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1 Introduction

Known examples of spontaneous conformal symmetry breaking are scarce. Although classi-

cally it may not be hard to find conformal invariant (interacting) field theories, it becomes

a highly non-trivial task at the quantum level. This is due to the fact that one has to

introduce a scale in order to regularize the theory. This scale can explicitly break the

symmetry by telling us that marginal operators are not exactly marginal (i.e. QCD’s β-

function) or, rather miraculously, tell us that they are (the perturbative Banks-Zaks [1]

interacting fixed point).

Finding such conformal theories is the first step. The second is to break the symmetry

spontaneously. This means that the deformation of the interacting conformal field theory,

initiating an RG-flow, should be a VEV deformation. VEV deformations with flat direc-

tions are especially hard to come by in conformal theories where “Mexican hat” models are,

of course, out of the question. They do come by, however, in supersymmetric conformal

theories where flat directions are present also at the quantum level. The prime example

being N = 4 SUSY with an RG flow from SU(N) to SU(N −1), initiated by giving a VEV

to one of the scalars. Integrating out the massive fields, the theory flows from one fixed

point to the other. Although not necessarily perturbative, in these models only operators

that already appear in the Lagrangian acquire a VEV. There is another well known possi-

bility of breaking a symmetry spontaneously — by strong coupling effects. This is usually

also referred to as dynamical symmetry breaking. This is what happens in nature in chiral

symmetry breaking where the quark condensate is the order parameter for the symmetry
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breaking. Strongly coupled conformal theories can in principle display the same behavior,

thus breaking conformal symmetry spontaneously.

Generally speaking, there is no reason why there should be a flat potential for the

scalar(s) in the theory (whether they are perturbative and already appear in the UV

Lagrangian or a mesonic like operator). Supersymmetry, however, provides a mechanism

which preservers the flat directions and allows for the scalar to receive an arbitrary VEV

thus breaking the symmetry spontaneously. The models we explore break supersymmetry

but still allow for the conformal symmetry to be broken spontaneously. We suspect that

this is an artifact of our probe approximation and all corrections to the potential should

appear once backreaction is included.

Our main motivation is to search for holographic models that admit spontaneous break-

ing of conformal invariance in a certain type of holographic models.

In general, spontaneous breaking of conformal symmetry in a holographic gravity setup

can be done either by analysing holographic gravitational background with (or without)

additional bulk fields or by embedding Nf flavour D-branes in such backgrounds. Examples

of the former approach can be found in [2, 3] where domain wall geometries in arbitrary

number of dimensions interpolating between two AdS spaces, were analysed. In this paper

we follow solely the latter, D-brane embedding approach. Moreover, we will consider only

the probe limit, where one can ignore the backreaction of the embedded D-branes on the

geometry. This is easily achieved by taking the Nf � Nc limit and in our discussion we will

restrict ourself only to the Nf = 1 case. We use the terminology “flavour” branes for branes

which reach the UV boundary (unlike gauge branes) and where in the low-energy limit the

interaction between flavour and gauge(color) strings vanishes. The VEV deformations

we are interested in will then correspond to quark anti-quark condensates. This type of

spontaneous conformal symmetry breaking remains rather unexplored in holography.

We have already mentioned the RG flow from SU(N) to SU(N − 1). The N = 4

SU(N) CFT is holographically dual to the AdS5 × S5 geometry, which arises in the near

horizon limit of a stack of N backreacting D3-branes. The moduli space consists of giving

a VEV to one of the three complex scalars. Taking a new near horizon limit the massive

modes decouple again and so we are left with the gravity dual of the SU(N − 1) theory.

The radial fluctuation of the separated brane will correspond to the Goldstone boson of

the theory. This and other similar models will be briefly mentioned below when discussing

the dilaton action. This configuration is depicted in figure 1. This type of embeddings

probe the geometry with gauge branes and the purpose of this paper is to explore flavour

branes embeddings.

The prime example of a probe flavour brane model with spontaneously broken con-

formal symmetry was introduced in [4]. In this setup D7 branes are embedded in the

Klebanov-Witten (KW) background [5], AdS5×T 1,1. The background is dual to an N = 1

SCFT with an SU(N) × SU(N) gauge group. The AdS geometry arises from the near

horizon limit of D3 branes sitting at the (singular) apex of the 6d conifold. T 1,1 is the 5d

conifold’s base and has S3 × S2 topology. The D7 brane analysed in [4] wraps AdS5 and

the 3-sphere. As a result, it looks like a point on the 2-sphere and in order to guarantee the

tadpole cancellation one has to add an anti D7 annihilating the total D7 charge on the S2.
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r0

Figure 1. A brane is separated from the background stack of D3 branes before going to the near

horizon limit. Dual to the field theory Coulomb branch.

A straightforward gravity calculation indeed leads to such a configuration. To be more

precise, it produces a one-parameter family of D-brane profiles. This parameter r0 can

be seen as the lowest radial position of the D7 brane along AdS5. For r0 = 0 the profile

looks like a disconnected D7-D̄7 pair, while for r0 > 0 the two branes merge together at

r = r0, see figure 2. The former and the latter profiles are called the V-shape and U-shape

respectively. Importantly, for any value of the parameter r0 the asymptotic UV separation

between the brane and the anti-brane is r0-independent. In other words, the parameter

corresponds to a normalizable mode — a VEV in the dual gauge theory. The arbitrariness

of the parameter corresponds to a flat direction which indicates the spontaneous breaking

of the conformal symmetry. We stress again that these solutions exist in the probe limit

and backreaction will probably spoil the fixed asymptotic separation.

For the V-shape the conformal symmetry remains unbroken as the induced metric on

the D7 brane is just AdS5 × S3. For the U-shape the conformal symmetry is broken spon-

taneously and the corresponding massless Goldstone boson indeed appears in the spectrum

of the D7 brane fluctuations (as expected this mode is just the radial fluctuation around

the merging point). Furthermore, the chiral (flavour) symmetry associated with the D7-D̄7

pair is also broken spontaneously like in the Sakai-Sugimoto model, where a D8− D̄8 pair

similarly merges to form a single profile, see figure 1. The important difference between

the two models, though, is the asymptotic separation of the branes. This is related to

the fact that the Sakai-Sugimoto brane setup is based on Witten’s D4 background com-

pactified on S1, which has no conformal symmetry to begin with. Also contrary to the

Klebanov-Witten background, supersymmetry is broken in Witten’s model even without

the embedding of the probe D8 branes. In the D7 setup, on the other hand, the presence of

both D7 and D̄7 breaks supersymmetry, as one can truly see from the non-holomorphicity

of the embedding.1

The same construction obviously does not work for the AdS5 × S5 background, since

the 5-sphere has no non-trivial cycle and, as a result, the D7 will “shrink” to a point on

the S5. This can be avoided only if the boundary conditions at infinity are properly fixed,

which is certainly inconsistent with U-shape we are aiming at. Similarly, with no 2-cycle

around there is no need for tadpole cancellation by an anti D7 like in the conifold scenario.

The topology, thus, plays an essential role in the construction.

1This is true in general for D7 embeddings but not for other branes.
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r=0

r 0

∆φ=const

r0

∆φ(r0)

Figure 2. The asymptotic separation, ∆ϕ, of the conifold D7 embedding (left) does not depend

on the brane merging point, contrary to the Sakai-Sugimoto D8 embedding (right).

The main objective of this paper is to understand the unique properties of the U-

shape embedding, and to find other examples that posses the same properties. Another

interesting motivation is related to the Higgs like dilaton explored by [6]. They examine

the possibility that the recently discovered Higgs-like resonance actually corresponds to

the (pseudo)dilaton. They have shown that, in principle, the dilaton can have the correct

observed couplings, but this requires fine-tuning and strong dynamical assumptions that

will produce a light dilaton. We do not search for a massive dilaton here, but it is naturally

related to our work as we elaborate in section 6.

Besides finding other embeddings we were also interested in calculating the a-term

anomaly coefficient from the dilaton action. As was shown in the recent proof of the a-

theorem [7] the dilaton has information about the Weyl anomaly even in flat space. Thus if

the massless mode we find in the spectrum is indeed the Goldstone mode of the conformal

symmetry we expect to find the relevant coefficient. Although it is easy (as we review

in section 4) to calculate the a-term for gauge branes, the dilaton effective action coming

from flavour brane fluctuations is a formidable task. As we mention in the relevant section,

besides being hard to compute, it naively seems that the a-term will depend on λ (the

gauge theory coupling) which should not be the case.2 This leads us to conjecture that this

is an artefact of the probe approximation: in the full calculation (including backreaction)

the a-term should disappear as O (Nf/Nc).

Let us briefly summarize our results: we have explored different flavour embeddings

mainly in T 1,1. We will also discuss the ABJM model [8]. In the embeddings we explore,

which wrap a non-trivial cycle and hence require also an anti-brane, SUSY is broken ex-

plicitly, while “chiral” (flavour) and conformal symmetry are broken spontaneously. All of

the new embeddings we explore are dCFT (unlike the D7 in KW which is a CFT) in which

the operator insertion is localized in one or more spatial coordinates.

Our main claim is that starting with a non-contractible cycle (topologically non-trivial)

in the compact space, a D-brane and anti D-brane wrapping the cycle naturally arrive at

2We thank O. Aharony for pointing it to us.
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U- and V-shape profiles. A brane embedding wrapping a contractible cycle is dual (with

zero flux on the brane) to a relevant deformation with the dual operator turned on (in all

examples known to us). We note that in general, having non-zero fluxes, orbifolds and

other ingredients may alter our conclusions that wrapping a contractible cycle leads to a

mass term and explicit conformal symmetry breaking. [9] provides an example of a solution

describing VEV (zero mass) deformation based on branes wrapping a contractible cycle.

The paper is organized as follows. In section 2 we review the D7− D̄7 embedding in

AdS5 × T 1,1 model, compare it to similar embeddings that are not dual to spontaneous

conformal symmetry breaking, and discuss its unique features. In section 3 we list possible

candidates that potentially exhibit a U-shape embedding and show explicitly that indeed

one can find such solutions. Section 4 is dedicated to the dilaton, found in models exhibiting

spontaneous conformal symmetry breaking. We also mention the unresolved issue with the

dilaton a-term coefficient for probe flavour branes which we briefly discussed above.

2 Mass and VEV deformation by probe D7-Branes

We start our journey with a very brief review of the D7 embedding in AdS5×S5 background

originally studied in [10, 11]. The setup arises from the system of parallel and separated

D3 and D7 branes. The separation parameter sets the mass of the quarks living on the

3-branes. In the decoupling limit of the D3 branes, the asymptotic separation distance

between the branes is related to the lowest position of the D7 along AdS5.

The AdS and the 5-sphere metrics are:

ds2
AdS5

= r2dxµdxµ +
dr2

r2
ds2

S5 = dΦ2 + sin2 (Φ) dα2 + cos2 (Φ) dΩ2
3 . (2.1)

The angle Φ denotes the position of the 3-sphere inside the 5-sphere. In the induced metric

on the world-volume of a D7 brane wrapping the 3-sphere, the angle depends on the AdS

coordinates xµ and r. The DBI action reduces to the following action for Φ(r, xµ):3

L = −µD7

gs

√
−det(ϕ?[gD7]) ∼ r3 cos3(Φ)

√
1 + r2Φ̇2 +

1

r2
(∂Φ)2 , (2.2)

where ∂ stands for the derivative with respect to the 4d coordinates and Φ̇ denotes the

r-derivative of Φ. The EOM is solved by r · sin(Φ) = c [11], so that the D7 extends in the

IR up to rmin = c. In the UV the asymptotic form of the solution is:

Φ ∼ cr−1 +
c3

6
r−3 + . . . , (2.3)

Clearly, the solution describes a scalar dual to a dimension one operator. The fact that the

non-normalizable r−1 mode is switched on indicates that while solving the EOM we have

to add a boundary term for the action (2.2) at r-infinity. rmin = c is a free parameter and,

as expected, corresponds to the D3-D7 separation distance, which is, in turn, equivalent to

the (α′ rescaled) mass parameter.

3ϕ?[gD7] is the pullback of the metric to the brane world-volume.
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Figure 3. D7 flavour brane embedding on S5 as it appears when flowing in the radial direction.

In the IR the S3 contracts inside the S5 (it is a trivial cycle). The radial position where the brane

terminates is dual to integrating out the massive quark.

The D7-profile, therefore, does not have the U-form structure we described in Introduc-

tion. Its schematic behaviour is shown on figure 2. At the lowest point of the configuration

Φ = π/2, the 3-sphere shrinks and so the D7 brane tension goes to zero.

The asymptotic form of Φ(r) is still puzzling, however, due to the non-zero normal-

izable r−3 term, dual to the VEV, which is not allowed on supersymmetry grounds (the

brane setting preserves N = 2 SUSY). The puzzle was solved in [12]. They argued that

for an interacting Lagrangian like (2.2), the “standard” UV expansion is not sufficient to

determine the VEV. Instead one has to use the full ADS/CFT dictionary. Furthermore,

the on-shell action is singular and has to be regularized by proper boundary countert-

erms that may further modify the VEV. For (2.2) there are only four counterterms that

can have a non-zero contribution to the on-shell action: the 4d cosmological term
√
−γ,√

−γγµν∂µΦ∂νΦ,
√
−γΦ2 and

√
−γΦ4, where γ is the 4d induced metric r2dxµdxν .4 The

first three are necessary in order to cancel three independent divergences. The last one, on

the other hand, produces only a finite contribution and its coefficient cannot be determined

from regularity in the UV. In fact a finite term remains in the on-shell/energy calculation

(with a contribution from the IR). The finite counterterm is then fixed to set the energy to

zero, as should be if a supersymmetric preserving scheme is used. As a direct consequence

of this scheme the VEV is also set to zero.

Let us now compare these results with the D7/anti-D7 model studied in [4]. The

motivation there was finding a U-shape solution similar to other known solutions in the

literature, mainly Sakai-Sugimoto [13]. The Sakai-Sugimoto model exhibits spontaneous

chiral symmetry breaking, it is not conformal to begin with and also the UV separation

depends on the merging point of the branes. A comparison between the conifold embedding

which we review here and the Sakai-Sugimoto profiles is shown in figure 2.

The background solution was chosen to be the conifold (a cone over T 1,1), and as such

the base’s topology was S3×S2. This was essential for the solution. Analogously to Sakai-

Sugimoto the D7 branes (now wrapping the S3), were essentially points in the transverse

4Additional possible counterterms listed in [12] include 4d curvature which are strictly zero in this case.
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S2. This embedding is not holomorphic (we will mention the holomorphic embedding

below) and as such breaks all supersymmetry.

The absence of SUSY makes this a good candidate for displaying chiral symmetry

breaking by a quark anti-quark condensate. This is because the QCD-like operator Ψ̄Ψ (we

emphasize that this argument is relevant only for QCD-like quark anti-quark condensate),

written as a part of a chiral superfield (where Q = q + θΨ + . . . ) is an F-term of QQ̃,

and as such if it acquires a VEV, SUSY must be broken — this is exactly the U-shape

solution. There was in fact also a V-shape solution where the branes do not merge which

also broke the supersymmetry completely. The fact that this model can be dual to a VEV

deformation and is not restricted by SUSY makes this a good candidate also for conformal

symmetry breaking. Of course a squark condensate could be formed which does not require

SUSY to be broken but we suspect this is not the case here since this model and similar

models we explore below break SUSY.

Now the orthogonal 5d metric is that of T 1,1:5

ds2
T 1,1 =

1

6

2∑
i=1

(
dθ2
i + sin2 θidφ

2
i

)
+

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

. (2.4)

The topological 3-sphere is spanned, for example, by the angles (θ1, φ1, ψ) and the 2-sphere

by θ2 and φ2. The D7 embedding is then given by θ2 = π/2 and φ2 = φ(r). The pullback

of the background metric to the probe brane gives the following DBI Lagrangian:

L ∼ r3

(
1 +

r2

6
φ2
r

)1/2

. (2.5)

The EOM is solved by:

cos

(
4√
6
φ(r)

)
=

(
r0

r

)4

. (2.6)

As advertised in the Introduction, the asymptotic UV separation is an r0-independent con-

stant ∆φ =
√

6
4 π (see figure 2). For r0 = 0 one finds a V-shape of two separated branches,

D7 and D̄7. For r0 > 0 the two branches merge at r = r0. The brane anti-brane interpreta-

tion naturally follows from the fact that the brane world-volume has opposite orientations

as one approaches the two asymptotic points φ =
√

6
8 π and φ = −

√
6

8 π. As a result, the net

D7 charge on the 2-sphere is zero. The
√

6 factor here is a reminiscence of the fact that

although the topology is that of S2 × S3, the 3-sphere is actually a squashed 3-sphere.

The induced metric on the D7 has an AdS factor only for r0 = 0 and so r0 parametrizes

the breaking of scale invariance. From the asymptotic expansion of φ(r):

φ(r) ≈ ±
√

6

8
π ∓
√

6

4

(
r0

r

)4

+ . . . (2.7)

we see that a ∆ = 4 marginal operator acquires a VEV fixed by r0:

〈O〉 ∼ r4
0

α′2
. (2.8)

5In [4] the metric was written using coordinates that make the S3 × S2 structure explicit [14], but here

for reasons of convenience we will stick to the more common form of the T 1,1 metric.
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The fluctuation around this solution should give the corresponding Goldstone boson, the

dilaton. The calculation was performed in [4] and such a 4d massless mode was successfully

identified (see [15] and [16] for a more detailed meson spectrum calculation).

In contrast to the previous case, the Lagrangian does not have cos(φ) or any other

term that introduce non-trivial interactions in the UV, and so we can conclude that the

solution describes only the VEV deformation based exclusively on the asymptotic form of

the solution. To be absolutely sure about this point, though, we have to address the issue

of necessary (and all other possible) counterterms.

The Lagrangian (2.5) diverges at infinity as r4 and so we have to add counterterms.

The situation is, however, conceptually different from the AdS5 × S5 example, since the

cosmological term alone can cancel the divergence, the (∂φ) does not contribute, while all

possible terms of the form φn may produce only finite contributions. Since these finite

terms explicitly break conformal invariance we can omit them. To summarize, the brane

action is regularized by a single counterterm. It is then straightforward to verify that

solution still describes only a VEV deformation.

As a consistency check, we can verify that the on-shell action is indeed r0-independent

as it should be for a solution corresponding to a normalizable VEV mode. Adding the

cosmological r4-term (with a proper coefficient) we get:

Lreg ∼
∫ rΛ

r0

dr
r7

(r8 − r8
0)1/2

−
r4

Λ

4
=

1

4
(r8 − r8

0)1/2

∣∣∣∣rΛ
r0

−
r4

Λ

4
= 0 , (2.9)

where rΛ is the UV cut-off.

An alternative way to perform the check is to consider the difference between two on-

shell actions for two different r0’s. As one can easily check the difference also goes to zero

as we take the cut-off to infinity. In Sakai-Sugimoto this will not be the case as there is

a non-normalizable solution as can be seen from dependency of the UV separation on the

merging point (see 2). This will also not be the case for AdS5 × S5 since, as we reviewed

above, the (unregulated) action depends on rmin.

ThisD7-D̄7 setup is the only model known to us, which exhibits spontaneous conformal

symmetry breaking by introducing a probe flavour D-brane (in fact, brane and anti-brane).

Let us also mention another D7 embedding on the conifold introduced in [17] (see

also [18]) . The embedding is holomorphic and so preserves all of the background super-

symmetry. If we write the conifold equation as z1z2 − z3z4 = 0, then the embedding is

given by z1 = µ. Unlike the first example of this section, there is no brane construction

here, and so there is no immediate way to identify µ as a mass parameter. Instead, it can

be done either by identifying the holomorphic coordinates zi with the dual gauge theory

fields or analysing the IR and the UV behaviour of the D7. It appears that µ fixes not

only the lowest position of the brane along the radial coordinate, but also also the non-

normalizable mode in the UV. This means that the embedding does not look like a U-shape.

This is consistent with the fact that the 3-cycle wrapped by the D7 is topologically trivial.

A different holomorphic embedding was considered in [19, 20] with the profile equation

z1 + z2 = µ. For this setup µ is still a mass parameter and likewise the topology of the

embedding is trivial.
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Dp 0 1 2 3 4(r) 5 6 7 8 9 AdSi ⊂ AdS5 Cycle in T 1,1 FT Type

D3 — — — — × × × × × × — — CFT gauge

D3 — × × × — — — × × × 2 2 dCFT flavour

D5 — — — × — — — × × × 4 2 dCFT flavour

D5 — — × × — — — — × × 3 3 dCFT flavour

D7 — — — — — — — — × × 5 3 CFT flavour

Table 1. Topologically non-trivial embeddings in AdS5 × T 1,1 (KW).

Dp 0 1 2 3(r) 4 5 6 7 8 9 AdSi ⊂ AdS4 Cycle in CP3 FT Type

D2 — — — × × × × × × × — — CFT gauge

D4 — — × — — — × × × × 3 2 dCFT flavour

D6 — — × — — — — — × × 3 4 dCFT flavour

Table 2. Topologically non-trivial embeddings in AdS4 × CP3 (ABJM).

3 More U-shape examples

Following the above arguments and examples, we now turn to searching for additional

U-shape embeddings. We are interested in conformal AdS5 ×M5 backgrounds with the

compact space M5 having a topologically non-trivial (non-contractible) cycle, and no back-

ground RR source for the brane gauge fields. The last statement is relevant only for branes

which couple linearly to the background flux, meaning the induced Wess-Zumino term has

the form
∫
P [Cp] ∧ F =

∫
P [Fp+1] ∧A.

For the well-studied AdS5 × S5 geometry there is, of course, no such non-contractible

cycle (a configuration that does not wrap at all the compact space just give the gauge brane

configuration). Motivated by the D7-D̄7 model we will focus on the AdS5×T 1,1 background

with type IIB branes in it. All of the examples in this category can be directly generalized

to Y p,q [21–24] and La,b,c [25–29] geometries that share the same S3×S2 topology as T 1,1.6

The type IIA examples will be based on the ABJM [8] geometry, AdS4×CP3. Although

topologically CP3 is not a direct product of spaces like T 1,1, it has even dimensional cycles

suitable for D4 and D6 branes.

In tables 1 and 2 we have summarized all the possible candidates based on these two

backgrounds. We indicated which AdS space the brane wraps, the dimensions of the com-

pact cycles, what kind of field theory is expected (CFT or defect CFT) and whether the

probe is a flavour brane or a gauge brane (the gauge branes are brought here for compari-

son). The co-ordinate denoted with (r) is the corresponding background radial coordinate.

We will present below all of the flavour brane embeddings in table 1 except the last

one that has already been treated above. As for table 2 we will address only the D4 probe

setup with the CP1 ∈ CP3 cycle. The D6 case looks rather similar and we will not report

it here.

6See [30] and [31] for supersymmetric probes in these geometries.
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We believe that these tables exhaust all the possibilities for U-shape solutions in current

known conformal backgrounds (as we have already pointed out, the T 1,1 construction can

be generalized to La,b,c geometries that have exactly the same S3 × S2 topology). All of

the new embedding are dual to defect CFTs. This is in contrast to the theory explored

in [4] where the brane wrapped the entire dual space-time coordinates. In the words

of [32], the background fields (KW or ABJM) are the ambient fields and the probe branes

are dual to the insertion of defect flavours to theory. The flavour fields are localized in

lower spacetime dimensions, and so are their interactions with the background. If there

is a suitable Lagrangian description to these theories it will be necessarily composed of

two parts:

Ldual dCFT = Lbackground + δ(x) · Lflavour and interactions , (3.1)

where δ(x) represents the directions in which the defect flavours are localized. We have not

been able to say much more on the dual theories than already analysed in [4]. The dual

theories should be similar, except of course that now we have a defect. As in the original

model there is a quiver theory and spontaneous “chiral” (flavour) symmetry breaking.

Supersymmetry is again broken explicitly by the embeddings.

In the next subsections we show explicitly that U-shape solutions indeed exist for

these embeddings.

3.1 D5 probe wrapping AdS3 × S3 in AdS5 × T 1,1

The simplest candidate in the table above, is the D5 brane wrapping AdS3 × S3 in the

T 1,1 background (No.4 in table 1). Because the D5 brane wraps the same S3 as in [4], the

action will be almost the same. The Lagrangian density is now:

L ∼ r
(

1 +
r2

6
φ2
r

)1/2

. (3.2)

It essentially takes the same form as (2.5) except for powers of r. The solution will now be:

φ(r) =

√
6

2

(
±π

2
∓ arctan

(
r2

0√
r4 − r4

0

))
. (3.3)

This obviously satisfies the same boundary conditions as before, but now the brane UV

separation is
√

6
2 π rather than π

√
6

4 of [4] . So we have found another U-shape solution, but

this time the dual theory must be a defect CFT. The ambient theory is the four dimensional

field theory of [5] with additional flavour quark fields that reside only in two out of the four

space-time dimensions, namely along the time and the space directions which are wrapped

by the flavour probe brane. This near boundary behaviour is that of a VEV of a marginal

(meaning ∆ = 2) operator in 2 space-time dimensions, as expected.

3.2 D5 probe wrapping AdS4 × S2 in AdS5 × T 1,1

This solution should have the usual near boundary behaviour of a free scalar in AdS4 dual

to a dimension 3 (marginal) operator. This brane embedding was found very recently by
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Filev, Ihl and Zoakos in [33]. Their solution is, in turn, based on the supersymmetric D5

embeddings found earlier in [34] as we will review in a moment.

In terms of the coordinates used in the metric (2.4) the embedding of [33] is defined by:7

θ2 = π − θ1 , φ2 = φ1 , and ψ = ψ(r) . (3.4)

Notice that with this Ansatz the induced metric looks simpler, as the fibre mixed terms

disappear. Consequently one can assume that ψ depends only on r. The Lagrangian

density is:

L ∼ r2

(
1 +

1

9
r2ψ̇2

)1/2

. (3.5)

The EOM is then:
r4ψ̇√

1 +
r2ψ̇2

9

= const (3.6)

and the solution is:

ψ(r) = ±π
2
∓ arcsin

(
r3

0

r3

)
. (3.7)

Again, the UV behaviour is the one we expect for a ∆ = 3 VEV deformation.

Let us now complete this example by demonstrating that this ansatz indeed corre-

sponds to D5 wrapping the 2-sphere. The conifold is defined by a complex 2× 2 matrix W

with detW = 0. The radial coordinates on the conifold is determined by 2r2 = Tr
(
W †W

)
.

Any such degenerate matrix can be written as W =
√

2ruv†, where u and v are complex

unit vectors (u†u = v†v = 1) quotiented by (u, v) → eiϕ(u, v). Using u and v one can

define8 a matrix X ∈ SU(2) by u = Xv, which has a unique solution9 X = uv† − εuvTε.

Since X is invariant under the ϕ-quotient it defines an S3. On the other hand, v is still

defined modulo v = eiϕv and so describes an S2. Starting with r, X and v we can fix u

and therefore W , and vice versa. In terms of the angles in (2.4) we have:

u = e
i
4
ψ

(
cos θ12 e

i
2
φ1

sin θ1
2 e
− i

2
φ1

)
and v = e−

i
4
ψ

(
− sin θ2

2 e
− i

2
φ2

cos θ22 e
i
2
φ2

)
. (3.8)

The Ansatz (3.4) then implies that for ψ = ±π
2

:

X = ±i

(
−1 0

0 1

)
. (3.9)

In other words, for the two asymptotic values of ψ we find two different points on the

3-sphere parametrized by X. In fact, the two solutions with ψ = π
2 and ψ = −π

2 were

found already in [34]. They both correspond to supersymmetric D5 embeddings but they

preserve different supersymmetries, confirming our D5-D̄5 interpretation. Away from the

7There is an additional option with θ2 = θ1 , φ2 = 2π − φ1.
8See [35, 36] and [4] for more details.
9Here ε =

(
0 1
−1 0

)
.
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UV, for ψ 6= ±π
2 , it seems that X will not be constant for a fixed r and will depend on

the S2 angles θ2 and φ2. Notice, however, that we can properly adjust the definition of

X, setting instead u = A0Xv, where A0 is a constant U(2) matrix. With a proper choice

of A0 one can guarantee that X is constant for a given value of ψ(r). Unfortunately, we

were not able to find an S3 × S2 trivialization that works for any value of ψ(r), similar to

what one can do for the D7 brane embedding (see [4]). Nevertheless, it is clear that the

D5 brane indeed wraps a 2-cycle topologically equivalent to the S2.

3.3 D3 probe wrapping AdS2 × S2 in AdS5 × T 1,1

Similarly to the D5 embedding above, we can now embed a D3 brane which wraps the

same 2-cycle (No.2 in table 1). The derivation of the Lagrangian density is the same as for

the similar D5 embedding so we will not repeat it. The only difference now is the radial

factor from the AdS2, meaning the EOM is:

r2ψ̇√
1 +

r2ψ̇2

9

= const . (3.10)

Using the same boundary conditions as before we get:

ψ(r) = ∓3π

2
± 3 arctan

(
r0√
r2 − r2

0

)
, (3.11)

which is the expected near boundary behaviour of a VEV deformation of a marginal (∆ = 1)

operator in one dimension. Notice that here ∆ψ at the boundary is 3π, which does not

mean the brane wraps the cycle more the once, since ψ ∈ [0, 4π). In the defect dual field

theory the additional flavoured quark fields are “quantum mechanical” in the sense that

they are only time dependent but space independent.

This is different from the usual D3 gauge branes. The branes now reach the boundary,

making them flavour branes as we mentioned in the Introduction.

3.4 D4 probe wrapping AdS3 × CP1 in AdS4 × CP3

The complex projective space CP3 is given by vectors in C4 identified up to an overall

complex rescaling. We parametrize the homogeneous C4 coordinates as in [37]:

z1 = cos ζ sin θ1
2 ei(y+ 1

4
ψ− 1

2
φ1) z2 = cos ζ cos θ12 ei(y+ 1

4
ψ+ 1

2
φ1)

z3 = sin ζ sin θ2
2 ei(y−

1
4
ψ+ 1

2
φ2) z4 = sin ζ cos θ22 ei(y−

1
4
ψ− 1

2
φ2), (3.12)

with ζ ∈ [0, π2 ], θi ∈ [0, π], ψ ∈ [0, 4π] and φi ∈ [0, 2π]. Moreover,
∑

A |zz|
2 = 1 and

y ∈ [0, 2π] is the common phase on which the inhomogeneous CP3 coordinates zi/z4 do

not depend.

In these coordinates ζ, θi, ψ and φi, the Fubini-Study metric of CP3 is given by

ds2
CP3 = dζ2 +

1

4
cos2 ζ sin2 ζ [dψ + cos θ1dφ1 + cos θ2dφ2]2

+
1

4
cos2 ζ

(
dθ2

1 + sin2 θ1dφ
2
1

)
+

1

4
sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)
. (3.13)
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Type IIA string theory on the background AdS4 × CP3 has the following metric:

ds2 = R2
(
ds2

AdS4
+ 4ds2

CP3

)
. (3.14)

Adopting an ansatz similar to the D5 embedding above, we take the brane to wrap

{x0, x1, r, θ = θ1, φ = φ1} and the transverse embedding to be {θ2 = θ, φ2 = 2π − φ, ψ =

0, x2 = 0, ζ(r)}. The induced metric is then:

ds2
D4 = r2dxµdxµ + dr2

(
1

r2
+ 4ζ̇2(r)

)
+
(
dθ2 + sin2 θdφ2

)
. (3.15)

The Lagrangian density is then:

L ∼ r
(

1 + 4r2ζ̇2(r)
)1/2

. (3.16)

The EOM is then:
4r3ζ̇√

1 + 4r2ζ̇2

= const . (3.17)

Using the same boundary conditions as before we get:

ζ(r) = ±π
8
∓ 1

4
arctan

(
r2

0√
r4 − r4

0

)
(3.18)

and at the boundary ∆ζ = π
4 .

To see that the brane really wraps CP1, we notice that for this embedding:

z1 = cos ζ sin θ
2 e

i(y+ 1
2
φ) z2 = cos ζ cos θ2 e

i(y− 1
2
φ)

z3 = sin ζ sin θ
2 e

i(y+ 1
2
φ) z4 = sin ζ cos θ2 e

i(y− 1
2
φ) (3.19)

These are obviously not independent coordinates, and so we can use a new set

of coordinates:

w1 = z1 + iz3 = sin
θ

2
ei(y+ 1

2
φ+ζ) , w2 = z2 + iz4 = cos

θ

2
ei(y−

1
2
φ+ζ) . (3.20)

Clearly, |w1|2 + |w2|2 = 1 and, together with the U(1) quotient by ζ + y, it is equivalent

to CP1 = S2.

4 The dilaton

From the usual AdS/CFT dictionary our results suggest (perhaps only in the probe ap-

proximation) that conformal symmetry is broken spontaneously. If this is indeed the case

the configuration should display the corresponding Goldstone boson — the dilaton. Other

than identifying a massless mode in the spectrum, for even dimensions we can also use

the restrictions on the effective action of the dilaton to identify the a-term coefficient [7].

This is of course relevant only for the space-time filling D7 brane and not to our new
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dCFT embeddings. We mention it here mainly because of the unresolved issue that is

explained below.

It was shown in [7] that the effective action carries the anomaly term Sanomaly|gµν=ηµν ∼
2a
∫
d4x(∂τ)4. The UV theory we will have aUV but flowing to the IR, by virtue of the

anomaly matching, the coefficient will be aUV − aIR.10 [7] went further on to show that

aUV > aIR, but here we are interested only in the coefficient itself. The dilaton effective

action was calculated for various probe gauge brane embeddings in [38]. Their D3-brane

analysis in 4d (dual to the N = 4 Coulomb branch) can be repeated for any five dimensional

Sasaki-Einstein space.

The AdS5 metric in Poincaré coordinates is given by:

ds2 =
R2

z2

(
dxµdxµ + dz2

)
, (4.1)

where R4 = (2π)4gsl4s
4Vol(M) . We are only interested in the dilaton, so we ignore motion of the

brane in any of the internal coordinates, so the DBI induced action for the spacetime filling

D3 brane is:

SD3 = −µ3

∫
d4x

R4

z4

(√
1 + (∂z)2 − 1

)
' µ3R

4

∫
d4x

(
−(∂z)2

2z4
+

(∂z)4

8z4
+ · · ·

)
. (4.2)

Here µ3 =
(
(2π)3gsl

4
s

)−1
and the (−1) following the square root comes from the 5-form flux.

This way the no-force condition ensures the dilaton’s flat potential. The last step required

is the field redefinition z = R
(

1− φ
f

)−1
relating field z to the canonically normalized

dilaton φ and the decay constant f . All in all, one gets the following effective action:

SD3 =

∫
d4x

(
−µ3R

2

2f2
(∂φ)2 +

µ3R
4

8f4
(∂φ)4 + · · ·

)
. . (4.3)

According to [7], ∆a = aUV − aIR = 1
16µ3R

4 = πN
32Vol(M) . We see that ∆a ∼ (Vol(M))−1,

as expected from [39] .

For flavour branes, however, things are more complicated. As we have already seen,

contrary to the gauge branes case, the flavour branes have an r-dependent profile making

it harder to identify the four dimensional physical dilaton effective action. For example,

the D7-D̄7 embedding we discussed extensively above, gives the following five dimensional

effective action (up to four derivatives):

S = −µ72π2

72

∫
d4xdz

(
1

2
(∂zδy)2 +

R4

32r10
∂µδy∂

µδy

− R8

8 · 28r20
(∂µδy)4) +

1

4

R4

32r10
(∂µδy∂

µδy)(∂zδy)2 − 1

8
(∂zδy)4 + · · ·

)
. (4.4)

Here r8 = y2 + z2, µ7 =
(
(2π)7gsl

8
s

)−1
, and R4 = 27

4 πgsNcl
4
s . This is not the four dimen-

sional effective action yet, but we can already see an inherent issue here that we did not

10This is true up to additional ascalar term in the IR from the dilaton.
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succeed to resolve. It seems that the a-term coefficient will always carry some extra factors

of the string/gauge coupling coming from µ7R
8 ∼ gsN

2
c ∼ λNc. This issue is common to

all dilatonic modes which may arise from flavour branes fluctuations, because of the mis-

match between the brane tension and volume: both of these carry different powers of gs:

µ7 ∼
(
gsl

8
s

)−1
and VolD7 ∼ R8 ∼ g2

s l
8
s . This is in contrast to the D3 gauge brane where the

tension and the volume have the same power of gs. The ∆a-term should not depend on the

gauge coupling at the end of the flow. On the gravity side we have only the flavour brane

tension µflavour and the AdS radius R, and building a dimensionless coefficient from these

two will always contain some factor of gs or ls (or λ when written in FT terms). Hence, it

does not seem plausible that a simple field redefinition would solve this contradiction.

We are led to suspect that in our approximation the a-term should be zero when the

full 4-dim effective action is calculated, and that the affect of the flavour brane on the

a-term will be visible only when backreaction is taken into account.

5 Models with a pseudo-dilaton

Relating our holographic dilaton to the phenomenology of elementary particles may be

possible if one renders the dilaton into a massive pseudo dilaton. Indeed, [6] discussed the

possibility that the recently discovered 125 GeV Higgs like resonance corresponds actually

to a pseudo-dilaton. Since the dilaton couples to the trace of the energy-momentum tensor

its couplings and hence decay modes are similar to those of the Higgs particle. An important

issue raised in this paper is how to get a pseudo-dilaton lighter than the scale of the

corresponding strong interaction. This question was explored in [40].11 A pseudo-dilaton

corresponds to a system where on top of the spontaneous breaking there is also an explicit

breaking of conformal invariance. In holography this can be achieved by placing a U-shape

probe flavour branes in a background for which the conformal symmetry is broken explicitly.

Introducing a scale to the KW background has been achieved in the deformed conifold

solution of Klebanov-Strassler [41]. Incorporating D7 anti-D7 branes in this background is

technically much more complicated than in the KW background. This problem was first

addressed in [42] and finally resolved in [43]. The description of the D7 branes in this

background is given in figure 4.

The main difference between the model based on the KS background and that based

on the KW one is that in KS case there is an internal scale rε ≡ e2/3 (the size of the blown

up S3 at the tip) that breaks conformal symmetry explicitly. However, because there are

two scales: r0 which breaks the symmetry spontaneously and rε which breaks it explicitly,

we expect a parametrically light pseudo-dilaton in the spectrum. Indeed, the spectrum of

gauge singlets of this model include glueballs with mass:

mglueball ∼
rε
λα′

. (5.1)

11In fact the purpose of having a lighter scalar meson than the corresponding vector mesons, was very

different in that paper. The issue was how to get at large separation distances an attractive force of the

“nuclear interaction” which is stronger than the repulsive one. The pseudo Goldstone mechanism enabled

such a scenario.
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S
3 S

2

D7

rε

S
2

S
3 S

2

D7

rε

r0

Figure 4. Embedding of the D7-branes in the KS background. The branes wrap the S3 and span

a line in R1 × S2. The lowest point of the U-shape profile is r0. The deformation scale is rε. The

figures illustrate the anti-podal (left) and the non antipodal (right) cases respectively [40].

At the same time, for r0 � rε we can treat the effect of rε as a small correction, thus the

masses of regular mesons remain essentially the same:

mmeson ∼
r0

λα′
∼ r0

rε
mglueball , (5.2)

while the pseudo-dilaton acquires a small mass of the form:

mdilaton ∼
(
rε
r0

)2

mglueball . (5.3)

Obviously the dilaton becomes massless when we turn off the explicit breaking as expected.

The holographic model indeed obeys the phenomenological requirement that the pseudo-

dilaton is lighter than the dynamical scale of the system. It should be emphasized that

in attempting to relate the holographic model to elementary particle phenomenology, the

underlying large N gauge symmetry does not relate to QCD, but rather to an additional

strong interaction with a scale which is much higher than that of QCD.

Now that we have clarified the potential relation of our prototype model with phe-

nomenology, an obvious question is what is the situation for the other holographic models

discussed above. The holographic duals of of the defect field theories listed in table 1 of

section 3, are based on backgrounds with the transverse space which is the conifold. These

cases could be transformed to the deformed conifold background of the KS background in

exactly the same way as the prototype model of the D7 branes. As we mentioned there are

also possible setups based on the Sasaki- Einstein manifolds Y p,q and La,a,c. It was shown

in [44–46] that supersymmetric system on such backgrounds cannot be deformed like in

the conifold geometry. However, in this work we consider only non-supersymmetric models

and hence the corresponding no-go theorem does not apply.
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6 Summary and open questions

The main focus of this paper has been spontaneous conformal symmetry breaking due to

flavour branes and anti-branes. Generalizing the spacetime filling D7 embedding of [4], we

found (and reviewed) a number of holographic models dual to defect field theories.

The proposed construction relies on the conformal symmetry of the AdS part of the

background and a non-trivial topology of the compact orthogonal space. The latter is

necessary for the U-shape D-brane profile. For this reason the KW geometry, AdS5 ×
T 1,1, provides a fruitful playground for this approach in type IIB supergravity. All of the

presented conifold based models can be straightforwardly generalized to Y p,q and La,b,c

spaces, since they also possess S3 × S2 topology. For the type IIA model building we used

AdS4×CP3 background of the ABJM model, with D-branes wrapping the even dimensional

cycles of CP3.

Based on our findings we conjecture that for any compact space meeting the criteria

of section 3 there will be a U-shape probe brane solution that exhibits the features of

spontaneous conformal symmetry breaking.

The results of this paper are only the first step in the quest for a reliable holographic

model. There are a handful of open questions that deserve further investigation. Let us

list some of them.

• The most important open question is the issue of backreaction. The question is

whether the Goldstone boson, the dilaton, will survive (remain massless) once back-

reaction is incorporated. In geometrical terms, it translates into the (in)dependence

of the asymptotic separation between the two ends of the U-shape on the r0 pa-

rameter, the tip location of the brane configuration. Differently stated, the massless

Goldstone mode associated with the tip moving may acquire a mass beyond the

probe approximation. It was shown in [47] that in the context of the Sakai-Sugimoto

model the leading correction in Nf/Nc does not change the structure of the U-shape

configuration. However, since the results of [47] deal with a different model and are

limited only to the leading order correction, they cannot ensure the robustness of our

mechanism. The backreaction might even spoil the solution altogether (for instance,

it may lead to a runaway behaviour). We also mention that to our knowledge there

are no known non-SUSY CFTs with a moduli space at finite N . The first steps

in this direction were done in [48] and [49], where the first order backreaction was

investigated in the smearing approximation.

• Another issue, possibly related to the D-brane backreaction, is the coefficient of the

“a-term” in the dilaton effective action. As was explained in section 4, the “a-term” is

associated with the action of the mode suspected to be the dilaton, and its coefficient

does not meet the “a-theorem” expectations. It was found to be linear in λ, whereas

according to the theorem it should be independent of the gauge coupling constant.

Resolving this contradiction (for example, showing explicitly that the term vanishes

identically) is an important open question left for future investigation.

– 17 –



J
H
E
P
0
3
(
2
0
1
4
)
0
4
5

• We still have to establish a map between the holographic setup and the dual field

theory. In [4] the quiver field theory associated with the prototype model was dis-

cussed. Further arguments from the field theory side to support the main idea will be

definitely welcomed. The holographic model admits two types of Goldstone bosons.

The one discussed in this paper is associates with the fluctuation of the embedding

and throughout the paper has been referred to as the dilaton. The second type are

the massless modes of the flavour gauge fields that reside on the probe flavour branes.

These modes are the dual of the Goldstone bosons associated with the spontaneous

breaking of chiral symmetry. They were identified originally in the Sakai-Sugimoto

model [13] and later in [4] for our KW prototype model. Thus the field theory dual

of our models should contain both pions and a dilaton.

• One obvious direction of further investigation is the correlation functions computa-

tion. The two point function of the dilaton has a very special signature. It has to

behave like 1/p2. This type of behaviour was indeed observed in [3]. Finding these

correlators in the setups of this paper will provide further important evidence for our

basic idea. Such correlators were recently studied in [50].

• In section 5 the pseudo-dilaton arising in the context of the Klebanov-Strassler model

was briefly discussed. It was argued in [40] that one can have a pseudo-dilaton which

is parametrically lighter than the scale of the strong interaction. As was mentioned in

Introduction this was the main phenomenological motivation of our work. Obviously

this paper just raises the possibility and a further deeper investigation is needed. In

particular, it is important to analyse the couplings of the pseudo-dilaton mode to

other modes and its decay channels.

• One may investigate the perturbative stability of the new D-brane profiles using the

method proposed recently in [51].
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