
J
H
E
P
0
3
(
2
0
1
4
)
0
1
1

Published for SISSA by Springer

Received: January 8, 2014

Accepted: February 5, 2014

Published: March 3, 2014

FRW cosmologies and hyperscaling-violating

geometries: higher curvature corrections,

ultrametricity, Q-space/QFT duality,

and a little string theory

Edgar Shaghoulian

Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305-4060, U.S.A.

E-mail: edgars@stanford.edu

Abstract: We analyze flat FRW cosmologies and hyperscaling-violating geometries by

emphasizing the analytic continuation between them and their scale covariance. We ex-

hibit two main calculations where this point of view is useful. First, based on the scale

covariance, we show that the structure of higher curvature corrections to Einstein’s equa-

tion is very simple. Second, in the context of accelerated FRW cosmologies, also known

as Q-space, we begin by calculating the Bunch-Davies wavefunctional for a massless scalar

field and considering its interpretation as a generating functional of correlation functions

of a holographic dual. We use this to conjecture a Q-space/QFT duality, a natural ex-

tension of dS/CFT, and argue that the Euclidean dual theory violates hyperscaling. This

proposal, when extended to epochs in our own cosmological history like matter or radiation

domination, suggests a holographically dual description via RG phases which violate hyper-

scaling. We further use the wavefunctional to compute Anninos-Denef overlaps and show

that the ultrametric structure discovered for de Sitter becomes sharper in accelerated FRW

cosmologies as the acceleration slows. The substitution d → deff = d − θ permeates and

illuminates the discussion of wavefunctionals and overlaps in FRW cosmologies, allowing

one to predict the sharpened structure. We conjecture that the sharpening of ultrametric-

ity is holographically manifested by the growth of the effective dimensionality of the dual

theory. We try to find an alternate manifestation of this ultrametric structure by studying

the connection of the θ → −∞ background to little string theory.
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1 Introduction

Flat FRW cosmologies and hyperscaling-violating geometries have been studied exten-

sively without necessarily utilizing the connection between the two. The relevance of the

former is to our cosmological evolution whereas the relevance of the latter is to describ-

ing properties of phases of matter via gauge/gravity duality [1, 2]. When we refer to

hyperscaling-violating geometries, we will always mean ones that are conformal to Lifshitz

geometries [3]. For dynamical critical exponent z = 1, an analytic continuation exists that

connects hyperscaling-violating geometries to flat, isotropic FRW cosmologies with pure

power law scale factor. For general z, the continuation connects to an anisotropic Bianchi

Type I cosmology; we will only consider isotropic cosmologies but will sometimes consider

general z in the context of hyperscaling-violating geometries.
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We will begin by studying the effect of higher curvature corrections on both geometries.

Our results depend only on the fact that these geometries are scale covariant.1 The fact that

they are not scale invariant already suggests that you cannot produce a non-renormalization

theorem for them, as exists for AdS, dS, Schrödinger [4, 5], and Lifshitz spacetimes [6]. We

will see that due to the specific type of scale covariance, the addition of a higher derivative

term to a tree-level action that produces an FRW or hyperscaling-violating geometry will

lead to equations of motion that cannot be solved with an FRW or hyperscaling-violating

metric ansatz, even with renormalized values of parameters. In Lifshitz geometries with

matter content respecting the symmetries, for example, one expects only z and LAdS to

renormalize, but for the Lifshitz form to be kept. These higher curvature terms can come

from both α′ (“classical/stringy”) and GN (“quantum”) corrections; the source is irrelevant

and the conclusion remains the same. We will show that all higher curvature corrections

take an exceedingly simple form.2

A distinct set of calculations we will present which emphasizes the analytic continuation

between the two geometries is of wavefunctionals and Anninos-Denef field overlaps for a

massless scalar on a fixed FRW background [7]. We will show that the substitution d →
deff = d−θ, which often occurs in the hyperscaling-violating context, is relevant in the case

of FRW cosmologies as well. This forms part of the intuition for proposing a Q-space/QFT

duality for accelerated FRW cosmologies and arguing that the Euclidean boundary theory

violates hyperscaling. The substitution d → deff further lets one immediately predict the

extreme structure of correlation functions and Anninos-Denef field overlaps. Specifically,

we will see that the two-point function of a massless scalar in the Bunch-Davies vacuum

is IR divergent. The power of the divergence depends on the power of the scale factor

and can get arbitrarily large; it is this extreme IR structure that leads to ultrametric

structure that sharpens as θ becomes large and negative. Since high-dimensional systems

are more often associated with ultrametric structure, we speculate that the growth of the

effective dimensionality of the dual theory is the holographic manifestation of the sharpened

ultrametricity. Motivated by this sharp structure, we will end by analyzing the θ → −∞
geometry with z finite in the hyperscaling-violating family and comment on its relation to

nonlocal or stringy duals.

1.1 Hyperscaling-violating geometries

In pursuit of exploring phases of matter holographically, geometries have recently been

proposed that have both dynamical critical exponent z and hyperscaling violation exponent

1Unless otherwise stated, we will be talking about a specific form of scale covariance, where the metric

can be assigned a scaling weight ∆; see sections 2.1 and 2.2.
2For pedagogical clarity we emphasize that the results for higher curvature corrections in section 2 stand

completely independently from the rest of the paper and do not inform the discussion in sections 3–5. Each

section in sections 3–5 can also be read and understood independently but have a connective thread that

goes beyond scale covariance and analytic continuations.
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θ [8, 9]. These metrics can be written in the equivalent forms

ds2
d+2 =

1

r̃2

(
− dt2

r̃2d(z−1)/(d−θ) + r̃2 θ /(d−θ)dr̃2 + dx2
i

)
(1.1)

= r2 θ /d

(
−dt

2

r2z
+
dr2 + dx2

i

r2

)
, (1.2)

where the latter form makes manifest the fact that these metrics are conformally equivalent

to Lifshitz. The parameter θ breaks scale invariance to scale covariance and maps to

the hyperscaling violation exponent in the dual field theory. The Ricci scalar for these

geometries is given by R ∼ r−2 θ /d, indicating a curvature singularity at an extreme value

of r that depends on the sign of θ. Although this and all other curvature invariants are well-

behaved at the opposite extreme value of r, there exist tidal force singularities there that are

precisely analogous to the tidal force singularities of Lifshitz geometries, unless z = 1+θ /d

with d/2 ≤ θ ≤ d [10, 11]. Strings are also infinitely excited, just as in Lifshitz [12],

suggesting that the singularity may be upgraded to a full-fledged “stringularity,” although

there are a plethora of ways in which this conclusion may be evaded in a real top-down

construction.3

The resurgence of interest in these geometries is partially due to the fact that, for θ =

d−1, they exhibit a logarithmic violation of the entanglement entropy [17] when computed

holographically [18]. This logarithmic violation is prevalent in field theory calculations of

fermionic systems [19, 20]. Due to this and other properties of this metric, such as the

specific heat scaling C ∼ T 1/z with z ≥ 1 + θ /d, it has been proposed that this geometry

holographically realizes a non-Fermi liquid (although the low energy spectral density of

transverse currents is exponentially suppressed as computed in [21]). Due to the positive

value of the hyperscaling violation exponent, there is a curvature singularity in the UV.

This is not problematic because we imagine gluing this metric onto an asymptotically AdS

one, which is nonsingular in the UV. To deal with the tidal force singularity in the IR one

can either cloak it behind an event horizon, which will allow one to study small but nonzero

temperatures, or consider the nonsingular metrics. The latter option is intriguing because

z = 3/2 is the same value of dynamical critical exponent that appears in non-Fermi liquid

constructions in (2 + 1)-dimensional field theory [22, 23].

1.2 Flat FRW

FRW geometries are the cornerstone of our description of cosmology. With arbitrary

constant curvature spatial slices, we can write the geometries as

ds2
d+1 = −dt2 + a(t)2dΣ2

d where dΣ2
d =


dr2 + sin2 r dΩ2

d−1 k > 0

dr2 + r2dΩ2
d−1 k = 0 .

dr2 + sinh2 r dΩ2
d−1 k < 0

(1.3)

dΩ2
d−1 represents the round metric on the unit (d−1)-sphere and k measures the curvature

of the spatial slices. We shall stick to k = 0 because only this case has scaling as a conformal

3See e.g. [13] for a stressful evasion of a Lifshitz singularity or [14–16] for alternative resolutions.
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isometry. This is made manifest by redefining time and switching to Cartesian coordinates

to get

ds2
d+1 = a(η)2

(
−dη2 + dx2

i

η2

)
. (1.4)

This is different than the usual convention since the 1/η2 factor is often absorbed into

the scale factor, but we write it in this way to mirror the hyperscaling-violating geometry.

Notice that for a(η) = 1 we recover de Sitter space and scaling is restored as an isometry.

Epochs in our cosmological evolution, like matter domination or radiation domination, are

well approximated by various powers of a pure power law evolution for the scale factor.

2 Higher curvature corrections

In the next two subsections we consider the production of hyperscaling-violating and FRW

geometries from actions with higher curvature corrections. We will show that these higher

curvature terms produce linearly independent tensors at each order in the equations of

motion. Our analysis will remain general instead of restricting to a certain theory.

2.1 Hyperscaling-violating geometries

We consider general theories with both hyperscaling violation (θ 6= 0) and dynamical

critical exponent (z 6= 1). With the curvature scale set to unity, the metrics are of the form

ds2
d+2 = r2 θ /d

(
−dt2

r2z
+
dr2

r2
+
dx2

i

r2

)
. (2.1)

This geometry has a symmetry algebra generated by a Hamiltonian H, linear momenta Pi,

and angular momenta Mij . These correspond to temporal translation invariance, spatial

translation invariance in xi, and rotational invariance between the xi, respectively. In

the case where θ = 0 we reduce to Lifshitz spacetimes, and there exists in addition to

these isometries an anisotropic scaling isometry generated by a dilatation operator D. For

general hyperscaling violation exponent, the dilatation operator given by scaling t → λzt,

xi → λxi, and r → λr (just as in Lifshitz) is a conformal isometry as the metric transforms

as ds2 → λ2 θ /dds2. Even for the nonsingular case z = 1 + θ /d, there exists no isometry

corresponding to special conformal transformations (unless z = 1).

We begin by analyzing the Einstein tensor, which is defined as usual without the

cosmological constant: Gµν ≡ Rµν − 1
2Rgµν . It appears in Einstein’s equation as Gµν =

Tµν in our units where 8πGN = 1. We shall soon split the stress-energy tensor to a

part which contains the contributions from matter Tmatter
µν and another which contains the

contributions from higher curvature terms T curv
µν , with Tµν = Tmatter

µν + T curv
µν . Evaluating

the Einstein tensor on the hyperscaling-violating metric ansatz, one gets

G = Gµνdx
µdxν = α

−dt2

r2z
+ β

dr2

r2
+ γ

dx2
i

r2
. (2.2)

This can be understood by noting that the Einstein tensor is invariant under all the isome-

tries of the metric, in addition to being invariant under Lifshitz scaling. This latter fact
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follows from the transformation of the Ricci tensor (and of the Ricci scalar multiplied by

the metric) under conformal transformations. Indeed, one can show that the most general

conserved (∇µGµν = ∇µTµν = 0), symmetric two-tensor invariant under temporal and

non-radial spatial translations, non-radial spatial rotations, and Lifshitz scaling must be of

this form. Thus, the total stress energy tensor on the right hand side of Einstein’s equation

must be of this form, even upon including higher derivative terms in the action. To see

why this is problematic, imagine that we consider adding curvature squared terms to an

action that gives rise to these hyperscaling-violating metrics:

S =
1

2

∫
√
g
(
R+ Lm(Φi) + c1R

2 + c2R
µνRµν + c3R

µνρσRµνρσ
)

(2.3)

where c1, c2, and c3 are field-independent constants. Computing the contribution of these

higher curvature terms to the stress energy tensor gives

TR
2

µν dx
µdxν = r−2 θ /d

(
α1
−dt2

r2z
+ β1

dr2

r2
+ γ1

dx2
i

r2

)
. (2.4)

In fact, adding more higher curvature terms to the action and computing to order n+ 1 in

curvature gives a result

TR
n+1

µν dxµdxν = r−2n θ /d

(
αn
−dt2

r2z
+ βn

dr2

r2
+ γn

dx2
i

r2

)
. (2.5)

This can be understood in terms of scaling weights; see appendix A for a proof. We are

considering higher curvature terms that come solely from contractions of the Riemann

tensor. In our language, we will refer to a prefactor of r−2n θ /d as having weight n. We

now write Einstein’s equation as(
Rµν +

1

2
Rgµν

)
dxµdxν︸ ︷︷ ︸

−α0dt
2

r2z
+
β0dr

2+γ0dx
2
i

r2

= T tree
µν dxµdxν︸ ︷︷ ︸

−αmdt2
r2z

+
βmdr2+γmdx

2
i

r2

+

m∑
n=1

TR
n+1

µν dxµdxν︸ ︷︷ ︸
r−2n θ /d

(
−αndt2

r2z
+
βndr2+γndx

2
i

r2

),

(2.6)

where the tree level stress energy tensor (which in this example precisely equals Tmatter
µν )

was responsible for producing the necessary metric before adding higher curvature con-

tributions. Thus, we see that producing a hyperscaling-violating metric in this context

requires tuning: since the l.h.s. of Einstein’s equation has weight 0, the r.h.s. needs to have

weight 0. This can only happen if all the higher weights in T curv
µν cancel order by order (i.e.

αi = βi = γi = 0), since they are linearly independent tensors at each order and thus can-

not cancel against each other. Of course, if higher curvature corrections are perturbatively

small, then these metrics will simply pick up perturbatively small corrections that break

the scale covariance. If the hyperscaling-violating metric appears in the IR while the UV

remains asymptotically AdS, then the scale covariance will not be exact even without the

higher derivative corrections, so these perturbatively small corrections are not problematic.

The situation is worse than it seems in the context of e.g. Einstein-Maxwell-dilaton

actions producing electric solutions. The gauge-kinetic coupling is vanishing in the deep
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IR, which means that α′ corrections are becoming important. But these corrections in-

clude precisely the higher curvature terms which increase in importance and preclude the

existence of a hyperscaling-violating metric as a solution to the metric equation of motion!

Thus the geometry can be deformed much more than perturbatively (but see section 2.1.1

for a possible way out).

The reader may at this point challenge the form of these higher curvature terms.

Namely, if they had field-dependent prefactors, it is possible to change the weights on

the r.h.s. of Einstein’s equation since the fields can carry weights of their own. In the

simplest case this would require at each order n + 1 (in the action) in curvature to have

a field-dependent prefactor Fi[Φj ] that has weight −n to cancel the curvature weight of

n (in the stress energy tensor). This is a logical possibility and represents the simplest

way of evading our conclusions (it is relatively straightforward to use this approach to

construct various higher curvature actions which have hyperscaling-violating geometries

as a solution). One can also imagine other suppressed operators entering the picture and

providing the requisite cancellation between T curv
µν and Tmatter

µν , but again this cancellation

would have to work exactly at every order to maintain the scale covariance.

Another way to evade these conclusions is to include sufficiently complicated matter

or interactions, which may come naturally from other suppressed operators, to provide the

necessary terms in Tmatter
µν to offset the contribution of T curv

µν . Of course, the higher one

goes in derivatives, the more matter or interactions one needs to put into the action and

tune accordingly to get the required cancellations. This is what is sometimes done when

producing FRW metrics in higher derivative gravity, as discussed in section 2.2.

2.1.1 A potential exception

We have seen that, unsurprisingly, no non-renormalization theorem holds for the hyperscaling-

violating metrics as does for Lifshitz and Schrödinger metrics. In the case of asymptotically

AdS space, we can ask about the existence of the hyperscaling-violating metrics deep in the

bulk, i.e. as the IR theory of our RG flow. As we showed earlier, all curvature invariants

behiave as r−2n θ /d for some n ≥ 0. Notice also that the IR is always at large r in these

coordinates for the NEC-satisfying range we care about, z ≥ 1 + θ/d. Thus, as long as

θ > 0, all higher derivative corrections will vanish in the IR. The argument of the previous

subsection therefore would not apply.4

In a top-down construction, however, the situation is a bit more complicated. The

dilaton of the effective theory (which we here take to be the Einstein-Maxwell-dilaton

theories originally used to produce these geometries) needs to be connected to the string

theory dilaton. If, for example, the string theory dilaton is precisely related to the effective

field theory dilaton as below, then the higher curvature corrections carry α′ prefactors

4Of course one can also say it breaks down as r → 0 for θ < 0; this may be interesting as in this case you

may have a stable UV boundary with no curvature singularity (as opposed to when θ > 0), robust against

higher derivative corrections.
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which are related to the dilaton as follows:

Ms ∼ gMP ∼ 1/
√
α′ , where g ∼ e−aφ/2 (2.7)

=⇒ α′ ∼ eaφ, (2.8)

where we imagine MP is fixed and 1/g2 is given by the coefficient of the gauge-kinetic term

in the action. This is why higher derivative terms become important at small g, since the

corrections are accompanied by α′ factors which are getting large. In this setup (or any

one where one knows the precise relationship between the effective theory dilaton and the

string theory dilaton), one would have to compare the growth of α′ with the vanishing of

the curvature invariants. However, it is possible that the relation between string theory

and effective theory dilatons allows for the higher curvature terms to vanish in the IR.5 As

stressed by [24], given that the string mass is getting light, one should expect on general

grounds that the description in the IR is still breaking down in one way or another. If

the exception stated above is realized, though, then an explicit example of what sorts of

corrections change the IR geometry in the nonsingular case is lacking, since higher curvaure

terms remain small, the metric is regular, and probe string excitations do not diverge.

2.2 FRW geometries

Let us now turn back to the flat FRW metric

ds2
d+1 = −dt2 + t2qdx2

i (2.9)

with q > 0 so that it is an expanding spacetime. The null energy condition is trivially

satisfied as long as q ≥ 0. The coordinate ranges are xi ∈ R and t ∈ R+. The “Big Bang”

is at t = 0, where the metric has a curvature singularity. To make manifest the scale

covariance, define
dt

tq
= dη =⇒ η =

t−q+1

1− q
. (2.10)

Then we find

ds2
d+1 = N η

2q
1−q (−dη2 + dx2

i ) −→ ds2
d+1 = |η|

2q
1−q (−dη2 + dx2

i ) (2.11)

where we have rescaled a q-dependent constant N into the coordinates. This rescaling

obscures the Lorentzian signature of the metric, so we have taken the absolute value of

η to make this fact manifest. The point q = 1 is special since our transformation breaks

down.6 Defining q = 1−d+θ
θ , we get

ds2
d+1 = η

2θ
d−1

(
−dη2 + dx2

i

η2

)
, (2.12)

5While assuming this we can also assume that the higher derivative terms, e.g. α′F 4, also vanish, since

in these constructions F 2 → 0 in the IR.
6In the q = 1 case the scale-covariant metric becomes e2η(−dη2+dx2i ). The hyperscaling-violating cousin

of this metric corresponds to θ → −∞ with z fixed and finite. This geometry will be studied in section 5.
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which for q > 0 and d > 1 means θ ∈ (−∞, 0)∪ (d− 1,∞). We have dropped the absolute

value on η, but it is implied.

Notice that from here it is manifest that flat, isotropic FRW geometries are analytic

continuations of hyperscaling-violating geometries with z = 1. Up to the shift in the

definition of d and an overall sign, the continuation from (2.1) to (2.12) is given by xi →
ixi, t → xi+1, r → η. To get the mostly plus convention of (2.12) one simply needs

to appropriately reintroduce a curvature scale and analytically continue it, as is done in

going from AdS in Poincaré coordinates to dS in flat slicing. Notice that in the case of

θ = 0 one often simply continues the radial and time coordinates of the AdS metric, but

in this case a different continuation is necessary due to the arbitrary power on the radial

coordinate disallowing the continuation r → iη. Analytic continuations between domain

wall backgrounds and cosmologies have also been used for different purposes in [25–28].

In the context of FRW cosmology, the parameter θ does not yet carry the interpretation

as the hyperscaling violation exponent in a purported dual theory (more on this in sec-

tion 3.4); it is simply chosen here to illustrate the mathematical analogy with the previous

geometries. Namely, this geometry has spatial translations and rotations as isometries and

isotropic scaling as a conformal isometry (the isometry is broken by θ). More importantly,

the same statement about curvature invariants that was true for the hyperscaling-violating

geometries remains true for these geometries: the Ricci scalar scales as R ∼ η−
2 θ
d−1 and

contributions to Einstein’s equation at order n+ 1 are given by

TR
n+1

µν dxµdxν = η−
2n θ
d−1

(
αn
−dη2

η2
+ βn

dx2
i

η2

)
. (2.13)

So we seem to have the same argument as before for the non-genericity of such solutions

in higher curvature gravity. Sound the trumpets [6].

Actually, not just yet on the trumpets [6]. There is a large literature regarding the

production of spatially flat FRW universes with power law scale factor [29–39] in higher

curvature gravity. Specifically, most of these papers discuss the phenomenological viability

of f(R) gravity, where the higher curvature terms come solely from powers of the Ricci

scalar. This phenomenological viability requires reproducing epochs in our universe like

matter and radiation domination, which correspond to specific nonzero values of θ. Are

these models simply appropriately tuned, as discussed in the previous subsection?

Yes and no. These models are not considering arbitrarily many higher curvature terms.

In fact, many truncate to just two or three powers of the Ricci scalar in f(R). For ex-

ample, [40] finds it necessary to use two fluid sources to produce two powers of the Ricci

scalar. Furthermore, many of these papers reproduce matter and radiation domination in

regimes where a single power of the Ricci scalar dominates the other powers in the action

(see [41] as an example); the other powers give small corrections as discussed before. These

seem to be the simplest ways to ‘evade’ our argument.

It is also interesting to ask what happens to the argument when one uses the fact that

f(R) gravity can be rewritten as a self-interacting scalar minimally coupled to Einstein

gravity (see e.g. [42]). The proof obtains by introducing an auxiliary scalar field φ and

– 8 –
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writing the action of f(R) gravity as

S =

∫
d4x
√
−g [f ′(φ)(R− φ) + f(φ)]. (2.14)

Varying the action with respect to the auxiliary field φ gives an equation solved by φ = R,

which reproduces the action of f(R) gravity. Performing a conformal rescaling gµν → eφgµν ,

where φ̃ = −ln f ′(φ), gives

S =

∫
d4x
√
−g
(
R− 3

2
∂µ φ̃ ∂

µ φ̃− V (φ̃)

)
(2.15)

for V (φ̃) = φ/f ′(φ)−f(φ)/f ′(φ)2. Arbitrarily many higher curvature terms get repackaged

into arbitrarily many terms in the potential of different weights. So, as one should expect,

the same problem exists here.

3 FRW horizons, holography, and wavefunctionals

Having discussed the usefulness of the specific form of scale covariance of FRW cosmologies

and hyperscaling-violating geometries, we now move on to a set of conceptually distinct

calculations which utilize the analytic continuation between the two geometries as a guiding

principle. Namely, we will see that the substitution d → deff = d − θ is a useful heuristic

even in the case of FRW cosmologies.

3.1 Horizons

Consider again the FRW metric with flat slicing:

ds2 = −dt2 + t2qdx2
i , (3.1)

with q > 0 so that it is an expanding spacetime. Notice that for q > 1 (−1 < w < −1/3

for a perfect fluid equation of state p = wρ) we have a′′/a > 0, so the expansion is

accelerating. These spaces are known as Q-space and have inspired phenomenological

interest in the recent past, before our late-time accelerated expansion was shown to be so

closely approximated by a cosmological constant. In this case since η = −t−c with c > 0, we

see that η will be ranging from −∞ to 0 while t ranges from 0 to∞. This coordinate range

mirrors that of de Sitter and corresponds to θ < 0 with d > 1. For q = 1 the expansion

is inertial (a′′/a = 0) and for q < 1 it is decelerating. Thus, the q > 1 spacetimes must

have cosmological event horizons. We can compute the proper radius of the event horizon

as usual:

` = tq
∫ ∞
t

dt′

(t′)q
=

t

q − 1
=

t θ

1− d
, (3.2)

which is manifestly positive in the regime we are interested in. Notice that unlike the de

Sitter case this horizon increases in time and diverges at the future spacelike boundary.

However, the expansion of space is faster than the growth of the horizon as long as q > 1,
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Figure 1. The Penrose diagram for accelerated FRW cosmologies. For an observer at the origin,

the red region represents the interior of the apparent horizon, the blue region represents the region

between the apparent horizon and the cosmological horizon, and the orange region represents the

region outside of the cosmological horizon. The Bousso wedges indicate that one can project all the

bulk data onto an optimal screen at future spacelike infinity.

so the full Penrose diagram has cosmological horizons at future spacelike infinity. The

apparent horizon is different and found to be

`AH = 1/H = t/q, H = a′/a. (3.3)

Thus, the apparent horizon is always inside the event horizon. A Penrose diagram rep-

resenting this state of affairs, with associated Bousso wedges, was presented in [43] and

is reproduced and embellished in figure 1. Unfortunately, no relation along the lines of

s ∼ T d−θ seems to apply to these horizons, although for small θ they are thermodynamical

in the usual sense [44]. The marginal case w = −1/3 has an apparent horizon but no event

horizon.

3.2 Wavefunctionals

We would now like to compute a wavefunctional for a scalar field in a fixed FRW back-

ground. The vacuum state will be defined adiabatically; namely, we will demand that the

UV Fourier modes are purely positive frequency [45, 46]. We will see what this means in

a moment. Consider a massive scalar field minimally coupled to the (d + 1)-dimensional

FRW background a(η)2(−dη2 + dx2
i ):

S = −1

2

∫
dd+1x

√
g(∂µ ϕ∂

µ ϕ+m2ϕ2). (3.4)

Fourier decomposing our field ϕ(x, η) =
∫
d3k ϕk(η) eikx we get

S =
1

2

∫
dη

∫
ddk a(η)d−1

(
ϕ̇kϕ̇−k − (k2 +m2)ϕkϕ−k

)
. (3.5)

The equation of motion is given by

1
√
g
∂µ(
√
ggµν ∂ν ϕ) = m2ϕ . (3.6)
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We can Fourier expand and solve this equation for m = 0 (general m only admits an

analytic solution for special cases like θ = 0 (dS), θ = d−1 (flat space), and θ = (d−1)/2),

obtaining

ϕk(η) = A+
~k
vk(η) +A−~k

v∗k(η), vk(η) = (−η)
d−θ
2 H

(1)
d−θ
2

(kη), (3.7)

where some choice of k-dependent overall normalization needs to be made. Notice that

θ = 0 reproduces the usual de Sitter answer, while in general θ acts as an effective shift

in the dimensionality. While the Hankel part of the answer looks like the case for a

massive scalar in de Sitter, with θ ∼ 2∆−, notice that the time dependence sitting outside

is modified. The Fourier modes of the scalar are instead identical to those of a higher-

dimensional massless scalar in de Sitter. This leads to a solution at late times which

behaves as

ϕk(η) = η∆̃+
(f(~k) +O(η2)) + η∆̃−(g(~k) +O(η2)) (3.8)

with

∆̃+ = 0, ∆̃− = d− θ. (3.9)

The tilded variables represent mustachioed impostors for conformal weights; more on this

shortly. In the case of FRW, it is not appropriate to read off the scaling of the correlators

from the field falloffs (i.e. the correlator 〈φ(x)φ(y)〉 does not scale as |x − y|−∆̃+
or |x −

y|−∆̃−), whereas in the case of de Sitter this is simply a shortcut which works due to the

scale invariance. Although we can similarly apply a scaling argument to get the answer,

let us proceed from the wavefunctional point of view.

Moving forward, we will assume θ < 0 since it is the accelerated FRW cosmologies we

care about. Implementing the Bunch-Davies vacuum, we require that ϕk(η) ∼ eikη/
√
k as

k/a(|η|) = k |η|
d−1−θ
d−1 →∞. In words, this states that in the limit that the physical wave-

length is small in units of the curvature scale (here set to 1), the field mode should behave

as if it were in the Minkowski vacuum. Similar to the usual Bunch-Davies condition in de

Sitter, it can be understood by analytic continuation from a formal regularity condition in

the Euclidean hyperscaling-violating geometry. However one defines it, this fixes A−k = 0.

Writing the saddles as

ϕ~k(η) = φ~k
vk(η)

vk(ηc)
(3.10)

and evaluating the wavefunction Ψ ∼ eiS as a function of the boundary condition at ηc we

find

Ψ ∼ exp

[
i

∫
ddk η1−d+θ

c

v′k(ηc)

vk(ηc)
φ~kφ−~k

]
. (3.11)

3.3 Correlation functions and holography

Treating the wavefunctional (3.11) as a potential generating functional of correlation func-

tions, ΨHH = ZQFT , one obtains

〈O(~x)O(~y)〉 ∼
∫
ddp1d

dp2 e
i~p1·~xei~p2·~y

δ2Ψ

δφ~p1δφ~p2

∣∣∣∣∣
φ=0

∼ 1

|~x− ~y|2d−θ
, (3.12)
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where we have simply analytically continued the two-point function from the hyperscaling-

violating geometry, computed in [47]. We have only kept the spatial dependence, not the

various factors of i and −1 which can enter and indicate a violation of reflection positivity.

Notice that from here one would usually identify the “conformal” weight as ∆+ = d− θ/2.

The scale covariance of the two-point function (3.12), usually indicative of a scale-invariant

field theory description, can be explained by a “generalized” scale invariance, which will

be discussed shortly.

The cosmological correlator can also be computed with the wavefunctional. Focusing

just on the momentum dependence and thus ignoring geometric factors, we have

〈φkφk′〉 ∼
∫
Dφ |Ψ[φ]|2 φkφk′∫
Dφ |Ψ[φ]|2

∼
∫
Dφ e

∫
ddk̃ k̃d−θφk̃φ−k̃ φkφk′∫

Dφ e
∫
ddk̃ k̃d−θφk̃φ−k̃

(3.13)

∼ k−d+θ δ(k − k′) (3.14)

where the momentum dependence is extracted by rescaling φk → φk/k
(d−θ)/2. This is IR-

divergent [48] and does not have a well-defined Fourier transform without regularization.

One possible scheme is to formally integrate by parts to define the transform, as is often

done in differential regularization schemes [49, 50] used to handle ultraviolet singularities:

〈φ(x)φ(y)〉 ∼
∫
ddk ddk′ k−d+θ δ(k − k′) eikxeik′y ∼

∫
dk k−1+θ eik(x−y) (3.15)

∼
∫
dk eik(x−y) d− θ

dk− θ
1

k
∼
∫
dk

d− θ

dk− θ
eik(x−y) 1

k
(3.16)

∼ |x− y|− θ log |x− y|. (3.17)

The derivative relationship for k−1+θ used in going from (3.15) to (3.16) was true for

negative integer θ, but in (3.17) we can analytically continue θ to any negative real number.

This regularization is only meant as a cartoon. However one wishes to discuss the two-point

function, it is clear that it has a strong spatial IR divergence, which we imagine regulating

with a spatial IR cutoff. A late-time cutoff is not necessary since the field does not grow with

time. The UV properties should be well-behaved due to the Bunch-Davies condition, and

the perturbation theory should be in control given the field falloffs (3.8). In other words,

the stress-energy of the scalar can be kept small relative to the background stress-energy. In

the language of [51], this would be the relevant correlation function for the “extrapolate”

dictionary, whereas (3.12) would be relevant for the “differentiate” dictionary. Notice

that, since θ < 0, the cosmological correlator grows with distance, violating the cluster

decomposition theorem. The violation can be made arbitrarily severe as θ → −∞. For

θ = 0 the expression is understood as the usual logarithmic growth in de Sitter space.

One possible interpretation of this result is that the Bunch-Davies state does not define a

suitable vacuum state.7 However, as is the case for disordered systems like the Sherrington-

7Massless higher spin fields in de Sitter space have similar strong divergences, with the strength of

the divergence increasing with the spin. This needs to be properly understood in the context of the

Vasiliev/Sp(N) duality [52–58], although there gauge-invariant operators may require a sufficient number

of derivatives to tame the strong growth. I am indebted to Daniel Roberts and Douglas Stanford for

discussions about the growth of cosmological correlators.
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Kirkpatrick model, or even more simply the Ising model below Tc, we assume that our

vacuum state can be decomposed into pure states which do satisfy cluster decomposition.

We can then study the state space in detail by computing overlaps between such pure states

without ever explicitly performing the decomposition. We will perform these calculations

in section 4 and see that the vacuum state defined above leads to sensible overlaps. Beyond

linearized order, adding self-interaction and computing loops will help to understand the

infrared effects of this spacetime, and it would diagnose whether the perturbative expansion

about the free-field fixed point is breaking down. Since the intuitive picture of modes

freezing and classicalizing outside the horizon should carry through from de Sitter, one can

also see if Starobinsky’s model of stochastic inflation [59] can be quantitatively generalized

to Q-space.

3.4 The Q-space/QFT correspondence

Although we most care about interpreting FRW cosmologies as part of an RG flow that

represents a cosmology in dS/CFT [60–63], in which case we would state that the operator

O dual to the massless bulk scalar has obtained an anomalous dimension of θ/2, we can also

consider the possibility of holographically describing one of these accelerated FRW space-

times on its own. Referencing the Penrose diagram of figure 1, we see that a holographic

screen is obtained by projecting along the Bousso wedges to the future spacelike infinity.

This represents an optimal screen and encodes the entire bulk spacetime [64–66]. Thus,

entertaining the possibility of holographically describing accelerated FRW by a field theory

living at future spacelike infinity seems well-grounded. We conjecture a natural extension

of the dS/CFT correspondence to this background and propose ΨHH = ZQFT , which was

used to compute (3.12). Whether this can extend to a non-perturbative definition of the

bulk theory is completely unclear at this point. The dual theory would be Euclidean, de-

fined on Rd, and in general not reflection positive, although the range of masses for a bulk

scalar that keep the boundary conformal dimension real probably increases as θ gets more

negative. Writing the bulk metric as

ds2 = e−2t θ /(d−1)
(
−dt2 + e2tdx2

i

)
, (3.18)

we see that a bulk scale transformation t→ t+λ, xi → e−λxi generates a time translation

in the bulk and a scale transformation in the boundary. Just as in dS/CFT we therefore

identify the holographic time coordinate as corresponding to the energy scale in the bound-

ary theory. The RG flow goes from the IR at t = −∞ to the UV at t =∞. The Big Bang

singularity that exists in these spacetimes would naively correspond to a mass gap in the

IR, but here we keep unspecified what relevant operators are switched on in the UV, i.e.

we leave the IR asymptotics general and consider a holographic theory of asymptotically

Q-space.

We further conjecture that the dual theory violates hyperscaling due to the modified

scaling dimensions in the boundary partition function, which come from the scaling weight

of the metric. The scaling of the metric maps to the anomalous scaling of the stress-

energy tensor, which feeds into the other anomalous scalings characteristic of hyperscaling
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violation. This is allowed dimensionally since there is an additional scale `Q in the metric

that we have suppressed. The stress-energy tensor we are referring to is the one given by the

Brown-York construction [67], although other potentially sensible proposals which connect

the boundary stress-energy tensor to the bulk graviton will likely give similar results.

To proceed with the Brown-York construction and avoid the difficult task of holographic

renormalization, we will work at a finite ηc slice and not yet concern ourselves with taking

ηc → 0. If we imagine that the construction applies at such a slice, then one obtains

〈Tij〉 ∼
hij

ηd−θc

, (3.19)

with hij proportional to the induced metric at ηc. This is just an analytic continuation

of the asymptotically AdS case [47]. This anomalous scaling of the momentum density

[Tii] = d − θ is the essence of hyperscaling violation. It suggests that in the cosmological

scenario we should take seriously the idea that the effective dimensionality of the dual

is given by deff = d − θ. In a microscopic realization of the Q-space/QFT duality, we

can imagine putting the dual theory at finite density by considering a bulk U(1) gauge

field. In other words, we source a global U(1) current in the boundary theory with a

chemical potential µ. There should then exist a hyperscaling violating regime where the

free energy density f ∼ τd−θ, with τ ∼ µ−1 the only length scale in the problem besides

`Q. This is maybe a more standard way of observing hyperscaling violation, but such an

effect can ultimately be traced back to an anomalous scaling of the stress-energy tensor. A

pedagogical example of such a zero temperature quantum phase transition was constructed

in the context of AdS/CFT in [68].

Like incarnations of dS/CFT that do not restrict to the static patch, Q-space/QFT

is at heart a theory of metaobservables inaccessible to a local observer. As has been

stressed before in the literature, we can be considered to be metaobservers of our previous

inflationary epoch [63, 69]. If that era is correctly described by the slow-roll inflationary

paradigm, then Q-space with O(ε) violation to hyperscaling is a more accurate model than

de Sitter. The small parameter ε is just the slow-roll parameter. Similarly, our late-time

cosmological expansion may be modeled with an O(.1) violation of hyperscaling and fit

the current data just as well as a de Sitter phase [70], although such a scenario may be

considered theoretically less motivated then a genuine cosmological constant.

Though we expect holography for an isolated, decelerated FRW cosmology to behave

differently due to the distinct conformal structure, decelerated phases like matter or ra-

diation domination should fit nicely into the RG flow of an asymptotically dS/CFT or

Q-space/QFT. They would describe phases of a holographic dual with O(1) violations of

the hyperscaling hypothesis. In our universe, according to our parametrization of θ, ra-

diation domination corresponds to θ = 4 and matter domination corresponds to θ = 6.

Curiously, curvature domination corresponds to infinitely large hyperscaling violation. In

general, accelerated expansion leads to θ ≤ 0 and decelerated expansion gives θ ≥ d − 1.

The range 0 < θ < d−1 corresponds to crunching cosmologies which violate the null energy

condition. Hyperscaling violation is only a precise notion if we assume a single source of

energy density dominates; if the scale factor is not a pure power law, then the metric loses
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its distinguished scaling weight. In our universe, the dominance of a single source of energy

density is approximately true for various epochs and violated in transition regions. The RG

flow of a holographic dual to our universe therefore has regimes of approximate hyperscal-

ing violation with transition regions without any well-defined scaling. The monotonicity

of the RG flow, if true for these potentially non-unitary theories, likely corresponds to the

monotonic growth of the horizon.

As mentioned previously, the scale-covariant form of the two-point function for the

operator dual to a massless scalar, which usually indicates an underlying CFT description,

can be understood as following from a “generalized” scale invariance, under which η → λη,

xi → λxi and ` → λ`. This leaves the bulk metric invariant but does not preserve the

Hilbert space since ` gets rescaled. Nevertheless, it can be used to constrain the form of

correlation functions. This type of generalized scale invariance was first studied in the case

of matrix models for D0-branes in [71] and generalized to non-conformal Dp-branes in [72].

It was further discussed in [73, 74].

Although these spacetimes have fewer symmetries than de Sitter, there is a sense in

which quantum gravity in such a spacetime may be simpler to analyze: as computed in

section 3, the horizon size diverges near the future boundary. Similarly, the entropy passing

through an observer’s past light sheet, as computed by the Bousso covariant entropy bound,

diverges at late times. This admits the possibility of a precise holographic dual, as discussed

in [44, 62, 75], although the issue of imprecision may only be relevant for holographic

descriptions of local observers, which is not what we are performing here. Of course, one

can write down and analyze a coordinate patch relevant for a local observer, but such a

patch would be time-dependent [43].

Concrete calculations that would help get a handle on this Q-space/QFT correspon-

dence include analyzing higher spin fields in the bulk or calculating an asymptotic symme-

try group. A bulk gauge field supplied by the scale-invariant Maxwell action, for example,

will lead to a Bunch-Davies wavefunctional identical to that of de Sitter, as calculated in

appendix D of [54]. In the calculation of an asymptotic symmetry group one would have

to decide how to treat the radiation flux, which can in principle reach I+ [76]. Finally, an-

other calculation which will shed light on Q-space directly and hopefully the Q-space/QFT

duality is that of field overlaps in cosmology, which we now turn to.

4 Cosmic clustering of accelerated FRW

In a remarkable recent paper [7], Anninos and Denef discovered an encoding of the hier-

archical tree-like structure of de Sitter space in the Bunch-Davies vacuum. The authors

imported the analysis of the state space of spin glasses [77–82] and tailored it to the study

of quantum fields on a fixed de Sitter background. The philosophy has been laid out most

clearly in [7, 83, 84], and we refer the reader to these works for more details, though we will

summarize the key points as we go along. The idea is to split up the Bunch-Davies state

for the massless scalar, which does not satisfy cluster decomposition, into a sum of “pure”

states which do. Overlaps between these states, which we will define below, then reveal

the extreme state structure: the one-point distance distribution is a Gumbel distribution
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and the three-point distance distribution reveals ultrametric structure. Related distance

distributions were considered in [85] and the extension to massive scalars in de Sitter was

considered in [86]. The latter paper found that the extreme state structure weakens but

persists until ∆− = d/4.

In what follows, we will compute such overlaps in the case of a massless scalar field

in the Bunch-Davies vacuum in an accelerated FRW cosmology. We will find that the

structure uncovered in [7] becomes sharper in the context of accelerated FRW cosmologies.

All statements we make about relative sharpness will be referencing the distance function as

defined in [7] and used in (4.2), although given the more extreme IR behavior of accelerated

FRW cosmologies relative to de Sitter, we expect that other “natural” distance functions

will give the same results.

4.1 Distance overlaps

To maximally overlap with previous literature, we will place an IR cutoff of comoving size

L such that xi ∼ xi + L and write our results from the previous sections as follows:

P[φ] = |Ψ[φ]|2 ∝ e−2
∑
~k
βk|φ~k|

2
, βk ≡ Re

[
− i

2
ad−1Ld(log vk)

′
]
, (4.1)

where the IR cutoff has changed what was originally an integral into a sum. This is the

wavefunctional as a functional of field distributions φ~k at ηc. It is evaluated by inputting

the complex saddle found in (3.7) to evaluate the path-integral definition of the ground

state wavefunctional. Notice that when written in terms of η, most of the change in (4.1)

from the de Sitter expressions can be accounted for by d→ d− θ. The sum over momenta,

however, goes over d and not d− θ dimensions, and this is the crucial difference (otherwise

the expressions would be identical upon identifying d− θ → d̃).

Given two field configurations φ1(xi) and φ2(xi) on a given time slice, the distance

between them is defined as

d12 =
1

Ld

∫
ddx(φ̂1(xi)− φ̂2(xi))

2. (4.2)

The hatted variables correspond to taking the original field distribution, convolving it with

a window function over a size of order the curvature scale, and subtracting the zero mode.

We regulate this distance function by subtracting the mean:

δ12 = d12 − 〈d12〉. (4.3)

The convolution will not come into play since we will evaluate all overlaps at late times,

where the ratio of horizon size to universe size vanishes. At intermediate times this convo-

lution would come into play.

Recall that the correlator 〈φ̂(xi)φ̂(yi)〉 on a constant time slice exhibits an IR diver-

gence, meaning that the vacuum violates cluster decomposition. There is a useful anal-

ogy to this in the thermodynamic literature: often times the Boltzmann-Gibbs measure

PBG ∼ e−βH leads to a violation of cluster decomposition due to a plethora of equilibrium

states. The simplest case of which we are aware is the Ising model at low temperatures,
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where ergodicity is broken due to two “pure states” of positive and negative magnetization.

A pure state is one which satisfies cluster decomposition. In this case, we can perform an

explicit decomposition of the Boltzmann-Gibbs measure into the two pure states 〈· · · 〉+
and 〈· · · 〉−:8

〈· · · 〉 =
1

2
〈· · · 〉+ +

1

2
〈· · · 〉− . (4.4)

The distance functions defined above for cosmologies come from analogous definitions in

this context, where one can define an overlap between two spin configurations σ1 and σ2 as

d12 =
1

N

N∑
i=1

σi1σ
i
2 . (4.5)

As in the cosmological setting, this is a measure of similarity between two different con-

figurations. Overlaps between different pure states can also be defined. For pure states α

and β we have

dαβ =
1

N

N∑
i=1

〈σi1〉α〈σi2〉β (4.6)

=
1

ZαZβ

∫
σ1∈α

∫
σ2∈β

Dσ1Dσ2 e
−βH[σ1]e−βH[σ2] d12 , (4.7)

where in the second line we have rewritten the overlap between states in terms of the

overlap between configurations. This point is crucial : one can compute overlaps between

states without knowing the explicit decomposition into pure states, as is known in the

simple case of the Ising model. This is of course useful in the literature of disordered

systems, and it will serve useful in our cosmological setting as well. Adapting this analysis

to our case simply requires using an appropriate distance definition, which we have given

in (4.2) and (4.3), and replacing the Boltzmann-Gibbs measure with the Hartle-Hawking

wavefunctional, since that defines the distribution from which we draw configurations.

From this point of view, the violation of cluster decomposition is not so worrisome, as the

wavefunctional still gives well-defined overlaps between pure states which do satisfy cluster

decomposition. Again, the fact that we cannot perform the decomposition explicitly is

irrelevant for these calculations.

In the cosmological setting, we imagine there is some pure state decomposition of

|Ψ[φ]|2 as

P[φ] = |Ψ[φ]|2 =
∑
α

wαPα[φ] , (4.8)

with the wα summing to one. In analogy with the spin glass case (4.7), we can define

a distance between pure states dαβ = d[〈φ̂〉α, 〈φ̂〉β] and rewrite it in terms of distances

between configurations. Using the replica trick and the clustering property of the pure

states, we can write the probability for finding a renormalized distance ∆ between two

states as

P (∆) = 〈δ(∆− δ12)〉 =

∫
Dφ1Dφ2 P[φ1]P[φ2] δ(∆− δ12) . (4.9)

8For a discussion of these issues and related ones in the context of spin glasses, see [87].
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A three-point probability P (∆1,∆2,∆3) can be similarly defined. In computing P (∆) it is

easier to first compute its Laplace transform G(s) = 〈e−sδ12〉, and then obtain the original

distribution by inverse Laplace transform:

P (∆) =
1

2πi

∫ i∞

−i∞
es∆G(s) ds . (4.10)

The calculation of G(s) is the same as in [7], so we just write down the (intermediate)

result:

G(s) = 〈e−sδ12〉 =
∏
~k 6=0

′ es/βk

1 + s/βk
. (4.11)

The three-point distance distribution is also analogous and becomes

G(s1, s2, s3) = 〈e−s1δ23e−s2δ13e−s3δ12〉 (4.12)

=
∏
~k

′ e(s1+s2+s3)/βk

1 + (s1 + s2 + s3)/βk + 3(s1s2 + s1s3 + s2s3)/4β2
k

. (4.13)

It remains to compute these products and perform an inverse Laplace transform to get at

the probability distributions.

As compared to the de Sitter case, we see that we simply have a different βk we need

to deal with. At late times we get

βk =
Ld

2
kd−θ `d−θ−1 . (4.14)

Since θ < 0, the power of k is increased relative to the de Sitter value. This reflects the

fact that the infrared modes increasingly dominate as θ → −∞, i.e. as the scale factor

a(t) = tq, written in terms of non-conformal time, approaches a(t) = t. As elucidated in

previous work, it is this domination of these infrared modes that leads to Gumbelanity

and ultrametricity. Thus, increasing the magnitude of θ means we should witness an even

sharper distribution than in the de Sitter case. We will verify in the next subsections that

this is indeed the case.

We would like to stress that the intuition gained by considering formulae in FRW as

following from formulae in dS upon the effective shift in dimensionality d → d − θ leads

immediately to this result. The substitution should be understood as occurring in Fourier

space formulae and not in objects like integrals over momentum space, which of course still

occur in d dimensions.

4.2 FRW2

We begin by considering 2-dimensional FRW space. Unfortunately, to keep the notation

transparent and uncluttered, we defined a transformation to the variable θ that breaks

down when d = 1, which is the case at hand. Were we to go back and define a different

transformation such that our metric became

ds2 = η2θ/d

(
−dη2 + dx2

i

η2

)
, (4.15)
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then for our mode functions we would have

vk(η) = (−η)
d2+θ−dθ

2d H
(1)
d2+θ−dθ

2d

(kη) . (4.16)

The cluttering of notation is why we avoided this definition of θ. But notice that in this

case if we specify to d = 1, then the θ-dependence drops out and we have βk = kL/2,

which is just the dS2 value. This is expected since in two dimensions a massless scalar is

conformally coupled, and FRW is conformally related to de Sitter space. Thus, the fact that

the two-point distance distribution is a Gumbel distribution and the three-point distance

distribution exhibits ultrametricity carries over from the calculations in dS2 performed

in [7].

One may wonder about flat space (θ = d), which is also conformally related to these

spacetimes (indeed, in two dimensions everything is conformally flat). The same conclusions

would apply there as well. The two point function of the massless scalar is logarithmic and

does not cluster decompose in any of these spacetimes.

Two-dimensional FRW would be a simple scenario in which to consider massive fields,

which will not be trivially related to the dS2 case considered in [86]. However, the wave

equation would have to be solved numerically.

Of course, one could also consider conformally coupled fields in dSd+1 for d > 1. As

long as the spatial dimension is sufficiently low, these masses are below the bound found

in [86] and thus exhibit some weak form of ultrametricity. By the conformal equivalence of

FRW and dS in arbitrary dimension one can adapt this result to FRW spacetimes with a

non-canonical scalar. In the next subsection we will stick to massless scalar fields in higher

dimensions.

4.3 Higher-dimensional FRW single overlap

We begin with

〈e−sδ12〉 =
∏
~k 6=0

′ es/βk

1 + s/βk
. (4.17)

Approximating the logarithm by an integral, we get

log〈e−sδ12〉 ≈ 1

2

∫
ddk

Ld

(2π)d

[
s

βk
− log

(
1 +

s

βk

)]
. (4.18)

We define β̃k = kθβk to get

log〈e−sδ12〉 ≈ wd
(2π)d`d−θ−1

∫ ∞
β̃0

dβ̃

[
s̃

β̃(d−θ)/d
− log

(
1 +

s̃

β̃(d−θ)/d

)]
, (4.19)

where

s̃ = 2θ/dL−θ`θ(1−d+θ)/ds, β̃0 =
1

2
(2π)d`d−θ−1. (4.20)

Unfortunately, this integral cannot be performed analytically except in special cases. How-

ever, we can go back to (4.18) and perform the angular integrals, since the integrand only

depends on the magnitude of ~k. Re-exponentiating and ignoring dimensionless factors,
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Figure 2. P (∆) in 3+1 dimensions. Clockwise from the top left, we have θ = 1.3, θ = 0 (dS),

θ = −3, and θ = −7. The case θ = 1.3 is not physically relevant for us, but we reproduce it

here since it is mathematically the same as a massive scalar field in de Sitter, which begins to lose

Gumbelanity, as shown in [86]. For θ < 0 the curves have semi-infinite support, while for θ ≥ 0

they have infinite support.

the calculation of 〈e−sδ12〉 in arbitrary dimension reduces to an effectively one-dimensional

problem:

〈e−sδ12〉 ∼
∞∏
n=1

es/n
1−θ

(1 + s/nd−θ)
nd−1 , (4.21)

where we have allowed ourselves a multiplicative redefinition in d12.

We will numerically compute the logarithm of this product by summing a finite number

of terms, and then perform the inverse Legendre transform by saddle point approximation.

The contour of (4.10) is deformed to a steepest descent contour to allow for the saddle

point approximation.

The results are striking: as θ is made large and negative, the Gumbel distribution of

de Sitter approaches an extreme distribution that exponentially increases until a critical

value, at which point it drops straight down. The numerical data for the case of 3 + 1

dimensions is presented in figure 2.

In fact, as θ → −∞, we can compute P (∆) analytically in any dimension. In this

limit, only the first term in the product (4.21) contributes. Thus, we get

P (∆) =
1

2πi

∫ i∞

−i∞
G(s) es∆ =

1

2πi

∫ i∞

−i∞

es(1+∆)

1 + s
ds. (4.22)

This integral has a simple pole at s = −1. For ∆ < −1, we can close the contour to the

right in the complex s-plane. This contour encloses no poles, so the integral vanishes. For

∆ > −1, we have to close the contour to the left in the complex s-plane. This contour now
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encloses the s = −1 pole, so the integral evaluates to

P (∆) = e−1−∆. (4.23)

The full expression becomes this exponential glued onto the constant function 0 for ∆ < −1,

i.e. P (∆) = e−1−∆ θ(1 + ∆), which is precisely what the numerical plots in figure 2 seem

to be suggesting. This probability distribution integrates to 1, as required.

This approach can be used to see the asymmetry of the distributions for finite θ

analytically. We have

es∆G(s) = es∆
∞∏
n=1

es/n
1−θ

(1 + s/nd−θ)
nd−1 =

es(ζ[1−θ]+∆)∏∞
n=1 (1 + s/nd−θ)

nd−1 (4.24)

One can show that the infinite product in the denominator converges uniformly, by a

combination of Raabe’s test and the Weierstrass M-test on its sequence of partial sums.

Thus, any poles in the resulting function are zeros of one of the product factors of the

denominator of the right hand side of (4.24). Similar to the argument for θ → −∞, we

now see that P (∆) has no support for ∆ < −ζ[1− θ], since we can close the contour to the

right and enclose no poles when performing the inverse Legendre transform. Furthermore,

since ζ[1− θ] monotonically decreases from infinity to 1 as θ goes from 0 to minus infinity,

we see that P (∆) has less support as θ becomes more negative, i.e. as the acceleration

decreases. The de Sitter Gumbel has infinite support, and this is reflected here since

θ = 0 for de Sitter and ζ[1] diverges. For ∆ > −ζ[1 − θ] we must close the contour to

the left and enclose an infinite number of poles. If ∆ �
∣∣ − ζ[1 − θ]

∣∣, evaluating the

residues will result in the es∆ piece giving the dominant contribution, so the function will

be strongly exponentially suppressed since all the poles are at negative s. Combining all

these observations, we see that P (∆) is generically exponentially suppressed at large and

positive ∆, whereas it cuts off at some finite and negative ∆, where the cutoff becomes

less negative as the magnitude of θ is increased. This gives a probability distribution P (∆)

whose asymmetry increases as the acceleration decreases.

4.4 Higher-dimensional FRW triple overlap

We would now like to compute triple overlaps to study to what extent the ultrametric struc-

ture found in de Sitter is preserved in accelerated FRW. Performing the angular integrals

as before, we get

G(s1, s2, s3) ≈
∞∏
n=1

e(s1+s2+s3)/n1−θ(
1 + (s1 + s2 + s3)/nd−θ + 3(s1s2 + s1s3 + s2s3)/4n2(d−θ)

)nd−1 (4.25)

in d+ 1 dimensions. We can calculate this as before by taking a finite number of the terms

and performing the inverse Laplace transforms by saddle point approximation. Examples

that illustrate the ability of accelerated FRW cosmologies to accentuate the structure seen

in the de Sitter case are presented in figure 3. Understanding the sharper peaking in

e.g. the right panel can be understood by analogy to the de Sitter case: there, peaks

sharpen as ∆1 and/or ∆2 are made more negative, i.e. more suppressed regions of parameter
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space corresponding to similar configurations are sampled. Recall that similar (dissimilar)

configurations correspond to negative (positive) values of the overlap. Alternatively, one

can mimic sampling these rare, similar configurations by keeping ∆1 and ∆2 fixed and

taking θ large and negative. To see this in a simple example, fix ∆ = −1.4 and observe

P (∆) as θ is made more negative in figure 2.

The observation of the previous paragraph suggests that to make a meaningful com-

parison between de Sitter and FRW when talking about sharpness of ultrametric structure,

one needs to weight the ultrametric structure by how rare a region of parameter space is

being sampled. Thus, instead of fixing ∆1 and ∆2 we will instead pick a ∆1 and ∆2 for

some θ, and as we vary θ we will keep P (∆1) and P (∆2) fixed. Recall from figure 2 that the

the function P (∆) for any θ is two-to-one, but since the function P (∆, θ) is continuous in

θ we simply pick the distances ∆1 and ∆2 which are continuously connected to the original

ones as we vary θ. Setting the problem up this way only attenuates the degree to which

FRW improves upon de Sitter; as seen in figure 4 the peaks for FRW remain both sharper

(i.e. more “precise”) and more correctly localized on max(∆1,∆2) (i.e. more “accurate”).

Similar to the single overlap, for θ → −∞ in arbitrary dimension we can make some

analytic remarks. In this case only the first term in the product contributes and we have

P (∆1,∆2,∆3) ≈ (4.26)∫ γ1+i∞

γ1−i∞
ds1

∫ γ2+i∞

γ2−i∞
ds2

∫ γ3+i∞

γ3−i∞
ds3

es1(1+∆1)+s2(1+∆2)+s3(1+∆3))

1 + (s1 + s2 + s3) + 3(s1s2 + s1s3 + s2s3)/4
.

We see immediately that at least some of the ultrametric structure found in de Sitter space

vanishes in this limit: if ∆1, ∆2, and ∆3 are all less than −1, then we can set γi = 0 and

close all three contours to the right, i.e. choose the 3-cycle in C3 that encloses the “positive

octant” with Re(si) > 0. This 3-cycle enclose no poles, since we need to have Re(si) < 0

for at least one of the si for the denominator to vanish. Thus, evaluating something like

P (∆3| − 1.4,−1.1), we see that not only does it not peak on max(−1.4,−1.1) = −1.1,

as would be indicative of ultrametricity, but it has no support for ∆3 < −1. This is not

surprising since in this limit the question is both ill-defined and trivial. By requiring ∆1

and ∆2 to be less than −1, one is conditioning on an impossibility, as P (∆) has no support

for ∆ < −1. Even if the conditioning were well-defined, we already know that the single

overlap P (∆) has no support for ∆ < −1, so a conditional probability will not change

that result. These observations mean we should impose a general restriction, which we will

state at the end of the next paragraph.

For finite θ we can still make some analytic arguments analogous to the single overlap:

G(s1, s2, s3)e
∑
i si∆i =

es1∆1+s2∆2+s3∆3
∏∞
n=1 e

(s1+s2+s3)/n1−θ∏∞
n=1

(
1+(s1+s2+s3)/nd−θ+3(s1s2+s1s3+s2s3)/4n2(d−θ)

)nd−1

=
es1(ζ[1−θ]+∆1)+s2(ζ[1−θ]+∆2)+s3(ζ[1−θ]+∆3)∏∞

n=1

(
1+(s1+s2+s3)/nd−θ+3(s1s2+s1s3+s2s3)/4n2(d−θ)

)nd−1 .

(4.27)
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Figure 3. Top left: here we pick ∆1 = −1.4 and ∆2 = −1.1. The blue curve is for θ = 0 and the

pink curve is for θ = −1. The FRW case is more indicative of ultrametricity than the de Sitter

case since it peaks more sharply on max(−1.4,−1.1) = −1.1. However, according to the analytic

arguments in the main text, we cannot take θ arbitrarily negative since ∆1 < −1 and ∆2 < −1 .

For the θ = −1 case exhibited here we have ζ[1− θ] = ζ[2] = π2/6 ∼ 1.6 so we have some breathing

room until we hit ∆i = −ζ[1− θ], which is the point at which the conditional problem we have set

up breaks down due to conditioning on an impossibility. Top right: same plot as top left, except we

have added the red curve which corresponds to θ = −1.35, giving −ζ[1− θ] ≈ −1.41, which is very

close to min(−1.4,−1.1) = −1.4, so P (−1.4) is incredibly suppressed. Bottom: here we display a

conditional probability upon picking ∆1 = −1 and ∆2 = 2. The purple curve is for θ = 1.5, the blue

curve is for θ = 0, the brown curve is for θ = −2, and the green curve is for θ = −7. Notice that

as θ decreases the conditional proabability peaks on max(−1, 2) = 2, as required for ultrametricity.

For these values of ∆1 and ∆2 the de Sitter case shows little evidence of ultrametricity, whereas the

probability peaks more and more sharply as the acceleration slows. The θ = 1.5 case is unphysical

in our context but is included as a check, since it is equivalent to a massive field in de Sitter, to see

that it shows even less evidence for ultrametricity than the de Sitter case.

For ∆i < −ζ[1 − θ], in the calculation of P (∆1,∆2,∆3) we can pick the same 3-cycle

as above and enclose no poles, thus giving no support. The top right panel of figure 3

shows, however, that for an illustrative example the ultrametric peak does sharpen at

finite θ until this point is reached. Again, the vanishing of P (∆1,∆2,∆3) in this limit is

not surprising since the values of ∆i are such that P (∆i) = 0. This means we need to

impose a restriction on the conditional probability we are setting up. When computing

P (∆3|∆1,∆2), we should ensure that ∆1 and ∆2 are both greater than −ζ[1− θ]. If not,

we would be conditioning on something that is impossible, according to the arguments of

the previous section. Upon this conditioning, it is well-defined to compute P (∆3|∆1,∆2)

for a ∆3 which is less than −ζ[1− θ], but the answer will always vanish.
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Figure 4. Left: here we display a conditional probability upon picking ∆1 = −1 and ∆2 = 2 for

θ = 0, given by the blue curve, and ∆1 = −1 and ∆2 = 1.84 for θ = −3, given by the brown curve.

These values satisfy P (∆i, θ = 0) ≈ P (∆i, θ = −3). Like in figure 3, the FRW case shows more

evidence of ultrametricity than the de Sitter case. Right: here we pick ∆1 = −2.12 and ∆2 = −1.22

for θ = 0, given by the blue curve, ∆1 = −1.4 and ∆2 = −1.1 for θ = −1, given by the pink

curve, and ∆1 = −1.07 and ∆2 = −1.02 for θ = −3, given by the brown curve. Again, these values

satisfy P (∆i, θ = 0) ≈ P (∆i, θ = −1) ≈ P (∆i, θ = −3) and the FRW case shows more evidence of

ultrametricity than the de Sitter case.

The power of FRW to accentuate the ultrametric structure seen in the de Sitter case

is not unlimited. If we sample points to the right of the peak of the Gumbel-esque distri-

butions in figure 2, e.g. ∆1 = 1 and ∆2 = 2, for which the de Sitter case shows virtually

no evidence of ultrametricity, then taking θ negative does not help the state of affairs, as

exhibited in figure 5. This is rooted in the fact that the single overlap P (∆) does not show

strong dependence on θ for ∆ > 0. Thus, the restriction to sampling relatively similar

configurations to see an ultrametric structure emerge remains.

Finally, a curious property to note is that the results for these overlaps have a symmetry

transform under βk → −βk and ∆i → −∆i. In other words, P (∆, βk) = P (−∆,−βk) and

P (∆1|∆2,∆3;βk) = P (−∆1| −∆2,−∆3;−βk). This leads to results which give an inverse

ultrametric structure, meaning all triangles are isosceles with the unequal side the longest of

the three. In this case, dissimilar configurations are most suppressed and it is conditioning

on sampling such configurations which leads to the inverse ultrametric structure. It is

unclear if such a structure comes from any interesting physical scenario, although such a βk
is obtained by e.g. analytic continuation from dS4 to EAdS4, where one treats the direction

perpendicular to the boundary as Euclidean time. It should be stressed that Lorentzian

AdS and hyperscaling-violating spacetimes do not have such a dynamical structure in time,

but possibly a suitably modified version of the above calculations, where time is replaced

by the holographic radial coordinate, will show such a structure emerge.

5 θ → −∞ and its connection to little string theory

Given the interesting structure of the θ → −∞ FRW geometry in the context of single

and triple field overlaps, we shall try to analyze it in a little further detail. This is just a

curvature-dominated FRW cosmology with linear scale factor, which has been extensively
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Figure 5. Here we display a conditional probability upon picking ∆1 = 1 and ∆2 = 2. The blue

curve is for θ = 0, the pink curve is for θ = −1, and the green curve is for θ = −7. The peak

sharpens as usual as θ gets negative, but none of these cases shows evidence of ultrametricity.

studied, so we will focus instead on its analytic continuation to a hyperscaling-violating

geometry. One can imagine/hope that the structure uncovered in the previous section can

also be understood as existing in some form in AdS and hyperscaling-violating geometries,

and it is with this view in mind that we study the hyperscaling-violating geometries.

For hyperscaling-violating geometries, the double scaling limit θ → −∞ and z → ∞
with −θ/z = η > 0 fixed has been studied to some extent due to having a spectral density

that is not exponentially suppressed [21]. The spacetime is conformal to AdS2 × R2 and

appears in near-horizon geometries of dilatonic black holes [88], in addition to having other

interesting properties [9, 89]. However, in our case we would like to keep z finite and take

θ → −∞, which does not seem to have been studied. In this limit the effect of the dynamical

critical exponent z washes out and Lorentz invariance is restored. It is also equivalent to

taking η → ∞. The contribution of the Maxwell field drops out of the Einstein-Maxwell-

dilaton theories which produce hyperscaling-violating geometries, and the on-shell action

limits smoothly to a self-interacting scalar minimally coupled to gravity. Starting from the

metric in the form (1.1), we end with the null-energy-condition-satisfying spacetime

ds2
d+2 = dr̃2 +

r̃2

`2
(
−dt2 + dx2

i

)
= e2r̂/`

(
−dt2 + dr̂2 + dx2

i

)
, (5.1)

where we have reinstated the curvature scale. Taking θ → +∞ gives the same result. The

scale transformation in this limit corresponds to a simple shift in the radial coordinate r̂

(r̂ → r̂ + λ) or a multiplicative rescaling of r̃ (r̃ → λr̃). Neither time nor space scales and

the effective dimensionality of a hypothetical dual is infinite (we imagine taking θ → −∞
instead of θ → +∞, and thus refer to the effective dimensionality as large or infinite, since

this is the direction in which the ultrametric structure of the FRW cosmologies sharpens).

It would be interesting to see how this growth in effective dimensionality is connected to

the fact that ultrametricity generically sharpens as the dimension grows [82]. The higher

curvature corrections of this special geometry behave similarly to the case of finite θ and
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are presented in appendix A. The limit θ → −∞ is also strange from the point of view of

the entropy density, which in general behaves as

s ∼ T
d−θ
z . (5.2)

It seems the entropy density, and thus the specific heat, is diverging in this limit. Indeed,

for the metric ansatz (5.1) we can solve for black brane geometries, which take the form

ds2 =
dr2

r4
(

1− r2

r2h

) +
1

r2

(
−
(

1− r2

r2
h

)
dt2 + dx2

i

)
. (5.3)

Here we are using yet a third radial coordinate r = 1/r̃, for which the horizon occurs at

rh. Curiously, the emblackening factor is the same as for the static patch of de Sitter. For

rh = ∞, i.e. no black brane, the spacetime has a curvature singularity as r → ∞. By the

standard arguments, one can see that the temperature of this black brane is non-vanishing

and rh-independent. In other words, changing the horizon location changes the entropy

density but does not change the temperature! Mathematically, we can understand this by

the scaling properties of the metric: taking r → λr leads to an overall factor on the metric

and an effective shift in rh. Since overall factors do not affect the temperature, we now

understand this strange feature.9 The Euclidean continuation of the background with no

black brane also has a conical deficit, which is in line with the above reasoning.

In fact, this background is nothing more than the gravity background dual to lit-

tle string theory, a nonlocal, non-gravitational theory presumably described by strings.10

Notice that due to the constant temperature one can integrate up the equation of state

dE = TdS to obtain E = TS. This gives a Hagedorn density of states w(E) ∼ eEβ,

which is the same density of states as for a hot gas of free strings. This background can be

obtained in the decoupling limit of a stack of NS5-branes in Type IIB string theory (it is

important to note that α′ does not vanish in the decoupling limit as it usually does when

decoupling D-branes), where the six-dimensional worldvolume theory is the little string

theory. In the S-dual picture valid in an intermediate energy range we have a stack of D5

branes. In the IR the IIB theory flows to six-dimensional weakly coupled super Yang-Mills

with (1, 1) supersymmetry and gauge group U(N). When constructed in string theory and

compactified on tori, the non-gravitational duals enjoy a T-duality symmetry, which is a

further reason why the duals are believed to be nonlocal and described by strings.

The entanglement entropy properties of the dual to this spacetime are the same as for

the ones conformal to AdS2×R2. Although the latter incorporates z, for time-independent

scenarios gtt does not change the results since one is to work on a constant time slice. This

explains the curious connection pointed out in [21] between the entangling properties of

geometries conformal to AdS2×R2 and the results of [91], which computed minimal surfaces

for the NS5-brane background. It is known that a slab geometry on the boundary exhibits

a transition from connected to disconnected minimal surfaces whereas a disc geometry

9I am indebted to Xi Dong and Gonzalo Torroba for discussions about this spacetime and its cosmological

cousin.
10See [90] for an introductory review of little string theory.
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does not. This is a strange intermediate behavior between confined and deconfined phases,

which is precisely where a Hagedorn spectrum takes over in confining gauge theories. Since

the dual theory is expected to have non-gravitational strings, it would be curious if this

background were useful in describing the proliferation of gauge theory flux tubes. Here we

are imagining an effective description where T-duality is not a symmetry and the extensivity

of the entanglement entropy (shown at the end of this section) is not interpreted as a

fundamental nonlocality.

It has been shown in [92] that upon including a Gauss-Bonnet term in the bulk,

connected minimal surfaces exist for both disc and slab geometries, indicating a deconfined

phase. It would be interesting to see if the behavior of black brane geometries in the Gauss–

Bonnet-corrected bulk theory correlate with this behavior by giving a non-Hagedorn density

of states.

The nonlocal nature of the dual can be established without resorting to the brane

construction, by considering the UV scaling of the entanglement entropy. The volume law

indicative of nonlocality was already shown in [93] by using trial surfaces, but one need not

resort to trial surfaces (which can sometimes give incorrect leading order behavior) to see

the volume law. Consider a time slice of the above background with the curvature scale

set to 1, which has induced metric

ds2 = dr2 + r2(dy2 + dx2
i ) = dr2 + r2(dρ2 + ρ2dΩ2

d−1). (5.4)

Renaming ρ → θ and performing an identification θ ∼ θ + 2π resolves the conical deficit

near r = 0 and gives a metric that can be approximated by flat space for small θ:

ds2 = dr2 + r2(dθ2 + θ2dΩ2
d−1) ≈ dr2 + r2(dθ2 + sin2 θ dΩ2

d−1), θ � 1. (5.5)

The UV boundary lives at large r, which is a d-sphere as long as we work at small θ. The

topological identification is immaterial in this regime. Thus, if our entangling surface is a

patch of the sphere localized at small θ, we should recover volume-law scaling due to the

lack of warping. To see the details of such a flat-space calculation, see [94]. The similarity

of this spacetime to flat space is connected to the nonlocality of the dual theory, although

the geometry can also be interpreted as describing the IR phase of a fundamentally local

theory.

6 Summary and outlook

The primary purpose of this paper has been to emphasize thinking about FRW cosmologies

as an analytic continuation of hyperscaling-violating spacetimes and utilizing the scale

covariance of both. We exhibited two distinct scenarios where this point of view proved

fruitful: first, in the analysis of higher curvature corrections, and second, in the study

of wavefunctionals, correlation functions, holography, and state space overlaps of the sort

pioneered by Anninos and Denef. It is clear that the nonperturbative quantum gravitational

dynamics in these two backgrounds are two different beasts altogether, but for some more

modest perturbative dynamics and analysis a unified approach may be a useful guiding

principle.
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More concretely, we have shown that scale-covariant geometries of the type analyzed

in this paper have a simple structure for the form of higher curvature corrections. We

argued that if there exists an action that produces one of these geometries as a solution,

then adding a higher curvature term to that action will lead to equations of motion that

cannot be solved with a scale-covariant metric ansatz. As a practical matter, in the realm

of perturbatively small higher curvature corrections, one simply picks up perturbatively

small corrections that break the type of scale covariance we have been analyzing. For

example, it is possible that, e.g. in the FRW case, one maintains scale covariance of the

form a(η) = η+ εη3 + · · · . But the scale covariance we imagine breaking is the pure power

law kind. For the hyperscaling-violating metrics, one can furthermore imagine that the

scale covariance is broken to begin with by assuming the full geometry is asymptotically

AdS in the UV, or by heating up the system with a black hole. In this context there will be

regimes where approximate scale covariance exists (deep in the IR for the asymptotically

AdS case and far from the black hole in the finite temperature case), and the perturbative

corrections are not physically relevant since the conformal isometry is not exact to begin

with.

In the context of the hyperscaling-violating geometries produced from Einstein-Maxwell-

dilaton actions, there is a more important point to be made: α′ corrections are becoming

important for the electric solutions, which means that one cannot dismiss the higher cur-

vature terms as a perturbative breaking of the scale covariance since their contributions

become large. And once any higher order corrections become important, then one must

consider all of them. It is in this context that the arguments of this paper provide the

most stringent constraints. In the absence of loopholes as discussed in section 2.1.1 and

other parts of the main text, this seems to provide further evidence that this geometry

generically cannot provide a stable phase in the IR.

In the context of the FRW geometries, the arguments are more of a technical point. In

the regimes of e.g. matter or radiation domination there is no reason to expect the higher

curvature corrections to become large.

We then turned to the structure of the state space in FRW cosmologies, where we

accepted the Bunch-Davies vacuum as a sensible starting point for constructing field over-

laps. The technology used was directly imported from the literature of disordered systems

and massaged to suit the current context. The substitution deff = d− θ, often used in the

case of hyperscaling-violating geometries, proved useful in predicting the structure of these

overlaps. The single overlap, which produced an asymmetric Gumbel distribution in the

case of de Sitter, became more Gumbelicious and limited to a totally asymmetric distribu-

tion as the scale factor became linear, i.e. θ → −∞. Furthermore, the triple overlap, when

sampled in a way to exhibit ultrametric structure in the case of de Sitter, exhibits even

sharper ultrametric structure as the acceleration slows. The numerics indicate that as long

as at least one of the ∆i, say ∆1, is sampled to the left of the peak of the Gumbel-esque

distribution, then taking θ close to the solution of −ζ[1 − θ] = ∆1 will lead to incredibly

sharp peaking, approaching a delta function peaked on the value necessary to preserve

the ultrametric inequality. See the top right panel of figure 3. It is interesting to note

that glassy systems have been modeled with a finite θ in the past [95], although this may
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be a red herring for many reasons, one of which is that such models do not contain the

ultrametric structure seen in the Parisi analysis of mean-field spin glasses.

Stated more generally, we argued in section 4.3 that the FRW enhancement of the

de Sitter ultrametric structure occurs as long as increasing the magnitude of θ leads to

sampling more suppressed regions of parameter space and the conditional probability re-

mains well-defined. This is in agreement with how one enhances the ultrametric structure

at θ = 0 (or any fixed θ), which is accomplished by taking the conditioned distance ∆1

and/or ∆2 large and negative. This is sampling relatively similar configurations, whereas

positive ∆i would be sampling relatively dissimilar ones. In the case of the de Sitter Gum-

bel we see that sampling similar configurations leads to a super-exponentially suppressed

region of parameter space, which is where the ultrametric structure is sharpest. It is as

if θ is just acting to renormalize the distances ∆i, although (4.27) shows that this is only

a useful heuristic. Plotting the conditional probabilities while keeping P (∆1) and P (∆2)

fixed seems a sensible way to compare different values of θ, and we saw in figure 4 that

dialing θ still led to an enhancement of ultrametricity.

It is not yet well understood why one should have to sample relatively similar configu-

rations to see such an ultrametric structure emerge. We seem to have enough data to begin

extracting some useful physical lessons from these results, such as how the bulk ultramet-

ric structure is encoded in the boundary theory, but there are indeed more calculations

which can be done. An obvious generalization of these calculations is to massive fields.

A more interesting problem is to understand the implications for the graviton, which in

transverse traceless gauge is effectively a massless scalar. It would be very interesting if

these calculations shed light on the nature of the spacetime geometry at I+. Finally, a

less obvious generalization is to analyze anisotropic cosmologies with an aim toward com-

puting field overlaps in Kasner spacetimes, which describe the classical background near

the BKL singularity [96]. It was conjectured that a backreacted massless scalar can lead

to non-oscillatory behavior near the BKL singularity that is easier to analyze [97]. In any

case, the spatial dynamics is expected to decouple point by point near the singularity and

lead to “ultralocality.” Since the conjecture, the rich mathematical structure of the clas-

sical dynamics has been analyzed, invoking Coxeter groups and Kac-Moody algebras,11

but little of the quantum dynamics has been understood outside of loop quantum cosmol-

ogy [99]. Perturbative wavefunctionals and field overlaps may be a useful way to begin

such a quantum analysis.

We also commented on the possibility of realizing holographic descriptions of FRW

spacetimes, either on their own or as part of a cosmological RG flow. Covariant entropy

bounds suggest the possibility of holographically describing an accelerated FRW spacetime

with a dual theory at I+. This Q-space/QFT correspondence is proposed to be given by

ΨHH = ZQFT , with the dual theory violating hyperscaling. The argument for hyperscaling

violation extends to decelerated phases and implies that matter domination and radiation

domination in our universe correspond to phases of a dual RG flow which violate hyperscal-

ing. This picture, if correct, helps fill in Strominger’s vision of the cosmological evolution of

11See [98] for a nice review of the classical dynamics and mathematics behind BKL singularities.
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the universe as inverse RG flow [61]. Much remains to be understood in this Q-space/QFT

correspondence, such as the behavior of higher spin fields and holographic renormaliza-

tion. An enlightening approach to the latter would be to perturb around the fixed point

θ = 0, analogous to what was done for e.g. Lifshitz backgrounds in [100]. Another concrete

calculation would be to study the asymptotic symmetry group of the spacetime, which

to the author’s knowledge has not been done either for Q-space or hyperscaling-violating

spacetimes. As in the de Sitter case, it remains unclear how the bulk ultrametric structure

is encoded in the dual theory at any given θ. However, the parameter θ is a new knob one

can turn to sharpen the ultrametricity in the bulk and try to understand how a holographic

dual should respond, which we will speculate about shortly.

Finally, given the motivation for understanding geometries with large and negative θ

due to their interesting properties in the case of cosmological field overlaps, we studied

the analytic continuation of the cosmology with θ = −∞, i.e. linear scale factor. In the

hyperscaling-violating family the dual to this geometry has an infinite effective dimen-

sionality, and the geometry itself has been encountered before as the gravitational dual

to little string theory, the purported worldvolume theory on a stack of NS5-branes. The

limit θ → −∞ (deff → ∞) may be a useful way to think about how nonlocal or string-

like dynamics may emerge from particle-like dynamics. Indeed, one can hope that the

numerical coefficient of the Brown-York stress tensor in (3.19), which we have suppressed

but is given by d − 1 − θ, does not get rescaled by inverse powers of θ upon performing

holographic renormalization. Interpreted as the number of degrees of freedom per site, we

would conclude that this diverges as θ → −∞, hinting at string-like dynamics. The con-

nections discussed above may be a clue that ultrametricity plays a role in understanding

these nonlocal theories, either in the effective holographic approach or in the full brane

construction, the way it does in understanding nonlocal mean-field spin glasses. Such a

growth of the number of degrees of freedom could analogously be true for the Q-space

duals. It would then be very tempting to speculate that the sharpening of the ultrametric

structure is holographically mirrored by the growth of the effective dimensionality of the

dual, or alternatively the growth of the number of degrees of freedom per site, which are

limits in which ultrametricity generically tends to sharpen [82].
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A Form of higher curvature corrections

In this appendix we provide a short proof that adding higher curvature terms to an action

which produces a hyperscaling-violating geometry leads to simple additions to the metric

equation of motion. Specifically, for terms in the action consisting solely of contractions

of the Riemann tensor, we will argue that their contribution to the effective stress energy

tensor is of the form

TR
n+1

µν dxµdxν = r−2n θ /d

(
αn
−dt2

r2z
+ βn

dr2

r2
+ γn

dx2
i

r2

)
. (A.1)

To prove this, it is important to notice that any entry of the Riemann tensor evaluated on

the hyperscaling-violating metric ansatz (1.2) can be written as

Rabcd = r2θ/df(d, z, θ)r−2−2i, (A.2)

where i equals either the number 1 or the dynamical critical exponent z. Our point here is

to isolate and focus on the θ-dependence of any exponents of r. Now consider an arbitrary

series of Riemann tensors before they are contracted:

RabcdRefghRijkl · · · . (A.3)

For x Riemann tensors, there are 4x free indices and an overall θ-dependent power of r2xθ/d.

To contract all indices and produce a scalar fit to be included in an action, we need 2x

inverse metrics, which come in with a θ-dependent power r−4xθ/d. The total θ-dependent

power of the produced curvature invariant is therefore r−2xθ/d. To produce the equations

of motion one varies with respect to the inverse metric, which contributes a further power

of r2θ/d, yielding r−2(x−1)θ/d. Tracking the measure of integration appropriately and iden-

tifying x− 1 = n, we see that at order n+ 1 in curvature the contribution to the effective

stress energy tensor has an overall power r−2nθ/d. This explains the overall factor in (A.1).

Furthermore, since the constructed curvature invariant is, well, invariant, this must be the

total power of r, i.e. the curvature invariant takes the form

(Rijkl)
x = r−2xθ/df(z, θ, d). (A.4)

Varying with respect to the metric is what puts in the Lifshitz powers r−2 and r−2z and

explains the rest of the structure of (A.1). For general scale covariance, i.e. a prefactor

not of the form r2θ/d but of arbitrary functional form f(r), the structure of the Riemann

tensor is not as simple as (A.2) and the proof does not hold.

In the limit θ → −∞ discussed in section 5, we have the geometry

ds2 = e2r/`
(
−dt2 + dr2 + dx2

i

)
. (A.5)

Contributions to an effective stress-energy tensor of higher curvature corrections are anal-

ogous to the case above:

TR
n+1

µν dxµdxν = e−2rn/`
(
−αndt2 + βndr

2 + γndx
2
i

)
. (A.6)

The proof mirrors the previous one.
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