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vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum

to the true vacuum via rapid expansion of the radius of the tube and hence its formation

would be inconsistent with the present Universe. However, we demonstrate that there

exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua

are degenerate, the structure inside the tube becomes involved. As an example, we show

a “bamboo”-like solution, which suggests a possibility observing an information of true

vacua from outside of the tube through the shape and the tension of the tube.
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1 Introduction

The global U(1)R symmetry plays an important role in supersymmetric field theories,

in particular in supersymmetry (SUSY) breaking [1–5] (See [6–8] for reviews and refer-

ences therein). In [2, 3, 9], by exploiting the Nelson-Seiberg theorem [1], a connection

between metastability and R-symmetry was demonstrated in the context of generalized

Wess-Zumino models with generic superpotential.

From more phenomenological viewpoint, the U(1)R symmetry must be broken ex-

plicitly or spontaneously to generate Majorana gaugino masses. Gaugino masses are not

induced by SUSY breaking without the U(1)R symmetry breaking.

Indeed, several types of models for the U(1)R symmetry breaking have been stud-

ied [10–24]. In some models, the vacuum with both SUSY and U(1)R breaking may be a

global minimum. However, in many models such vacuum is a metastable minimum and

there is a global minimum, where SUSY and U(1)R may be unbroken.

Through the cosmological phase transition, there may appear solitonic objects such as

domain walls, cosmic strings and monopoles [25] through the Kibble-Zurek mechanism [26–

28]. When a global U(1) symmetry is spontaneously broken, a global string appears [29].

Thus, when the U(1)R symmetry is broken spontaneously in SUSY models, there would
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appear a global string, which we refer as an R-string.1 The R-string would be stable in

those models in which the U(1)R breaking vacuum is a global minimum, and that would

lead to several cosmologically interesting aspects [32].

On the other hand, when the U(1)R breaking vacuum is metastable and the model has

another global minimum with SUSY and U(1)R unbroken, there may appear an R-string,

whose core corresponds to the true SUSY vacuum, i.e., R-tube. One may think that such

an R-tube is unstable because the energy density in the core, which is the SUSY vacuum,

is lower than one outside, which is the SUSY breaking metastable vacuum. Thus, it would

“roll-over” and the true SUSY vacuum would expand in the Universe [33–36]. In this case,

the SUSY breaking could not be realized successfully. One may conclude that a scenario

with R-tube formation is ruled out by this mechanism.

However, since the domain wall tension works as a centripetal force for R-tube, its

radius may be stabilized if the domain wall tension is large enough and the energy discrep-

ancy between SUSY vacuum and SUSY-breaking vacuum is small enough. In such a case,

the cosmological disaster can be avoided. The (in)stability of the R-tube soliton depends

on parameters in the SUSY models. In principle, we can have constraints on SUSY-

breaking models from this consideraion because (in)stability of the R-tube is determined

by parameters of SUSY breaking models. Note that such constraints are independent of

the requirement that the metastable vacuum decays slowly into the true vacuum by the

tunneling effect [37], compared with the Universe age. Therefore, it is quite important to

study the R-string/R-tube formation and its (in)stability. Some relevant studies have been

carried out in refs. [38, 39].

In this paper, we study in detail the structure of the R-string/tube solution in SUSY

models. In a simple but (semi)realistic SUSY breaking model, we study stability of the

R-tube by exploiting a piecewise linear approximation and numerical solutions. By using

linear approximation, we obtain constraints for the stable R-tube. We also show exam-

ples of (meta)stable/unstable R-tube configurations numerically. We emphasize that the

winding number, which is an important quantity to characterize features of the R-tube

solutions, is also relevant to the stability of the R-tube.

We also show that the core of the R-tube can have more complicated structure in

certain SUSY models where the true SUSY breaking vacua are degenerate. For example,

suppose that the SUSY model has a Z2 symmetry and it is broken at the true SUSY

vacuum. Then, the core of the R-tube would be separated into two vacua by a domain

wall. Since it looks like a (gourd-shaped) bamboo, we refer it as the bamboo solution.

We also study aspects of the bamboo solution. Other types of structure inside the core of

strings would be possible.

This paper is organized as follows. In section 2, we illustrate the R-string and tube so-

lutions in simple models as warm-up. In section 3, we study the R-tube in a (semi)realistic

but simple SUSY breaking model, that is, an O’Raifeartaigh-like model with non-canonical

Kähler metric. We analyze the (in)stability of the R-tube numerically at several parame-

ters. In section 4, by showing the bamboo solution, we demonstrate the fact that quantum

1See also for another type of strings, which appear through SUSY breaking [30, 31].
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number in the SUSY vacua significantly affects the shape and the tension of the string.

Section 5 is devoted to conclusion and discussion. In appendix A, we show basics of the

relaxation method for solving a differential equation.

2 Stable R-string and tube solutions

Before going to detailed studies of metastable strings, which will be shown in the next

section, we would like to present simple stable solutions as a warm-up. Here, we illustrate

a stable R-string and a stable R-tube which is a tube-like domain wall with winding number,

by using single complex scalar field models.

2.1 R-string

Consider the following simplest spontaneous R-symmetry breaking model. Superpotential

is linear in a chiral superfield X which will be a trigger for SUSY breaking,

W = fX.

To stabilize the pseudo-moduliX in this SUSY breaking vacuum, we introduce the following

non-canonical Kähler potential by hand,

g−1

XX̄
= 1− µ2

X

f2
|X|2 + λX

4f2
|X|4. (2.1)

Thus, the potential of this theory is given by

V (X) = f2 − µ2
X |X|2 + λX

4
|X|4. (2.2)

This model can be viewed as a low energy effective theory of one of the O’Raifeartaigh

models studied in [12]: When the pseudo-moduli space is stable everywhere along messenger

directions, by integrating out the messengers, one obtains non-trivial corrections to the

Kähler potential. Expanding the Kähler potential up to O(|X|6), one can reproduce a

theory similar to (2.2). On the other hand, when the pseudo-moduli space has a tachyonic

direction at a point in the space, which is phenomenologically interesting situation in

gauge mediation models [3, 20], the existence of messengers is crucial and two-field model

is required. This is the main topic in the next section.

When µ2
X > 0 and λX > 0, the X field develops its vacuum expectation value and the

R-symmetry is broken (X has the R charge 2). The minimum of the potential V (X) is

obtained at |X| = Xmin ≡
√

2µ2
X/λX . Note that this vacuum is the global minimum of the

potential V (X). Since the global U(1)R symmetry is spontaneously broken, the R-string

would be formed.

Let us introduce dimensionless variables as

X = XminT, xµ =

√

2µ2
X

λXf2
x̃µ, λ =

λXf2

4µ4
X

> 0. (2.3)
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Figure 1. The minimal winding solution of the R-string (solid line) for λ = 1/2: the profile

function is shown in the left panel and the corresponding energy density is shown in the right panel.

The broken lines stand for the standard global vortex which is the solution of the model with the

minimal kinetic term in eq. (2.4).

Then the effective Lagrangian is given by

L = f2







∣

∣

∣
∂̃µT

∣

∣

∣

2

V(T ) − V(T )






, V(T ) ≡ 1− |T |2

2λ
+

|T |4
4λ

. (2.4)

Here a positive definite metric at the minimum (T = 1) requires λ > 1/4. We use the

dimensionless cylindrical coordinate (ρ, θ, z̃) for constructing a straight R-string along the

z-axis. We make the following standard Ansatz,

T (ρ, θ, z̃) = f(ρ)einθ, (2.5)

where f(0) = 0 and f(ρ) → 1 at ρ → ∞. We numerically solve the equation of motion for

a minimal winding solution (n = 1). The solution is shown in figure 1.

For later convenience, let us estimate a size of R-string, R, by using the following

simple approximation

f(ρ) =
( ρ

R

)n

for ρ ≤ R and f(ρ) = 1 for ρ > R, (2.6)

where the power of ρ is determined by requiring smoothness of the configuration at ρ = 0.

The total energy of this configuration, E, per the string length ∆z is estimated as

λX

2µ2
X

E

2π∆z
≈ cn(λ) +

n2

V(1) log
(

Λ

R

)

+
1

2
V(1)Λ2 +

1

2

an
4λ

R2, an =
2n2

1 + 3n+ 2n2
, (2.7)

where an R independent constant cn(λ) which should be numerically determined is intro-

duced, and an IR-cutoff Λ is also introduced in order to regularize a well-known logarithmic

divergence of a global vortex. The above energy takes the minimum at R ≈ Rstring,

Rstring ≡ 2n√
anmT

≈ 2n

mT
, m2

T ≡ 1

λ

(

1− 1

4λ

)

, (2.8)

which is the transverse size of the R-string. Here mT is the dimensionless mass of T in the

vacuum T = 1. For instance for λ = 1/2 and n = 1, we obtain mT = 1 and Rstring = 2
√
3.
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Figure 2. The transverse sizes of the R-strings, RT , with the linear approximation (solid line) and

numerical calculations (points) using the relaxation method reviewed in appendix A.

To check the approximation (2.6) by comparing with numerical calculations, we intro-

duce another definition of a transverse size of the R-string as

RT ≡
∫∞
0

dρ ρ2KT
∫∞
0

dρ ρKT

, KT =
(f ′(ρ))2

V(f(ρ)) . (2.9)

Here KT gives a finite contribution from the kinetic term along the ρ direction into the

energy and is useful to define the transverse size. Note that this quantity does not include

the cut-off dependence. We compute this both analytically with the linear approxima-

tion and numerically, see figure 2. For instance we observe RT = 1.95 for λ = 1/2 by

a numerical calculation. As can be seen in figure 2, the linear approximation nicely re-

produces the numerical results (we need to pay attention to errors of 10% − 30% in the

linear approximation).

2.2 Tube solution

Here, in order to illustrate the tube solution, we study a non-supersymmetric bosonic theory

as a toy model. Let us study the model with the following scalar potential,

V (X) =
|X|2
M2

(|X|2 − v2)2, (2.10)

and the canonical kinetic term, where M and v are taken to be real. This model has a

global U(1) symmetry (no longer U(1)R symmetry), under which the field X transforms.

This potential has two degenerate vacua, that is, |X| = 0 and v. At the former vacuum,

the global U(1) symmetry is unbroken, while the U(1) symmetry is broken at the latter

vacuum. Then, a global string would be formed. Again, let us rescale the fields and

coordinates as

X = vT, xµ =
M

v2
x̃µ, (2.11)

then the Lagrangian becomes

L =
v6

M2

[

∣

∣

∣
∂̃µT

∣

∣

∣

2

− |T |2
(

1− |T |2
)2
]

. (2.12)
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Figure 3. The minimal winding solution of the string of the model given in eq. (2.12). The profile

function is shown in the left panel and a slice at a fixed z of the corresponding energy density is

shown in the right panel.

We make the Ansatz for the minimally winding string,

T = f(r)einθ, (2.13)

where f(0) = 0 and f(r) → 1 at r → ∞. The solution is again obtained numerically which

is shown in figure 3. As can be seen in figure 3, the string has a substructure that is a

hole inside the string. Thus, we refer it as the tube. It is the asymmetric phase (X 6= 0)

outside the tube while it is the symmetric (X = 0) phase inside it.

This tubelike string solution can be regarded as a tube of a domain wall. Indeed, there

also exists a domain wall in this model. For instance, a solution interpolating the two

vacua T = 1 at x1 = ∞ and T = 0 at x1 = −∞ is given by

T =
1√

1 + e−2x̃1

, (2.14)

with a dimensionless tension Twall = 1/2. Thus, assuming that the field configuration of

the tube along the radial direction is well described by this solution, the total energy E

per the tube length ∆z of the tubelike solution with a radius ρ = R can be estimated by

1

v2
E

2π∆z
≈ TwallR+ n2 log

(

Λ

R

)

, (2.15)

as long as the “thickness” of the wall is much smaller than the radius R. Minimizing this,

we get the transverse size of the tube solution

R ≈ n2

Twall

= 2n2. (2.16)

Note that the stabilization mechanism of the tube solution is different from that of the

R-string (without a hole) where the kinetic energy and the potential energy are balanced.

As a result, the transverse sizes have different dependences on the winding number n as

R ∝ n for the R-strings and R ∝ n2 for the tubes, respectively.
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Figure 4. Numerical results of a ratio RT /2n
2 for higher winding solutions, by using the relaxation

method with efficiently large relaxation time, τ > 20× n4.

We can define a transverse size RT of this tube-like string similar to eq. (2.9) with

KT = (f ′(ρ))2 and observe RT = 2.06 for the minimal winding tube by a numerical

calculation. Ratios RT /2n
2 with higher winding solutions are listed in figure 4. It suggests

that the above approximation works well.

3 R-tube and vacuum instability

3.1 Metastable R-tube

In section 2.1, we studied the single field SUSY breaking model as a toy model of one

of the O’Raifeartaigh models discussed in [12] in which classical pseudo-moduli space is

stable everywhere. In this section, we move on to phenomenologically interesting situation

where pseudo-moduli space has a tachyonic direction, in which large gaugino masses are

generated by gauge mediation [20, 40]. In such models, the R-symmetry breaking vacuum

is metastable, thus the R-string solution can be a tube-like domain wall with winding

number as showed in section 2.2.

Here, we study the illustrating supersymmetric model with two superfields, X and

φ. These superfields have R-charges, R[X] = 2 and R[φ] = 0, and the superpotential is

given by

W = Xφ2 − µ2X. (3.1)

In addition, we consider the following effective Kähler metric,

g−1

XX̄
= 1− 1

2m2
|X|2 + λ

4m4
|X|4, g−1

φφ̄
= 1, g−1

Xφ̄
= g−1

φX̄
= 0. (3.2)

This model has the Z2 symmetry, under which X and φ are Z2 even and odd, respectively.

This model has the discrete SUSY vacua,

X = 0, φ = ±µ, (3.3)

– 7 –
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Figure 5. The minimal winding solution of the R-tube of the two-scalar model for ǫ = 1, λ = 0.27

given in eq. (3.6). The profile functions (solid line for |T | and broken line for s) are shown in the

left panel and a slice at a fixed z of the corresponding energy density is shown in the right panel.

Here we chose the plus sign (γ = +1).

and the SUSY breaking vacuum,

X =
m√
λ
, φ = 0, (3.4)

where the U(1)R symmetry is also broken. The former is the true vacuum, while the latter

is the metastable vacuum whose vacuum energy is V = µ4V(1) = µ4
(

1− 1
4λ

)

.

For later convenience, let us introduce dimensionless variables by

X =
m√
λ
T, φ = µs, xµ =

m√
λµ2

x̃µ, ǫ =

√
λµ

m
, (3.5)

then the Lagrangian is of the form

L = µ4

[

1

V(T )
∣

∣

∣
∂̃µT

∣

∣

∣

2

+ ǫ2
∣

∣

∣
∂̃µs

∣

∣

∣

2

− V(T )|s2 − 1|2 − 4

ǫ2
|T |2|s|2

]

. (3.6)

This Lagrangian is characterized by two dimensionless parameters λ and ǫ. For instance, in

the SUSY breaking vacuum (T, s) = (1, 0), dimensionless masses for T and s are wriiten by

m2
T =

1

λ

(

1− 1

4λ

)

, m2
s =

2

ǫ2

(

2

ǫ2
+

1

4λ
− 1

)

, (3.7)

respectively, and that is, existence of the SUSY breaking vacuum requires

1 >
1

4λ
> 0,

2

ǫ2
+

1

4λ
> 1. (3.8)

If one is interested in vacuum selection, a simple criterion is a ratio of tachyonic masses

at the origin (T, s) = (0, 0) where we have

(m0,T )
2 = − 1

2λ
, (m0,s)

2 = − 2

ǫ2
. (3.9)
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Since in the early universe field values are assumed to be around the origin, if tachyonic

mass of T is larger, one may expect that supersymmetry breaking model is preferable.2

An inequality

2

ǫ2
<

1

2λ
, (3.10)

is required for selecting the SUSY breaking vacuum.

Now we are ready to construct the R-tube in this two-scalar model. To this end, we

make the Ansatz

T = f(ρ)einθ, s = γ h(ρ), (3.11)

with γ = ±1. Because of the Z2 symmetry, the solutions of f(ρ), h(ρ) are independent

of γ. Similar to the model in section 2.2, it is the symmetric phase inside the tube while

it is the asymmetric phase outside the tube. A sharp contrast among two models is that

the outside is the true vacuum in section 2.2 and is the false vacuum in this section. One

may guess that stable solution does not exist since the core of the tube has lower energy

than its outside and hence larger radius would be favored energetically, which causes the

“roll-over” problem. However, because the tension of the wall acts as a centripetal force

for the R-tube, we will find that there exist metastable tube-like field configurations. In

order to see a typical R-tube numerical solution in this model, here we show an example in

figure 5 with ǫ = 1, λ = 0.27. Note that the profile function of the winding field T , whose

mass is very small, has a very long tail compared to that of the solution in section 2.2. On

the other hand, the unwinding field s, whose dimensionless mass is of order 1, converges

exponentially. In the next subsection, we will investigate stability of the R-tube by varying

those parameters.

3.2 Instability of R-string and broken Z2 symmetry

If we set s = 0 to keep the Z2 symmetry, the model discussed in this section reduces to

just the model discussed in section 2.1 except for an overall factor. Therefore the R-string

solution (s = 0) without a hole inside is also a solution in this model. However, such an

R-string would be almost always unstable and transforms into an R-tube with non-zero s

inside. Since non-vanishing s means the broken Z2 symmetry, we observe below that the

Z2 symmetry inside the R-tube in this model is almost always broken.

Let us consider an infinitesimal fluctuation s(≪ 1) around the R-string solution dis-

cussed in section 2.1 and study whether a direction along s is tachyonic or not. A linearized

equation for s is given with an eigenvalue q2 as

− 1

ρ
(ρs′)′ +

(

− 2

ǫ2
V(T ) + 4

ǫ4
|T |2

)
∣

∣

∣

∣

T=Tsol

s = q2s. (3.12)

For instance we observe tachyonic masses of s numerically for many sets of parameters

{λ, ǫ} as shown in figure 6. We therefore make a conjecture that

q2 < 0, (3.13)

2Here we have been studying a simple toy model. To discuss vacuum selection more seriously, one need

to go back to an original realistic model and specify a history of the early universe.

– 9 –
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Figure 6. Tachyonic mass of s around R-string for λ = 0.27 (the left panel) and λ = 1/2 (the

right panel).

Rtube Rmax

R

E

2 ΠDz

Figure 7. Potential for a transverse size of R-tube with a rough estimation.

for almost all the winding number n and the almost whole parameter region of {λ, ǫ}
satisfying the inequalities (3.8). This conjecture means that the R-string with s = 0 is

always unstable and a stable R-tube solution, if it exists, must have the following property

s|ρ=0 6= 0. (3.14)

In this paper we will assume this conjecture holds and will not consider the constraints

from the stability of R-string configuration.

3.3 Rough estimation for R-tube

If the domain wall consisting the R-tube is sufficiently thin and resides at ρ = R, its total

energy E per the length ∆z can be estimated as

λ

m2

E

2π∆z
≈ 1

2
V(1)(Λ2 −R2) + TwallR+

n2

V(1) log
(

Λ

R

)

, (3.15)

as has been done in section 2.2. See figure 7. Note that the total energy has divergence

terms with an IR-cutoff Λ proportional to Λ2 and log Λ. The former is the energy density

V(1) = 1 − 1
4λ

of the SUSY breaking vacuum, and the latter is that for the well-known

global string tension. Here, Twall is a (dimensionless) tension of the domain wall. This

– 10 –
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potential has a local minimum (maximum) at ρ = Rtube(Rmax) with

Rmax =
2n2

V(1)
(

Twall −
√

T 2
wall − 4n2

) >
n

V(1) ,

Rtube =
2n2

V(1)(Twall +
√

T 2
wall − 4n2)

<
n

V(1) , (3.16)

if the dimensionless tension Twall is sufficiently large as

Twall > 2n. (3.17)

This is, therefore, a necessary and sufficient condition for existence of the R-tube as long

as the approximation eq. (3.15) is valid. Such configurations that satisfy the inequal-

ity R ≥ Rmax can not avoid to spread out toward the infinite of the space. Note that

comparing a thickness Lwall of the domain wall with Rtube, if Lwall ≪ Rtube holds, the

above estimation (3.15) works well and we will observe the SUSY vacuum inside the R-

tube, namely

s|ρ=0 ≈ 1. (3.18)

Using an approximation discussed in the next subsection, we can show the lower limit of

the ratio

Rtube

Lwall

>
n2

V(1)TwallLwall

>
n2

2(1 + ǫ2V(1)) >
n2

6
. (3.19)

Therefore Rtube can not be very small. If Rtube is comparable with Lwall, a configuration of

R-tube approaches one of the R-string, but s|ρ=0 keeps non-vanishing even there in almost

all the cases as we discussed.

3.4 Linear approximation for the domain wall

In order to estimate the transverse size of the R-tube and its stability following the dis-

cussion in the previous subsection, we need the data {Twall, Lwall}. We here evaluate them

assuming that the domain wall in the R-tube can be well approximated by a flat domain

wall interpolating the SUSY vacuum at x = −∞ and the SUSY breaking vacuum at x = ∞.

Let us consider this configuration in the following. Note that, however, there is an ambi-

guity for definition of Twall and profile functions for the domain wall since the flat domain

wall itself is unstable. It is natural to set a relation between the total energy of the system

Ewall and the tension Twall of the domain wall sitting at x = 〈x〉 with IR-cutoff Λ± as

Ewall =

∫ Λ+

Λ−

dx(K + V ) = Twall + (Λ+ − 〈x〉)V(1), (3.20)

which gives a force (pressure) from the SUSY vacuum to the domain wall

− dEwall

d 〈x〉 = V(1) > 0. (3.21)

– 11 –
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Moreover, it is natural to require for the relation,
∫ Λ+

Λ−

dxK =

∫ Λ+

Λ−

dxV − (Λ+ − 〈x〉)V(1), (3.22)

is hold near the domain wall solution. When V(1) = 0 holds, the above relation can be

derived from Derrick’s theorem [29]. Then, we define the tension Twall and a position 〈x〉
of the wall in terms of only kinetic terms K without using a potential V as

Twall ≡ 2

∫ Λ+

Λ−

dxK, 〈x〉 ≡ 2

Twall

∫ Λ+

Λ−

dxxK. (3.23)

The equation (3.22) is enough to estimate data {Twall, Lwall} as the following. Let us

approximate the profile functions (T, s) for the domain wall by piecewise-linear functions as

T =
x

Lwall

, s = 1− x

Lwall

for 0 ≤ x ≤ Lwall, (3.24)

and (T, s) = (1, 0) for x ≥ Lwall and (T, s) = (0, 1) for x < 0. By inserting this approxima-

tion to eq. (3.22) we find that the l.h.s. (r.h.s) is proportional to L−1
wall(Lwall). Note that

the tension of the domain wall can be expressed as

Twall =

∫ Λ+

Λ−

dxK +

∫ Λ+

Λ−

dxV − (Λ+ − 〈x〉)V(1). (3.25)

Minimizing it in terms of Lwall, we get

Lwall =

√

(A(λ) + ǫ2)2

(A(λ) + ǫ2)B(λ, ǫ)− (A(λ)− C(λ) + ǫ2/2)V(1) ,

Twall = 2

√

(A(λ) + ǫ2)B(λ, ǫ2)−
(

A(λ)− C(λ) +
ǫ2

2

)

V(1), (3.26)

where

A(λ) =

∫ 1

0

dx

V(x) =



















1 +
7

60λ
+O(λ−2) for λ ≫ 1

π

4
√
4λ− 1

− 1

8
log(4λ− 1) +O(1) for λ ∼ 1

4

,

B(λ, ǫ) =
1

15

(

8− 233

42

1

4λ
+

2

ǫ2

)

, (3.27)

C(λ) =

∫ 1

0

xdx

V(x) = 2λ
arccot

√
4λ− 1√

4λ− 1
=



















1

2
+

1

12λ
+O(λ−2) for λ ≫ 1

π

4
√
4λ− 1

+O(1) for λ ∼ 1
4

.

Here we took Λ− < 0 and Λ+ > Lwall. Especially we find inequality

TwallLwall = 2(A(λ) + ǫ2) < 2

(

1

V(1) + ǫ2
)

. (3.28)

We have used this for deriving the inequality in eq. (3.19).

Finally, using the result Twall in the linear approximation, we show the stability con-

dition (3.17) for the R-tube with winding number n in figure 8.

– 12 –
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n=1
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Figure 8. Stability of the R-tube with winding number. In the white region, all tube solutions

n ≥ 1 are unstable. In the purple region,R-tube with n = 1 is stable but others n ≥ 2 are unstable.

In the light purple region, R-tubes with n = 1, 2 is stable but others n ≥ 3 are unstable. The region

below the red line represents (3.10). The SUSY breaking vacuum is unstable in the yellow region

(see (3.8)).

3.5 Numerical approach

3.5.1 Numerical calculation for stability

In the previous subsection, exploiting linear approximation, we found the stability condition

of the R-tube with winding number n. Here, we try to check the parameter dependence

of the stability by numerical calculation. We adopt a kind of relaxation method to find

a configuration of the R-tube. See appendix A for details. Since we are interested in a

parameter region close to borders of the stability of two winding numbers, so we have

to treat relatively unstable configuration, which require careful analysis. Because of this

complexity, we focus on a couple of examples for the numerical analysis.

As a first example, we take a parameter ǫ = 1, λ = 27/100 where according to the

linear approximation, winding number n = 1 is stable but n = 2 is unstable (see figure 8).

Following the relaxation method, we take an appropriate initial function and finite relax-

ation time τ , then we calculate minimum energy configurations. As we show in figure 9 and

figure 10, energy convergences of the configurations have a clear difference in two cases.

Here we removed a contribution Evev of the vacuum energy density from the total energy

E and calculated the following dimensionless energy

E(τ) ≡ λ

m2

E − Evev

2π∆z
=

λ

m2

E

2π∆z
− 1

2
V(1)Λ2, (3.29)

and we take the IR-cutoff of the energy as Λ = 50. The configuration with n = 2 is mono-

tonically loosing the energy and in a sufficiently late relaxation time τ , the energy decreases

as a linear function, which clearly suggests instability of this configuration. On the other

hand, as for the configuration with n = 1, the energy seems to converge to a constant

value. This sharp difference nicely matches with the result of the liner approximation.

– 13 –
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Figure 9. Energy against the relaxation time τ . Energy of the configuration with winding number

n = 1 for ǫ = 1 and λ = 27/100 converges to a constant value. τ is the relaxation time.
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Figure 10. Energy against the relaxation time τ . Energy of the configuration with winding number

n = 2 for ǫ = 1 and λ = 27/100 decreases linearly at a later relaxation time.

However, it is worth noting that our numerical analysis is done with a finite precision

which is appropriately chosen by reasonable calculation time. Thus, beyond our calculation

precision, there may exist an unstable mode which may yield slight energy loss. Thus, as

long as we use a kind of relaxation method with a fixed initial condition, it may be, in

general, hard to conclude complete stability of the configuration. However, even if the

small instability exists, the life-time of R-tube can be longer than the decay time of the R-

tube originating from an explicit U(1)R breaking effect. In many phenomenological models,

the global R-symmetry is already broken by adding gravity due to the constant term in

superpotential. Thus, at a point of the early universe, R-tubes disappear by generating

axion domain walls [32, 41–45]. Therefore, as long as the stability is long enough compared

with its lifetime, we can treat the R-tube as a stable solution.

As a second example, we choose ǫ = 1/50 and λ = 6/10. Small ǫ is favorable in model

building, partially because the longevity of the false vacuum. So from phenomenological

point of view, it is important to study a configuration of R-tube with small winding number

in this parameter region. Again, using the relaxation method, we numerically calculate the

energy convergence of two cases, n = 1 and n = 2. As shown in figure 11, the total energy

of R-tube with n = 2 converges to a constant value. Thus, within our calculation accuracy,

the configuration looks stable. Also, the confituration with n = 1 is similarly stable. With

these numerical results and linear approximation shown in the previous subsection, it may
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Figure 11. Energy against the relaxation time τ . Energy convergence of the configuration with

winding number n = 2 for ǫ = 1/50, λ = 6/10.

be plausible that in small ǫ region R-tubes are relatively stable and the roll-over process

does not occur.

3.5.2 Effective potential for light mode

As emphasized above, there may exist a very light mode which may cause instability of a

configuration. Although treatment of such light modes in the relaxation method is not an

easy task, but we would like to propose a method to uncover the existence of a light mode.

The most interesting mode is a fluctuation of the size of the R-tube. Generally speaking a

zero mode (moduli) around a solution is frozen in the relaxation method, and a light mode

of which dependence in the total energy is quite small, seems to be almost frozen even if

it exists. To detect such light mode and search the true stable solution, we need to take a

lot of different initial conditions for the relaxation method. To be concrete, we show initial

conditions for the fields T, s,3

f(ρ) =
1 + tanh(2(ρ− ρ0))

2
tanh(ρ), (3.30)

h(ρ) =
1− tanh(2(ρ− ρ0))

2

1 + tanh(2(ρ+ ρ0))

2
.

With various values for ρ0 which roughly indicates a transverse size of R-tube, we calculate

minimum energy configurations with finite relaxation time. For any value of ρ0, the energy

converges like figures 9 and 11 for those values of n, ǫ and λ. However, final configurations

can have small differences of the energy and the tube-size. To represent the size of the

tube, it would be useful to introduce the following definition similar to (2.9),

RT ≡
∫∞
0

dρρ2KT
∫∞
0

dρρKT

, Rs ≡
∫∞
0

dρρ2s′(ρ)2
∫∞
0

dρρs′(ρ)2
. (3.31)

Here we defined two sizes of the R-tube, RT and Rs. A reason for introducing two sizes

can be seen in a discrepancy between the linear approximation in section 3.4 and numerical

results shown below. As has mentioned in section 2.1, these quantities do not include the

cut-off dependence and are well-defined candidates for the size of the tube.

3We set Dirichlet condition f(0) = 0 and Neumann condition h′(0) = 0 for T and s for respectively. We

need to be sensitive for consistency between initial conditions and boundary conditions at ρ = 0.
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Figure 12. One to one correspondence between the initial condition ρ0 and the size Rs for ǫ = 1,

λ = 27/100.
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Figure 13. Monotonically decreasing potential of Rs with λ = 27/100, ǫ = 1(the left panel).

Ttube ≡ 2πE(τ = 50). Gradients in the energy with respects to τ at τ = 50(the right panel). Finite

gradients indicate instability of configurations and noises for small Rs imply the limit bound of

precision of calculations.

As an example, we take λ = 27/100, ǫ = 1. Varying the initial position ρ0, we

calculate the minimum energy configuration with finite relaxation time. First of all, we

show a correspondence between the initial condition ρ0 and the size Rs in figure 12. Rs is

evaluated with a converged configuration. Since it is one-to-one correspondence, varying

the initial condition ρ0 represents varying the size of the R-tube.

Now let us show the low energy effective potential for the fluctuation mode of the size.

We plot the energy (3.29) at the relaxation time τ = 50, which we will denote as Ttube ≡
2πE(τ = 50), with respect to the position of Rs in figure 13. Surprisingly, we observe a

monotonically decreasing potential in terms of Rs for the model with λ = 27/100, ǫ = 1

which we explained. A large plateau with tiny gradient in figure 13 is consistent with

figure 9 where Rs can be almost regarded as a massless mode. Figure 13 implies that

the R-tube in this case is unstable and will expand to the infinity. This clearly suggests

that the border line of instability of minimum winding R-tube shown in figure 8 does not

match with the numerical analysis above. We find that for small Rs the two sizes behave

differently as shown in figure 14 and this fact tells us why the estimation (3.15) with a

single size shown in section 3.4 does not work for small Rs. It would be interesting to study

two-scale linear approximation for better approximation.
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Figure 14. Relation between the two transverse sizes RT , Rs with λ = 27/100, ǫ = 1. RT is

decreasing for small Rs whereas RT for large Rs is proportional to Rs. Therefore RT is not a good

quantity for parametrizing the potential.

Here, we proposed a way to analyze the low energy effective theory for a very light

mode corresponding to the fluctuation of the tube-size and checked the instability of the

mode. However, this light mode is significantly affected by various corrections such as

thermal effects, supergravity effects and quantum corrections. We would study these cor-

rections elsewhere.

4 Bamboo solution: tube junction

In the previous section, we showed that an R-string can form a tube-like domain wall with

winding number and inside of the wall is in the SUSY preserving vacuum. It would be

wonderful if we could extract any evidences of the existence of the SUSY vacuum from

outside of the tube.4 Toward this goal, in this section we demonstrate that quantum

number in the SUSY vacua significantly affects the shape and the tension of the string.

Concretely, we construct a junction of the R-tube. To the best of our knowledge, this kind

of soliton has not been known so far. In order to demonstrate an explicit solution, let

us again take the two-scalar model in eq. (3.6). As shown in eq. (3.11), reflecting the Z2

symmetry of the model, there are two different R-tubes.5 The one has γ = +1 and the

other has γ = −1. The skin of the R-tube, namely the profile of T field, is independent of

the choice of γ, so that one can naturally imagine that the two R-tubes with different γ can

be smoothly connected. The junction of the R-tubes is a domain wall which interpolates

two different SUSY vacua inside the R-tube. We call this junction the R-bamboo.

A numerical solution for ǫ = 1, λ = 27/100 is shown in figures 15 and 16. Far away from

the domain wall along the tube, the solution asymptotically goes to the R-tube solution.

4The global R-symmetry is explicitly broken when gravity is coupled to the theory. In this case, when

the Hubble parameter H becomes the mass scale of the R-axion, a domain wall interpolating the strings

is generated and string and walls disappear [32, 41–45]. Thus, one cannot observe a global R-string in

the present age. However if we replace the R symmetry with another local U(1) symmetry, then a similar

tube-like solution existing in the present age can be generated.
5This is reminiscent of the monopole junction of two cosmic strings studied in [46]. It would be interesting

to study further our junction in light of this similarity.
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Figure 15. The bamboo soliton (A slice at the center): Junction of the R-tubes with γ = +1

and γ = −1. In the left panel, the red region is where s > 1/2 while the blue is the region where

s < −1/2, and the yellow stands for the region where 7/20 < |T | < 12/20. The right panel shows the

potential density isosurface with which one can clearly recognize the domain wall inside the tube.

Figure 16. 3D plot of the Bamboo soliton for ǫ = 1, λ = 27/100.

At the junction, the transverse size of the tube becomes smaller since the domain wall pulls

the tube toward its inside, see figure 15.

This R-bamboo solution may be created when two R-tubes collide. If the two tubes

are different kind, the domain wall must be created at the junction of the two tubes. At

the same time, the anti R-bamboo may be created. This is very similar phenomenon to

monopole and anti-monopole creation associated with the non-Abelian string reconnection.

This is interesting issue but is beyond the scope of this paper, so we leave it as a future work.

Finally, it is worthy to note that stability of bamboo configuration is not guaranteed

by our numerical approach. As emphasized in the previous section, our analysis is a

kind of relaxation method. Actually, if there is no domain wall inside the R-tube, the
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configuration seems to have a small instability shown in figure 13. However, in the bamboo

configuration, the existence of the domain wall increases the stability because the energy of

the domain wall is proportional to R2. Thus, if the number of the domain walls is large, the

bamboo configuration would be stabilized enough. In principle, the same argument done

in figure 13 would be applicable, however numerical calculation becomes quite involved

because one needs the two-dimensional relaxation method.

5 Conclusion

In this paper, we have demonstrated a fascinating role of a cosmic R-string/R-tube by

using two toy models with spontaneous R-symmetry breaking. The first example shown

in section 2.1 is a single field model. The model can be regarded as a toy model of one of

O’Raifeartaigh models studied in [12] in which pseudo-moduli space is stable everywhere.

In this model, string-like defect generated by the Kibble-Zurek mechanism is stable and

very close to the known global strings. Winding number dependence of the size of the string

is linear in n. On the other hand, in the two-field model shown in section 3, a string-like

object is a tube-like domain wall interpolating a false vacuum and a true SUSY vacuum.

One specific feature of two-field model is existence of a tachyonic direction at R-symmetry

restoring point X = 0. Because of this, the core of the string is not stable under fluctuation

toward the tachyonic direction. Thus, inside the core in which R-symmetry is restored, can

be filled out by the true vacuum through the tachyonic direction. Naively, one may think

that such an R-tube is unstable. However, as we shown in the main text numerically, there

exist metastable R-tube solutions for certain parameters. An interesting property of such

R-tube is the winding number dependence of the size. By the linear approximation, we

estimated the dependence and found that its dependence is n2 rather than n. Therefore,

there is a tendency that tube configuration with larger winding number is more unstable.

Numerically, we checked the higher winding instability at a sample parameter ǫ = 1 and

λ = 27/100: We showed that the configuration with winding number n = 2 is unstable and

the total energy decreases monotonically.

If an unstable R-tube is created by the Kibble-Zurek mechanism, it rapidly expands

and our universe will be completely filled by the true vacuum. This process gives constraints

for models building. However, it is worthy to emphasize that such roll-over process can be

protected by D-term contribution or thermal potential. As is demonstrated in [21, 47, 48],

when a D-term contribution cannot be negligible, it can lift the tachyonic direction and

stabilize the pseudo-moduli space. In such models, the roll-over process does not occur.

Also, when the amplitude of (tachyonic) messenger mass at the origin is sufficiently smaller

than that of R-symmetry breaking field, the vacuum selection is successfully realized by

exploiting the thermal potential or Hubble induced mass. If such thermal potential keeps

lifting the tachyonic direction until the time of the R-string decay [32, 41–45], the roll-over

process can be successfully circumvented. However, even if such an early stage scenario is

assumed, there are sever cosmological constraints on R-axion density as studied in [32].

Finally we comment on our numerical analysis done in section 3. Since we adopted

a kind of relaxation method with a fixed initial condition to find energetically minimum
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configurations, it is not easy to conclude the stability of the configuration sharply. There

may exist a very light mode which does not change the energy significantly. To uncover

the existence of the very light mode, we proposed a method for studying the low energy

effective potential for such light mode. By changing the initial conditions and observing

converged configurations, we can estimate the effective potential. Using this method, at the

parameter ǫ = 1 λ = 27/100, we find emergence of a light model and find a large plateau

in the effective potential. It would be important to apply the method to a wide range of

parameter space and study borders of instabilities of configurations with various winding

numbers numerically. This is beyond the our scope, so we will leave it as a future work.
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A Relaxation method

In this section we review a kind of relaxation methods applied to constructing numerical

solutions in this paper. Let us consider the following general Lagrangian for scalars φα in

R
d+1 with coordinates {xµ} = {t, xi},

L =
1

2
gαβ∂µφ

α∂µφβ − V (φ), (A.1)

where gαβ is the metric for the field space. Our goal is to find an numerical static solution

φα(t, xi) = φα
sol(x

i) for this system. The shooting method is a good strategy for a system

with a single scalar fields and a single spatial coordinate x1, but only in that case. For

systems with multi fields in higher dimensions, the shooting method does not work very

well and we need the relaxation method explained bellow. Let us introduce a ‘relaxation

time’ τ instead of the real time t and suppose that φα depend on τ as φα(τ, xi). Then τ

dependence of φα is defined by,

∂i
δL

δ∂iφα
− δL

δφα
= −gαβ

∂φβ

∂τ
, (A.2)

with Neumann condition at the boundary of the region Σ ⊂ R
d

ni∂iφ
α
∣

∣

∣

xi∈∂Σ
= 0. (A.3)
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The added term in the r.h.s. of eq. (A.2) i the so-called friction term. Actually, due to

this term we can show that the ordinary total energy E with integral region Σ is no longer

constant but a monotonic decreasing function E = E(τ) of τ as

dE(τ)

dτ
= −

∫

Σ

ddxgαβ
∂φα

∂τ

∂φβ

∂τ
< 0. (A.4)

If we observe the energy converges, we find a solution φα
sol as

lim
t→∞

E(τ) = Esol ⇔ lim
τ→∞

∂φα(τ, xi)

∂τ
= 0 ⇔ lim

τ→∞
φα(τ, xi) = φα

sol(x
i). (A.5)

If the energy has the global minimum, therefore, we can obtain, at least, one static solution

φα
sol by using the relaxation method. If there exists multiple local minima of the energy,

an initial condition of φα chooses one of them.

In actual numerical computation we need a cutoff of the relaxation time at τ = τfin
and we regard φα(τfin, x

i) as a solution. A relation between τfin and precision of a solution

φα = φα(τfin, x
i) can be discussed in the following. If deviations of φα from a solution φα

sol

are efficiently small, they can be expanded as

φα − φα
sol ≈

∞
∑

n=1

fn(x
i)an(τ), (A.6)

with profile functions fn(x
i) for massive modes of mass mn around the configuration φα

sol.

Eq. (A.2) gives development of coefficients an(τ) as

an(τ) = a0ne
−m2

nτ , (A.7)

and behavior of the energy is controlled by the lightest mass m1 as

E(τ) ≈ Esol +Ae−2m2
1
τ . (A.8)

Here a constant A ∈ R>0 depends on an initial condition we took and is assumed to be the

same order as Esol. To get precision 10−p, therefore, we have to take a time τfin for this

relaxation method as

τfin >
p

m2
1

ln 10, (A.9)

where m1 can be roughly guessed by a typical mass scale of the system. With large τ ,

we sometimes observe a random behavior of E(τ) which is a signal of the limit bound of

machine precision. See figure 17 for an example.

If a configuration of φα is accidentally near to a saddle point, we also observe an

exponential decay of E(τ), but after that it collapses like a waterfall as

E(τ) ≈ Esaddle +Ae−2m2τ − Ãe2|m̃
2| τ (A.10)

with a tachyonic mass m̃2 = −|m̃2|. Therefore an exponential behavior of the energy do

not always guarantee that a stable solution is obtained. Taking multi initial conditions of

φα can avoid this technical error.
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Figure 17. Typical behavior of an energy in the relaxation method. Here we get accuracy of 10−7.5

for a solution. Calculations after τ ≈ 32 turns out to be meaningless.
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