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1 Introduction

We investigate the correspondence between topological field theories and quantum inte-

grable systems, discovered by Moore, Nekrasov and Shatashvili [1]. They applied the

cohomological localization method to the topological Yang-Mills-Higgs model and then

discovered that its localized configurations coincide with the Bethe Ansatz equations in

the non-linear Schrödinger model. Later, Gerasimov and Shatashvili revealed that the

partition function of the topological Yang-Mills-Higgs model is related to the norms of

the wave functions in the non-linear Shcrödinger model [2]. From this fact, the topolog-

ical Yang-Mills-Higgs model corresponds to the non-linear Schrödinger model. We call

the correspondence like this as the Gauge/Bethe correspondence through this paper. This

correspondence implies that a special topological gauge theory has a hidden quantum in-

tegrable structure.

In the previous paper [3], we showed a correspondence between the G/G gauged Wess-

Zumino-Witten (WZW) model on a genus-h Riemann surface Σh and the phase model,

which is a quantum integrable field theory on a one-dimensional lattice and a strongly

correlated boson system, first introduced by [4]. In particular, we showed that its localized

configurations and the partition function coincide with the Bethe Ansatz equations and a

summation of all the norms between the eigenstates of the Hamiltonian in the phase model,

respectively. Furthermore, the G/G gauged WZW model is equivalent to the Chern-Simons

theory with the gauge group G on S1×Σh because the partition function of the G/G gauged
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WZW model coincides with that of the Chern-Simons theory [5, 6]. Therefore, we found

that the Chern-Simons theory on S1 × Σh also corresponds to the phase model.

The Gauge/Bethe correspondence is realized for not only topological gauge theories

but also vacua in a supersymmetric gauge theory. Nekrasov and Shatashvili discovered

that coulomb branch in a supersymmetric gauge theory corresponds to a certain integrable

system. For example, they found that the effective twisted superpotential in an N = (2, 2)

supersymmetric gauge theory in two dimensions coincides with the Yang-Yang function

for the XXX model [7, 8]. This correspondence is deeply related to the Gauge/Bethe

correspondence between topological field theories and quantum integrable systems. This is

natural because the vacua of the supersymmetric gauge theory transfer to physical states in

the topological field theory through a topological twist. Although it is known that various

supersymmetric or topological gauge theories correspond to certain quantum integrable

systems, the underlying mathematical principle of the Gauge/Bethe correspondence is not

clear up to now.

Our purpose is to construct a one-parameter deformation of the Gauge/Bethe corre-

spondence between the G/G gauged WZW model and the phase model, and to investigate

the underlying mathematical principle of the Gauge/Bethe correspondence in our case. It

is known that the phase model can be realized by the strong coupling limit of the q-boson

model, a quantum integrable field theory on a one-dimensional lattice [4, 9]. Therefore

the q-boson model can be regarded as the one-parameter deformation of the phase model.

From the viewpoint of the Gauge/Bethe correspondence, we expect that there exists a

one-parameter deformation of the G/G gauged WZW model corresponding to the q-boson

model. Such a model actually exists and is the G/G gauged WZW model coupled to ad-

ditional scalar matters. We call this model as the G/G gauged WZW-matter model. We

will establish a new correspondence between the G/G gauged WZW-matter model and the

q-boson model by utilizing the cohomological localization method in this paper.

We also study the Gauged WZW-matter model/q-boson model correspondence from

the viewpoint of the axiomatic system of the topological quantum field theory (TQFT)

given by Atiyah [10] and Segal [11] in order to investigate the underlying mathematical

principle of this correspondence. In particular, it is well known that the category of com-

mutative Frobenius algebras is categorical equivalent to that of two dimensional TQFTs,

e.g. [12, 13]. Recently, Korff constructed a new commutative Frobenius algebra from the

q-boson model [14] as a one-parameter deformation of the Verlinde algebra in the Wess-

Zumino-Witten model constructed from the phase model [15]. Thus, it is natural to think

that there exists a relation between the SU(N)/SU(N) gauged WZW-matter model and

the TQFT equivalent to this commutative Frobenius algebra, as with the relation between

the SU(N)/SU(N) gauged WZW model and the Verlinde algebra [3]. We will show equiv-

alence between the SU(N)/SU(N) gauged WZW-matter model and the topological field

theory constructed by Korff.

This paper is organized as follows. In section 2, we review the q-boson model and the

algebraic Bethe Ansatz for this model. In particular, we give a determinant formula for

norms between the eigenstates of the Hamiltonian in the q-boson model. This norm will

become one of the most important quantities when we consider the Gauge/Bethe corre-
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spondence. In section 3, we investigate the Gauge/Bethe correspondence between the G/G

gauged WZW-matter model and the q-boson model. In order to establish the correspon-

dence, we construct the G/G gauged WZW-matter model in section 3.1. Later, we apply

the cohomological localization method to this model in the case of G = U(N), and derive

its partition function in section 3.2. In section 3.3, we evaluate numerically the partition

function for several cases with different N and the level k. In section 3.4, we establish the

Gauge/Bethe correspondence between the SU(N)/SU(N) or U(N)/U(N) gauged WZW-

matter model and the q-boson model. In section 3.5, we study the correspondence between

the SU(N)/SU(N) gauged WZW-matter model and the q-boson model from the viewpoint

of the axiomatic system of the TQFT and investigate relations with the TQFT constructed

by Korff. In section 3.6, we extend the Gauge/Bethe correspondence for the partition func-

tion to that for correlation functions. We show the correspondence between the correlation

functions of gauge invariant BRST-closed operators in the SU(N)/SU(N) gauged WZW-

matter model and the expectation values of conserved charges in the q-boson model. The

final section is devoted to the summary and the discussion.

2 q-boson model

In this section, we introduce the q-boson model and apply the algebraic Bethe Ansatz to

this model. The q-boson model is a quantum integrable field theory on a one-dimensional

lattice and is regarded as the q-deformation of the free boson system on the lattice. Also,

this model becomes the phase model in the strong coupling limit q → 0. See [4, 9, 14–17]

for the q-boson model and the algebraic Bethe Ansatz method in details.

2.1 q-boson model

Let us define the q-boson model. First, consider the operators {q±N̂ , β, β†} which satisfy

the q-boson algebra (or the q-oscillator algebra) Hq:

qN̂q−N̂ = q−N̂qN̂ = 1, qN̂β = βqN̂−1, qN̂β† = β†qN̂+1,

ββ† − β†β = (1− q2)q2N̂ , ββ† − q2β†β = 1− q2 (2.1)

where q±N̂ denotes generators and q±pN̂+x is the abbreviation of (q±N̂ )pqx. The parameter

q is a generic real c-number and 0 ≤ q < 1. From this algebra, we find that the operators

N̂ , β and β† serve as the number operator, the annihilation operator and the creation

operator, respectively.

Next, we construct a Fock space F for the q-boson algebra given by (2.1). The Fock

space is constructed as

qN̂ |m〉 = qm|m〉, β†|m〉 = (1− q2m+2)|m+ 1〉, β|m〉 = |m− 1〉. (2.2)

The basis is given by the set {|m〉 = (β†)m/(q2)m|0〉 | m ∈ Z≥0} where (x)m is (x)m =∏m−1
i=0 (1 − xi+1). Also, |0〉 is defined as a state which is annihilated by acting on the

annihilation operator β.
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In order to define the Hamiltonian of the q-boson model, we generalize the q-boson

algebra and the Fock space to their L-fold tensor product. We denote the operators as

{βi, β†i , qN̂i}i=1,··· ,L and define the L-fold tensor productH⊗Lq of the q-boson algebra (2.1) as

βiβj − βjβi = β†i β
†
j − β

†
jβ
†
i = qN̂iqN̂j − qN̂jqN̂i = 0,

qN̂iβj = βjq
N̂i−δij , qN̂iβ†j = β†jq

N̂i+δij ,

βiβ
†
j − β

†
jβi = δij(1− q2)q2N̂i , βiβ

†
i − q

2β†i βi = (1− q2). (2.3)

Also, we can define the L-fold tensor product of the Fock space F⊗L just like the case of

L = 1. The basis of F⊗L is given by the set {|m1, · · · ,mL〉 = |m1〉⊗· · ·⊗|mL〉 |mi ∈ Z≥0}.
By using these relations, we define the Hamiltonian of the q-boson model which be-

longs to H⊗Lq and acts on F⊗L. The Hamiltonian of the q-boson model with the periodic

boundary condition L+ 1 ≡ 1 and with the total site number L is as follows:

H = −1

2

L∑
j=1

(
βjβ

†
j+1 + β†jβj+1

)
(2.4)

where the lattice spacing is 1 and the index of the operators j labels a site of the lattice.

In order to understand the properties of the q-boson model, we consider relations

between the q-boson algebra (2.3) and the harmonic oscillator algebra

[N̂i, aj ] = −aiδij , [N̂i, a
†
j ] = a†iδij , [ai, a

†
j ] = δij . (2.5)

The operators obeying the q-boson algebra are represented by the operators {ai, a†i , Ni}
obeying the harmonic oscillator algebra as follows:

βi =

√
1− q2(N̂i+1)

1 + N̂i

ai, β†i = a†i

√
1− q2(N̂i+1)

1 + N̂i

(2.6)

where these are defined as a formal power series.

We rewrite the Hamiltonian (2.4) by using the substitution (2.6) as

H =
L∑
j=1


√√√√1− q2(N̂j+1)

1 + N̂j

aja
†
j+1

√√√√1− q2(N̂j+1+1)

1 + N̂j+1

+a†j

√√√√1− q2(N̂j+1)

1 + N̂j

√√√√1− q2(N̂j+1+1)

1 + N̂j+1

aj+1

 . (2.7)

Here, q serves as a coupling constant of the q-boson model. When we expand the Hamil-

tonian in terms of the coupling constant, infinite interaction terms appear in front of the

hopping term. Therefore we find that the q-boson model is the strongly interacting system

and the quantum field theory with non-local interactions on the lattice.

Also, we find that the q-boson algebra and the Hamiltonian of the q-boson model

reduce to those of the free boson at the leading order of ξ, once we set q = eξ and expand
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it around ξ = 0. Thus the q-boson is regarded as the q-deformation of the usual free boson

in the weak coupling q ∼ 1 (ξ ∼ 0). On the other hand, the q-boson model becomes the

phase model in the strong coupling limit q → 0 (ξ → −∞). There also exists a continuum

limit because the q-boson model is a field theory on the lattice. In this limit, the q-boson

model becomes the non-linear Schrödinger model.

2.2 Algebraic Bethe Ansatz for the q-boson model

In this subsection, we apply the algebraic Bethe Ansatz to the q-boson model. In particular,

we construct the eigenvalues and the eigenstates of the Hamiltonian and give Bethe Ansatz

equations. Furthermore, we give a determinant formula for norms between the eigenstates

of the Hamiltonian.

In order to apply the algebraic Bethe Ansatz method to the q-boson model, we first

define an L-matrix and an R-matrix which satisfy the Yang-Baxter equation:

R(µ, ν)(L(µ)⊗ L(ν)) = (L(ν)⊗ L(µ))R(µ, ν). (2.8)

The L-matrix of the q-boson model at a site n (n = 1, · · · , L) is a matrix in an auxiliary

space C2 and is defined by

Ln(µ) =

(
1 µβ†n
βn µ

)
∈ End[C2(µ)]⊗Hq (2.9)

where µ ∈ C is a spectral parameter. βn and β†n obey the q-boson algebra (2.3). Also, the

R-matrix is defined by

R(µ, ν) =


f(ν, µ) 0 0 0

0 g(µ, ν) 1 0

0 t −g(ν, µ) 0

0 0 0 f(ν, µ)

 ∈ End[C2(µ)⊗ C2(ν)] (2.10)

where

f(µ, ν) =
µt− ν
µ− ν

, g(µ, ν) =
(1− t)ν
µ− ν

and t = q2. (2.11)

Next, we define the monodromy matrix as

T (µ) = LL(µ)LL−1(µ) · · · L1(µ) =

(
A(µ) B(µ)

C(µ) D(µ)

)
. (2.12)

Then, we can show the following relation from the Yang-Baxter equation (2.8):

R(µ, ν)(T (µ)⊗ T (ν)) = (T (ν)⊗ T (µ))R(µ, ν). (2.13)
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From this formula, we can derive 16 commutation relations for the elements of the mon-

odromy matrix, A(µ), B(µ), C(µ), D(µ). For example,

[O(µ),O(ν)] = 0, for O = A,B,C,D, (2.14)

A(µ)B(ν) = f(µ, ν)B(ν)A(µ) + g(ν, µ)B(µ)A(ν), (2.15)

D(µ)B(ν) = f(ν, µ)B(ν)D(µ)− g(µ, ν)B(µ)D(ν), (2.16)

C(µ)A(ν) = f(ν, µ)A(ν)C(µ)− g(µ, ν)A(µ)C(ν), (2.17)

C(µ)D(ν) = f(µ, ν)D(ν)C(µ) + g(µ, ν)D(µ)C(ν), (2.18)

C(µ)B(ν)− tB(ν)C(µ) = g(µ, ν)(D(µ)A(ν)−D(ν)A(µ)) (2.19)

= g(µ, ν)(A(ν)D(µ)−A(µ)D(ν)). (2.20)

The transfer matrix is defined by taking trace of the monodromy matrix with respect to

the auxiliary space:

τ(µ) = trT (µ) = A(µ) +D(µ). (2.21)

We can show that the transfer matrices with the different spectral parameters commute

by taking trace of the both sides of (2.13) with respect to the auxiliary space End[C2(µ)⊗
C2(ν)]:

[τ(µ), τ(ν)] = 0. (2.22)

By expanding the transfer matrix as a power series τ(µ) =
∑L

a=0Haµ
a and substituting

it to (2.22), we show that all the operators {H0, H1, · · · , HL} commute. Therefore, the

transfer matrix can be regarded as a generating function of the conserved charges. Note

that H0 and HL are not conserved charges because of H0 = HL = 1. Also, the Hamiltonian

of the q-boson model (2.4) is expressed via the conserved charges as

H = −1

2
(H1 +HL−1). (2.23)

Putting together the total particle number operator and {H1, · · · , HL−1}, we find that the

q-boson model possesses as many commuting conserved charges as the degree of freedom

of the system. Therefore, the q-boson model is a quantum integrable system.

From now on, let us construct the eigenvalues and the eigenvectors of the transfer

matrix. Since C(µ) and B(µ) are an annihilation operator and an creation operator,

respectively, the vacuum state |0〉 and its dual vacuum state 〈0| satisfy C(µ)|0〉 = 0 and

〈0|B(µ) = 0. Also, the eigenvalues of operators A(µ) and D(µ) on the vacuum state are

|0〉 a(µ) = 1 and d(µ) = µL , respectively.

Suppose that a state
∏M
j=1B(λj)|0〉 is the eigenstate of the transfer matrix:

τ(µ)

M∏
j=1

B(λj)|0〉 = Λ(µ, {λ})
M∏
j=1

B(λj)|0〉 (2.24)

– 6 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
3

where the eigenvalue of the transfer matrix Λ(µ, {λ}):

Λ(µ, {λ}) = a(µ)

M∏
j=1

f(µ, λj) + d(µ)

M∏
j=1

f(λj , µ). (2.25)

Then, the spectral parameters {λ1, · · · , λM} must satisfy the Bethe Ansatz equations

a(λj)
M∏
k=1
k 6=j

f(λj , λk) = d(λj)
M∏
k=1
k 6=j

f(λk, λj) for j = 1, · · · ,M. (2.26)

The Bethe Ansatz equations concretely are

λLj =

M∏
k=1
k 6=j

λjt− λk
λj − λkt

for j = 1, · · · ,M. (2.27)

Note that the Bethe roots assign the ground state or excited states in the q-boson model.

Also, we call the state
∏M
j=1B(λj)|0〉 with the spectral parameters {λj} which satisfy the

Bethe Ansatz equations, as Bethe vector.

Here, we summarize the several properties of the Bethe Ansatz equations. For conve-

nience, we change a parameterization of the Bethe roots as λj = e2πixj for j = 1, · · · ,M
and of the coupling constant t as t = e−2πη where η > 0 because of 0 ≤ t < 1. Then, the

Bethe Ansatz equations become

e2πiLxj =

M∏
k=1
k 6=j

sin[π(xj − xk + iη)]

sin[π(xj − xk − iη)]
for j = 1, · · · ,M. (2.28)

From this equations, we can show that the Bethe roots {x1, · · · , xM} are real numbers by

using a similar manner with the Bose gas model [16, 18]. The logarithmic form of (2.28) is

2πiLxj = 2πiIj +
M∑
k=1

log
sin[π(iη + (xj − xk))]
sin[π(iη − (xj − xk))]

(2.29)

where Ij is (half-)integers when M is (even) odd. From this formula, we can show the

existence and uniqueness of the solutions of the Bethe Ansatz equations once we assign

{I1, · · · , IM} in the similar manner with the Bose gas model [16, 18]. In [14], Korff proved

the completeness of the Bethe vectors in the q-boson model with an indeterminate t = q2.

Finally, let us consider the inner product between
∏M
a=1B(µa)|0〉 and 〈0|

∏M
a=1C(νa):

〈0|
M∏
a=1

C(µa)
M∏
a=1

B(νa)|0〉 (2.30)

where {µ1, · · · , µM} and {ν1, · · · , νM} are generic complex numbers. In particular, we give

a determinant formula for the inner product when either of {µ1, · · · , µM} or {ν1, · · · , νM}
satisfy the Bethe Ansatz equations (2.27). For the methods to derive the determinants of an

– 7 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
3

inner product, for example, see [16, 19]. In this paper, we follow Slavnov’s derivation [20] of

the inner product based on the commutation relations of the Yang-Baxter algebra, (2.14)–

(2.20). An advantage of this method is to be able to apply to a wide class of models.

Let us summarize the results of the inner product for the q-boson model from here. We

define the Bethe vectors which are the eigenvector and its dual eigenvector of the transfer

matrix as follows:

|ψ({λ}M )〉 =
M∏
a=1

B(λa)|0〉 and 〈ψ({λ}M )| = 〈0|
M∏
a=1

C(λa) (2.31)

where {λ1, · · · , λM} satisfies the Bethe Ansatz equations (2.27). The inner product be-

tween the Bethe vector and the generic vector with generic complex spectral parameters

{µ1 · · ·µM} is expressed by the determinant formula:

〈ψ({λ})|
M∏
a=1

B(µa)|0〉 =

M∏
a=1

(µa
λa

)
·〈0|

M∏
a=1

C(µa)|ψ({λ})〉

=
M∏
a=1

d(λa) · χ−1
M ({µ}, {λ}) · det

M

( ∂

∂λj
Λ(µk, {λ})

)
(2.32)

where Λ(µk, {λ}) is the eigenvalue of the transfer matrix (2.25) and χM ({µ}, {λ}) is the

Cauchy determinant:

χM ({µ}, {λ}) =

∏M
a>b(λa − λb)(µb − µa)∏M

a,b=1(µa − λb)
. (2.33)

When {µ1, · · · , µM} in (2.32) moreover satisfies the Bethe Ansatz equations (2.27), we

obtain

〈ψ({λ}M )|ψ({λ}M )〉 = 〈0|
M∏
a=1

C(λa)
M∏
a=1

B(λa)|0〉

=

∏M
a,b=1(λat− λb)∏M
a,b=1
a6=b

(λa − λb)
· det
M

Φ′j,k({λ}M ) (2.34)

where the Gaudin matrix Φ′j,k({λ}M ) is

Φ′j,k({λ}M ) =
∂

∂λk
log
{
λ−Lj ·

M∏
b=1
b 6=j

λjt− λb
λj − λbt

}

= δj,k

{
− L
λj

+

M∑
b=1

(t2 − 1)λb
(λjt− λb)(λbt− λj)

}
− (t2 − 1)λj

(λjt− λk)(λkt− λj)
. (2.35)

This norm will become one of the most important quantities when we study the Gauge/Bethe

correspondence between the q-boson model and the topological field theory. All the result
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obtained here for the q-boson model reproduce that for the phase model [3] in the limit

t→ 0.

We comment on relations between the q-boson model and the infinite spin XXZ model.

The Bethe Ansatz equations (2.28) and the norms (2.34) agree with ones for the infinite

spin XXZ model under the appropriate rescaling of parameters in the both models when

the number of sites is even. See the algebraic Bethe Ansatz and the inner product for the

higher spin XXZ model, e.g. [21, 22]. The agreement of the Bethe Ansatz equations and

the norms in the q-boson model and in the infinite spin XXZ model may not be accidental.

This is because the q-oscillator representation is equivalent to the infinite spin limit of spin-

s representation in the quantum group. In the case of suq(2), this fact is proved in [23].

However, equivalence of the Hamiltonian in the both models is not proved yet.

3 G/G gauged Wess-Zumino-Witten-matter model

In this section, we study a generalization of the Gauge/Bethe correspondence between

the G/G gauged WZW model and the phase model discovered by [3]. In the previous

section, we have stated that the phase model is realized as the t = 0 limit of the q-boson

model. Since the Gauge/Bethe correspondence is a correspondence between topological

gauge theories and quantum integrable systems, there should exist a topological gauge

theory corresponding to the q-boson model. We will show that this topological gauge

theory is the G/G gauged WZW model coupled to additional matters. From here, we call

this model as the G/G gauged Wess-Zumino-Witten-matter model. The purpose of this

section is to investigate various relations between the G/G gauged WZW-matter model

and the q-boson model by utilizing the cohomological localization method in a similar way

with [1–3, 6, 24, 25].

This section is organized as follows. In section 3.1, we introduce the G/G gauged

WZW-matter model on a genus-h Riemann surface. Then, we apply the cohomological

localization method to the model in order to evaluate the partition function in section 3.2.

Furthermore, we evaluate numerically the partition function in section 3.3. In section 3.4,

we establish a correspondence between the partition function of the G/G gauged WZW-

matter model and q-boson model. In section 3.5, we investigate the mathematical structures

from the viewpoint of the Atiyah-Segal axiomatic system [10, 11] and give a relation with a

TQFT constructed by Korff [14]. Finally, we generalize the Gauge/Bethe correspondence

of the partition function to that of the correlation functions in section 3.6.

3.1 G/G gauged Wess-Zumino-Witten-matter model

In this subsection, we introduce the G/G gauged WZW-matter model on a genus-h Rie-

mann surface. Since this model is defined as the G/G gauged WZW model coupled to

matters on the Riemann surface, let us first define the G/G gauged WZW model on a

genus h Riemann surface Σh. See [6, 27] for the G/G gauged WZW model in details.

The G/G gauged WZW model consists of a following fields: a G-valued field g(z, z̄),

a connection A = A(1,0) + A(0,1) on a G-bundle E and a Grassmann odd one-form λ =
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λ(1,0) + λ(0,1) ∈ Ω1 (Σh,End(E)).1 The action is defined as

SGWZW(g,A, λ)

= − 1

8π

∫
Σh

Tr
(
g−1dAg ∧ ∗g−1dAg

)
− iΓ(g,A) +

i

4π

∫
Σh

Tr(λ ∧ λ). (3.1)

where dA is the covariant derivative, dA = dg+ [A, g]. Here, Γ(g,A) is the gauge invariant

extension of the Wess-Zumino term:

Γ(g,A) = Γ(g)− 1

4π

∫
Σh

Tr
{
A ∧ (dgg−1 + g−1dg) +Ag−1 ∧Ag

}
(3.2)

where the Wess-Zumino term Γ(g) is

Γ(g) =
1

12π

∫
B

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
. (3.3)

Here, B is a certain three dimensional manifold with the Riemann surface at the boundary,

∂B = Σh.

From now on, let us construct the action of the G/G gauged WZW-matter model

on a genus-h Riemann surface. The additional matters are as follows: Φ (ψ) is a Grass-

mann even (odd) section of the bundle End(E), respectively. The auxiliary fields ϕ(1,0) ∈
Ω(1,0)(Σh,End(E)) and ϕ(0,1) ∈ Ω(0,1)(Σh,End(E)) are Grassmann even. The auxiliary

fields χ(1,0) ∈ Ω(1,0)(Σh,End(E)) and χ(0,1) ∈ Ω(0,1)(Σh,End(E)) are Grassmann odd.2

Since the G/G gauged WZW-matter model is a topological field theory, the action of

the matter part should be expressed as a BRST-exact term. The BRST transformation

generated by a BRST charge Q(g,t) is defined as

Q(g,t)A = λ, Q(g,t)λ
(1,0) = (Ag)(1,0) −A(1,0), Q(g,t)λ

(0,1) = −(Ag
−1

)(0,1) +A(0,1),

Q(g,t)g = 0, Q(g,t)Φ = ψ, Q(g,t)Φ
† = ψ†, Q(g,t)ψ = tg−1Φg − Φ,

Q(g,t)ψ
† = −tgΦ†g−1 + Φ†, Q(g,t)χ

(1,0) = ϕ(1,0), Q(g,t)χ
(0,1) = ϕ(0,1),

Q(g,t)ϕ
(1,0) = tg−1χ(1,0)g − χ(1,0), Q(g,t)ϕ

(0,1) = −tgχ(0,1)g−1 + χ(0,1) (3.4)

where 0 ≤ t < 1 and Ag = g−1Ag + g−1dg. This is a natural generalization of the BRST

transformation in the G/G gauged WZW model.

Moreover, the square of the BRST transformation Q(g,t) generates the finite gauge and

U(1) transformation L(g,t), Q
2
(g,t) = L(g,t):

L(g,t)A
(1,0) = (Ag)(1,0) −A(1,0), L(g,t)A

(0,1) = −(Ag
−1

)(0,1) +A(0,1),

L(g,t)λ
(1,0) = g−1λ(1,0)g − λ(1,0), L(g,t)λ

(0,1) = −gλ(0,1)g−1 + λ(0,1),

L(g,t)g = 0, L(g,t)Φ = tg−1Φg − Φ, L(g,t)Φ
† = −tgΦ†g−1 + Φ†,

L(g,t)ψ = tg−1ψg − ψ, L(g,t)ψ
† = −tgψ†g−1 + ψ†,

L(g,t)χ
(1,0) = tg−1χ(1,0)g − χ(1,0), L(g,t)χ

(0,1) = −tgχ(0,1)g−1 + χ(0,1),

L(g,t)ϕ
(1,0) = tg−1ϕ(1,0)g − ϕ(1,0), L(g,t)ϕ

(0,1) = −tgϕ(0,1)g−1 + ϕ(0,1). (3.5)

1Once we define a complex structure on the Riemann surface, the one-form λ is decomposed into the

(1,0)-form λ(1,0) ∈ Ω(1,0) (Σh,End(E)) and the (0,1)-form λ(0,1) ∈ Ω(0,1) (Σh,End(E)).
2Note that the spin of the matters in this model is different from that in [2] because of Φ, ψ ∈

Ω1(Σh,End(E)) etc.
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We define the partition function of the G/G gauged WZW-matter model with the level

k on Σh by

ZGGWZWM(Σh, k, t)

=

∫
DgD2AD2λDΦDΦ†DψDψ†D2ϕD2χe−kSGWZWM(g,A,λ,Φ,Φ†,ψ,ψ†,ϕ,χ) (3.6)

where the action is defined as

SGWZWM(g,A, λ,Φ,Φ†, ψ, ψ†, ϕ, χ)

= SGWZW(g,A, λ) + Smatter(g,A,Φ,Φ
†, ψ, ψ†, ϕ, χ). (3.7)

Here, the matter part of (3.7) is represented as the BRST-exact form:

Smatter(g,A,Φ,Φ
†, ψ, ψ†, ϕ, χ) = Q(g,t) · R (3.8)

with

R =
1

4π

∫
Σh

{
dµTr(Φ†ψ − Φψ†) +R1 +R2

}
(3.9)

where dµ is a volume form on the Riemann surface. R1 and R2 are defined as

R1 = Tr
{
χ(0,1) ∧ (∂AΦ− ΦX +XΦ)

}
, (3.10)

R2 = Tr
{
χ(1,0) ∧

(
∂̄AΦ† − Y Φ† + Φ†Y

)}
(3.11)

with

X =

∞∑
n=0

Xn =

∞∑
n=0

g−n(g−1∂Ag)gn, (3.12)

Y =

∞∑
n=0

Yn =

∞∑
n=0

gn(∂̄Ag · g−1)g−n. (3.13)

Here we define the covariant derivatives as ∂Af = ∂f+[A(1,0), f ] and ∂̄Af = ∂̄f+[A(0,1), f ]

for a scalar field f . When we carry out the BRST transformation for the action (3.8), we

obtain

Smatter(g,A,Φ,Φ
†, ψ, ψ†, ϕ, χ)

= − 1

2π

∫
Σh

dµTr
(

ΦΦ† + ψψ† − tΦ†g−1Φg
)

+
1

4π

∫
Σh

Tr
{
ϕ(0,1) ∧ (∂AΦ + [X,Φ])− χ(0,1) ∧ (∂Aψ + [X,ψ])

+ϕ(1,0) ∧ (∂̄AΦ† − [Y,Φ†])− χ(1,0) ∧ (∂̄Aψ
† − [Y, ψ†])

}
. (3.14)

The partition function of the G/G gauged WZW-matter model is a topological invari-

ant because the G/G gauged WZW-matter model is a topological field theory. Recall that
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the partition function of the G/G gauged WZW model counts the number of the confor-

mal blocks of the G WZW model [5, 27]. Also, the G/G gauged WZW-matter model is

a one-parameter deformation of the G/G gauged WZW model as it immediately becomes

clear. Therefore, we expect that the partition function of the G/G gauged WZW-matter

model counts the number of the building blocks of a certain underlying field theory but we

do not know what its field theory is.

3.2 Localization

Let us set the gauge groupG as U(N) and evaluate the partition function of the U(N)/U(N)

gauged WZW-matter model by using the cohomological localization method. Since we can

not directly evaluate the partition function with the action (3.7), we consider a more general

action given by

Sτ1,τ2matter(g,A,Φ,Φ
†, ψ, ψ†, ϕ, χ)

= Q(g,t) ·
[ 1

4π

∫
Σh

{
dµTr

(
Φ†ψ − Φψ†

)
+ τ1 (R1 +R2)− τ2Tr(χ ∧ ∗ϕ)

}]
(3.15)

where we denote ∗ as the Hodge dual operator. Also, ϕ = ϕ(1,0) + ϕ(0,1) and χ = χ(1,0) +

χ(0,1). For τ1 = 1, τ2 = 0, (3.15) matches (3.8). From the viewpoint of the cohomological

localization for the path integral, we expect that the partition function for τ1 = 1, τ2 = 0

coincides with that for τ1 = 0, τ2 = 1. Thus, we consider the case of τ1 = 0, τ2 = 1 from

now on. In this case, the action (3.15) becomes

Sτ1=0,τ2=1
matter (g,A,Φ,Φ†, ψ, ψ†, ϕ, χ)

= Q(g,t) ·
[

1

4π

∫
Σh

{
dµTr(Φ†ψ − Φψ†)− Tr(χ ∧ ∗ϕ)

}]
= − 1

2π

∫
Σh

dµTr
{

ΦΦ† − tΦgΦ†g−1 + ψψ†
}

− 1

2π

∫
Σh

d2zTr
(
ϕ(1,0) ∧ ∗ϕ(0,1) − χ(1,0) ∧ ∗χ(0,1) + tχ(1,0)g ∧ ∗χ(0,1)g−1

)
. (3.16)

The action is going to become quadratic in terms of Φ, ϕ, ψ and ψ after we take a diagonal

gauge. Therefore, we can evaluate the partition function in a similar manner with [6]. For

simplicity of notation, we denote this action as Smatter(g,Φ,Φ
†, ψ, ψ†, ϕ, χ) from here.

As stated in the previous subsection, the G/G gauged WZW-matter model is a one-

parameter deformation of the G/G gauged WZW model. Here, let us explain this. In the

action (3.16), we find that the interaction terms between the fields in the G/G gauged

WZW model and the additional matters disappear when we set t = 0. Hence, the G/G

gauged WZW-matter model becomes the G/G gauged WZW model by integrating out the

matter part at t = 0. Therefore, we can regard the G/G gauged WZW-matter model as a

one-parameter deformation of the G/G gauged WZW model.

Let us take a diagonal gauge g(z, z̄) ≡ exp
{

2πi
∑N

a=1 φa(z, z̄)H
a
}

where H1, · · · , HN

are the Cartan generators of U(N) and 0 ≤ φ1, · · · , φN < 1. Then, the partition function
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under the diagonal gauge becomes

Z
U(N)
GWZWM(Σh, k, t)

=
1

|W |

∫
D2AD2λDφDΦDΦ†DψDψ†D2ϕD2χDet(1−Ad(e2πiφ))

× exp
{
−kSGWZW(φ,A)− kSmatter(φ,Φ,Φ

†, ψ, ψ†, χ, ϕ)
}

(3.17)

where |W | is the order of the Weyl group of U(N) and Det(1−Ad(e2πiφ)) is the Faddeev-

Popov determinant for the diagonal gauge fixing. Det represents the functional determi-

nant. See [3, 6].

From now on, we explicitly carry out the path integration of (3.17). First, we consider

the path integral with respect to the connection A and λ:∫
D2AD2λDet(1−Ad(e2πiφ)) exp (−kSGWZW(φ,A, λ)). (3.18)

We already evaluated this path integration at [3, 6, 24]. The resulting expression is given by

∫ N∏
a=1

D2Aa

N∏
a=1

D2λa

N∏
a,b=1
a6=b

(
1− e2πi(φa−φb)

)1−h
exp

{
N∑
a=1

i

4π

∫
Σh

λa ∧ λa

}

× exp

{
i

N∑
a=1

∫
Σh

Fa

(
(N + k)φa −

N∑
b=1

φb +
N − 1

2

)}
. (3.19)

Here, we have expanded an adjoint field f by the Cartan-Weyl basis as

f =

N∑
a=1

fa(iH
a) +

∑
α∈∆

fα(iEα) (3.20)

where α is a root and ∆ represents the set of all roots.

Next, we evaluate the path integration with respect to Φ, Φ†, ψ, ψ†, ϕ and χ:∫
DΦDΦ†DψDψ†D2ϕD2χ exp

(
−kSmatter(φ,Φ,Φ

†, ψ, ψ†, χ, ϕ)
)
. (3.21)

The action of the matter part under the diagonal gauge is expressed as

Smatter(φ,Φ,Φ
†, ψ, ψ†, ϕ, χ)

= − 1

2π

∫
Σh

dµTr(ψψ†)− 1

2π

∫
Σh

Tr(ϕ(1,0) ∧ ∗ϕ(0,1)) +

+
1

2π

∫
Σh

dµ
{

(1− t)
N∑
a=1

ΦaΦ
†
a +

∑
α∈∆

(
1− te2πiα(φ)

)
Φ−αΦ†α

}

− 1

2π

∫
Σh

{
(1− t)

N∑
a=1

χ(1,0)
a ∧ ∗χ(0,1)

a +
∑
α∈∆

(1− te2πiα(φ))χ
(1,0)
−α ∧ ∗χ(0,1)

α

}
(3.22)
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where α(φ) =
∑N

a=1 αaφa. By performing the path integral with respect to χ
(1,0)
α and χ

(0,1)
α ,

we obtain∫ ∏
α∈∆

Dχ(1,0)
α

∏
α∈∆

Dχ(0,1)
α

∏
α∈∆

exp

{
− k

2π

∫
Σh

χ(0,1)
α (1− te2πiα(φ)) ∧ ∗χ(1,0)

−α

}
=

∫ ∏
α>0

Dχ(1,0)
α

∏
α>0

Dχ(1,0)
−α

∏
α>0

Dχ(0,1)
α

∏
α>0

Dχ(0,1)
−α

×
∏
α>0

exp

{
− k

2π

∫
Σh

(
χ(0,1)
α Mα(t)χ

(1,0)
−α + χ

(0,1)
−α M−α(t)χ(1,0)

α

)}
=
∏
α>0

Det(1,0)Mα(t) ·
∏
α>0

Det(1,0)M−α(t) (3.23)

where Mα(t) = 1 − te2πiα(φ). Furthermore, by performing the path integral with respect

to Φα and Φ†α, we obtain∫ ∏
α∈∆

DΦα

∏
α∈∆

DΦ†α
∏
α∈∆

exp

{
− k

2π

∫
dµΦ†α

(
1− te2πiα(φ)

)
Φ−α

}
=

∫ ∏
α>0

DΦα

∏
α>0

DΦ−α
∏
α>0

DΦ†α
∏
α>0

DΦ†−α

×
∏
α>0

exp

{
− k

2π

∫
dµ
(

Φ†αMα(t)Φ−α + Φ†−αM−α(t)Φα

)}
=
∏
α>0

[Det0Mα(t)]−1 ·
∏
α>0

[Det0M−α(t)]−1 . (3.24)

Putting together with (3.23) and (3.24), the contributions to the partition function from

Φα, Φ†α, χ
(1,0)
α and χ

(0,1)
α become∏

α>0

Det(1,0)Mα(t)

Det0Mα(t)
×
∏
α>0

Det(1,0)M−α(t)

Det0M−α(t)
. (3.25)

Recall that our gauge fixing is partial and the abelian gauge symmetry remains as the

residual symmetry. Therefore, we evaluate this ratio of the functional determinant by

using the heat kernel regularization, which respects the abelian gauge symmetry, for the

twisted Dolbeault complex as well as the case of the gauged WZW model. The difference

of the regularized traces is evaluated as follows [6]:

lim
T→0

{
TrΩ0(Σh,End(E)α)

(
e−T∆ logMα(t)

)
− TrΩ(1,0)(Σh,End(E)α)

(
e−T∆ logMα(t)

)}
=

{
1

8π

∫
Σh

R+
1

2π

∫
Σh

α`F
`

}
logMα(t) (3.26)

where R denotes a scalar curvature on a genus-h Riemann surface. Here, End(E)α is the

restriction of End(E) into Eα, and ∆ is the Laplace operator with the coefficient End(E)α.

Then, (3.25) is evaluated as∏
α>0

exp

{
− 1

8π

∫
Σh

R logMα(t)M−α(t)− 1

2π

∫
Σh

α`F
` log

Mα(t)

M−α(t)

}
. (3.27)
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By performing the path integration in terms of Φa, Φ†a, χ
(1,0)
a and χ

(0,1)
a , we furthermore

obtain
N∏
a=1

(1− t)h−1. (3.28)

Also, the contribution to the partition function from ϕ and ψ cancel out.

Together with (3.19), (3.27) and (3.28), the resulting expression for the partition func-

tion (3.17) is

Z
U(N)
GWZWM(Σh, k, t)

=
1

|W |

∫ N∏
a=1

Dφa
N∏
a=1

D2λa

N∏
a=1

D2Aa


∏N
a,b=1
a6=b

(
1− e2πi(φa−φb)

)
∏N
a,b=1

(
1− te2πi(φa−φb)

)


1−h

× exp

{
i
N∑
a=1

∫
Σh

(
βa(φ)Fa +

k

4π
λa ∧ λa

)}
(3.29)

where βa(φ) is defined by

βa(φ) = kφa −
i

2π

N∑
b=1
b6=a

log

(
e2πiφa − te2πiφb

te2πiφa − e2πiφb

)
. (3.30)

Here, we have used the fact that the constant modes of {φ1, · · · , φN} only contribute to

the partition function as we will show later, and therefore 1
8π

∫
Σh
R = 1− h.3

Let us define an abelianized effective action by4

Seff(φ,A, λ) = −i
N∑
a=1

∫
Σh

(
βa(φ)Fa +

k

4π
λa ∧ λa

)
. (3.32)

Then, we find that this is not invariant under the abelianized BRST transformation of (3.4):

QAa = λa, Qλa = 2πdφa, Qφa = 0 (3.33)

where Q is the abelianized BRST charge. A reason why the effective action (3.32) is not

invariant under the BRST transformation, is considered as follows. The heat kernel regu-

larization scheme respects the abelianized gauge symmetry but not the BRST symmetry,

and therefore breaks it. Since the regularization scheme breaks the BRST symmetry, we

have to add counterterms to restore the BRST symmetry. A prescription to restore the

3Since the term with the scalar curvature R does not break the abelianized BRST invariance, we can

simply replace φ1, · · · , φN by constant.
4We do not include into the abelianized effective action

∏N
a,b=1
a 6=b

(
1− e2πi(φa−φb)

)
∏N
a,b=1

(
1− te2πi(φa−φb)

)


1−h

, (3.31)

because this term does not break the abelianized BRST invariance and does not affect following results.
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BRST symmetry is given by [2]. That is to modify the effective action such that it satisfies

decent equations.5

Now, we explain the decent equations and how to restore the BRST invariance of the

effective action. First, we define a local operator O(0) as

O(0) = W (φ) (3.34)

where W (φ) is an arbitrary function of φ1, · · · , φN on the Riemann surface. Here, we

introduce the descend equations:

dO(n−1) = QO(n). (3.35)

where O(n), n = 0, 1, 2, are defined as n-form valued local operators. Note that the 3-form

local operator O(3) does not exist because we consider the Riemann surface as the base

manifold. If O(n) satisfies the descend equations, we find that the integration of O(n) over

a n-cycle γn, namely
∫
γn
O(n), becomes the BRST-closed operator under the abelianized

BRST transformation (3.33):

Q ·
∫
γn

O(n) = 0. (3.36)

We can concretely construct the BRST-closed operators as follows:

O(0) = W (φ),

O(1) =
1

2π

N∑
a=1

∂W (φ)

∂φa
λa,

O(2) =
1

8π2

N∑
a,b=1

∂2W (φ)

∂φa∂φb
λa ∧ λb +

1

2π

N∑
a=1

∂W (φ)

∂φa
Fa. (3.37)

In our case, by defining the function W (φ) as

1

2π

∂W (φ)

∂φa
= βa(φ), (3.38)

we find that the operator O(2) becomes

O(2) =

N∑
a=1

(
βa(φ)Fa +

1

4π

N∑
b=1

∂βb(φ)

∂φa
λa ∧ λb

)
. (3.39)

In order to restore the BRST invariance in the effective action (3.32), we must replace (3.32)

with (3.39):

Seff(φ,A, λ) = −i
N∑
a=1

∫
Σh

(
βa(φ)Fa +

1

4π

N∑
b=1

∂βb(φ)

∂φa
λa ∧ λb

)
. (3.40)

5In [25], the volume of vortex moduli space is evaluated by using the cohomological localization method.

When the gauge group is U(1), the volume calculated by the localization can not reproduce one obtained

in [26] unless one modifies the effective action by following the prescription. Thus, in our model, we consider

that it is necessary to restore the BRST invariance in the effective action by following the prescription.
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As a result, we can restore the BRST symmetry in the effective theory under this replace-

ment and obtain the following expression for the partition function:

Z
U(N)
GWZWM(Σh, k, t)

=
1

|W |

∫ N∏
a=1

Dφa
N∏
a=1

D2λa

N∏
a=1

D2Aa


∏N
a,b=1
a6=b

(
1− e2πi(φa−φb)

)
∏N
a,b=1

(
1− te2πi(φa−φb)

)


1−h

× exp

{
i

N∑
a=1

∫
Σh

(
βa(φ)Fa +

1

4π

N∑
b=1

∂βb(φ)

∂φa
λa ∧ λb

)}
. (3.41)

Let us see that the field configurations of φ1, · · · , φN reduce to the constant configura-

tions. In order to see this, a two-form field strength Fb be decomposed to the harmonic part

F
(0)
b and the exterior derivative of a one-form dab by the Hodge decomposition theorem,

Fb = F
(0)
b +dab. Integrating the harmonic part of the field strength gives the b-th diagonal

U(1)-charge kb of the background gauge fields:

1

2π

∫
Σh

F
(0)
b = kb. (3.42)

We subsequently decompose the 1-form fermion λ into λa = λ
(0)
a + δλa in the same way

as the field strength. Here, λ
(0)
a is a harmonic 1-form fermion and δλa is fluctuations

orthogonal to λ
(0)
a , λ

(0)
a ∧ δλ = 0. Next, we integrate ab by parts. Then, we find that

the contribution from the path integration of δλb completely cancel out with a Jacobian

for the change of variables of ab. We subsequently integrate out ab and obtain a delta

functional of dφa. By performing the path integral with respect to φa, we find that the

field configurations of φ1, · · · , φN reduce to the constant configuration.

Since the number of fermionic zero-modes of each λ
(0)
a is equal to the number of the

harmonic forms 2h on the genus-h Riemann surface, performing the path integration with

respect to λ
(0)
1 , · · · , λ(0)

N gives an additional factor

µq(φ)h =

∣∣∣∣det

(
∂βb(φ)

∂φa

)∣∣∣∣h . (3.43)

Therefore, the resulting expression for the partition function is

Z
U(N)
GWZWM(Σh, k, t) =

1

|W |

∞∑
k1,··· ,kN=−∞

∫ N∏
a=1

dφaµq(φ)hei
∑N
a=1 kaβa(φ)

×

 1

(1− t)N
N∏

a,b=1
a6=b

e2πiφa − e2πiφb

e2πiφa − te2πiφb


1−h

. (3.44)
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By using the Poisson resummation formula, we rewrite (3.44) as

Z
U(N)
GWZWM(Σh, k, t) =

1

|W |

∞∑
`1,··· ,`N=−∞

∫ N∏
a=1

dφa

N∏
a=1

δ (βa(φ)− `a)µq(φ)h

×

 1

(1− t)N
N∏

a,b=1
a6=b

e2πiφa − e2πiφb

e2πiφa − te2πiφb


1−h

. (3.45)

Here, we have utilized a property about the delta function

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi) (3.46)

where xi is solutions of f(x) = 0. Thus, we find that the delta function in the partition

function (3.45) gives an additional factor µq(φ)−1 and constraints for φ1, · · · , φN :

2πikφa +
N∑
b=1
b6=a

log

(
e2πiφa − te2πiφb

te2πiφa − e2πiφb

)
= 2πi`a. (3.47)

If the solutions of (3.47) exist in the region 0 ≤ φ1, · · · , φN < 1, we must sum up all of them.

In our case, we can show that the solution is unique up to permutations of φ1, · · · , φN .

The partition function is invariant under the permutation and the contributions from it

cancel out the order of the Weyl group |W |. Therefore, we can generally set φ1, · · · , φN as

0 ≤ φ1 < · · · < φN < 1.

By integrating the partition function (3.45) with respect to φ1, · · · , φN , we obtain the

final expression for the partition function:

Z
U(N)
GWZWM(Σh, k, t) =

∑
{φ1,··· ,φN}∈{Sol}

(1− t)Nµq(φ)

N∏
a,b=1
a6=b

e2πiφa − te2πiφb

e2πiφa − e2πiφb


h−1

(3.48)

where {Sol} represents the set of the solutions which satisfy 0 ≤ φ1 < · · · < φN < 1 and

the constraint (3.47). Also, we can express explicitly µq(φ) as

µq(φ) = det
N

(
∂βb(φ)

∂φa

)
= det

N

[{
k −

N∑
c=1

(t2 − 1)e2πi(φb+φc)

(te2πiφb − e2πiφc)(te2πiφc − e2πiφb)

}
δa,b

+
(t2 − 1)e2πi(φa+φb)

(te2πiφa − e2πiφb)(te2πiφb − e2πiφa)

]
. (3.49)

Thus, we find that the path integral for the U(N)/U(N) gauged WZW-matter model

reduces to the finite sum of the solutions which satisfy the localized configurations.
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Finally, we comment about the normalization of the partition function. The partition

function with the general normalization becomes

Z
U(N)
GWZWM(Σh, k, t)

= α(t)β(t)1−h
∑

{φ1,··· ,φN}∈{Sol}

(1− t)Nµq(x)
N∏

a,b=1
a6=b

e2πiφa − te2πiφb

e2πiφa − e2πiφb


h−1

(3.50)

where α(t) and β(t) are arbitrary functions of t. Note that this partition function should

coincide with the result in [3] in the limit t→ 0 at least. However, we can not completely

determine the normalization of the partition function of the U(N)/U(N) gauged WZW-

matter model unlike the gauged WZW model.

3.3 Numerical simulation

In this subsection, we evaluate numerically the partition function for the SU(N)/SU(N)

gauged WZW-matter model with the level k on the genus-h Riemann surface. Since we

have not determined the normalization of the partition function as discussed in the previous

section, we assume that the normalization of the partition function of the gauged WZW-

matter model coincides with that of the gauged WZW model. That is to say, we assume

that the partition function of the U(N)/U(N) gauged WZW-matter model is6

Z
U(N)
GWZWM(Σh, k, t)

=

(
k +N

k

)h ∑
{φ1,··· ,φN}∈{Sol}

(1− t)Nµq(x)

N∏
a,b=1
a6=b

e2πiφa − te2πiφb

e2πiφa − e2πiφb


h−1

. (3.51)

Also, we assume that the partition function of the SU(N)/SU(N) gauged WZW-matter

model is

Z
SU(N)
GWZWM(Σh, k, t)

=

(
N

k

)h ∑
{φ1,··· ,φN}∈{Sol}

(1− t)Nµq(x)

N∏
a,b=1
a6=b

e2πiφa − te2πiφb

e2πiφa − e2πiφb


h−1

. (3.52)

As compared (3.51) with (3.52), the partition function for the case of U(N) multiplies that

for the case of SU(N) by ((k + N)/N)h. Thus, we only evaluate numerically the value of

the partition function of the SU(N)/SU(N) gauged WZW-matter model by utilizing e.g.

Mathematica.

6In t = 0, note that the normalization in (3.51) is different from that in [3] but the partition function

in [3] coincides with that in (3.51). This is because we have interchanged the level k with the dual Coxeter

number N in the process of the calculations of the partition function by means of the level-rank duality for

the partition function of the U(N)/U(N) gauged WZW model.
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Genus k N Partition Function

2 2 2 (1− t)2(10 + 10t)

3 (1− t)2(20 + 16t)

4 (1− t)2(35 + 20t+ t2)

5 (1− t)2(56 + 20t+ 4t2)

6 (1− t)2(84 + 14t+ 10t2)

7 (1− t)2(120 + 20t2)

8 (1− t)2(165− 24t+ 35t2)

9 (1− t)2(220− 60t+ 56t2)

10 (1− t)2(286− 110t+ 84t2)

Table 1. The partition function of the SU(2)/SU(2) gauged WZW-matter model with the level k

on the genus-2 Riemann surface.

Genus k N Partition Function

0 2 2 (1− t)−2(1 + t)−1

1 3

2 10(1− t)2(1 + t)

3 36(1− t)4(1 + t)2

4 136(1− t)6(1 + t)3

5 528(1− t)8(1 + t)4

Table 2. The partition function of the SU(2)/SU(2) gauged WZW-matter model with the level

k = 2 on the genus-h Riemann surface.

From now on, we consider the partition function of the SU(N)/SU(N) gauged WZW

model with a special level and rank. First, let us consider the case of genus-1, torus. In the

gauged WZW model, the partition function counts the number of the WZW primary fields

and its number is (N +k−1)!/(N −1)!k!. In the gauged WZW-matter model, we similarly

expect that the partition function counts the number of fields in an underlying theory and

takes the integer value. In fact, we find that the partition function is not modified from

the gauged WZW model by the numerical simulation:

Z
SU(N)
GWZWM(T 2, k, t) =

(N + k − 1)!

(N − 1)!k!
. (3.53)

Next, we investigate the partition function of genus-0, sphere. By the numerical sim-
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Genus L = k M = N Partition Function

2 2 3 (1− t)3(45 + 99t+ 99t2 + 45t3)

3 3 (1− t)3(166 + 332t+ 252t2 + 86t3 + t4)

4 3 (1− t)3(504 + 810t+ 396t2 + 126t3 + 36t4)

5 3 (1− t)3(1332 + 1512t+ 369t2 + 243t3 + 144t4)

2 4 4(1− t)4(1 + t)2(35 + 50t+ 86t2 + 50t3 + 35t4)

3 3 2 8(1− t)4(3 + 2t)(5 + 4t)

4 2 (1− t)4(329 + 280t+ 86t2 + +8t3 + t4)

2 3 27(1− t)6(1 + t)2(3 + 4t+ 3t2)(5 + 6t+ 5t2)

4 3 2 16(1− t)6(2 + t)(5 + 4t)2

5 3 2 32(1− t)8(5 + 4t)2(7 + 8t+ 2t2)

Table 3. The partition function of the SU(N)/SU(N) gauged WZW-matter model with the level

k on the genus-h Riemann surface.

ulation, we conjecture that the partition function behaves as

Z
SU(N)
GWZWM(S2, k, t) =

1∏N
a=1(1− ta)

. (3.54)

Notice that this does not depend on the level k and of course coincides with the partition

function of the gauged WZW model in the limit t→ 0.

In the case of genus-h (h ≥ 2), we can not conjecture how the partition function

behaves in arbitrary k and N . Thus, we consider two special cases: N = 2, k = arbitrary,

h = 2 and N = k = 2, h = arbitrary. We list the result in the former and later case at

table 1 and table 2, respectively.

In the former case, we conjecture that from table 1 the partition function behaves as

Z
SU(2)
GWZWM(Σ2, k, t) = (1− t)2

(
(k + 3)(k + 2)(k + 1)

6

−(k − 7)k(k + 1)

3
t+

(k − 3)(k − 2)(k − 1)

6
t2
)
. (3.55)

In the later case, we also conjecture that from table 2 the partition function behaves as

Z
SU(2)
GWZWM(Σh, k = 2, t) = 2h−1(2h + 1)(1− t)2h−2(1 + t)h−1. (3.56)

We can not conjecture the general form of the partition functions in the other cases but list

the result of several cases at table 3. As see table 1, table 2 and table 3, we find that all the

coefficients for the power of t in the partition function are integer. The partition function

itself changes but this property does not change, even if we change the normalization such

that the partition function of the gauged WZW-matter model becomes that of the gauged

WZW model in the limit t → 0. This implies that the partition function is a topological
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invariant. Furthermore, the partition function of the U(N)/U(N) gauged WZW-matter

model also has same property.

3.4 Gauge/Bethe correspondence

In this subsection, we are going to establish the Gauge/Bethe correspondence between the

U(N)/ U(N) or SU(N)/SU(N) gauged WZW-matter model and the q-boson model.

First of all, let us see that the localized configurations in the U(N)/U(N) gauged

WZW-matter model coincide with the Bethe Ansatz equations in the q-boson model. We

change the parameterization of the coupling constant t as t = e−2πζ in the localized config-

urations (3.47) in order to see manifest coincidence with the Bethe Ansatz equations (2.29)

in the q-boson model. Then, we can rewrite (3.47) as

2πikxj = 2πiIj +
N∑
k=1

log
sin[π(iζ + (xj − xk))]
sin[π(iζ − (xj − xk))]

(3.57)

where Ij is (half-)integers when N is (even) odd. We identify the level k, the dual Coxeter

number N of u(N) and the coupling constant ζ in the U(N)/U(N) gauged WZW-matter

model with the total site number L, the particle number M and the coupling constant η

in the q-boson model, respectively.7 Moreover, we identify the Cartan part {φ1, · · · , φN}
of the field g in the gauged WZW-matter model as the Bethe roots {x1, · · · , xN} in the

q-boson model. Then, we find that the localized configurations (3.57) in the gauged WZW-

matter model coincide with the Bethe Ansatz equations (2.29) in the q-boson model under

these identifications.

Next, let us investigate the relation between the set of the piecewise independent

solutions of the Bethe Ansatz equations for the q-boson model and the set {Sol} of

{x1, · · · , xN} which contributes to the partition function of the gauged WZW-matter

model. It is necessary for the Bethe states to form a complete system that the num-

ber of the piecewise independent solutions of the Bethe Ansatz equations for the q-boson

model is (N + k − 1)!/(N − 1)!k!. Although it is nontrivial whether this number coincides

with the number of elements of the set {Sol}, we can numerically confirm it. That is to

say, the number of the elements of the set {Sol} is (N + k − 1)!/(N − 1)!k! and coincides

with the number of the piecewise independent solutions of the Bethe Ansatz equations

for the q-boson model. This circumstance is equal to that of the correspondence between

the U(N)/U(N) gauged WZW model and the phase model. Thus, we have established

equivalence between {Sol} and the set of the independent solutions of the Bethe Ansatz

equations for the q-boson model.

7Note that these identifications of the parameters are different from the ones in [3]. In [3], we investigated

the relations between the U(N)/U(N) or SU(N)/SU(N) gauged WZW model, and the phase model under

k ≡M and N ≡ L. This is because the WZW primary fields and the modular matrix in the SU(N) WZW

model completely coincide with the Bethe roots and the norm between the eigenstates in the phase model,

respectively. Therefore, the identification k ≡ M and N ≡ L in the case of [3] is more natural than k ≡ L

and N ≡ M . However, all models do not have invariance under the level-rank duality transformation. In

fact, such transformation is unlikely to exist in the G/G gauged WZW-matter model.
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Finally, we consider the partition function for the U(N)/U(N) gauged WZW-matter

model. Under the above identifications, the norm between the eigenstates of the Hamilto-

nian in the q-boson model (2.34) becomes

〈ψ({e2πix}N )|ψ({e2πix}N )〉 =

∏N
a,b=1(e2πixat− e2πixb)∏N
a,b=1
a6=b

(e2πixa − e2πixb)
· det
N

Φ′a,b({x}N ). (3.58)

Here, the Gaudin matrix (2.35) becomes

Φ′a,b({e2πix}N ) = δa,b

{
−ke−2πixb +

N∑
c=1

(t2 − 1)e2πixc

(te2πixa − e2πixc)(te2πixc − e2πixa)

}

− (t2 − 1)e2πixa

(te2πixa − e2πixb)(te2πixb − e2πixa)
. (3.59)

Thus, it is obvious that the partition function (3.51) is expressed by the summation of the

norms in terms of all the eigenstates:

Z
U(N)
GWZWM(Σh, k, t) =

(
N + k

k

)h ∑
x1,··· ,xN∈{Sol}

〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1. (3.60)

As a result, we find that the U(N)/U(N) gauged WZW-matter model corresponds to the

q-boson model in a sense of the Gauge/Bethe correspondence.

Similarly, we can obtain the following expression for the partition function (3.52) of

the SU(N)/SU(N) gauged WZW-matter model:

Z
SU(N)
GWZWM(Σh, k, t) =

(
N

k

)h ∑
x1,··· ,xN∈{Sol}

〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1. (3.61)

This circumstance is also equal to the correspondence between the gauged WZW model

and the phase model. Thus, we find that the SU(N)/SU(N) gauged WZW-matter model

also corresponds to the q-boson model in a sense of the Gauge/Bethe correspondence.

This correspondence is a one parameter deformation of the correspondence between the

SU(N)/SU(N) or U(N)/U(N) gauged WZW model and the phase model. In next sub-

section, we will consider a reason why the Gauge/Bethe correspondence between the

SU(N)/SU(N) gauged WZW-matter model and the q-boson model works well from the

viewpoint of the axiom of the topological quantum field theory.

3.5 Partition function from the commutative Frobenius algebra

In this subsection, we study the partition function of the SU(N)/SU(N) gauged WZW-

matter model from the viewpoint of the axiomatic system of the TQFT. It is well known

that the TQFT has the axiomatic formulation given by Atiyah [10] and Segal [11]. In

particular, the category of two dimensional TQFTs is equivalent to the category of com-

mutative Frobenius algebras. See [12, 13, 28] for details.
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Recently, Korff constructed a new commutative Frobenius algebra from the q-boson

model [14]. Since the q-boson model also appears in the SU(N)/SU(N) gauged WZW-

matter model as discussed previous section, it is natural that the SU(N)/SU(N) gauged

WZW-matter model is related to the commutative Frobenius algebra constructed from the

q-boson model. We can actually show that the partition function of the SU(N)/SU(N)

gauged WZW-matter model coincides with the partition function of the commutative

Frobenius algebra constructed from the q-boson model up to the overall factor. This im-

plies that the SU(N)/SU(N) gauged WZW-matter model can be regarded as a Lagrangian

realization of the commutative Frobenius algebra constructed by Korff.

From here, we briefly summarize necessary ingredients in [14] to show the agreement

between the partition function of the both theories. We first explain a theorem (Theorem

7.2 in [14]) without the proof that a commutative Frobenius algebra can be constructed on

the N -particle subspace of the Fock space in the q-boson model.8

We give several definitions of ingredients in the theorem as preparation. Let P+
N be a

set of dominant integrable (positive) weights of gl(N) andA+
N,k be a subset of P+

N defined by

A+
N,k = {(µ1, µ2, · · · , µN ) ∈ P+

N | k ≥ µ1 ≥ µ2 ≥ · · · ≥ µk ≥ 1}. (3.62)

Then, A+
N,k one-to-one corresponds to the set of the independent solutions of Bethe Ansatz

equations for the q-boson model:

λkj =
N∏
k=1
k 6=j

λjt− λk
λj − λkt

for j = 1, · · · , N (3.63)

where 0 ≤ t < 1. This set is also in one-to-one correspondence with {Sol} defined in the

previous subsection.

Next, we define a Bethe vector and its dual vector as

|Ψσ〉 =

N∏
j=1

B
(

(λσ)−1
j

)
|0〉 and 〈Ψ∗σ| =

1

||Ψσ||2
〈0|

N∏
j=1

C
(

(λσ)−1
j

)
, (3.64)

respectively, where λσ denotes a Bethe root corresponding to a partition σ. Here, ||Ψσ||2

is defined by

||Ψσ||2 = 〈0|
N∏
j=1

C
(

(λσ)−1
j

) N∏
j=1

B
(

(λσ)−1
j

)
|0〉. (3.65)

Therefore, we have the identity 〈Ψ∗µ|Ψν〉 = δµν .

Furthermore, we define a vector |µ〉, µ ∈ A+
N,k in the N -particle subspace of the Fock

space F⊗kN in the q-boson model as

|µ〉 = |µ1〉 ⊗ |µ2〉 ⊗ · · · ⊗ |µN 〉. (3.66)

Then, we define a transition matrix Sµν(t) from the basis of normalized Bethe vectors

{|Ψν〉 : ν ∈ A+
N,k} to the vector {|µ〉 : µ ∈ A+

N,k} in the Fock space F⊗kN by

Sµν(t) = ||Ψν ||〈Ψ∗ν |µ〉. (3.67)

8Note that we now interchange k with N for results in [14].
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It is also shown in [14] that the transition matrix satisfies the following relation

S−1
µλ (t) = bλ(t)Sλ∗µ(t). (3.68)

where ∗-involution on µ in A+
N,k is defined as

µ∗i =

{
k − µN−i+1 (k − µN−i+1 6= 0)

k (k − µN−i+1 = 0)
(3.69)

for i = 1, · · · , N and bµ(t) is defined by

bµ(t) =
∏
i≥1

mi(µ)∏
j=1

(1− tj). (3.70)

Here, mi(µ) is the multiplicity of i in µ and is defined by mi(µ) = Card{j : µj = i}.
Let us label the partition kN with “0”. When we set µ = 0 in (3.67), the transition

function S0ν(t) is expressed by

S0ν(t) =
1

||Ψν ||
. (3.71)

Korff proved that a commutative Frobenius algebra can be constructed on the N -

particle subspace of the Fock space F⊗kN in the q-boson model, and asserted a following

theorem:

Theorem 3.1 (Commutative Frobenius algebra [14]) Let k be the algebraically closed

field of the Puiseux series and Fk,N := F⊗kN ⊗C(t) k. Define for µ, ν ∈ A+
N,k the product

|µ〉~ |ν〉 :=
∑

ρ∈A+
N,k

Nρ
µν(t)|ρ〉 (3.72)

where the structure constant of the commutative Frobenius algebra Nλ
µν(t) is defined as

Nλ
µν(t) =

∑
σ∈A+

N,k

Sµσ(t)Sνσ(t)S−1
σλ (t)

S0σ(t)
. (3.73)

Here, the transition matrix Sµν(t) is defined in (3.67).

Moreover, define the associative, nondegenerate bilinear form η : Fk,N ⊗ Fk,N → k

η(|µ〉 ⊗ |ν〉) = ηµν(t) :=
δµν∗

bν(t)
. (3.74)

Then, (Fk,N ,~, η) is a commutative Frobenius algebra with a unit |kN 〉, kN = (k, k, · · · , k).

From now on, we investigate relations between the partition function of the SU(N)/

SU(N) gauged WZW-matter model and the partition function of the TQFT equivalent to

the commutative Frobenius algebra. Recall that the partition function of the SU(N)/SU(N)
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Figure 1. Unit

Figure 2. Nondegenerate bilinear forms

gauged WZW-matter model is expressed by the summation of the norms between the eigen-

vectors in the q-boson model in terms of all the Bethe roots, (3.61). Then, we find that

the partition function (3.52) can be rewritten by using the transition matrix S0µ(t) as

Z
SU(N)
GWZWM(Σh, k, t) =

(
N

k

)h ∑
µ∈A+

N,k

1

S2h−2
0µ (t)

. (3.75)

We can show this formula by the fact that the set of the independent Bethe roots {Sol}
one-to-one corresponds to A+

N,k and by a following identity:

∑
σ∈A+

N,k

〈0|
N∏
j=1

C((λσ)j)

N∏
j=1

B((λσ)j)|0〉


Z

=
∑

σ∈A+
N,k

||Ψσ||2Z (3.76)

for Z ∈ Z. Here, we have used the explicit expression for the norm in the q-boson

model (2.34) to prove this identity.

On the other hand, we construct the partition function from the commutative Frobe-

nius algebra. In order to do this, let us graphically represent the building blocks of the

commutative Frobenius algebra, that is to say, the unit |kN 〉, the nondegenerate bilinear

form ηµν(t) and the structure constant Nλ
µν(t). We first assign the unit |kN 〉 to a disc

with an outgoing boundary (figure 1). Secondly, we assign the non-degenerate bilinear

form ηµν(t) and its inverse ηµν(t) to a cylinder with two incoming boundaries (the left

picture of figure 2) and to a cylinder with two outgoing boundaries (the right picture of

figure 2), respectively. Finally, we assign the structure constant (3.73) to a sphere with

three boundaries (figure 3).

Let us construct the partition function of the commutative Frobenius algebra on the

genus-h Riemann surface by gluing the surfaces. First of all, we consider the case of the

genus-0. In the genus-0, we can construct the partition function by gluing two outgoing

discs and a cylinder with two incoming boundaries like figure 4. Therefore, we find that

the partition function agrees with the partition function of the SU(N)/SU(N) gauged
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Figure 3. Structure constant

Figure 4. Partition function on a sphere S2

Figure 5. Partition function on a torus T 2

WZW-matter model on S2:

ZN,kTQFT(S2) = ηkN ,kN (t) =
δkN ,kN

bkN (t)
=

N∏
i=1

1

(1− ti)
. (3.77)

Next, we consider the case of the genus-1. In this case, the partition function can be

constructed by gluing a cylinder with two incoming boundaries and two outgoing bound-

aries like figure 5, and be therefore expressed by

ZN,kTQFT(T 2) =
∑

µ,ν∈A+
N,k

ηµν(t)ηµν(t) = dimA+
N,k =

(k +N − 1)!

(k − 1)!N !
. (3.78)

Thus, we find that the partition function of the SU(N)/SU(N) gauged WZW-matter model

on the torus coincides with that of the commutative Frobenius algebra up to the overall

factor:

Z
SU(N)
GWZWM(T 2, k, t) =

N

k
ZN,kTQFT(T 2). (3.79)

Similarly, we can construct the partition function of the commutative Frobenius algebra

on the higher genus Riemann surface. In order to construct this, we introduce a handle

operator, the torus with one puncture in figure 6. This can be constructed by gluing a

cylinder with two outgoing boundaries, and a sphere with one outgoing and two incoming
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Figure 6. Handle operator

Figure 7. Partition function on a genus-2 Riemann surface

boundary boundaries. Thus, we obtain∑
ν,ρ∈A+

N,k

ηνρ(t)Nµ
νρ(t) =

∑
ν,ρ,σ∈A+

N,k

bν(t)δν
∗ρSνσ(t)Sρσ(t)S−1

σµ (t)

S0σ(t)

=
∑

ν,σ∈A+
N,k

S−1
σν (t)Sνσ(t)S−1

σµ (t)

S0σ(t)

=
∑

σ∈A+
N,k

S−1
σµ (t)

S0σ(t)
. (3.80)

Here, we have used (3.68) from the first line to the second line. By using this handle

operator, we can construct the partition function on the higher genus Riemann surface.

For example, the partition function on the genus-2 Riemann surface constructed like figure 7

becomes

ZN,kTQFT(Σ2) =
∑

µ,ν,ρ,σ∈A+
N,k

S−1
σµ (t)

S0σ(t)

S−1
ρν (t)

S0ρ(t)

δµν∗

bν(t)

=
∑

ν,ρ,σ∈A+
N,k

Sνσ(t)

S0σ(t)

S−1
ρν (t)

S0ρ(t)

=
∑

µ∈A+
N,k

1

S2
0µ(t)

. (3.81)

The partition function on the genus-h Riemann surface can be recursively constructed in

the similar manner with the case of the genus-2, and is expressed by

ZN,kTQFT(Σh) =
∑

µ∈A+
N,k

1

S2h−2
0µ (t)

. (3.82)
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As compared with (3.75), we find that the partition function of the commutative Frobenius

algebra coincides with that of the SU(N)/SU(N) gauged WZW-matter model up to the

overall factor:

Z
SU(N)
GWZWM(Σh, k, t) =

(
N

k

)h
ZN,kTQFT(Σh). (3.83)

Thus, we have clarified the equivalence between the partition function of the SU(N)/SU(N)

gauged WZW-matter model and the two dimensional TQFT equivalent to the commutative

Frobenius algebra constructed by Korff. In fact, we can concretely check the relation (3.83)

by using an algorithm given by section 7.3.1 in [14], which calculates the structure constant

of the commutative Frobenius algebra from the structure constants of the (restricted) Hall

algebra. In several cases, we have verified the agreement with the numerical results ob-

tained in the previous section. Therefore, the SU(N)/SU(N) gauged WZW-matter model

can be regarded as a Lagrangian realization of the commutative Frobenius algebra con-

structed by Korff. We conjecture that the Gauge/Bethe correspondence works well only

if a commutative Frobenius algebra can be constructed from a certain integrable system,

just as [14, 15], and that this is the underlying mathematical structure of the Gauge/Bethe

correspondence.

The Gauge/Bethe correspondence means that a certain topological gauge theory have

a hidden quantum integrable structure. In the Gauged WZW-matter model/q-boson model

correspondence, we have identified the dual Coxeter number and the level in the gauged

WZW-matter model as the total particle number and the total site number in the q-boson

model, respectively. This implies that the whole collection of the SU(N)/SU(N) gauged

WZW-matter models with the different ranks has the quantum integrable structure of the

q-boson model. Since this integrable structure relates different topological quantum field

theories with different ranks, it looks strange but may be interesting property. In particular,

it would be interesting to investigate the roles of the Yang-Baxter algebra in topological

field theories. The Yang-Baxter algebra in the q-boson model controls the gauged WZW-

matter model. That is to say, the operators B(λ) and C(λ) in the Yang-Baxter algebra

whose spectral parameters satisfy the Bethe Ansatz equations, create and annihilate the

fields in the collections of the gauged WZW-matter models, because we identify the Fock

space of the q-boson model as the space of the integrable weight with the fields in the

SU(N)/SU(N) gauged WZW-matter model.

3.6 Correlation functions of the gauged WZW-matter model

We can easily calculate the correlation functions of BRST-closed operators from the view-

point of the cohomological localization. In this subsection, we investigate a question how

the correlation functions of the field g in the SU(N)/SU(N) gauged WZW-matter model

are related to quantities in the q-boson model.

For simplicity, we first consider a one-point function. The generalization to correlation

functions is straightforward. The one-point function of gr with a positive integer number
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r is defined as

〈Trgr〉(Σh,SU(N), k, t)

=

∫
DgD2AD2λDΦDΦ†DψDψ†D2ϕD2χ Trgre−kSGWZWM(g,A,λ,Φ,Φ†,ψ,ψ†,ϕ,χ). (3.84)

We apply the cohomological localization to this one-point function as with the case of the

partition function in section 3.2. From the viewpoint of the cohomological localization,

we find that the localized configurations (3.47) do not change and the one-point function

becomes

〈Trgr〉(Σh, SU(N), k, t)

=

(
N

k

)h ∑
{φ1,··· ,φN}∈{Sol}

N∑
c=1

e2πirφc

(1− t)Nµq(φ)
N∏

a,b=1
a6=b

e2πiφa − te2πiφb

e2πiφa − e2πiφb


h−1

(3.85)

where µq(φ) is defined in (3.49). Also, {Sol} is the set which satisfies (3.47) and 0 ≤ φ1 <

· · · < φN < 1 as defined in section 3.2.

Let us show a correspondence between this one-point function and the expectation

value of a conserved charge in the q-boson model. Before we study the correspondence,

we prepare necessary knowledge for the q-boson model. In particular, we show that the

expectation value of conserved charges in the q-boson model is expressed by power sums.

Recall that the eigenvalue of the transfer matrix (2.25) is expressed by

Λ(µ, {λ}) =
M∏
j=1

µt− λj
µ− λj

+ µL
M∏
j=1

µ− λjt
µ− λj

. (3.86)

The conserved charges H1, · · · , HL are given by expanding the transfer matrix τ(µ) in

terms of µ as explained in section 2.2:

τ(µ) =

L∑
r=0

Hrµ
r. (3.87)

where H0 = HL = 1. Therefore, we have

Hr|ψ({λ}M )〉 = Λr({λ}; t)|ψ({λ}M )〉 (3.88)

where Λr({λ}; t) is the eigenvalue of the conserved charges defined by

Λ(µ, {λ}) =
L∑
r=0

Λr({λ}; t)µr. (3.89)

Also, we have used the notation of the Bethe state defined in (2.31).

Let us consider the eigenvalues of the conserved charges. In order to do this, we

define [29]

q0(λ1, · · · , λM ) = 1,

qr(λ1, · · · , λM ) = (1− t)
M∑
j=1

λrj

M∏
k=1
k 6=j

λj − tλk
λj − λk

for r ≥ 1. (3.90)
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If {λ1, · · · , λM} is the solution of the Bethe Ansatz equations (2.27), qr(λ1, · · · , λM ; t)

satisfies

qL(λ1, · · · , λM ; t) = 1− tM , (3.91)

qL(λ1, · · · , λ−1
M ; t) + tMq0(λ1, · · · , λM ; t−1) = 1, (3.92)

qL+r(λ1, · · · , λM ; t) + tMqr(λ1, · · · , λM ; t−1) = 0 for r ≥ 1. (3.93)

By using these relations, we rewrite the eigenvalue of the transfer matrix as follows:

Λ(µ, {λ}) =
L∑
r=0

Λr({λ}; t)µr =
L−1∑
r=0

qr(λ
−1
1 · · · , λ

−1
M ; t)µr + µL. (3.94)

Then, we obtain the following expression for the eigenvalues of the conserved charges:

Λr({λ}; t) = qr(λ
−1
1 · · · , λ

−1
M ; t),

ΛL({λ}; t) = 1. (3.95)

Moreover, we rewrite qr(λ1, · · · , λM ; t) as9

qr(λ1, · · · , λM ; t) =
∑
|µ|=r

zµ(t)−1pµ(λ1, · · · , λM ) (3.96)

where a power sum with partition µ is defined by

pµ(λ1, · · · , λM ) = pµ1(λ1, · · · , λM )pµ2(λ1, · · · , λM ) · · · pµM (λ1, · · · , λM ). (3.97)

and zµ(t) is defined by10

zµ(t) = zµ ·
∏
j≥1

(1− tµj ) and zλ =
∏
i≥1

imimi!. (3.98)

Then, we find that the eigenvalue of the conserved charges is expressed by the power sums

with partitions by utilizing this relation as

Λr({λ}; t) =
∑
|µ|=r

zµ(t)−1pµ(λ−1
1 , · · · , λ−1

M ),

ΛL({λ}; t) = 1. (3.99)

9As we take the limit t → 0, (3.96) becomes a relation between a complete symmetric polynomial and

power sums:

hr(λ1, · · · , λM ; t) =
∑
|µ|=r

z−1
µ pµ(λ1, · · · , λM ).

10Remark that we regard a partition with zero entries µ = (µ1, · · · , µs, 0, · · · , 0) as µ = (µ1, · · · , µs)
in (3.98). For example,

z(2,0)(t) ≡ z(2)(t) = z(2) · (1− t2).
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Therefore, we obtain

〈ψ({λ}N )|Hr|ψ({λ}M )〉
〈ψ({λ}N )|ψ({λ}M )〉

= Λr({λ}; t)〈ψ({λ}N )|ψ({λ}M )〉

=
∑
|µ|=r

zµ(t)−1pµ(λ−1
1 , · · · , λ−1

M ). (3.100)

From now on, let us show the correspondence between the one-point functions in the

SU(N)/SU(N) gauged WZW-matter model and the expectation values of the conserved

charges in the q-boson model. We first identify the level k, the dual Coxeter number N

of su(N), the coupling constant ζ and the Cartan part {φ1, · · · , φN} of the field g in the

SU(N)/SU(N) gauged WZW-matter model with the total site number L, the total particle

number M , the coupling constant η and the Bethe roots {x1, · · · , xN} in the q-boson model,

respectively, as with the partition function. Then, the one-point function can be expressed

by the norms between the eigenstates in the q-boson model as follows:

〈Trgr〉(Σh,SU(N), k, t)

=

(
N

k

)h ∑
x1,··· ,xN∈{Sol}

N∑
c=1

e2πirφc〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1. (3.101)

We define special operators as

Or =
∑
|µ|=r

zµ(t)−1
N∏
j=1

Trgµj (3.102)

where µ = (µ1, · · · , µM ) is a partition and zµ(t) is defined in (3.98). Then, we find that

the one-point function of this operator is given by

〈Or〉(Σh, SU(N), k, t)

=

(
N

k

)h ∑
x1,··· ,xN∈{Sol}

Λr({e2πix}; t) · 〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1

=

(
N

k

)h ∑
x1,··· ,xN∈{Sol}

〈ψ({e2πix}N )|Hr|ψ({e2πix}N )〉
〈ψ({e2πix}N )|ψ({e2πix}N )〉

×〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1 (3.103)

where we have used (3.100).

As a result, we have clarified the relations between the one-point functions of the special

operators in the SU(N)/SU(N) gauged WZW-matter model and the expectation values of

the conserved charges in the q-boson model. This also implies that the special operators

Or in the gauged WZW-matter model formally correspond to the conserved charges in the

q-boson model.
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The generalization to the n-point functions of Or1 , · · · ,Orn is straightforward. The

n-point functions are given by

〈Or1Or2 · · · Orn〉(Σh, SU(N), k, t)

=

(
N

k

)h ∑
x1,··· ,xN∈{Sol}

〈ψ({e2πix}N )|Hr1Hr2 · · ·Hrn |ψ({e2πix}N )〉
〈ψ({e2πix}N )|ψ({e2πix}N )〉

×〈ψ({e2πix}N )|ψ({e2πix}N )〉h−1. (3.104)

Consequently, we find that the Gauge/Bethe correspondence works well for not only the

partition function but also the correlation functions in the topological gauge theory.

4 Summary and Discussion

In this paper, we have introduced a one-parameter deformation of the G/G gauged WZW

model by coupling it to BRST-exact matters and evaluated its partition function in the

case of G = SU(N) and U(N). We have shown that the localized field configurations in the

path integral coincide with the Bethe Ansatz equations for the q-boson model and that the

partition function is represented by a summation of the norms between the eigenstates in

the q-boson model. Thus, we have established the correspondence between the U(N)/U(N)

or SU(N)/SU(N) gauged WZW-matter model and the q-boson model, which is a new

example of the Gauge/Bethe correspondence. This correspondence is a one-parameter

deformation of “Gauged WZW model/Phase model correspondence” [3].

We also have evaluated numerically the partition function and have given the explicit

forms as the function of a deformation parameter t in several cases. This conjectured

form of the partition function can be reproduced from the viewpoint of the axiom of the

topological quantum field theory. Then, we have shown that the SU(N)/SU(N) gauged

WZW-matter model is a lagrangian realization of a topological quantum field theory con-

structed by Korff [14]. This implies that the Gauge/Bethe correspondence is realized only

if one constructs a commutative Frobenius algebra from a certain integrable system, as

with [14, 15]. This is one of the reasons why the Gauge/Bethe correspondence works well.

Moreover, we have shown that the correlation functions can also be expressed by the lan-

guage of the q-boson model. This is the correspondence for the quantity of a new type in

the Gauge/Bethe correspondence.

We comment on several future directions. We are interested in whether the G/G

gauged WZW-matter model maintains similar properties with the G/G gauged WZW

model. First, we are interested in the Chern-Simons theory related to the G/G gauged

WZW-matter model. It is well known that the partition function of the G/G gauged

WZW model on Σh coincides with that of the Chern-Simons theory with a gauge group G

on S1 × Σh. Therefore, we conjecture that there exists the three dimensional counterpart

of the G/G gauged WZW-matter model. Since the gauged WZW-matter model possesses

the scalar BRST charge which is crucial to carry out localization, the three dimensional

counterpart should possess this property. A natural candidate with a scalar BRST charge is
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a (topologically) twisted supersymmetric Chern-Simons-matter theory on S1×Σh. For ex-

ample, a twisted Chern-Simons-matter theory on Seifert manifolds are constructed in [30].

When we consider the Chern-Simons theory coupled to an adjoint twisted matter with a

real mass m, the one-loop determinant for this theory will coincide with (3.31) under the

identification t = em. It also is interesting to study a correspondence between the gauged

WZW-matter model and a twisted Chern-Simons-matter theory in detail.

Secondly, it is known that the partition function of the G/G gauged WZW model

coincides with a geometric index over the moduli space M of the stable holomorphic GC-

bundles on a Riemann surface [31]:

ZGGWZW(Σh, k) =

∫
Td(M)ch(L⊗k) = dimH0(M;L⊗k). (4.1)

In the large level limit, the partition function is asymptotic to the volume of the moduli

space of a flat connection [32],11 and the action therefore reduces to that of the BF-theory

whose partition function gives the volume of the moduli space of flat connection [32, 33].

How about the case of the G/G gauged WZW-matter model? In the large level limit,

the partition function of the BF-theory coupled to adjoint matters is interpreted as the

volume of a moduli space

M̃ =
{

(A,Φ)
∣∣∣F + i[Φ,Φ†]dµ = 0, ∂AΦ = 0, ∂̄AΦ† = 0

}
/G (4.2)

where G is the gauge transformation group of G. We conjecture that the partition function

of the G/G gauged WZW-matter model is related to a certain geometric index over the

moduli space M̃. Thus, the integrality of the partition function may be interpreted as the

dimensions of cohomologies.

If Φ is not a section of End(E) but a element of Ω(1,0)(Σh,End(E)), (4.2) is the moduli

space of the Hitchin’s equation or the Higgs bundle [34]. It is shown in [35] that there

exists a index over the moduli space of the Higgs bundle for a one-parameter deformation

of (4.1). See also [36]. In this case, the deformation parameter is the parameter of the

power series of bundles over the moduli space. In their calculation, the index is expressed

by the summation over the solutions of nonlinear equations like the localized equations

of our model. For example, see (4,2) in [36] for GC = SL(2,C). It will be interesting to

give the interpretation for the partition function of our model in term of a geometric index

over M̃.
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