irrelevant N-independent constants, like (N/2) ln{2π}, from

the free energy.

At infinite level the dominant term is N2 ln k. Minimizing it picks out the dominant

vacuum N0 = (N/p, . . . , N/p). This has been noted for p = 2 in [17], where detailed

saddle-point expansions have been examined for various complex values of g. If N/p is not

an integer, i.e. if N = N ′p + q, the lowest-lying states consist of those vacua that have

q sectors with NI = N ′ + 1 and p − q sectors with NI = N ′. There are
(
p
q

)
such vacua,

and their energy difference is of order N0. The matter sector will exhibit the same order

of energy spacing in this almost-degenerate set of vacua. The total partition function at

k ≫ N thus consists of a sum over the
(
p
q

)
vacua that represent light excitations above the

ground state, but for an explicit form we need to find the contribution from the matter

sector as well.

2.2 The matter sector

The matter sector is represented by a free U(N) model, i.e. by a conformal theory of a

complex N -vector field φa. On a curved background, its Lagrangian is

L = φ∗a
(
−∇2 + ξR

)
φa, (2.8)

where ∇2 is the covariant Laplacian and ξR is the conformal coupling to the curvature,

needed to ensure the tracelessness of the stress tensor. On a lens space L(p, 1) with d = 3,

the curvature is constant and the conformal coupling equals

ξR =
d− 2

4(d− 1)
· d(d− 1) =

3

4
. (2.9)

Thus, the matter sector in vacuum N yields a contribution of ln detN(−∇2 + 3/4) to the

total free energy F = − lnZ. The subscript N indicates that the conformal Laplacian

acts on the space of N -vector fields whose NI components couple to the U(NI) connection.

– 4 –



J
H
E
P
0
3
(
2
0
1
4
)
0
4
8

Each eigenstate of this operator is also an eigenstate of the conformal Laplacian on the

three-sphere, and so we can calculate the needed functional determinant by summing over

an appropriately restricted set of eigenvalues of the conformal Laplacian on S3. Following

a similar computation in [15], this can be done as follows.

The eigenvalues of the covariant Laplacian ∇2, given by −ℓ(ℓ+2) = 1−(ℓ+1)2 for ℓ ≥ 0,

each have degeneracy (ℓ + 1)2 on S3. We wish to restrict ourselves to the set of orbifold-

invariant eigenstates. These are the states that acquire a trivial phase upon traversing this

orbifolded circle of S3. If we let m ∈ {−ℓ/2,−ℓ/2 + 1, . . . , ℓ/2} be the eigenvalue of the

generator of rotations along the orbifolded circle, the eigenstates labeled by m will acquire a

phase of e4πim/p upon traversing the circle. On the other hand, the existence of a nontrivial

Wilson loop forces the eigenstates in the I-th sector of a given vacuum N to acquire a phase

e2πiI/p by going around the same circle. Thus, the eigenstates of ∇2 on a lens space are

those eigenstates of ∇2 on a sphere that satisfy

e4πim/pe2πiI/p = 1 or 2m+ I ∈ pZ. (2.10)

Each state whose quantum number m satisfies this constraint will have a degeneracy of

ℓ+ 1. The free energy of the matter sector in vacuum N thus becomes

FM(N) = ln detN

(

−∇2 +
3

4

)

=
∑

I

NI ln detI

(

−∇2 +
3

4

)

=
∑

I

NI

∞∑

ℓ=0

(ℓ+ 1)dI(ℓ) ln

{

(ℓ+ 1)2 − 1

4

}

, (2.11)

with dI(ℓ) counting how many numbers 2m ∈ {−ℓ,−ℓ + 2, . . . , ℓ} satisfy the orbifold in-

variance condition (2.10) by being congruent to −I modulo p.

It is difficult to find a closed form for dI(ℓ), but we can immediately note that
∑

I dI(ℓ) = ℓ+1. Therefore, if p divides N , the CS-preferred vacuum N0 = (N/p, . . . , N/p)

has the matter free energy of the free U(N/p) model on S3 [18, 20]

FM(N0) =
N

p

∞∑

ℓ=0

(ℓ+ 1)2 ln

{

(ℓ+ 1)2 − 1

4

}

=
N

8p

(

ln 4− 3ζ(3)

π2

)

. (2.12)

The case when N/p is not an integer requires a bit more work. The free energy of a single

scalar field in the I-th sector, denoted FM(p, I) = ln detI(−∇2 + 3/4), can be computed

by an appropriate reformulation and subsequent renormalization of the sum (2.11). This is

done in the appendix, where it is found that FM(p, I) can always be expressed in analytic

form using polylogarithmic and ζ-functions.

Once FM(p, I) is known, the full matter free energy with N = N ′p+q can be written as

FM(N) =
N ′

8

(

ln 4− 3ζ(3)

π2

)

+
∑

I′

FM(p, I ′), (2.13)
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where I ′ runs over the q sectors that have N ′+1 components. Using the CS free energy (2.6)

we find that the total free energy is

F (N) =
p (N ′)2 + 2qN ′ + q

2
ln
kp

2π
− 2

(
N ′

)2
∑

I<J

ln

{

2 sin
π

p
(J − I)

}

− p ln

{
N ′

∏

n=1

n!

}

−N ′

[

q
∑

I 6=0

ln

{

2 sin
πI

p

}

+
1

8

(

ln 4− 3ζ(3)

π2

)]

− q ln
{
N ′ + 1

}

− 2
∑

I′<J ′

ln

{

2 sin
π

p
(J ′ − I ′)

}

+
∑

I′

FM(p, I ′). (2.14)

This is the free energy of any vacuum N with N ′ components in p − q sectors and with

N ′ + 1 components in q sectors. This formula is organized by powers of N ′ and k, and we

see that the vacua with minimal N2 are distinguished only by the O(1) term

ε(q) =
∑

I′

FM(p, I ′)− 2
∑

I′<J ′

ln

{

2 sin
π

p
(J ′ − I ′)

}

, (2.15)

where q is the q-vector whose components are labels I ′ of sectors with a U(N ′ + 1) gauge

group. This vector is the only degree of freedom left in the system and it represents the

“topological states” that are preserved even at infinite level. With F0 = F (N) − ε(q), we

may finally write the full partition function as

ZL(p,1) = e−F0

∑

q

e−ε(q). (2.16)

3 Summary and implications

Our main result is that the partition function of the singlet vector model on L(p, 1) can be

written as the sum (2.16) over light (ε ∼ O(1)) topological states with a Casimir energy

F0 ∼ (N ′)2 ln k. The number of such states,
(
p
q

)
, depends on number-theoretic relations

between N and p. It is of special note that the light states disappear when q = 0; this

shows that the large N limit must be taken with care, keeping track of the divisibility of

N by p in order to retain knowledge of the correct number of light states. Moreover, at

p > N , we have N ′ = 0 and q = N , so there are
(
p
N

)
topological states. At p ≫ N this

number is ∼ pN−1 and we find an exponential proliferation of light states — independent

of any number-theoretic conditions on N and p. It should be emphasized that none of our

results depend on taking the large N limit, and we have emphasized that N is large only in

order to connect with the classical Vasiliev gravity in the bulk. The topological states are

an O(N0) phenomenon and should be taken into account as an 1/N effect in any large-N ,

zero-’t Hooft coupling calculation of gauge theories on topologically nontrivial spaces. In

particular, such effects must be found in the gravity duals of large N singlet vector models,

believed to be described by Vasiliev higher spin theories. The absence of these light states in

Vasiliev theories signifies that these gravity theories must be supplemented by new physics

that we are yet to understand. It is conceivable that a stringy embedding of Vasiliev theory

– 6 –
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(based, perhaps, on the gravity dual of CS theory described in [21]) would reveal that the

gravity duals of extra light states are some analogs of fractional branes living on the orbifold

singularity in the bulk, but it must be kept in mind that these are O(1) effects, not O(N)

as one would expect for branes.

The singlet vector model that we have considered has no tunable parameters, and

hence we cannot speak of phase transitions. However, one can imagine perturbing the

conformal theory by various operators and computing the corresponding free energy. The

“band structure” of the topological states will then be able to display nontrivial band cross-

ing phenomena as we tune the deformations. However, ultimately the perturbations will

take the theory to the φ6 fixed point or further to the Wilson-Fisher fixed point, and a

new computation must be carried out in which one must regularize both the sums over

eigenstates and the quartic coupling. We leave this for future work.

It is also possible to extend our results by moving away from zero ’t Hooft coupling.

An expansion in N/k (or in g ∼ N/(N + k)) induces corrections in both the matter and

the gauge sector. These 1/k gauge field-matter interactions allow for tunneling from the

minimal energy vacua (labeled by q) to a new set of vacua in which N2 is larger than be-

fore. These instanton corrections can, in principle, be computed through a straightforward

expansion in Feynman diagrams on a sphere, generalizing the work of [22].

Finally, we comment on the bearing of this work on the dS/CFT correspondence devel-

oped in [12–14]. The most operative version of this correspondence equates the amplitudes

of d = 3, large N , anticommuting singlet vector model partition functions with the am-

plitudes of Hartle-Hawking wavefunctionals of four-dimensional de Sitter universes. The

anticommutativity condition should alter our discussion merely by changing N 7→ −N in

the matter free energy. With this alteration, we may regard the k ≫ N ≫ 1 limit of the

partition function ZL(p,1) in (2.16) as a relative probability amplitude for de Sitter universes

having precisely the spatial geometry of L(p, 1). This amplitude can be used to compare

probabilities of spaces of different geometries, as proposed in [14], and in particular it could

be used to compare probabilities of squashed vs. non-squashed lens spaces. It is attractive

to naïvely extrapolate this procedure and use the full partition function ZL(p,1) to compute

relative probabilities between topologies. However, as shown in [23], the gauge sector must

be transformed by N2 7→ −N2 in order to get the Hartle-Hawking amplitude for the de

Sitter dual. This is incompatible with the N 7→ −N transformation needed in the matter

sector, and this suggests that the naïve extrapolation fails for the coupled CS-matter sector.

It would be interesting to formulate a consistent analytic continuation from the free energy

of the U(N) singlet vector model, dual to free energies of Vasiliev theories in asymptotically

AdS spaces, onto the Hartle-Hawking amplitudes in asymptotically dS spaces. If the right

prescription is discovered, our results will provide the wave functionals of asymptotically

dS universes with a lens space topology.
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A Free energy of vector matter

The purpose of this appendix is to explicitly calculate the free energy of the matter sec-

tor (2.11),

FM(p,N) = ln detN

(

−∇2 +
3

4

)

=
∑

I

NI ln detI

(

−∇2 +
3

4

)

≡
∑

NIFM(p, I), (A.1)

where detI is understood to contain only the states that satisfy the orbifold invariance

condition (2.10). The following counting of such states makes the task tractable. Given

any integer i and a positive integer j, a state with 2m = −I + ip will appear precisely ℓ+1

times in each multiplet with ℓ = 2j+ |ip−I|. The functional determinant of the I-th sector,

appearing in (A.1), can then be written as

FM(p, I) =
∑

i∈Z
j≥0

(
2j + |ip− I|+ 1

)
ln

{

(2j + |ip− I|+ 1)2 − 1

4

}

=
∑

j≥0

(2j + I + 1) ln

{

(2j + I + 1)2 − 1

4

}

+

+
∑

i>0
j≥0

[
(
2j + ip− I + 1

)
ln

{

(2j + ip− I + 1)2 − 1

4

}

+ (I ↔ −I)
]

. (A.2)

We may express this as a single infinite summation over all possible values of n(i, j) = 2j+ip.

We merely need to find the number of pairs (i, j) that give the same sum n(i, j). The number

n(i, j) can always be written as

n(i, j) = 2j + ip = np+ J, (A.3)

with n being a positive integer (the case n = 0 is excluded because i > 0, and so 2j+ ip ≥ p

at all times). To find the desired number of pairs (i, j), we must now separately consider

the cases when p is even and when p is odd.

Let us first assume that p is even. The equality (A.3) forces J to be even, and we

may write j = (J + (n − i)p)/2. Therefore, for each i ≤ n there exists a positive j such

that (A.3) is fulfilled. This means that there are precisely n pairs of points (i, j) for which

n(i, j) is equal to the given even number np+ J .

Now assume that p is odd. The number (n− i)p+ J still must be even. Thus, given n

and J , we will find one appropriate j for each i ≤ n for which n − i and J have the same

parity. The number of pairs (i, j) yielding the given n(i, j) = np + J thus depends on the

parity of J ; it equals ⌈n/2⌉ if J is even and ⌊n/2⌋ if J is odd. These results are summarized

in table 1.
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p even any n

J even n

J odd 0

p odd n even n odd

J even n/2 (n+ 1)/2

J odd n/2 (n− 1)/2

Table 1. Number of pairs (i, j) giving the same combination 2j + ip = np+ J for a given n.

It is thus possible to creatively split the sum over possible values of n(i, j) so as to get

only one infinite sum. If p is even, we may write

∑

i>0
j≥0

f(2j + ip) =
∞∑

n=1

∑

even J

nf(np+ J). (A.4)

If p is odd, on the other hand, we have

∑

i>0
j≥0

f(2j + ip) =
∞∑

n=1

∑

J

nf(2np+ J)

+
∞∑

n=1

[
∑

even J

nf
(
(2n− 1)p+ J

)
+

∑

odd J

(n− 1)f
(
(2n− 1)p+ J

)

]

. (A.5)

In particular, if p is even, the matter free energy (A.2) can be written as

FM(p, I) =
∞∑

n=0

(2n+ I + 1) ln

{

(2n+ I + 1)2 − 1

4

}

+
∑

even J

∞∑

n=1

[

n
(
np+ J − I + 1

)
ln

{

(np+ J − I + 1)2 − 1

4

}

+ (I ↔ −I)
]

,

(A.6)

and if p is odd we can write

FM(p, I) =
∞∑

n=0

(2n+ I + 1) ln

{

(2n+ I + 1)2 − 1

4

}

+
∑

J

∞∑

n=1

[

n
(
2np+ J − I + 1

)
ln

{

(2np+ J − I + 1)2 − 1

4

}

+ (I ↔ −I)
]

+
∑

J

∞∑

n=1

[

n
(
2np− p+ J − I + 1

)
ln

{

(2np− p+ J − I + 1)2 − 1

4

}

+ (I ↔ −I)
]

−
∑

odd J

∞∑

n=1

[
(
2np− p+ J − I + 1

)
ln

{

(2np− p+ J − I + 1)2 − 1

4

}

+ (I ↔ −I)
]

.

(A.7)

All of these sums are divergent and need to be renormalized. We can use ζ-

regularization to find the finite value of the sums

∞∑

n=0

n(np+ α) ln

{

(np+ α)2 − 1

4

}

and
∞∑

n=0

(np+ α) ln

{

(np+ α)2 − 1

4

}

; (A.8)
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their linear combinations will yield all the sums appearing in the free energy. The procedure

is standard [18]. If we define

ζ1(s; p, α) =
∞∑

n=1

n(np+ α)
(
(np+ α)2 − 1/4

)s and ζ2(s; p, α) =
∞∑

n=1

np+ α
(
(np+ α)2 − 1/4

)s , (A.9)

the sums (A.8) will be given by −ζ ′1/2(0; p, α). For instance, the free energy of the matter

sector at even p, given by (A.6), will be

FM(p, I) = (I + 1) ln

{

(I + 1)2 − 1

4

}

− d

ds

∣
∣
∣
∣
s=0

(

ζ2(s; 2, I + 1) +
∑

even J

(
ζ1(s; p, J + I + 1) + ζ1(s; p, J − I + 1)

)

)

.

(A.10)

The odd p case (A.7) is treated the same way. The derivatives of the ζ-sums may be

explicitly calculated for any given p and I by splitting the sum into a convergent piece

(where d

ds |s=0 can be commuted through the sum, making it computable in practice) and a

divergent piece expressed in terms of ζ-functions of negative integers (which can be assigned

unique finite values through analytic continuation). All the results can be expressed in

analytic form. For instance, when p = 2 we find the free energies

FM(2, 0) = −C
π

+
1

16

(

ln 4− 3ζ(3)

π2

)

, FM(2, 1) =
C

π
+

1

16

(

ln 4− 3ζ(3)

π2

)

, (A.11)

where C =
∑∞

n=0(−1)n/(2n + 1)2 ≈ 0.916 is Catalan’s constant. The free energies at

higher p can similarly be expressed in terms of polylogarithms. There seems to exist no

convenient closed form for FM(p, I) at arbitrary p and I, and hence, as customary, the

numerical values of these results are tabulated and can be found in table 2. As a nontrivial

check of our renormalization scheme, note that summing the free energies FM(p, I) over

all I = 0, 1, . . . , p − 1 and for any p gives 1
8

(
ln 4− 3ζ(3)/π2

)
≈ 0.128, the free energy of

a complex scalar field on a sphere [18, 20]. Using these data it is possible to explicitly

determine the ground state vacuum that minimizes the total free energy of the theory.

The ζ-regularization procedure obfuscates the I-dependence of the free energy FM(p, I).

Heat kernel regularization may be used to write the matter free energy as a transparent

effective action for the Wilson loop e2πiI/p along the orbifolded circle [8]. It might be useful

to think in terms of such effective actions, so here we outline this alternative method of

integrating out matter. Letting x be the coordinates on S3, we may write the free energy

of a scalar field as the one loop integral

FM(p, I) = ln detI

(

−∇2 +
3

4

)

= −
∫ ∞

0

ds

s

∫

S3

d3x GI(x, s;x, 0), (A.12)

where

GI(y, s;x, 0) =
∑

J

VI

(

y +
4πJ

p
eψ;x

) 〈

y +
4πJ

p
eψ

∣
∣
∣
∣
e−s(−∇2+3/4)

∣
∣
∣
∣
x

〉

(A.13)
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p\I 0 1 2 3 4 5 6 7

1 0.127614

2 -0.227754 0.355368

3 -0.511577 0.319596 0.319596

4 -0.813519 0.177684 0.585765 0.177684

5 -1.15495 -0.0446098 0.685894 0.685894 -0.0446098

6 -1.54434 -0.338697 0.658292 1.03276 0.658292 -0.338697

7 -1.9859 -0.700683 0.523212 1.23423 1.23423 0.523212 -0.700683

8 -2.48208 -1.12847 0.292883 1.30615 1.66856 1.30615 0.292883 -1.12847

Table 2. Values of the matter free energy FM(p, I) in different sectors and on different lens spaces.

is the scalar field propagator in the I-th sector of a given vacuum on L(p, 1), lifted to

the three-sphere and summed over all points that are identified by the orbifold operation;

V (y;x) is the I-th sector eigenvalue of the Wilson line along any path connecting x and y,

and 〈y| · |x〉 is the propagator on the sphere that can be evaluated by expanding the matrix

element in terms of spherical harmonics. For the case at hand, we find

FM(p, I) =
∑

J

(

−
∫ ∞

0

ds

s

∞∑

ℓ=0

(ℓ+ 1)e−s(ℓ(ℓ+2)+3/4)

ℓ/2
∑

m=−ℓ/2

e4πimJ/p
)

e2πiIJ/p. (A.14)

The coefficients in this “Fourier expansion” can now be calculated by renormalizing the

infinite sum and then integrating over the propagation times s.
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