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been derived which include the effects of new bottom partners in the loop corrections

to this coupling and which can be applied to other models with similar particle content.

Furthermore, the constraints from direct searches for heavy states at the LHC and from
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1 Introduction

The announcement of the discovery of a new scalar particle by the LHC experiments

ATLAS [1, 2] and CMS [3, 4] has marked a milestone in elementary particle physics. Since

then, the properties of the particle have been investigated and strongly suggest it to be the

Higgs boson, i.e. the particle related to the Higgs mechanism. So far no new additional

particles have been discovered which could help to clarify the question which is the dynamics

behind electroweak symmetry breaking (EWSB). It could be weakly interacting like in the

Standard Model (SM) or in its supersymmetric extensions. The Higgs particle could also

arise as pseudo Nambu-Goldstone boson (pNGB) from a strongly-coupled sector [5–11], as

is the case in Composite Higgs Models. In the Strongly-Interacting Light Higgs (SILH) [12]

scenario there exists a light, narrow Higgs-like scalar, which is a bound state from some

strong dynamics. Due to its Goldstone nature, the Higgs boson is separated from the

other usual resonances of the strong sector by a mass gap. The low-energy particle content
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is the same as in the SM. In Composite Higgs Models the problem of the fermion mass

generation is solved by the idea of partial compositeness [13, 14]. The SM fermions are

elementary particles which couple linearly to the heavy states of the strong sector that carry

equal quantum numbers. In particular the top quark can be largely composite. The linear

couplings of the SM particles to the strong sector explicitly break the global symmetry of

the latter and the Higgs potential arises from loops of SM particles, with the top quark

giving the main contribution. In order to naturally accommodate a low-mass Higgs boson of

∼ 125 GeV the top partners should be rather light, with masses <∼ 1 TeV [15–21], depending

on the model and the scale of compositeness. This bound can be relaxed somewhat by

contributions from new heavy gluons [22]. Heavy vector-like resonances in this mass range

can be produced and searched for at the LHC [23–43].

The SILH [12] Lagrangian arises as first term of an expansion in ξ = v2/f2 � 1,

where v is the scale of EWSB and f is the typical scale of the strong sector. It can be

used in the vicinity of the SM limit given by ξ → 0. For larger values of ξ a resumma-

tion of the series in ξ is required. Explicit models built in five-dimensional warped space

can provide such a resummation. In the Minimal Composite Higgs Model (MCHM) of

ref. [44], which is based on a 5-dimensional theory in Anti-de-Sitter space-time, the bulk

symmetry SO(5)×U(1)X×SU(3) is broken down to the SM gauge group on the ultraviolet

(UV) boundary and to SO(4) × U(1)X × SU(3) on the infrared (IR). The mixing effects

between the SM fields and the heavy states of the new sector, which arise at tree-level,

lead to sizable deviations from the SM predictions. Composite Higgs Models are therefore

mainly challenged by the electroweak precision tests (EWPT) [45–47]. Particularly strong

constraints can arise from the ZbLb̄L coupling, which has been measured very precisely

and agrees with the SM prediction at the sub-percent level. With the top quark mixing

strongly with the new sector, the left-handed bottom quark bL which is in the same weak

doublet as tL receives large modifications of its couplings. The ZbLb̄L coupling is safe from

large corrections if the fermions are embedded in fundamental 5 or 10 representations of

SO(5), where bL belongs to a bi-doublet (2,2) of SU(2)L× SU(2)R, and the SO(4) symme-

try is enlarged to O(4) [48]. Subsequent investigations including the fermion composites

in full representations of the SO(5) [49, 50] and extended to models with multiple sets of

fermionic composites [51] showed that Composite Higgs Models can fulfill the constraints

of EWSB. Further constraints on these models come from flavour physics. Four-fermion

operators that arise in Composite Higgs Models contribute to flavor-changing processes

and electric dipole moments. The flavour structure of the strong sector cannot be pre-

dicted through naturalness considerations, and a variety of flavour implementations can be

realized [52–69].

The Composite Higgs couplings to the SM particles are changed with respect to the

ones of the SM Higgs boson. In the MCHMs of refs. [15, 44, 70] they can be parametrized

in terms of a single parameter ξ. These coupling modifications change the Higgs boson

phenomenology [71–81]. With the top quark being a composite particle, mixing effects

with the heavy top partners induce further changes in the top-Higgs Yukawa coupling. In

addition top partners running in the loops of the loop-induced Higgs couplings to gluons and

photons could lead to sizeable corrections of these vertices. It has been shown [74, 79, 82–
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85], however, that these vertices depend on the pure non-linearities of the Higgs boson and

are not sensitive to the details of the resonance spectrum. By applying the low-energy

theorem (LET) [86–88], it can be shown that the corrections to the Yukawa coupling and

the contributions from the extra fermion loops cancel each other, so that the loop-induced

couplings only depend on v/f . The bottom quark, being the next-heaviest quark, implies

a sizable mixing with the strong sector also for the bottom. In this case, due to the small

bottom mass, the LET cannot be applied any more and the Higgs loop-couplings to gluons

and photons will depend on the resonance structure of the strong sector, with significant

implications for the Higgs phenomenology [83, 85, 89].

The aim of this paper is to study the implications of composite bottom quarks on the

viability of Composite Higgs Models and on the LHC Higgs phenomenology by introduc-

ing a minimum amount of new parameters. For this purpose the fermions are embedded

in the 10, which is the smallest possible representation of SO(5) that allows to include

partial compositeness for the bottom quarks, while being compatible with the EWPTs by

implementing custodial symmetry. The outline of the paper is as follows. In section 2 we

present the model. In section 3 the new contributions to the electroweak precision observ-

ables due to the composite nature of the b-quark and to the additional heavy resonances

are computed, in particular the new contributions to the loop corrections of the ZbLb̄L
coupling. We then perform a χ2 test to investigate the compatibility of the model with the

constraints that arise from electroweak precision measurements. Section 4 is devoted to the

constraints from the LHC Higgs results and the direct searches for heavy fermions. In order

to compare with the experimental best fit values to the Higgs rates, the Higgs production

and decay processes are calculated for the model. Likewise the mass spectrum of the heavy

fermion sector and the decay widths of the new resonances are computed and confronted

to the LHC searches for heavy fermions. A brief discussion on implications from flavour

physics is included. In section 5 we present our numerical results. The χ2 test taking

into account the EWPTs and the newest experimental measurement of the CKM matrix

element Vtb is extended to include the latest Higgs rates reported by the experiments. Our

results are summarized in the conclusions, section 6.

2 The model

The models given in refs. [15, 44] have been constructed in terms of five-dimensional theories

on Anti-de-Sitter space-time and provide a resummation for large values of ξ. In the

following we will work in the simplest model including custodial symmetry and allowing

for the inclusion of bottom quarks as composite objects. We will show the effects of heavy

bottom partners for a minimal SO(5)×U(1)X/SO(4)×U(1)X symmetry breaking pattern,

where the additional U(1)X is introduced to guarantee the correct fermion charges. The

electroweak group SU(2)L × U(1)Y of the SM is embedded into SO(4) × U(1)X with the

hypercharge Y given by Y = T 3
R + X. The coset SO(5)/SO(4) provides four Goldstone

bosons, three of them are the longitudinal modes of the vector bosons and one is the Higgs

boson. The four Goldstone bosons can be parameterized in terms of the field

Σ = Σ0 exp(Π(x)/f), Σ0 = (0, 0, 0, 0, 1) , Π(x) = −i
√

2T âhâ(x) , (2.1)
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with T â (â = 1 . . . 4) denoting the generators of the coset SO(5)/SO(4). They are given by

(T â)ij = − i√
2

(
δâi δ

5
j − δâj δ5

i

)
. (2.2)

Together with the generators of the SU(2)L,R (a, b, c = 1, 2, 3, i, j = 1, . . . , 5),

(T aL)ij = − i
2

[
1

2
εabc(δbi δ

c
j − δbjδci ) + δai δ

4
j − δ4

i δ
a
j

]
, (2.3)

(T aR)ij = − i
2

[
1

2
εabc(δbi δ

c
j − δbjδci )− δai δ4

j + δ4
i δ
a
j

]
, (2.4)

they form the generators for the fundamental representation of SO(5). This leads to the

explicit expression for the Goldstone field Σ,

Σ =
sinh/f

h
(h1, h2, h3, h4, h cot(h/f)) , h =

√√√√ 4∑
â=1

h2
â . (2.5)

The low-energy physics of the strong sector can be described by a non-linear σ-model. The

kinetic term of the Goldstone field can then be written as

Lkin =
f2

2
(DµΣ) (DµΣ)T , with DµΣ = ∂µΣ− ig′BµΣ(T 3

R +X)− igW a
µΣT aL , (2.6)

where W a
µ and Bµ are the electroweak SU(2) and U(1) fields, respectively, with the corre-

sponding couplings g and g′. In the unitary gauge the vacuum expectation value (VEV)

can be aligned with the direction of h4 which is identified with H ≡ h4, so that

Σ = (0, 0, 0, sin(H/f), cos(H/f)) , (2.7)

and we get for the kinetic term

Lkin =
1

2
∂µH∂

µH +
f2

4
sin2

(
H

f

)[
g2W+

µ W
µ− +

g2

2 cos2 θW
ZµZµ

]
. (2.8)

Expanding eq. (2.8) in powers of the Higgs field H = 〈H〉+ h, and identifying

ξ =

(
v

f

)2

= sin2 〈H〉
f

, (2.9)

one obtains the couplings to the gauge fields in terms of the corresponding SM couplings

(V = W,Z)

ghV V = gSM
hV V

√
1− ξ , ghhV V = gSM

hhV V (1− 2ξ) , (2.10)

and the usual mass relation m2
W = g2v2/4, with v = 1/

√
GF
√

2 ≈ 246 GeV.

New fermionic resonances in Composite Higgs Models are expected to be well below

the cut-off of the effective theory in order to accommodate a Higgs boson with mass mh ≈
125 GeV [16–21]. Fermion mass generation is then achieved by the principle of partial

compositeness, in which an elementary fermion acquires its mass through the mixing with
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u u1 t4 T4 d d1 d4 χ χ1 χ4

T3,L 0 0 -1/2 1/2 -1 0 -1/2 1 0 1/2

T 2
L 1 0 1/2 1/2 1 0 1/2 1 0 1/2

T3,R 0 0 1/2 -1/2 0 -1 -1/2 0 1 1/2

T 2
R 0 1 1/2 1/2 0 1 1/2 0 1 1/2

Y 2/3 2/3 7/6 1/6 2/3 -1/3 1/6 2/3 5/3 7/6

Table 1. Quantum numbers of the new vector-like fermions under SU(2)L× SU(2)R. The last line

is the hypercharge.

new vector-like fermions of the strong sector. This can be implemented in the Lagrangian

through linear couplings of the elementary sector with the strong sector. The quantum

numbers of the new fermion must be such that the Lagrangian is invariant under the SM

gauge group. A large, phenomenologically interesting mixing occurs if the SM fermion is

heavy, which makes the discussion of the third generation quarks the most interesting.1

Previous works, as e.g. refs. [50, 51, 84], have studied the mass generation of the top quark

through mixing, while the bottom quark was taken massless or introduced ad hoc. The

purpose of this work, however, is to study the effect of bottom partners that arise when

the bottom quark mass is generated by mixing with the strong sector. This cannot be

achieved by introducing only a single fermion multiplet in the fundamental or spinorial

representation of SO(5). In the following we will therefore consider a 102/3, which is the

smallest representation of SO(5) having the desired features. Note that since there is only

one multiplet giving a mass both to the top and bottom quark, no new parameters need

to be introduced compared to the previous models where a 52/3 is used to generate a mass

for the top quark. If there are no new resonances of the strong sector below the cut-off,

apart from the Higgs boson, the model displays the same phenomenology as the one with

fermions embedded in the fundamental representation, cf. ref. [15]. The 10 of SO(5) is a

two-index antisymmetric representation, which can be written as follows

Q =
1

2


0 −(u+u1)

i(d−χ)√
2

+
i(d1−χ1)√

2

d+χ√
2
− d1+χ1√

2
d4+χ4

u1+u 0
d1+χ1√

2
+ d+χ√

2

i(d1−χ1)√
2
− i(d−χ)√

2
−i(d4−χ4)

− i(d1−χ1)√
2
− i(d−χ)√

2
− d1+χ1√

2
− d+χ√

2
0 u1−u t4+T4

d1+χ1√
2
− d+χ√

2

i(χ1−d1)√
2

+
i(d−χ)√

2
u−u1 0 −i(t4−T4)

−d4−χ4 i(d4−χ4) −t4−T4 i(t4−T4) 0

 (2.11)

where the fermions u, u1, t4 and T4 have electric charge 2/3, d, d1 and d4 have charge -1/3,

and the charge of χ, χ1 and χ4 is 5/3. The decomposition of the 10 under SU(2)L×SU(2)R is

10 = (2,2)⊕ (3,1)⊕ (1,3) . (2.12)

The exact quantum numbers of each of the new fermions can be read off table 1. The

1Partial compositeness of the light quarks has been discussed in [85, 90] and of the leptons in [91].
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Lagrangian including the new fermion multiplet Q then reads

L = iTr(Q̄R /DQR) + iTr(Q̄L /DQL) + iq̄L /DqL + ib̄R /DbR + it̄R /DtR

−M10Tr(Q̄RQL)− yf
(

Σ†Q̄RQLΣ
)

+ h.c.

− λtt̄Ru1L − λbb̄Rd1L − λq(T̄4R, d̄4R)qL + h.c. ,

(2.13)

where the SM doublet of the left-handed top and bottom quark is denoted by qL and the

right-handed top (bottom) quark by tR (bR). The covariant derivative acts on Q as

DµQ = ∂µQ− igW a[T aL,Q]− ig′B
(
[T 3
R,Q] +XQ

)
, X = (2/3)1 , (2.14)

with the generators T aL defined as in eq. (2.3). Note that the mixing terms with the coupling

constants λq,λt and λb explicitly break SO(5). Using the abbreviations

sH ≡ sin(H/f) , cH ≡ cos(H/f) (2.15)

and

m̃a ≡
1

4
fys2

H+M10 , m̃b ≡
1

2
fy

(
1− 1

2
s2
H

)
+M10 , m̃c ≡

1

2
fyc2

H+M10 , (2.16)

the terms of the Lagrangian in eq. (2.13), which are bilinear in the quark fields, can be

written as

−Lmt =


tL
uL
u1L

t4L
T4L




0 0 0 0 λq
0 m̃a −1

4fys
2
H −

1
4fycHsH −

1
4fycHsH

λt −1
4fys

2
H m̃a

1
4fycHsH

1
4fycHsH

0 −1
4fycHsH

1
4fycHsH m̃b −1

4fys
2
H

0 −1
4fycHsH

1
4fycHsH −1

4fys
2
H m̃b




tR
uR
u1R

t4R
T4R

+ h.c. ,

(2.17)

−Lmb =


bL
dL
d1L

d4L




0 0 0 λq
0 m̃a −1

4fys
2
H fy cHsH

2
√

2

λb −1
4fys

2
H m̃a −fy cHsH

2
√

2

0 fy cHsH
2
√

2
−fy cHsH

2
√

2
m̃c



bR
dR
d1R

d4R

+ h.c. , (2.18)

−Lmχ =

 χL
χ1L

χ4L


 m̃a −1

4fys
2
H fy cHsH

2
√

2

−1
4fys

2
H m̃a −fy cHsH

2
√

2

fy cHsH
2
√

2
−fy cHsH

2
√

2
m̃c


 χR
χ1R

χ4R

+ h.c. . (2.19)

The mass matrices Mt, Mb and Mχ can be obtained by replacing the Higgs field in

eqs. (2.17)–(2.19), encoded in sH and cH , respectively, with its VEV, i.e. H → 〈H〉. They

are diagonalized by a bi-unitary transformation(
U

(t/b/χ)
L

)†
M(t/b/χ)U

(t/b/χ)
R = Mdiag

(t/b/χ) , (2.20)

where U
(t/b/χ)
L,R denote the transformations that diagonalize the mass matrix in the top,

bottom and charge-5/3 (χ) sector, respectively. In our analysis we diagonalize them nu-

merically, setting the values of λt and λb such that the physics values of the top and bottom
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quark masses are recovered. An analytic understanding of the size of the masses can be

obtained before electroweak symmetry breaking, i.e. for v = 0. The following rotations

diagonalize the mass matrices

(
qL
QL

)
→

(
cosφL sinφL
− sinφL cosφL

) (
qL
QL

)
, tanφL = λq/(M10 + fy/2) ,(

tR
u1R

)
→

(
cosφRt sinφRt
− sinφRt cosφRt

) (
tR
u1R

)
, tanφRt = λt/M10 ,(

bR
d1R

)
→

(
cosφRb sinφRb
− sinφRb cosφRb

) (
bR
d1R

)
, tanφRb = λb/M10 ,

(2.21)

with QL = (T4L, d4L). The masses of the top partners are then found to be

M10 ,
M10

cosφRt
, M10 +

fy

2
,

M10 + fy
2

cosφL
, (2.22)

and the masses of the bottom partners

M10 ,
M10

cosφRb
,

M10 + fy
2

cosφL
. (2.23)

If the new scale f is much larger than v an expansion in v/f of the mass matrices can be

performed. At leading order in v/f , this yields for the top and bottom quark mass

mtop =
y v

4
sinφL sinφRt , mbot =

y v

2
√

2
sinφL sinφRb . (2.24)

We see, that in order to achieve the experimentally measured value of the top quark, tL
and tR cannot be too elementary at the same time. Furthermore, as the top and bottom

quark are in the same doublet, the compositeness of the left-handed bottom is directly

connected to the compositeness of the left-handed top. As sinφL cannot be too small in

order to reproduce the top quark mass, this implies that the right-handed component of the

bottom quark is mostly elementary, so that a small enough bottom mass can be achieved.

The first correction term to the top and bottom partner masses is of O(v2/f2). For the

charge-5/3 fermions the masses can be computed analytically even for non-vanishing v.

They are given by

M10 , M10 , M10 +
fy

2
. (2.25)

The Higgs coupling matrices can be obtained from eqs. (2.17)–(2.19) by expanding the mass

– 7 –
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matrices in the interaction eigenstates up to first order in the Higgs field H. They read

−Lhtt̄ = y h


tL
uL
u1L

t4L
T4L




0 0 0 0 0

0 1
2sHcH −1

2sHcH
1
4(2s2

H − 1) 1
4(2s2

H − 1)

0 −1
2sHcH

1
2sHcH

1
4(1− 2s2

H) 1
4(1− 2s2

H)

0 1
4(2s2

H − 1) 1
4(1− 2s2

H) −1
2sHcH −1

2sHcH
0 1

4(2s2
H − 1) 1

4(1− 2s2
H) −1

2sHcH −1
2sHcH


︸ ︷︷ ︸

Ghtt̄


tR
uR
u1R

t4R
T4R


H=〈H〉

+ h.c. ,

(2.26)

−Lhbb̄ = y h


bL
dL
d1L

d4L




0 0 0 0

0 1
2sHcH −1

2sHcH
1

2
√

2
(1− 2s2

H)

0 −1
2sHcH

1
2sHcH

1
2
√

2
(2s2

H − 1)

0 1
2
√

2
(1− 2s2

H) 1
2
√

2
(2s2

H − 1) −sHcH


︸ ︷︷ ︸

Ghbb̄


bR
dR
d1R

d4R


H=〈H〉

+ h.c. .

(2.27)

The matrices for the couplings to top-like states, Ghtt̄, and to bottom-like states, Ghbb̄, in

the mass eigenstate basis are obtained by multiplication with the matrices UL,R defined in

eq. (2.20). The charge-5/3 fermions only interact with the Higgs boson through small off-

diagonal terms and are not relevant for our analysis. Their coupling matrix is therefore not

given explicitly here. The couplings of the fermions to the gauge bosons are obtained from

eq. (2.14) in the interaction basis with subsequent rotation to the mass eigenstates. In the

following section also the couplings of the fermions to the Goldstone bosons will be needed.

They can be derived from eq. (2.13) by using eq. (2.5) and doing the following replacements,

h1 →
G− −G+

i
√

2
, h2 → −

G− +G+

√
2

, h3 → G0 . (2.28)

The couplings of the Goldstone bosons with the fermions can be found in appendix A.

3 Computation of electroweak precision observables

The results obtained at LEP put important constraints on New Physics models. The data

indirectly constrains physics at high energies which enters in loop corrections to the ob-

servables at the electroweak scale. In this section the contributions to the Peskin-Takeuchi

S and T parameters [92] will be shortly reviewed. Subsequently, the computation of the

one-loop contributions to the non-oblique corrections to the ZbLb̄L vertex due to the partial

compositeness of the bottom quark will be presented. The U parameter will not be dis-

cussed here, as it only receives contributions from operators of dimension eight or higher.

For convenience, we use instead of S, T and the shift in the ZbLb̄L coupling the parameters

ε1, ε2, ε3 and εb [93–95], as they do not depend on a reference point in the SM.

3.1 Contributions to ε1

The T parameter — or equivalently ε1 — gets a correction due to modified Higgs-vector bo-

son couplings. They prevent a full cancellation of the UV-divergencies in the T -parameter
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so that a logarithmically divergent part remains [46]. It is cut off by the mass of the first

vector resonance mρ,

∆εIR1 = −
3α(m2

Z)

16π cos2 θW
ξ log

(
m2
ρ

m2
h

)
, (3.1)

with ξ = v2/f2, cf. eq. (2.9) and α the electromagnetic coupling at the scale mZ . The

Weinberg angle is denoted by θW . Another important contribution to ε1 comes from loops

of fermionic partners. Explicit formulae at the one-loop order can be found in refs. [51, 96].

3.2 Contributions to ε3

Similar to the IR contribution to ε1, a UV-divergent contribution due to modified Higgs-

vector boson couplings also arises for the S parameter — or ε3 —,

∆εIR3 =
α(m2

Z)

48π sin2 θW
ξ log

(
m2
ρ

m2
h

)
. (3.2)

Additionally, at tree-level there is a UV contribution from the mixing of elementary gauge

fields with new vector and axial vector resonances [12, 97],

∆εUV3 =
m2
W

m2
ρ

(
1 +

m2
ρ

m2
a

)
, (3.3)

where ma denotes the mass of the first axial vector resonance. For definiteness, we set

mρ/ma ≈ 3/5 as obtained in the five-dimensional SO(5)/SO(4) models of refs. [15, 44].

We explicitly checked that varying mρ/ma between 1 and 2 has only a slight effect on our

numerical results. The finite fermionic one-loop contributions to ε3, which can be found

in ref. [96], are neglected, as they are small compared to the tree-level UV contributions

given in [51]. As recently pointed out in ref. [98], however, there can be an additional

logarithmically divergent contribution stemming from fermion loops, which is given by

∆εdiv3 ∼ Tr
[
W †LYL +W †RYR

]
, (3.4)

where WL,R are the left- and right-handed fermion couplings to W 3
µ and YL,R the corre-

sponding hypercharges. In our case the trace in eq. (3.4) is zero.

3.3 Contributions to εb

Since light quarks are assumed to couple to any New Physics in a subdominant way, no

vertex corrections to the e+e− annihilation process at LEP have to be taken into account.

The only exception is the ZbLb̄L vertex, because the left-handed b-quark is in the same

SU(2)L doublet as the top quark, which itself has a large mixing with composite fermions.

For this vertex, New Physics contributions can thus be sizeable.

The Lagrangian for the coupling of a Z boson to a quark ΨQ
i of charge Q in the mass

eigenstate basis is parameterized by

LZ =
g

2cW
ZµΨ̄i

Qγ
µ
(
XQL
ij PL +XQR

ij PR − 2s2
WQδij

)
Ψj
Q , (3.5)
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Figure 1. Loop vertex diagrams for heavy fermion partner contributions to the ZbLb̄L coupling.

where i, j run over all quarks present in the model. Here and below we use the short-hand

notation cW ≡ cos θW and sW ≡ sin θW . We keep the coupling general so that the result

can also be applied to other cases. The decay amplitude of the Z boson into a pair of

massless left-handed b-quarks is given by

MZ→bLb̄L = −
e(gSM

bL
+ δgbL)

cW sW
εµ(pZ)b̄(pb̄)γ

µ 1− γ5

2
b(pb) , (3.6)

with the electric charge e and the SM coupling gSM
bL

of the Z boson to the left-handed

b-quarks. The polarization vector of the Z boson with four-momentum pZ is denoted by

εµ. A left-right symmetry prevents δgbL , which contains the effects from New Physics,

from getting tree-level contributions [48]. However, important contributions to δgbL can

occur through loops of new fermions. In figure 1 the Feynman diagrams for the one-loop

corrections to ZbLb̄L including gauge bosons and Goldstone bosons are shown. There are

also diagrams involving the Higgs boson, which, however, have a negligibly small contribu-

tion. In order to quantify the beyond the SM effect of the heavy quarks on δgbL , the SM

contribution Mt+b
SM of the bottom and top quarks has to be subtracted,

δgbL =Mheavy −Mt+b
SM , (3.7)

whereMheavy denotes the contributions from the loops with the heavy quarks, the top and

the bottom quark. The ZbLb̄L vertex needs to be renormalized to become finite. We adopt

an on-shell renormalization scheme similar to ref. [99]. The wave function renormalization

constants δZL,R relate the left- and right-handed bare fields bL,R0 with the renormalized

ones bL,R,

bL,R0 =

(
1 +

1

2
δZL,R

)
bL,R . (3.8)

The Z boson coupling to the left-handed bottom-type quarks is proportional to, cf. eq. (3.5),

X−1/3,L = U b †L T 3
LU

b
L , (3.9)
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where T 3
L is the generator defined in eq. (2.3).2 For the renormalization of the mixing matrix

U bL in eq. (3.9) a counterterm δubL is introduced. The complete ZbLb̄L vertex including the

counterterm in the mass eigenstate basis then reads

LZb̄LbL = − e

sW cW
b̄ γµ

(
1 +

1

2
δZ†L

)(
1 + δubL

)
U bL
(
T 3
L − 2s2

WQ
)

× U b †L
(

1 + δub †L

)(
1 +

1

2
δZL

)
PLb Z

µ ,

(3.10)

where PL = (1−γ5)/2 denotes the left-handed projector. Note that only the wave function

renormalization constants for the b-quark fields and the counterterm of the mixing matrix

are needed, whereas the electric charge, the Weinberg angle and the wave function renor-

malization of the Z boson are already included in the oblique parameters [92, 100], due to

their universality for all Zff̄ vertices. The counterterm is defined antihermitian, as the

bare and the renormalized mixing matrices are unitary, cf. ref. [101],3

δubL,ij =
1

4

(
δZLij − δZ

L †
ij

)
. (3.11)

Defining the structure (PR = (1 + γ5)/2)

Σij(p
2) = /pΣ

L
ij(p

2)PL + /pΣ
R
ij(p

2)PR + Σl
ij(p

2)PL + Σr
ij(p

2)PR (3.12)

for the fermion self-energy Σ, the wave function renormalization constant δZL for the

left-handed fermion field is given by

δZLij =
2

m2
i −m2

j

R̃e
(
m2
jΣ

L
ij(m

2
j ) +mimjΣ

R
ij(m

2
j ) +miΣ

l
ij(m

2
j ) +mjΣ

r
ij(m

2
j )
)

(3.13)

i 6= j

δZLii = −R̃e ΣL
ii(m

2
i )−mi

∂

∂p2
R̃e
(
mi(Σ

L
ii(p

2)+ΣR
ii(p

2))+Σl
ii(p

2)+Σr
ii(p

2)
)
|p2=m2

i
(3.14)

i = j ,

where R̃e only takes the real part of the one-loop integrals but keeps the complex structure

of the parameters. Note that in our calculation we set the bottom mass to zero, which

implies that either mi or mj is zero in eq. (3.13) and that mi = 0 in eq. (3.14). The

Feynman diagrams of the self-energies which we need for the renormalization of the ZbLb̄L
vertex are shown in figure 2. For the computation the programs FeynCalc [106] and

FeynArts/FormCalc [107–110] were used. The final result can be found in appendix B. It

is given in terms of general coupling factors so that it can be applied to other cases. The

notation is similar to the one used in ref. [51] so that the results can easily be compared.

The results obtained for the vertex diagrams in figure 1 agree with those of ref. [51]. The

differences with respect to ref. [51] arise from the renormalization of the mixing matrix,

2For the renormalization procedure the concrete definition of the generator T 3
L does not matter, however.

Our results are also applicable to other groups and hence different generators.
3The question of gauge invariance for this definition of the mixing matrix was widely discussed in the

literature [102–105]. We follow ref. [105] in order to obtain a gauge independent result.
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Figure 2. Self-energy corrections needed for the renormalization of the vertex ZbLb̄L.

which we performed and which was not necessary in ref. [51] as the authors did not take

into account the case of a bottom quark mixing with heavy fermion partners. In our case,

a finite result for δgbL can only be obtained if the renormalization of the mixing matrix

is included.

A comment is in order about contributions from the UV dynamics of the theory to the

EWPTs. In ref. [98] it was shown that there can be possibly large contributions to the S

parameter and the ZbLb̄L coupling from a non-decoupling of UV-physics. This can even

give rise to logarithmically divergent contributions, as e.g. in the ZbLb̄L coupling due to

an effective 4-fermion operator. The coupling constant of this operator is not relevant for

the rest of our analysis and we therefore assume it to be small. There could be further

finite contributions from the UV dynamics of the theory [98], which we neglect, however,

since there is no reasonable way to estimate them in terms of the fields entering our

effective Lagrangian.

3.4 The χ2 test and numerical results

The agreement of our model with the experimental data can be assessed by performing a

χ2 test. The experimental values for the ε parameters and their correlation ρ come from

the LEP measurement at the Z pole mass, see ref. [111]. We use, however, the updated

values of ref. [84], which take into account a newer value of the W mass [112–114]:

εexp
1 = (5.4± 1.0) · 10−3,

εexp
2 = (−7.9± 0.90) · 10−3,

εexp
3 = (5.34± 0.94) · 10−3,

εexp
b = (−5.0± 1.6) · 10−3,

ρ =


1 0.80 0.86 0.00

0.80 1 0.53 −0.01

0.86 0.53 1 0.02

0.00 −0.01 0.02 1

 . (3.15)

The theory contributions to the parameters ε1, ε2, ε3 and εb are given by [45, 84],

εth1 = (5.66− 0.86 log(mh/mZ)) · 10−3 + ∆εIR1 + α∆T ,

εth2 = (−7.11 + 0.16 log(mh/mZ)) · 10−3 ,

εth3 = (5.25 + 0.54 log(mh/mZ)) · 10−3 + ∆εIR3 + ∆εUV3 ,

εthb = −6.48 · 10−3 + δgbL . (3.16)

The first summands, respectively, are the SM corrections. The contributions ∆ε
UV/IR
i

and δgbL have been given in subsections 3.1 – 3.3, and ∆T is the contribution to the T

parameter stemming from loops of heavy fermions. The covariance matrix is defined by

Cij = ∆εexp
i ρij∆ε

exp
j , (3.17)
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where i, j runs over 1, 2, 3 and b. The parameters λt and λb are fixed by the requirement

to recover the measured values of the top and bottom quark masses, λq has been traded

for sinφL, cf. eq. (2.21), and the scale f is given by f =
√
ξ v, so that the relevant set of

free parameters for our model is {ξ,M10, sinφL, y,mρ}. The χ2 is hence defined as

χ2(ξ,M10, sinφL, y,mρ) =
∑
i,j

(
εthi − ε

exp
i

)
C−1
ij

(
εthj − ε

exp
j

)
. (3.18)

The electroweak precision data indicate a preference for a heavy vector resonance, so that

we fix the parameter mρ to its maximal value of 4πf required by perturbativity. We found

that this leads for most of the parameter sets to minimal or close to minimal values of

χ2. We are therefore left with four degrees of freedom {ξ,M10, sinφL, y}. A specific point

in the parameter space fulfills the electroweak precision tests at 99% C.L. if it satisfies

the criterion

χ2(ξ,M10, sinφL, y)− χ2
min ≤ 13.28 , (3.19)

where χ2
min is the minimum of χ2 with χ2

min ≈ 0.87. This is smaller than the SM value

χ2 ≈ 4.71 as expected for a model with additional parameters.

A further constraint on the model is imposed by the recent measurement of the single

top cross section at CMS [115], providing a lower limit on the CKM matrix element of

|Vtb| > 0.92 at 95% C.L.. The constraint on Vtb will be discussed in more detail in section 5.

We performed a scan over the parameter space, setting the top and bottom quark

masses to mt = 173.2 GeV and mb = 4.2 GeV, respectively, and the Higgs boson mass

to mh = 125 GeV. For the vector bosons masses we used mW = 80.385 GeV and mZ =

91.1876 GeV. The model parameters have been varied in the range

0 ≤ ξ ≤ 1 , 0 < sinφL ≤ 1 , |y| < 4π , 0 ≤M10 ≤ 10 TeV . (3.20)

In addition we only retained points for which |Vtb| > 0.92. The result of the scan is

shown in figure 3 (left) in the ξ-sinφL plane. As can be inferred from the plot, for non-

vanishing left-handed compositeness of the top and bottom quark, values of ξ close to 0.2

are still allowed at 68% C.L.. For intermediate values, 0.4 <∼ sinφL <∼ 0.5, parameter points

with ξ as large as ξ ∼ 0.5 pass the constraints.4 In case of mostly composite left-handed

quarks, sinφL >∼ 0.9, the constraints are passed at 99% C.L. for ξ values up to about

0.35. It is the positive fermionic contributions to the T parameter which drive it back into

the region compatible with EWPTs.5 For sinφL <∼ 0.25, there are no allowed points, as

for too low values of sinφL the correct top mass cannot be obtained, cf. eq. (2.24). The

bottom quark being in the same doublet as the top quark, is hence mostly left-handed

composite, as sinφRb must be small enough in order not to generate a too large bottom

mass, cf. eq. (2.24). Figure 3 (right) shows ∆χ2 ≡ χ2−χ2
min versus ξ. The smallest values

4In ref. [50] a similar plot as the one of figure 3 (left) was shown for the fundamental representation, and

a maximal allowed ξ value of only ξmax ≈ 0.35 was found. We use a different representation for the extra

fermion multiplet, however. Furthermore, instead of mρ = 2.5 TeV in [50] we take mρ = 4πf which lowers

the tension with the electroweak precision observables.
5For a comprehensive discussion (in the fundamental representation), see ref. [50].
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Figure 3. Parameters passing the χ2 test of electroweak precision observables, fulfilling in addition

|Vtb| > 0.92, for a scan over ξ, sinφL, y and M10. Dark blue: 68% C.L. region, medium blue: 95%

C.L. region and light blue: 99% C.L. region. Left: the ξ-sinφL plane. Right: ∆χ2 versus ξ.

for ∆χ2 are obtained for 0.01 < ξ < 0.2. In contrast, high values of ξ lead to large ∆χ2,

corresponding to a compatibility with the EWPT at 99% C.L.. Note that the SM limit is

obtained for ξ → 0 and M10 →∞. Due to the restriction of the scan to M10 ≤ 10 TeV, it

is not contained in the plot.

The impact of the bottom quark and its partners on the χ2 test is significant. Their

inclusion not only requires the renormalization of the mixing matrix, which influences the

finite terms. For some parameters in our scan the inclusion of the bottom partners in the

loops can also change ∆χ2 by a factor of 2. For the majority of the parameter points,

however, the effect is much smaller. The contributions from diagrams with Higgs bosons

in the loops alter ∆χ2 by ±2.9% at most, for most parameter sets even less.

A comment is in order about the approximation of zero bottom quark mass in the

computation of the corrections to the ZbLb̄L vertex. Neglecting the bottom mass changes

the couplings of the bottom quark and of the bottom-like quarks to the vector bosons and

Goldstone bosons. The effect, however, is small. The matrix element X
−1/3,L
bb , cf. eq. (3.9),

changes by maximally 1% and the change in the corresponding matrix element for the

Goldstone coupling is O(mb/v). Compared to the largest matrix elements in the Goldstone

coupling matrix this is less than a percent effect.6 We explicitly verified this numerically.

Additional mass terms can arise in the loop corrections to the ZbLb̄L vertex. They are

proportional to mb/mZ , and assuming that the couplings multiplying these terms are of

the same order as the ones multiplying mt/mZ , they would only contribute to about 3%

of the total matrix element. A conservative estimate of the error done by neglecting the

bottom mass is therefore 5%, obtained by adding up linearly the error due to the kinematics

and an estimate of 2% for the error due to the change in the couplings.

As mentioned earlier loop contributions to the T parameter from the top and bottom

partners are important to render the model compatible with the EWPT for non-vanishing

ξ values. The implications of the electroweak precision data on the masses of the vector-

like quarks can be inferred from figure 4. It shows ∆χ2 as a function of M10 which sets

the scale for the top and bottom partner masses. As expected, the best compatibility of

6We discuss here the Goldstone coupling as this would correspond to the gauge-less limit in which e.g.

in ref. [50] the EWPT were obtained for the fundamental representation.
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Figure 4. ∆χ2 versus M10 of the parameters passing the χ2 test of electroweak precision observ-

ables, fulfilling in addition |Vtb| > 0.92, for a scan over ξ, sinφL, y and M10. Dark blue: 68% C.L.

region, medium blue: 95% C.L. region and light blue: 99% C.L. region.

the model with the electroweak precision observables is obtained for non-vanishing masses

of the order of 200 GeV <∼ M10 <∼ 5 TeV. The bulk of the masses for the points which

are best compatible with EWPT lies between about 800 GeV and 1.6 TeV, however. This

is compatible with the lower limits from direct searches for heavy fermions, as will be

discussed in detail in the next section.

4 Constraints from Higgs results and direct searches for heavy fermions

Further constraints on Composite Higgs Models come from the LHC Higgs search re-

sults. Both production processes and decay rates of the Higgs bosons are modified com-

pared to the SM [73]. The modifications arising in our model shall be presented in the

following. Subsequently, the constraints due to direct LHC searches for heavy fermions

will be discussed.

4.1 Higgs boson production processes

Gluon fusion: gluon fusion [116] is the main Higgs production mechanism at the LHC

and mediated already at leading order by loops of heavy quarks. In addition to the top

and bottom quark loops present in the SM, in Composite Higgs Models also heavy quark

partners contribute and the Higgs Yukawa couplings are modified.7 The QCD corrections

to the process are important. In the SM they have been obtained at next-to-leading order

(NLO) including the full quark mass dependence and in the heavy top mass limit (including

the full mass dependence: [119–122]; heavy mass limit: [119, 123–127]). They increase the

cross section by 50-100%. At next-to-next-to-leading order (NNLO) QCD they are known

in the heavy top quark limit [128–132], adding another 20%. Top quark mass effects on the

NNLO cross section have been investigated in ref. [133–136]. A resummation of soft gluons

has been performed at next-to-next-to-leading log (NNLL) accuracy [136–139]. First results

7For a general discussion of the effects of additional heavy quarks on (multiple) Higgs production through

gluon fusion, taking into account experimental bounds, see refs. [117, 118].
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for the N3LO QCD corrections have been given in refs. [140–144]. For Composite Higgs

Models the QCD corrections up to NNLO were calculated in ref. [145], keeping the full

bottom mass dependence through NLO. The two-loop Yukawa corrections to gluon fusion

in the top partner singlet model have been presented in [146]. Note, that in Composite

Higgs models without new heavy fermion partners the QCD corrected SM cross section can

be taken over by adjusting the Higgs-Yukawa couplings. This cannot be done, however, for

the electroweak corrected process [147–153].

We implemented our model in the Fortran code HIGLU [154, 155] in order to obtain

the NLO QCD corrections with full mass dependence on the quark masses. This was

done similar to the implementation of the 4th generation in HIGLU (see in the program

code [156]). The Higgs Yukawa couplings had to be adjusted and all summations were

extended to also include the loops with the new fermions. Electroweak corrections in

Composite Higgs Models are not available and NNLO QCD corrections are only available

in the heavy top quark limit, which cannot be applied for the bottom quark. We therefore

only take into account the NLO QCD corrections. The K-factor obtained in this way,

K =
σNLO

σLO
, (4.1)

is roughly the same as in the SM for NLO QCD corrections, up to deviations of less then

2% depending on the specific parameter point, in agreement with ref. [145].

In ref. [74, 82–84] it was shown by applying the low-energy theorem [86–88] that the

leading order gluon fusion cross section σ with fermions in the fundamental representation

and neglecting the mixing of the bottom quark with heavy partners, is given by the pure

Higgs non-linearities,
σ

σSM
≈ (1− 2ξ)2

(1− ξ)
, (4.2)

where σSM denotes the SM gluon fusion cross section. The cross section, which only depends

on ξ but not on the details of the spectrum of the new fermions, is therefore always reduced

compared to the SM for ξ < 0.75. This result does not hold any more, however, if there

exists a mixing with bottom partners [83, 85]. For the bottom quark the LET cannot be

applied and the matrix element for the bottom-like contributions Mbot is given by

Mbot ≈MSM
LET

(
1− 2ξ√

1− ξ
− yb
ySM

)
, (4.3)

with MSM
LET denoting the SM matrix element in the LET approximation, and yb and ySM

being the bottom quark Yukawa coupling in our model and the SM, respectively. The gluon

fusion cross section thus depends on the details of the spectrum through yb. In ref. [83]

it was shown that this can even lead to an enhancement of the cross section for the gluon

fusion process compared to the SM.

Vector boson fusion: vector boson fusion [157–159] constitutes the next important

Higgs production mechanism after gluon fusion. In the SM, the NLO QCD corrections to

vector boson fusion are of O(10%) of the total cross section [160–163], the NNLO QCD
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corrections are at the percent level [164, 165]. Electroweak corrections have been given

in [166, 167] and are of O(5%).

In our model, the cross section at NLO QCD can be obtained from the SM cross

section by multiplying it with a factor (1− ξ) stemming from the modified Higgs couplings

to massive vector bosons V due to the Higgs non-linearities, cf. eq. (2.10),

σCHM
V BF = (1− ξ)σSM

V BF .

The cross section is reduced compared to the SM cross section, which we calculated at

NLO QCD with the Fortran code VV2H [168]. Again, neither electroweak (EW) corrections

nor NNLO QCD corrections can be taken into account.

Higgs-strahlung: in Higgs-strahlung the Higgs boson is radiated off vector bosons. The

NLO QCD corrections increase the cross-section by O(30%) [163, 169], the NNLO QCD

corrections are small [170, 171]. The electroweak corrections for the SM decrease the cross

section by O(5− 10%) [172]. We proceed analogously to vector boson fusion and only take

into account NLO QCD corrections. The SM cross section at NLO QCD [163, 169] has

been computed with the code V2HV [168] and subsequently multiplied with the appropriate

modification factor to obtain the Composite Higgs production cross section,

σCHM
Wh/Zh = (1− ξ)σSM

Wh/Zh . (4.4)

Associated production with top quarks: the cross section for associated production

of a SM Higgs boson of mh = 125 GeV with a top quark pair [173–177] is two orders of

magnitudes smaller than the gluon fusion cross section. We took the SM cross section

including NLO QCD corrections [178–181] from the LHC cross section working group [182,

183] and modified it to take into account the Higgs-top Yukawa coupling of our model,

σCHM(tt̄h) =

(
gtth
gSM
tth

)2

σSM(tt̄h) . (4.5)

The coupling gtth is obtained from the matrix eq. (2.26) after rotation to the

mass eigenstates.

4.2 Higgs boson decays

The Composite Higgs branching ratios have been calculated with the Fortran code

HDECAY [184, 185], which we have adapted to our model8 by proceeding as follows: to

get the Composite Higgs fermionic decay widths, all corresponding SM widths have been

modified as

ΓCHM
h→ff̄ =


(

(U b†L Ghbb̄U
b
R)bb̄

gSM
hbb̄

)2

ΓSM
h→ff̄ if f = b ,

(1− 2ξ)2

1− ξ
ΓSM
h→ff̄ if f = c, s, µ, τ .

(4.6)

8For a recent discussion on the implementation of the effective Lagrangian for a light Higgs-like boson

into automatic tools for the calculation of Higgs decay rates, see ref. [186]. The Fortran code eHDECAY

including the effective Lagrangian parametrization can be found at [187]. An implementation in FeynRules

has been provided in ref. [188].
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The decays into top quarks are not relevant for a 125 GeV Higgs boson. In the decay width

into bottom quarks the factor (U b†L Ghbb̄U
b
R)bb̄ denotes the matrix element relevant for the

bottom quark coupling after rotation of the Higgs Yukawa coupling matrix Ghbb̄, eq. (2.27),

into the basis of the mass eigenstates. The prefactor for the decays into the charm (c),

strange (s), muon (µ) and τ final states, which are elementary particles in contrast to the

top and bottom quark, is due to the Higgs non-linearities, implying a Yukawa coupling

gCHM
hff̄ =

1− 2ξ√
1− ξ

gSM
hff̄ (4.7)

for the fermions in the fundamental and antisymmetric representation [15]. The decays

into vector bosons V are obtained from the corresponding SM widths by

ΓCHM
h→V V = (1− ξ) ΓSM

h→V V . (4.8)

For the loop-induced decays also the top and bottom partners have to be taken into account.

The decay widths h→ γγ and h→ gg (at leading order) are modified as

Γγγ =
GFα

2m3
h

128
√

2π3

∣∣∣∣∣
5∑
i=1

16

9

v(U t†L GhttU
t
R)ii

mti

A1/2(τti) +
4∑
i=1

4

9

v(U b†L GhbbU
b
R)ii

mbi

A1/2(τbi)

+
4

3

1− 2ξ√
1− ξ

A1/2(ττ )+
16

9

1− 2ξ√
1−ξ

A1/2(τc) +
√

1− ξA1(τW )

∣∣∣∣2 , (4.9)

Γgg =
GFα

2
sm

3
h

36
√

2π3

∣∣∣∣∣
5∑
i=1

v(U t†L GhttU
t
R)ii

mti

A1/2(τti) +

4∑
i=1

v(U b†L GhbbU
b
R)ii

mbi

A1/2(τbi)

+
1− 2ξ√

1− ξ
A1/2(τc)

∣∣∣∣2 , (4.10)

where we introduced the notation

τW =
4M2

W

m2
h

, τti/bi =
4m2

ti/bi

m2
h

, τc =
4m2

c

m2
h

and ττ =
4m2

τ

m2
h

. (4.11)

The masses of the top quark and its four heavy partners are denoted by mti (i = 1, . . . , 5),

the masses of the bottom quark and its three heavy partners by mbi (i = 1, . . . , 4), mc is

the charm quark mass and mτ the mass of the τ -lepton. The loop functions are given by

A1(τ) = −[2 + 3τ + 3τ(2− τ)f(τ)] (4.12)

for W bosons in the loop, and

A1/2(τ) =
3

2
τ [1 + (1− τ)f(τ)] , (4.13)

for fermions in the loop, with

f(τ) =


arcsin2 1√

τ
for τ ≥ 1 ,

−1

4

[
log

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

for τ < 1 .

(4.14)
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Remark that in the LET the contribution due to the loops of the top quark and its partners

reduces to the pure Higgs non-linearities which means that it is simply given by the SM

top loop contribution modified with the coupling factor (1 − 2ξ)/
√

1− ξ, parallel to the

charm and τ loop contributions. For the bottom loops, where the LET cannot be applied,

this is not the case.

We do not give an explicit formula for the decay h→ Zγ as we will not investigate this

channel any further, which due to its smallness practically does not affect the total decay

width.9 All decays are taken at NLO QCD if available in HDECAY, see [186, 187] for details

of the implementation. Neither electroweak corrections nor NNLO QCD corrections were

taken into account. For slight deviations from the SM, EW corrections can be included

as described in ref. [186]. We will nevertheless neglect them as we also want to deal with

possibly large values of ξ.

4.3 Constraints from searches for heavy fermions and from flavour physics

The strongest bounds from direct searches for new vector-like fermions come from AT-

LAS [189–192] and CMS [193, 194]. Recently, both collaboration have provided direct

bounds on the mass of the new fermions as a function of their branching ratios into SM

particles [189–194], since the fermion pair production is a pure QCD process, which only

depends on the mass of the particle, and can be computed independently of the model.

The new top-like quarks can decay into Wb, ht or Zt, the new bottom-like fermions into

Wt, Zb or hb and the new charge-5/3 fermions into Wt. We have calculated the decay

widths in our model using the formulae of ref. [84] (see also ref. [42]), and directly compared

them with the bounds quoted by the collaborations. The bounds are obviously valid for

the lightest of the composite fermions, but not necessarily for the heavier ones. The reason

is that a composite fermion, which is massive enough to decay into a lighter composite

fermion and a W or Z boson, could have a substantial decay width into the corresponding

channel, hence its branching ratios into the SM particles would be reduced.

In the specific model studied in this work, the situation is made quite simple since the

lightest of all composite fermions is always a fermion of charge 5/3, decaying therefore 100%

into Wt. The strongest bound on charge-5/3 fermions comes from the CMS analysis [195],

mχ ≥ 770 GeV. (4.15)

The bound on the bottom-like quarks turns out to be less stringent than for the charge-5/3

fermions,10 but for top-like quarks ATLAS has limits extending up to around 850 GeV in

the case of a decay mostly in ht [189]. This limit can be applied as it is to the lightest of

the charge-2/3 fermions, since it is in any case below the threshold for the decay of a heavy

top-like partner into χW due to the bound of eq. (4.15). In our model, however, the search

9A recent discussion on h→ Zγ can be found in [80].
10The search strategy for bottom-like quarks decaying mostly into Wt is very similar to the search for

a charge-5/3 fermion, since in both cases a final state is considered with two same-sign leptons and a

number of jets. However, in the case of the charge-5/3 fermions, the leptons come from the cascade decay

χ→Wt→WWb of a single fermion with charge ±5/3, while its antiparticle decays purely hadronically and

its mass can be reconstructed from the jets, hence giving a stronger constraint than for a bottom-like quark.
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Figure 5. Spectrum of the lightest composite fermion as function of ξ. The points in the plot are

obtained from a scan over ξ, y, M10 and sinφL and fulfill the EWPT at 99% C.L. and |Vtb| > 0.92.

The light blue points are excluded by direct searches for vector-like fermions at 95% C.L., the dark

blue points are not excluded.

for top-like fermions is never more constraining than the search for the charge-5/3 ones.

In the future, and mostly with the LHC operating at 14 TeV, important bounds will be

derived from single production of a heavy vector-like fermion, see e.g. [43, 196], but such

bounds are not yet available.

In figure 5 we show the mass of the lightest composite fermion as a function of ξ. The

points in the plot are the ones which pass the EWPT at 99% C.L. and fulfill |Vtb| > 0.92.

The light blue points are excluded by direct searches at 95% C.L., the dark blue points

are not excluded. The line in the plot marks the exclusion limit from CMS of 770 GeV on

charge-5/3 fermions. As can be inferred from the plot this exclusion limit eliminates quite

some parameter space for mlightest > 770 GeV. No points are excluded above masses of the

lightest partner of 770 GeV which confirms that the bounds on heavy top partners of up

to 850 GeV for large branching ratios of T → hb do not lead to any additional constraints.

Flavour physics can lead to further constraints on Composite Higgs Models. They

depend, however, on the exact flavour structure of the model. Anarchic flavour structures

seem to be strongly constrained by CP violating observables in the Kaon system [55]. Im-

plementing minimal flavour violation can, however, avoid these constraints [65]. In this

case, also the light quarks are required to be composite, which can significantly change

the Higgs phenomenology [85]. While dijet searches put constraints on the up and down

quarks [197, 198], the second generation quarks are practically not constrained [68]. Alter-

natively, the top quark can be treated differently than the light quarks [66]. The flavour

bounds can still be satisfied, and the constraints from EWPT and searches for composite-

ness are relaxed, as the first two generations are mostly elementary. Both the left-handed

and right-handed top can be composite in this case. Bounds on the masses of the light-

est fermionic resonance have been obtained in ref. [69] and depend on the specific flavour

symmetry. We do not assume a specific flavour model and therefore do not further dis-

cuss constraints from flavour physics. For additional discussions of flavour constraints on

Composite Higgs Models, see e.g. ref. [67].
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5 Numerical results

In this section, we show numerical results for a combined analysis taking into account the

constraints from electroweak precision observables, Higgs search results, the measurement

of Vtb and the direct searches for heavy fermions. We make a random scan over the

parameter ranges defined in eq. (3.20) and with the SM input values as given in section 3.4.

In order to test the agreement of our model with the aforementioned constraints we perform

a global χ2 test similar to that of refs. [199–201],

χ2 = χ2
EWPT + χ2

Higgs + χ2
Vtb

. (5.1)

Notice that the constraints from direct searches of new heavy fermions are not included in

the global χ2 test, but rather imposed directly by only taking into account points which

are not excluded at 95% C.L. by direct searches. The χ2
EWPT is the χ2 for the electroweak

precision tests defined in eq. (3.18).

Regarding the constraints from the Higgs boson, the ATLAS and CMS collaborations

provide the signal strengths

µ(X) =
σ(pp→ h) ·BR(h→ X)

σ(pp→ h)SM ·BR(h→ X)SM
(5.2)

including the correlations between the combination of the vector boson fusion (VBF) and

the Higgs-strahlung (VH) production modes (VBF+VH) and the combination of gluon

fusion (ggF) and the associated production with a top quark pair (tth) (ggF+tth) [202, 203].

The results have been given as likelihood contours, which correspond approximately for

each Higgs boson decay channel to the ellipses obtained from a χ2 test with two variables.

We can therefore write

χ2
Higgs =

∑
channels

∑
i,j=1,2

(µexp
i − µth

i )C−1
ij (µexp

j − µth
j ) , (5.3)

where the best-fit points from the experiments are denoted by µexp
1 = µexp

ggF+tth and µexp
2 =

µexp
V BF+VH and the covariance matrix C is defined as

C =

(
∆µ2

ggF+tth ρ∆µggF+tth ∆µV BF+VH

ρ∆µggF+tth ∆µV BF+VH ∆µ2
V BF+VH

)
, ∆µi ≡

√
(∆µexp

i )
2

+
(
∆µth

i

)2
.

(5.4)

The values of µexp
i , ∆µexp

i and ρ are extracted from the experimental results, see ap-

pendix C. The theoretical value µth
1 = µth

ggF+tth (µth
2 = µth

V BF+VH) in the final state channel

X is obtained by computing in our model the sum of the ggF and tth (VBF and VH)

production cross sections and multiplying this with the branching ratio into the final state

X. Subsequently, the value obtained is normalized to the corresponding SM rate. The final

states that we take into account are X = W,Z, γ, b and τ . The theoretical uncertainties

∆µth
i stem from the scale and PDF uncertainties of the total cross section. We use the rel-

ative theoretical uncertainties of the SM throughout the numerical analysis, as we checked

explicitly for some parameter points that the theoretical uncertainties obtained within our
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|Vtb| > 0.92 |Vtb| in χ2

Experiment ξ χ2/n χ2
n ξ χ2/n χ2

n

ATLAS
0.105 8.06/9 0.90 0.096 12.34/10 1.23

0.0 17.54/13 1.35 0.0 17.73/14 1.25

CMS
0.057 5.22/10 0.52 0.055 6.36/11 0.58

0.0 9.90/14 0.71 0.0 10.09/15 0.67

Table 2. Global χ2 results for the best fit point taking into account EWPT and the Higgs results

for ATLAS and CMS, respectively: Left: for parameter points which fulfill |Vtb| > 0.92. Right:

when including the measured value of |Vtb| in the χ2 test. The lines for ξ = 0.0 list for comparison

the SM values. The number of degrees of freedom n are counted naively as the difference between

the number of observables and the number of parameters in the model, and χ2
n ≡ χ2/n.

model are only slightly modified compared to the SM. This leads then to ∆µth
V BF+VH = 0

and very small ∆µth
ggF+tth. As we computed all the production cross sections at NLO QCD,

the uncertainties are the ones given at this order. Note also that for the bb̄ channel, there

is no information available from ATLAS on the correlation. In this case, we then defined

χ2
h→bb̄ =

(µexp
b − µth

b )2

(∆µexp
b )2 + (∆µth

b )2
, (5.5)

where µb is obtained from the sum of all VBF, VH, ggF and tth production modes times

the branching ratio into bb̄ normalized to the corresponding SM rate.

The constraint from the measured value of the CKM matrix element |Vtb| can be treated

in two different ways. Either all points with |Vtb| > 0.92 are rejected, or the best fit value

quoted by the experiments is included in the χ2 test. The CMS collaboration measured

the value11 to be [115]

|V exp
tb | = 1.02± 0.046 . (5.6)

The value of |V th
tb | in the model considered in this work is taken from the W coupling to

the top and the bottom quark. For the SM we assume |V th
tb | = 1. The couplings of all

other SM quarks to the W boson in our model are the same as in the SM. A χ2 test for

the constraint on Vtb can therefore be written as

χ2
Vtb

=
(|V exp

tb | − |V
th
tb |)2

(∆V exp
tb )2

. (5.7)

We report in table 2 the χ2 values of the best fit points for our model and, for com-

parison, the ones for the SM. They are given for the two different ways of including the

constraint from Vtb. The best fit point can be different in both cases. The global χ2 is

obviously increased when including Vtb, although in the SM limit where |V th
tb | = 1 was used,

the change is small. The constraint from |Vtb| mainly affects scenarios with lower masses

of the lightest resonance. We distinguish between the data for the Higgs rates of the two

11The measurement does not assume unitarity of the CKM matrix.
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Figure 6. ∆χ2 = χ2 − χ2
min taking into account the Higgs results of ATLAS (left) and CMS

(right), as a function of ξ. The dark blue points do better than the SM, the light blue points have

a higher ∆χ2.

Figure 7. ∆χ2 = χ2−χ2
min taking into account the Higgs results of ATLAS (left) and CMS (right),

as a function of M10. The dark blue points do better than the SM, the light blue points have a

higher ∆χ2.

experiments ATLAS [202] and CMS [203], as no combination exists so far. The CMS data

turns out to be better described than the ATLAS data. The best fit points are obtained

for values of ξ ≈ 0.1 for ATLAS and for ξ ≈ 0.05 for CMS. In our Composite Higgs Model

their χ2 is slightly smaller than in the SM, due to the larger number of free parameters.

The value of χ2
n ≡ χ2/n gives an estimate of the relative goodness of the fit. Note, however,

that the counting of the number of degrees of freedom is not obvious as the SM limit is

reached when ξ → 0 and M10 →∞, and then the other parameters become meaningless.

Figure 6 shows, as a function of ξ, ∆χ2 = χ2 − χ2
min, where χ2 is defined in eq. (5.1)

and χ2
min is the value of the best fit point. The color distinguishes between points which

do better than the SM and those doing worse. For the CMS results only points with

ξ . 0.1 have a lower ∆χ2 than the SM, while for the ATLAS results this is the case for

points up to ξ . 0.25, although most of the scenarios doing better than the SM are for

ξ <∼ 0.15. Figure 7 shows ∆χ2 as a function of the top and bottom partner mass scale M10

for the ATLAS data (left) and the CMS data (right). The lower limit on M10 is due to

the inclusion of the direct search bounds on heavy fermion masses. The bulk of the masses

leading to scenarios doing better than the SM lies around 1–2 TeV. This is mainly due to

the EWPT. For very heavy fermion masses the compatibility with the data is not as good.
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Figure 8. Fit results obtained from a scan over ξ, y, sinφL and M10 taking into account the EW

precision data, the measured value of |Vtb| and the ATLAS Higgs results, shown in the µggF+tth −
µV BF+V H plane for the channels γγ (top left), W+W−, ZZ (both top right) and τ+τ− (bottom).

The black rhombus in the plot is the best fit point. The color code in the plots indicates from dark

to light colors the 1σ, 2σ, 3σ and 5σ regions obtained from the χ2 test with four degrees of freedom.

In figure 8, we show the fit results of our parameter scan in the µggF+tth − µV BF+VH

plane for the Higgs decay channels into γ,W,Z and τ pairs, respectively. The color code

indicates from dark to light colours the 1σ, 2σ, 3σ and 5σ regions obtained from the χ2

test as defined in eq. (5.1) with the experimental Higgs results reported by ATLAS. The

black rhombus in the plot marks the best fit point which corresponds to the minimum value

obtained from the χ2 test. The fit contours for W and Z bosons are the same as their

couplings are modified in the same way due to the custodial symmetry of the model and

they are therefore depicted in the same plot. As can be inferred from figure 8 (top left),

the ATLAS data prefer an enhanced Higgs to γγ rate. Also the rate into vector bosons is

somewhat enhanced whereas the best fit point in the τ channel shows a nearly SM like rate.

The same plots for the CMS Higgs results can be found in figure 9, except that additionally

the bb̄ channel is shown (bottom left), as CMS provides information about the (VBF+VH)

and (ggF+tth) production modes and their correlation in the bb̄ channel. The best fit

points are near the SM-like rates in the γγ final state, while the rates in the W+W−, ZZ,

bb̄ and τ+τ− channel are slightly reduced in the (ggF+tth) production mode with respect

to the SM value. From figure 8, bottom, and figure 9, bottom right, respectively, we see

that in the ττ final state the region of the points passing the test is very narrow. In fact

this behaviour is already found before applying the EWPT and |Vtb| constraints, i.e. the
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Figure 9. Fit results obtained from a scan over ξ, y, sinφL and M10 taking into account the EW

precision data, the measured value of |Vtb| and the CMS Higgs results, shown in the µggF+tth −
µV BF+V H plane for the channels γγ (top left), W+W−, ZZ (both top right), bb̄ (bottom left) and

τ+τ− (bottom right). The black rhombus in the plot is the best fit point. The color code in the

plots indicates from dark to light colors the 1σ, 2σ, 3σ and 5σ regions obtained from the χ2 test

with four degrees of freedom.

rates for both production channel combinations behave very similarly. The reason is that

the behaviour of BR(h→ ττ) and of the production in (ggF+tth) is correlated, and hence

the rate µτ (V BF + V H) is correlated with the rate µτ (ggF + tth) via the decay channel.

The former can be easily understood if for the moment the heavy fermion contributions are

left aside (assuming simply the fermion partners to be very heavy) and the pure Higgs non-

linearities are taken into account. Then both (ggF+tth) production and the decay into ττ

go to zero for ξ = 0.5 as all the Higgs-Yukawa couplings are proportional to (1−2ξ)/
√

1− ξ
in this case. With decreasing ξ from 0.5 to 0 then both the (ggF+tth) production cross

section and the branching ratio (cf. figure 2 in [73]) increase. And also the (VBF+VH)

production cross section, which is proportional to (1 − ξ), increases. Due to this strong

correlation between the rates from the two production channel combinations there remains

only a small strip in the µτ (ggF + tth)−µτ (V BF +V H) plane. The effect of imposing the

constraints from EWPT and |Vtb| is then to simply divide this strip into 1σ to 5σ regions.

The region in the b-quark final state, cf. figure 9 (bottom left), is explained similarly. It

is somewhat more spread because the Higgs coupling to the bottom quarks and hence the

branching ratio in the bb̄ final state is influenced by the compositeness of the bottom quark.

For the WW , ZZ and γγ final states there is no such strong correlation between the rates,
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Experiment ξ mtlightest
χ2

ATLAS 0.067 806 GeV 13.71

CMS 0.055 1335 GeV 7.17

Table 3. Global χ2 results for the best fit point respecting EWPT, |Vtb| and the Higgs search

results by ATLAS and CMS, respectively, with the corresponding ξ value and the mass of the

lightest top partner mtlightest . In addition the constraint of eq. (5.8) originating from the connection

between a light Higgs boson and light resonances has been taken into account.

as the rates from (VBF+VH) production do not vanish for ξ = 0.5 in this case.

So far we have not taken into account the constraint on the mass of the lightest

top partner, as given in refs. [16–21]. These works assumed that the Higgs potential is

dominated by the first resonances in the composite sector, and the lightness of the Higgs

boson is related to the lightness of the top partners. An approximate bound on the mass

mQ of the lightest top partner was given in ref. [21] based on sum rules:

mQ .
mhπv

mt

√
Nc
√
ξ
, (5.8)

where Nc = 3 is the number of colors.12 This bound eliminates automatically large values

of ξ, as too low masses for the lightest top partner are already excluded by direct searches.

Requiring the lightest top partner to satisfy eq. (5.8), the best fit points are modified

compared to table 2 and the quality of the fit becomes slightly worse. The new best fit

values for ξ and χ2, taking into account this bound, can be found in table 3. The ξ value

for the ATLAS results becomes somewhat smaller, whereas for the CMS results it hardly

changes. Note, however, that the bound eq. (5.8) can be relaxed if QCD corrections from

a new heavy gluon of the strong sector are included [22]. The details depend of course on

the mass of the heavy gluon and its couplings.

So far we have not discussed the question of fine-tuning in our model. Experimental

data require the electroweak scale v to be significantly smaller than the strong symmetry

breaking scale f . This is possible through cancellations in the Higgs potential with a

precision that is given by ∆ = f2/v2. The exact tuning, however, crucially depends on

the actual structure of the Higgs potential, which in turn is controlled by the choice of

the fermion representations [16–21]. Therefore f2/v2 = 1/ξ can only be regarded as a

measure for the minimal tuning, while the detailed investigation of the amount of fine-

tuning of the model would require the calculation of the Higgs potential. This is beyond

the scope of the paper. We therefore restrict ourselves to state that best compatibility of

our investigated model with all constraints, that have been taken into account, is achieved

for ξ values around 0.05 which corresponds to a minimal tuning of ∆ = 20. Note that we

also found scenarios with lower χ2 than in the SM for values of ξ ∼ 0.3 which would imply

lower tuning. Furthermore, in composite Higgs models a light Higgs mass can in general

12The formula in eq. (5.8) was given for the MCHM5, but can also be applied for our case, as the mass

value, which the lightest resonance can take, is the same value for both the 10 and the 5 representation,

see figure 1 in ref. [21].
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only be achieved with moderate tuning if the mass of the lightest top partner is not too

heavy [16–21]. With masses for the lightest top partner of the order of 1 TeV our model

can therefore be estimated to be moderately tuned.

6 Conclusions

Composite Higgs Models allow for a smooth deviation from the SM with identical particle

content at low energy. A light narrow Higgs boson arises as pseudo-Nambu Goldstone

boson from the spontaneous breaking of a strong sector and is separated by a mass gap

from the other resonances of the strong sector. Heavy fermions acquire their masses by

applying the idea of partial compositeness: the quark masses are generated through the

mixing with the strong sector by coupling the SM quarks linearly with the heavy part-

ners of the strong sector. This is in particular interesting for heavy quarks like the top

quark. While in previous investigations the bottom quark mass has been introduced ad

hoc into the model, we applied in this work the mass generation through partial compos-

iteness also to the bottom sector. The model is challenged by strong constraints from the

measurement of the ZbLb̄L coupling. The latter is safe from large corrections only if the

bL belongs to a bi-doublet of SU(2)L × SU(2)R. Starting from a global symmetry group

SO(5), the minimal representation which fulfills this requirement and incorporates partial

compositeness for the bottom quark is the antisymmetric 10. Based on a model with the

coset SO(5)/SO(4) and the top and bottom quarks embedded into this representation, we

investigated the phenomenology of Composite Higgs Models with both top and bottom

quarks being partially composite objects.

We addressed the constraints due to electroweak precision measurements. In particular

we calculated the loop corrections to the ZbLb̄L coupling due to the heavy top and bottom

partner contributions. The latter did not existed in the literature before and required the

renormalization of the mixing matrix. Subsequently, we performed a χ2 test taking into

account EWPT and the recent measurement of |Vtb|. It turned out that the fermionic loop

contributions drive back the T parameter into the region compatible with EW precision

data, so that the Composite Higgs Model for some parameter combinations even does

better than the SM, which is not too astonishing in view of the enlarged set of parameters.

The additional contributions from the bottom partners turned out to have a significant

impact on the χ2 test so that ξ values of up to 0.2 (0.4) can be obtained at 68% (99%)

confidence level, corresponding to a compositeness scale f of 550 GeV (390 GeV).

We then proceeded to test the model with respect to its compatibility with the LHC

searches for new heavy fermions and with the LHC Higgs search results. For the latter

we computed the production cross sections and branching ratios taking into account the

modified Higgs couplings to the SM particles and the new heavy fermion contributions in

the loop induced processes such as gluon fusion and the decay into photons.

It has been shown before, by applying the low-energy theorem, that if the determinant

of the heavy top mass matrix factorizes into a part depending on the Higgs non-linearities

and a part depending on the details of the heavy spectrum — as it is the case here and in

most minimal models — then the loop-induced Higgs coupling to gluons that enters the

– 27 –



J
H
E
P
0
3
(
2
0
1
4
)
0
3
7

dominant gluon fusion Higgs production process at the LHC is not sensitive to the details

of the spectrum of the top sector, but only depends on the Higgs non-linearities. In the

case of bottom loops, however, the LET cannot be applied any more, so that the gluon

fusion production cross section now shows a dependence on the masses of the heavy bottom

partners. We performed a global χ2 test based on the Higgs signal strengths provided by

ATLAS and CMS, on the EWPT and on the measurement of |Vtb|. Keeping in addition

only those parameter points which fulfill the limits from the searches for heavy fermions,

we found that numerous scenarios are compatible with all the constraints, with the best fit

point being closer to the SM when considering the CMS data than for the ATLAS data.

For CMS data the best fit point is at ξ ∼ 0.05, for ATLAS data at ξ ∼ 0.1. Seeking for

a natural explanation of the light Higgs boson mass the lightest top partner cannot be

too heavy. Taking this into account the global χ2 for the best fit point deteriorates and is

now obtained for ξ ∼ 0.07 for the ATLAS data, while it hardly changes for the CMS data.

The corresponding lightest top mass here is about 1.3 TeV, for ATLAS data it is around

800 GeV.

In summary, being guidelined by the principle of introducing a minimum amount

of new parameters, we investigated a Composite Higgs Model with composite top and

bottom quarks. We found that the model is in very good agreement with the EWPT,

the measurement of Vtb and the LHC data from the Higgs and heavy fermion searches.

Composite bottom partners can even ameliorate the compatibility of the model with the

EWPT. Though the characteristic scale of the strong sector is pushed to somewhat higher

values when applying in addition the connection between a light Higgs mass and the lightest

new resonance of the model, it is still in good agreement with all the constraints.
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A The fermion couplings to the gauge bosons and to the Goldstone

bosons

For the calculation of the New Physics contributions of our model to the ZbLb̄L coupling we

need the couplings of the fermions to the gauge bosons and to the Goldstone bosons. The

former are obtained from eq. (2.14) after rotation to the mass eigenstates. The fermion-

Goldstone boson couplings have been derived from the Lagrangian given in eq. (2.13), by

using eq. (2.5) and making the identifications according to eq. (2.28). In order to define
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the couplings in a general way, the Lagrangians for the specific couplings of the W bosons,

the Z bosons, the charged Goldstone bosons G± and the neutral Goldstone boson G0 to

the quarks Ψ of charge Q, respectively, Q− 1, are parameterized as follows

LW =
g√
2
W+
µ Ψ̄i

Qγ
µ
(
V QL
ij PL + V QR

ij PR

)
Ψj

(Q−1) + h.c. , (A.1)

LZ =
g

2cW
ZµΨ̄i

Qγ
µ
(
XQL
ij PL +XQR

ij PR − 2s2
WQδij

)
Ψj
Q , (A.2)

LG± =
g√
2
G+Ψ̄i

Q

(
WQL
ij PL +WQR

ij PR

)
Ψj

(Q−1) + h.c. , (A.3)

LG0 =
g

2cW
G0Ψ̄i

Q

(
Y QL
ij PL + Y QR

ij PR

)
Ψj
Q . (A.4)

The indices i, j run over the quarks present in the model, V QL/R, XQL/R,WQL/R and

Y QL/R denote the coupling matrices and PL,R the projectors

PL,R =
1

2
(1∓ γ5) . (A.5)

Here and in the following we use the abbreviations cW ≡ cos θW and sW ≡ sin θW . For the

coupling of the Z boson to the quarks we define for later use

X̃
Q,(L,R)
ij ≡ XQ,(L,R)

ij − 2s2
WQδij . (A.6)

The coupling matrices of the neutral Goldstone boson to the charge-(-1/3) fermions are

given by

Y −1/3,L = i
2cW
g
U b†R


0 0 0 0

0 0 y
2

√
ξ −y

√
1−ξ

2
√

2

0 −y
2

√
ξ 0 −y

√
1−ξ

2
√

2

0 y
√

1−ξ
2
√

2

y
√

1−ξ
2
√

2
0

U bL , (A.7)

Y −1/3,R = (Y −1/3,L)†, (A.8)

with ξ ≡ v2/f2. And the coupling matrices of the positively charged Goldstone boson to

the charge-2/3 and charge-(-1/3) fermions read

W 2/3,L =

√
2

g
U t†R



0 0 0 0

0 0 y
2

√
ξ −y

√
1−ξ

2
√

2

0 −y
2

√
ξ 0 −y

√
1−ξ

2
√

2

0 −1
2y
√

1− ξ 0 y
√
ξ

2
√

2

0 0 −1
2y
√

1− ξ −y
√
ξ

2
√

2


U bL , (A.9)

W 2/3,R =

√
2

g
U t†L



0 0 0 0

0 0 y
2

√
ξ −y

√
1−ξ

2
√

2

0 −y
2

√
ξ 0 −y

√
1−ξ

2
√

2

0 −1
2y
√

1− ξ 0 y
√
ξ

2
√

2

0 0 −1
2y
√

1− ξ −y
√
ξ

2
√

2


U bR . (A.10)
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B Results for the corrections to ZbLb̄L

In this appendix, the results for the corrections to the decay vertex ZbLb̄L will be presented.

The decay amplitude Mheavy as defined in eq. (3.7) gets loop contributions from the top

quark and its partners,Mheavy
t , from the bottom quark and its partners,Mheavy

b , and from

Higgs bosons in the loops, Mheavy
Higgs ,

Mheavy =Mheavy
t +Mheavy

b +Mheavy
Higgs . (B.1)

We introduce the reduced masses

yi =
m2
i

m2
Z

, yW =
m2
W

m2
Z

and ybβ =
m2
bβ

m2
Z

, (B.2)

where mi is the mass of one of the top quarks denoted by the index i and mbβ the mass

of one of the bottom quarks, denoted by the index β. With the definitions of the gauge

and Goldstone boson couplings in appendix A we then obtain for the contributions from

the top quark and the heavy top partners (Q = 2/3),

Mheavy
t =− α

8πs2
W

∑
i

[∑
j

V QL
jb V QL?

ib (2X̃QR
ij Eij1 + X̃QL

ij Eij2 )

+WQL
jb WQL?

ib (X̃QL
ij Eij1 + X̃QR

ij Eij3 )

]

+

[∑
β

X̃
−1/3,L
bβ

(
1

2

(
V QL?
iβ V QL

ib + V QL
iβ V QL?

ib

)
(2Eiβ4 − 1)

+
1

2

(
WQL?
iβ WQL

ib +WQL
iβ WQL?

ib

)
Eiβ4

)]
+ (2s2

W − 1)
∣∣∣WQL

ib

∣∣∣2Ei5 − 2c2
W

∣∣∣V QL
ib

∣∣∣2Ei6 + 4s2
W Re(V QL?

ib WQL
ib )Ei7

−
∑
β

X̃
−1/3,L
βb (WQR?

ib WQL
iβ − 4V QR

ib V QL?
iβ )Eiβ8 , (B.3)

where the summation over i, j is over all indices appearing in the top mass matrix and

the summation over β over all indices appearing in the bottom mass matrix. The index b

stands for the mass eigenstate with the bottom quark mass. The abbreviations introduced

in the above formula are given by

Eij1 =
√
yiyj I1(yi, yW , yj) , (B.4)

Eij2 = Div− 2 + yi + yj − 2yW + 2I1(yi, yW , yj) (yi − yW − 1) (yj − yW − 1)

−I2(yi, yj) (yi + yj − 2yW − 3) + log(yi)

(
2yi

yi − yW
− yi

)
+ log(yj)

(
2yj

yj − yW
− yj

)
+ 2yW log(yW )

(
1− yi + yj − 2yW

(yi − yW )(yj − yW )

)
, (B.5)
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Eij3 =
1

2

[
Div + 1 + yi + yj − 2yW + 2I1(yi, yW , yj) (yi − yW ) (yj − yW )

−I2(yi, yj) (yi+yj−2yW +1)− yi log(yi)−yj log(yj)+2yW log(yW )
]
, (B.6)

Eiβ4 =
1

2



Re

[
−Div + 2− log(yW ) + x+(ybβ, yW , yi) log(1− 1/x+(ybβ, yW , yi))

+x−(ybβ, yW , yi) log(1− 1/x−(ybβ, yW , yi))−
yW−yi
yi

√
ybβ
yi
Eiβ8

]
for ybβ 6= 0 ,

−Div + 1− yi
yi − yW

log(yi)−
yW

yW − yi
log(yW )

+
yi + yW

2(yi − yw)
− yiyW

(yi − yW )2
log(yi/yW ) for ybβ = 0 ,

(B.7)

Ei5 =
Div

2
− 1

2
+ yi − yW − yi log(yi) + yW log(yW )

−I1(yW , yi, yW )
(
(yi − yW )2 + yi

)
− I2(yW , yW )

(
yi − yW +

1

2

)
, (B.8)

Ei6 = 3 Div− 4 + 2 (yi − yW )− 2I1(yW , yi, yW )
(
(yi − yW )2 + 2yW

)
−I2(yW , yW ) (2yi − 2yW − 1)

+2 log(yi)

(
2yi

yi − yW
− yi

)
+ 2 log(yW )

(
− 2yW
yi − yW

+ yW

)
, (B.9)

Ei7 =
√
yW yi I1(yW , yi, yW ) , (B.10)

and

Eiβ8 =



√
yi

ybβ
Re

[
1 +

yi
yW − yi

log

(
yW
yi

)
+ x+(ybβ, yW , yi) log(1− 1/x+(ybβ, yW , yi))

+x−(ybβ, yW , yi) log(1− 1/x−(ybβ, yW , yi))

]
for ybβ 6= 0 ,

0 for ybβ = 0 .

(B.11)

with

x±(y1, y2, y3) =
1

2

1 +
y3 − y2

y1
±

√(
1 +

y3 − y2

y1

)2

− 4y3

y1

 , (B.12)

I1(y1, y2, y3) = −
∫ 1

0
dx

1

x+ y2 − y3
log

[
xy1 + (1− x)y2

xy1 + (1− x)y3 − x(1− x)

]
, (B.13)

I2(y1, y2) = −
∫ 1

0
dx log[xy1 + (1− x)y2 − x(1− x)] . (B.14)
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The symbol “Div” in the formulae stands for the divergent part and cancels in the end.

The expressions E1, E2, E3, E5, E6 and E7 are the same as the ones obtained in ref. [51],

whereas due to the mixing matrix renormalization expression E4 changed and an additional

contribution corresponding to the E8 term was added. Note that the gauge boson self-

interactions and the interactions of the Goldstone bosons with the gauge bosons in the

derivation of the result for Mheavy
t are those of the SM and defined as in ref. [51].

In case the fermions in the loop are the bottom quark and its partners, the amplitude

Mheavy
b is obtained from eq. (B.3) for Q = −1/3 by taking the first three lines and the last

line and making there the replacements

yW → 1, yi,j → ybi,j , V
Q(L,R)
ij → 1√

2cW
X̃
Q(L,R)
ij and W

Q(L,R)
ij → 1√

2cW
Y
Q(L,R)
ij .

(B.15)

Additionally, for bottom partners in the loop there are also Higgs contributions. They read

Mheavy
Higgs = − α

8πs2
w

∑
i

[∑
j

G̃hbb?bj G̃hbbbi (X̃
−1/3,L
ij Eij1 + X̃

−1/3,R
ij Eij3 )

−X̃−1/3,L
jb (G̃hbb?ib G̃hbb?ji )Eij8 + X̃

−1/3,L
bj

Eij4
2

(
G̃hbbji G̃

hbb?
bi + G̃hbb?ji G̃hbbbi

)]

+
4s2
W√

2cW
Re(G̃hbb?bi X

−1/3,L?
ib )Ei7 , (B.16)

where in the Ei expressions as given by eqs. (B.4)–(B.11) the replacements yW → m2
h/m

2
Z

and yi → ybi have to be done. All summations i and j are understood as summations over

the bottom indices. And we defined

G̃hbb =

√
2sW
e

(U bL)†Ghbb̄U
b
R , (B.17)

with U bL,R and Ghbb̄ as in eqs. (2.20) and (2.27). For the SM result Mt+b
SM , the top-loop

contribution Mt
SM has been calculated from eq. (B.3) by replacing the couplings with the

corresponding SM couplings and by taking into account only top contributions, i.e. no

summation over heavy top partner contributions is performed. Analogously the bottom-

loop contribution Mb
SM is obtained from the first three lines of eq. (B.3) after making

the replacements eq. (B.15) and by substituting the corresponding SM couplings where

necessary and not taking into account any heavy bottom partner loops.

C Correlation in the Higgs production channels

In their measurements of the signal strengths µi for Higgs boson production and decay,

ATLAS and CMS can discriminate between the different Higgs production mechanisms by

looking at the collider signature of individual events. It is particularly interesting to sepa-

rate the production mechanisms involving the coupling of the Higgs boson to gauge bosons

— vector boson fusion and Higgs-strahlung — from those involving the coupling of the

Higgs boson to fermions — gluon fusion and associated production with top quarks. The
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µggF+tth µV BF+VH ∆µggF+tth ∆µV BF+VH ρ

CMS H →WW 0.761 0.321 0.229 0.701 -0.226

H → ZZ 1.001 0.944 0.464 2.481 -0.739

H → bb 0.308 1.590 0.794 0.827 -0.467

H → ττ 0.684 1.591 0.794 0.827 -0.467

H → γγ 0.466 1.668 0.394 0.866 -0.478

ATLAS H →WW 0.828 1.796 0.358 0.782 -0.178

H → ZZ 2.119 -2.132 0.751 4.679 -0.800

H → ττ 2.335 -0.005 1.668 1.114 -0.512

H → γγ 1.695 2.041 0.418 0.849 -0.273

Table 4. Best fit values of the set of parameters (µggF+tth, µV BF+V H ,∆µggF+tth,∆µV BF+V H , ρ) that

reproduce the contours provided by ATLAS (at 95% C.L.) and CMS (at 68% C.L.) for each Higgs

boson decay channel, see figure 10.

corresponding signal strengths in a given decay channel are then denoted by µ(VBF+VH)

and µ(ggF + tth), respectively. The categorization of a single event into one of the two

production channel combinations, µ(VBF + VH) or µ(ggF + tth), is nevertheless ambigu-

ous, and there is therefore an important correlation among both signal strengths for each

decay channel. Both ATLAS [202] and CMS [203] make this correlation explicit by plot-

ting the 68% (ATLAS and CMS) and 95% (ATLAS only) confidence level contour in the

plane µ(VBF + VH) − µ(ggF + tth). These contours are reproduced here in figure 10

(solid lines). The complete statistic tests used by the collaborations to produce these

contours are not publicly available, but since the contours follow obviously an ellipsoidal

shape, we can fit them with the ellipses obtained from a χ2 test with two variables. Us-

ing the correlation matrix of eq. (5.4), we find for each channel the set of five parameters

(µggF+tth, µV BF+VH ,∆µggF+tth,∆µV BF+VH , ρ) that give the best fit between the contour pro-

vided by the experiments and the χ2 test. The numbers that we obtain are given in table 4.

For CMS, the fit to the 68% C.L. contours matches perfectly. For ATLAS, we choose to fit

the 95% C.L. contours, and the agreement is very good as well, although less precise. The

channel H → ZZ for ATLAS is peculiar, since the given contour displays a sharp cutoff

for negative values of µ(VBF + VH). Since such negative values are never reached in our

model, the fit given by the ellipse is fine for our purposes. Notice also that ATLAS does

not show a contour for the channel H → bb̄. Here we use instead the total signal strength

in all production channels, eq. (5.5).
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Figure 10. Contours obtained from the experimental collaborations [202, 203] (solid lines) and

from our χ2 test with two variables (dashed lines) for CMS (left, 68% C.L.) and ATLAS (right,

95% C.L.) and for each Higgs decay channel separately.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson

for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

[3] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[4] CMS collaboration, Combination of standard model Higgs boson searches and measurements

of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).

[5] D.B. Kaplan and H. Georgi, SU(2)×U(1) breaking by vacuum misalignment, Phys. Lett. B

136 (1984) 183 [INSPIRE].

[6] S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys.

B 199 (1982) 206 [INSPIRE].

[7] T. Banks, Constraints on SU(2)×U(1) breaking by vacuum misalignment, Nucl. Phys. B

243 (1984) 125 [INSPIRE].

[8] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136

(1984) 187 [INSPIRE].

[9] H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys.

Lett. B 143 (1984) 152 [INSPIRE].

– 34 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://cds.cern.ch/record/1494183
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://cds.cern.ch/record/1494149
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B136,183
http://dx.doi.org/10.1016/0550-3213(82)90345-5
http://dx.doi.org/10.1016/0550-3213(82)90345-5
http://inspirehep.net/search?p=find+J+NUPHA,B199,206
http://dx.doi.org/10.1016/0550-3213(84)90389-4
http://dx.doi.org/10.1016/0550-3213(84)90389-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B243,125
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B136,187
http://dx.doi.org/10.1016/0370-2693(84)90823-2
http://dx.doi.org/10.1016/0370-2693(84)90823-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B143,152


J
H
E
P
0
3
(
2
0
1
4
)
0
3
7

[10] H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145

(1984) 216 [INSPIRE].

[11] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.

B 254 (1985) 299 [INSPIRE].

[12] G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs,

JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

[13] R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology

simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

[14] D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion

masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

[15] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs

models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

[16] O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs,

JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

[17] M. Redi and A. Tesi, Implications of a light higgs in composite models, JHEP 10 (2012) 166

[arXiv:1205.0232] [INSPIRE].

[18] G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite

Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].

[19] D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from

an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].

[20] D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013

[arXiv:1205.0770] [INSPIRE].

[21] A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08

(2012) 135 [arXiv:1205.6434] [INSPIRE].

[22] J. Barnard, T. Gherghetta, A. Medina and T.S. Ray, Radiative corrections to the composite

Higgs mass from a gluon partner, JHEP 10 (2013) 055 [arXiv:1307.4778] [INSPIRE].

[23] C. Dennis, M. Karagoz, G. Servant and J. Tseng, Multi-W events at LHC from a warped

extra dimension with custodial symmetry, hep-ph/0701158 [INSPIRE].

[24] R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign

dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].

[25] J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030

[arXiv:0907.3155] [INSPIRE].

[26] J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons,

Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].

[27] G. Dissertori, E. Furlan, F. Moortgat and P. Nef, Discovery potential of top-partners in a

realistic composite Higgs model with early LHC data, JHEP 09 (2010) 019

[arXiv:1005.4414] [INSPIRE].

[28] G. Cacciapaglia et al., Heavy vector-like top partners at the LHC and flavour constraints,

JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].

[29] R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark

production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

– 35 –

http://dx.doi.org/10.1016/0370-2693(84)90341-1
http://dx.doi.org/10.1016/0370-2693(84)90341-1
http://inspirehep.net/search?p=find+J+Phys.Lett.,B145,216
http://dx.doi.org/10.1016/0550-3213(85)90221-4
http://dx.doi.org/10.1016/0550-3213(85)90221-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B254,299
http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://arxiv.org/abs/hep-ph/0703164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703164
http://dx.doi.org/10.1088/1126-6708/2007/05/074
http://arxiv.org/abs/hep-ph/0612180
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612180
http://dx.doi.org/10.1016/S0550-3213(05)80021-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B365,259
http://dx.doi.org/10.1103/PhysRevD.75.055014
http://arxiv.org/abs/hep-ph/0612048
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612048
http://dx.doi.org/10.1007/JHEP01(2013)164
http://arxiv.org/abs/1204.6333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6333
http://dx.doi.org/10.1007/JHEP10(2012)166
http://arxiv.org/abs/1205.0232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0232
http://dx.doi.org/10.1007/JHEP03(2013)051
http://arxiv.org/abs/1210.7114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7114
http://dx.doi.org/10.1007/JHEP07(2013)058
http://arxiv.org/abs/1303.3062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3062
http://dx.doi.org/10.1007/JHEP08(2012)013
http://arxiv.org/abs/1205.0770
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0770
http://dx.doi.org/10.1007/JHEP08(2012)135
http://dx.doi.org/10.1007/JHEP08(2012)135
http://arxiv.org/abs/1205.6434
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6434
http://dx.doi.org/10.1007/JHEP10(2013)055
http://arxiv.org/abs/1307.4778
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4778
http://arxiv.org/abs/hep-ph/0701158
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0701158
http://dx.doi.org/10.1088/1126-6708/2008/06/026
http://arxiv.org/abs/0801.1679
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1679
http://dx.doi.org/10.1088/1126-6708/2009/11/030
http://arxiv.org/abs/0907.3155
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3155
http://dx.doi.org/10.1103/PhysRevD.81.075006
http://arxiv.org/abs/0909.3977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3977
http://dx.doi.org/10.1007/JHEP09(2010)019
http://arxiv.org/abs/1005.4414
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4414
http://dx.doi.org/10.1007/JHEP03(2012)070
http://arxiv.org/abs/1108.6329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6329
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.012
http://arxiv.org/abs/1110.5914
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5914


J
H
E
P
0
3
(
2
0
1
4
)
0
3
7

[30] K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the

LHC using multi-b-jet channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317]

[INSPIRE].

[31] A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or

multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022

[arXiv:1204.0455] [INSPIRE].

[32] N. Vignaroli, Discovering the composite Higgs through the decay of a heavy fermion, JHEP

07 (2012) 158 [arXiv:1204.0468] [INSPIRE].

[33] J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC,

JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].

[34] A. Carmona, M. Chala and J. Santiago, New Higgs production mechanism in composite

Higgs models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].

[35] N. Vignaroli, Early discovery of top partners and test of the Higgs nature, Phys. Rev. D 86

(2012) 075017 [arXiv:1207.0830] [INSPIRE].

[36] Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys.

2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].

[37] A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s

guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

[38] M. Chala and J. Santiago, Hbb̄ production in composite Higgs models, Phys. Rev. D 88

(2013) 035010 [arXiv:1305.1940] [INSPIRE].

[39] M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong signatures of right-handed

compositeness, JHEP 08 (2013) 008 [arXiv:1305.3818] [INSPIRE].

[40] J. Li, D. Liu and J. Shu, Towards the fate of natural composite Higgs model through single

t′ search at the 8 TeV LHC, JHEP 11 (2013) 047 [arXiv:1306.5841] [INSPIRE].

[41] A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in

composite Higgs models, arXiv:1308.6601 [INSPIRE].

[42] C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to

discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].

[43] T. Andeen et al., Sensitivity to the single production of vector-like quarks at an upgraded

Large Hadron Collider, arXiv:1309.1888 [INSPIRE].

[44] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.

B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

[45] K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision

tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].

[46] R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an

extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

[47] A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev.

D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].

[48] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb̄, Phys.

Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

– 36 –

http://dx.doi.org/10.1103/PhysRevD.86.015005
http://arxiv.org/abs/1204.2317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2317
http://dx.doi.org/10.1103/PhysRevD.85.115022
http://arxiv.org/abs/1204.0455
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0455
http://dx.doi.org/10.1007/JHEP07(2012)158
http://dx.doi.org/10.1007/JHEP07(2012)158
http://arxiv.org/abs/1204.0468
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0468
http://dx.doi.org/10.1007/JHEP07(2012)016
http://arxiv.org/abs/1205.0013
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0013
http://dx.doi.org/10.1007/JHEP07(2012)049
http://arxiv.org/abs/1205.2378
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2378
http://dx.doi.org/10.1103/PhysRevD.86.075017
http://dx.doi.org/10.1103/PhysRevD.86.075017
http://arxiv.org/abs/1207.0830
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0830
http://dx.doi.org/10.1155/2013/364936
http://dx.doi.org/10.1155/2013/364936
http://arxiv.org/abs/1207.5607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5607
http://dx.doi.org/10.1007/JHEP04(2013)004
http://arxiv.org/abs/1211.5663
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5663
http://dx.doi.org/10.1103/PhysRevD.88.035010
http://dx.doi.org/10.1103/PhysRevD.88.035010
http://arxiv.org/abs/1305.1940
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1940
http://dx.doi.org/10.1007/JHEP08(2013)008
http://arxiv.org/abs/1305.3818
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3818
http://dx.doi.org/10.1007/JHEP11(2013)047
http://arxiv.org/abs/1306.5841
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5841
http://arxiv.org/abs/1308.6601
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6601
http://dx.doi.org/10.1007/JHEP01(2012)157
http://arxiv.org/abs/1110.6058
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6058
http://arxiv.org/abs/1309.1888
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1888
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://arxiv.org/abs/hep-ph/0412089
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412089
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.011
http://arxiv.org/abs/hep-ph/0510164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510164
http://dx.doi.org/10.1103/PhysRevD.76.115008
http://arxiv.org/abs/0706.0432
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0432
http://dx.doi.org/10.1103/PhysRevD.78.074026
http://dx.doi.org/10.1103/PhysRevD.78.074026
http://arxiv.org/abs/0806.3247
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3247
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://arxiv.org/abs/hep-ph/0605341
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605341


J
H
E
P
0
3
(
2
0
1
4
)
0
3
7

[49] P. Lodone, Vector-like quarks in a ’composite’ Higgs model, JHEP 12 (2008) 029

[arXiv:0806.1472] [INSPIRE].

[50] M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D

80 (2009) 055003 [arXiv:0806.3450] [INSPIRE].

[51] C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D

79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].

[52] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry,

Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

[53] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl.

Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

[54] S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum

model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
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