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1 Introduction

The remarkable sequence of groups O(7) D G2 D SU(3) attracted attention in particle
physics long ago. In a seminal paper Gunaydin and Giirsey [1] have given an extensive
discussion of their properties, representations and applications to model building. Within
the Lie algebra of O(7), the subalgebras G and SU(3) form rather sophisticated closed
structures which were explicitly given in [1] in terms of rotation generators of O(7).

The maximally non-compact forms of the same groups O(4,3) D Gy D SU(2,1)
play an important role in the gravity/supergravity context [2]. These group are hidden
symmetries of six-dimensional minimal supergravity (MSG6) [3], five-dimensional mini-
mal supergravity (MSG5) [4, 5] and four-dimensional Einstein-Maxwell (EM4) [6-9] (su-
per)gravity respectively, which are manifest as isometries of the target spaces of sigma
models arising in their toroidal compactification to three dimensions [10-13]. More pre-
cisely, the compactified theories are gravity coupled scalar sigma models on the coset
spaces O(4,3)/(0(4) x O(3)), Ga)/(SU(2) x SU(2)), SU(2,1)/S(U(2) x U(1)) if the com-
pactification tori are purely space-like, and O(4,3)/(0(2,2) x O(1,2)), Go2)/(SL(2, R) x
SL(2,R)), SU(2,1)/S(U(1,1) x U(1)) if one of the reduced dimensions is time. The last
coset has been known for a long time as the manifold where the famous Ernst-Kinnersley-
Mazur [6-9, 14] symmetry operates. Its natural matrix representation is given in terms
of 3 x 3 (pseudo)unitary matrices. The Gy(9) coset was extensively explored recently as a
tool for solution generation [5, 15-17] in MSG5. Fruitful for this purpose is the novel 7 x 7



matrix representation [5, 18] essentially related to the matrix representation of G given by
Gunaydin and Girsey [1]. The coset O(4,3)/(0O(4) x O(3)) constitutes a particular case of
the Hassan-Sen-Maharana-Schwarz (HSMS) cosets O(n+p,n)/(O(n+p) x O(n)) arising in
toroidal compactification of heterotic string effective theory, its matrix representation was
given in [19-21]. In the case of O(4,3) theory it is also realized in terms of 7 x 7 matrices.
This representation, however, is rather complicated and not convenient to make contact
with the sequence of subspaces Ga(2)/(SU(2) x SU(2)) and SU(2,1)/S(U(2) x U(1)) which
can be useful in relating solutions of EM4, MSG5 and MSG6 theories between themselves.
The purpose of the present paper is to construct a new matrix representative of the
coset O(4,3)/(0O(4) x O(3)) which allows for simple truncation to subspaces corresponding
to MSG5 and EM4 theories. This is based again on the 7 x 7 representation, but with
different parametrization of moduli. The new matrix is much simpler than the correspond-
ing HSMS matrix and can be truncated to lower cosets by imposition of purely algebraic
constraints. Our derivation is based on the direct toroidal reduction of MSG6 to three
dimensions, explicit determination of target space isometry generators and subsequent ex-
ponentiation of the Borel subalgebra. We then extract the generators of the Gy;) and
SU(2,1) subgroups of O(4,3) and derive algebraic constraints selecting the corresponding
invariant subspaces of the coset O(4,3)/(0O(4) x O(3)) on which they act transitively.

2 D = 6 minimal supergravity

The bosonic action of six-dimensional minimal supergravity contains the metric and self-
dual three-form field

N R _
Smsae = / (R — Gﬂf/;\G“w) \/ —gdﬁx, (2.1)

where Gﬂﬁj\ = 3é[ﬂf/, NE with subsidiary condition
Goos = o5 OP 2.2
aok = gV T9%05pe7 ; (2.2)

L' The action (2.1) is a lowest-

which has to be imposed after variation of the action.
dimensional member of the even-dimensional sequence of actions containing self-dual form
fields, the largest representative of which is the IIB ten-dimensional supergravity.
Somewhat unexpectedly, this action, being compactified on a circle, turns out to be
non-locally dual to the truncated five-dimensional heterotic string effective action [19-21]
which belongs to another sequence of the string actions. This can be hinted from the

fact that the D = 5 heterotic string effective action truncated to the one-vector case gives

'As in some other supergravity actions involving self-dual form fields, the quadratic action of the
type (2.1) does not imply the self-duality condition (2.2), moreover it is zero, if self-duality is imposed
in the action itself. One needs extra fields to construct a consistent action for chiral forms in a Lorentz-
covariant way. We thank Dmitri Sorokin for drawing our attention to the references [22, 23] where such an
action for D = 6 minimal supergravity was presented. Here we deal with classical equations of motion, so
it will be sufficient to impose the condition (2.2) by hand after variation is performed. The dimensional
reduction of the full action [22, 23] is more involved, but this does not change the results on the classical
level.



rise to the D =3 0(4,3)/(0O(4) x O(3)) coset theory (a particular case of the Sen’s coset
O(d+1,d+14p)/(O(d+1) x O(d+1+p)) where d is the number of compactified dimensions
and p is the number of vector fields in the initial dimension [24]). Meanwhile the generic
oxidation of the O(4,3)/(0O(4) x O(3)) coset has apart from the regular oxidation point
D = 5 (which is the above heterotic effective action) also an anomalous siz-dimensional
oxidation point [3] which is just minimal D = 6 self-dual supergravity. This leads to a
non-local duality between the two theories which can be made explicit as follows.

Denoting the coordinates z = (z*, z) and assuming existence of the Killing vector 9.,
we decompose the metric and the two-form potential as

dst = g, da"da” + e 5 (dz + A,dz™)? (2.3)
. 1 1
C = QB/“,dCL“u A dz” + EAVdZ A dz” N (24)

where a? = 1/24. The field equations are then equivalent to those derived from the five-
dimensional action

1 1 1
S, — / (R — (00)? — O P mengMHW*> Vool (2.5)

with
1

1
_ vp — —8a vpoT
Fur = 2Appy HIP = —5o—ze CMPTT Fyr, Hyyp = 3<B[W,p] + QF[/WAP]> :
(2.6)

This is a heterotic string type effective action [21, 24] with one vector and one antisymmetric
second rank tensor fields. Note that the Maxwell field F},, in this action originates from
the six-dimensional three-form, while the five-dimensional three-form H,,,, is obtained by
dualisation of the Kaluza-Klein two-form. Therefore the relation between the six and
five-dimensional metrics and matter fields is non-local.

Due to this duality one can reduce the six-dimensional action (2.1) (which is the
subject of the present paper) to three dimensions along two different compactification
schemes. The first consists in using the well-studied compactification of the corresponding
five-dimensional heterotic string action (2.5) along the lines of [21, 24]. The second, sug-
gested in the present paper, consists in direct compactification of the initial six-dimensional
action (2.1) on a three-torus.

The first way which we briefly sketch here gives Sen’s type representation for the coset
matrix [24]. Splitting the coordinates as 2%, a* = 2°, a = 1,2, i = 1,2,3, with 2% along
the compactified dimensions, we parameterize the metric and the matter fields as

ds® = Aap(dz® + Alda’)(d2® + Abda?) + 77 hyjdatda? , T = —det X,
Aydat = ahy(d2" + Alda’) — Adda’ (2.7)
Bpyda” Adz” = Bgy(dz" + Alda’) A (d2” + Abda?)
+ (Ai(m) — ;%A?> (dz® A dx® — da* A dz?)

Jr(Bij + A‘[liAj](a_,_Q))dxi A dl‘j .



The three-dimensional reduced action can be presented in terms of the matrix sigma model
1 -
Ss = / {Rg(h) - (M) M (O M) M h”} Vhd3z . (2.8)

According to [24], the coset matrix M is constructed in three steps: first one defines of the
matrix M of non-dualized moduli, then dualisation of three-dimensional vectors to scalar
potentials is performed, and finally the matrix M is constructed in terms of M and the
new scalars. To built the moduli matrix M one arranges the five vector fields in a column
matrix A;“ (A=1,...,5),

Af‘ = (A?’ Ai(a+2)7 Az5) ) (29)

with the field strengths

v

1
Ffj =203A5%, Hy, = 3<a[iBj,d + AL ABF}%) : (2.10)

where L is the 5 x 5 matrix written in block form

01 0
L=|100 |. (2.11)
00 -1

The 2-form B;; is actually fixed by the gauge condition
Hiji = 0. (2.12)
The 5 x 5 moduli matrix M 4p then reads, in block form,

v g v
M= CTy™ (v+CTy M (v +C) (v +CT vl | (2.13)
Iyt Ty +C) 14yt
where v, = 7Y%\, (v = /2/3), and C is the 2 x 2 matrix C = B + %@ZM/JT. The matrix
M is symmetric, and satisfies

MLMT =1L. (2.14)

The next step involves dualisation of the three-dimensional vector fields according to

Vhe"*h' W (ML) apFyy = 7% wa, (2.15)
defines the row matrix
w = (W wq,ws) - (2.16)
Now, using the result of [24] it is straightforward to write down the 7 x 7 matrix M in a
block form:
M + e "PwwT —e VT MLwT + %e_”d’wT(wLwT)
M = —e 0w e Ve —2e VP (wLwT)
wLM + fe7"Pw(wlw?) —fe™?(wLwT) e’? + wLM Lw™ + Le™¢(wLw™)?

(2.17)



Thus, in principle, the Sen’s matrix can be also used in the case of D = 6 minimal
supergravity not belonging to the sequence of the heterotic string effective actions. But
disadvantage of such an approach, apart from relative complexity of the matrix (2.17), lies
in the fact that the variables of the five-dimensional heterotic action in terms of which
this representation is written, are still non-trivially related to the initial six-dimensional
variables. Another desired feature which can be demanded from the coset representation
of the D = 6 theory is the possibility of its simple truncation to five-dimensional minimal
supergravity whose D = 3 coset Gy(9)/(SU(2) x SU(2)) is an invariant subspace of the coset
0(4,3)/(0O(4) x O(3)). This can be achieved using the direct toroidal compactification of
D = 6 minimal supergravity to three dimensions. Before doing this, we briefly review the
coset, structure of five-dimensional minimal supergravity. In both cases we will use the
technique applied in [5] which consists in i) obtaining an explicit form of the target space
metric, ii) identifying its isometry algebra, iii) exponentiating the Borel subalgebra to get
suitable matrix representation. Though technically different, it is conceptually the same
construction as used by Maharana-Schwarz and Sen [20, 24].

3 D = 5 minimal supergravity
The action of MSG5 reads

1 1
Sysas = / <[R - 4F“”FW} V5 — Meﬂ”ﬂ“FWFpUAA> dzx, (3.1)

with F' = dA. We compactify on a two-torus using
ds? = Agp(dz® + ada’) (dz° + agdmj) + 7 hydatda? (3.2)
Apyudat = V3(thad2® + Aida'),
where a,b = 0,1 and 7 = |detA|. The v = i components of the Maxwell-Chern-Simons

equations allow to dualize the vector magnetic potential A; to a scalar magnetic potential
1 defined by

F9 = a" 9%, — a1, + ey M = Ot + € Opaby - (3.4)

1
Vh
Similarly, the = 4, v = a components of the Einstein equations are integrated by

- 1
Aap G = Wel]kvak ; Vak = Ok — 4 (33kﬂ + Ebc¢bakwc) ; (3.5)

T

where G® = da®, and w, is the ‘twist’ or gravimagnetic two-potential. The D = 3 sigma
model

1 .
Sz = / <R3(h) — 5GABaicpf“ajchhw \/E> Bz, (3.6)
is then obtained with eight target space coordinates ®4 = {\abs Wa, Ya, 1} and metric
di? = Gapdd*dd”

= %Tr()\_ld)\)\_ldA) + %T—MT? — 7 WINW 43 (A dy — i) L (3.7)



This space has 14 Killing vectors which were determined in terms of these variables in [5, 18].
Nine manifest infinitesimal symmetries (or generalised gauge transformations), grouped
according to their transformations under GL(2R) (the group of linear transformations in
the (2!, 2?) plane) into the quadruplet

0 0 0 0
Mab:2)\aC— P — 5b c—— o (5b — 3.8
Dy Ty T 0, T Ve, Tk, (3:8)

(the generators of the gl(2, R) subalgebra), the doublet and the singlet associated with the

the three cyclic ‘magnetic’ coordinates:

0 0
N = = — 3.9
Owg ou’ (39)
and the doublet generating infinitesimal gauge transformations of the v,
0 0 b 0 0
a _ _ @ _ c— . 1
R 3¢a+3'uawa € b(aM—FdJ 8w0> (3.10)

The five remaining, non trivial infinitesimal isometries L,, P, and T closing the Lie al-
gebra gy() are more complicated, their full expression is given in [18]. The L, M," and
N® generate the vacuum subalgebra sl(3, R). Assuming a spacelike two-torus, the target
space (3.7) is identified as the coset space Gy(z)/(SU(2) x SU(2)).

The 7 x 7 symmetric matrix representative of the coset obtained by exponentiation
of the Borel subalgebra [5, 18] exhibits a highly nonlinear dependence on the moduli. Its
structure is quite different from that of the Sen matrix (2.17) for the coset O(4,3)/(O(4) x
0(3)), so it is practically impossible to relate them.

4 New representative for D = 6 minimal supergravity

A simpler representation of the coset O(4,3)/(0O(4) x O(3) may be achieved by perform-
ing direct compactification of the six-dimensional theory on 73. We start with the La-
grangian (2.1), and assume 3 Killing vectors 9, (a = 1,2,3). The six-dimensional metric

and 3-form may be parameterized by

ds% = Aap(dz® + a?dmi)(dzb + az’-dxj) + Tflhijd:cidmj ,

Gabe =0, Gapi = Bap,i, (4.1)
(1 = —det), i,j = 4,5,6) and the 10 remaining components of G related to these by
self-duality. Put
Bab = €apex” (4.2)
Then,
Gapi = Gachi'a G = —iﬁiijak- (4.3)

vVho
The mixed Einstein equations

pi — T o bij
By = 500 [m/ﬁ/\abf }
1 Aibj A T ijk b . c



(Fb = da®) are solved by

- 1 .
AapF = =€ Vop, Vag, = Opwa + eabeX 3 X - (4.5)

Vh ’
The remaining Einstein equations then lead to the gravitating sigma model with target

space metric
1 1
di* = STe(ATHATIAN) + o7 dr? = 7T IVIATIV - 27 Ry A (4.6)

where
V =dw—xAdy. (4.7)

The dimension of this target space is twelve: six components of the symmetric matrix
Aap and two triplets w,, x®. In appendix A we check that it admits 21 Killing vectors
generating the Lie algebra o(4,3). These include nine Killing vectors M," generating the
algebra gl(3, R) of linear transformations in the three-Killing vector space, six vectors N
and L, which together with the M," generate the isometry algebra sl(4, R) for the target
subspace corresponding to the six-dimensional vacuum sector, and six more vectors R, and
P® which complete the algebra o(4, 3). The fifteen Killing vectors M,", N* and R, generate
generalized gauge transformations, with the N® generating translations of the twists w,
and the R, generating gauge transformations of the x®.

In appendix B we construct real matrix representatives of o(4,3), beginning with the
subalgebra o(3, 3) ~ sl(4, R). Rather than using the Maison parametrization [25] of sl(4, R)
in terms of 4 X 4 matrices (which presumably would lead to a representation of o(4,3) in
terms of 8 x 8 matrices), we use the representation of 0(3,3) in terms of 6 x 6 matrices.
These are then promoted to 7 x 7 matrices by the addition of a row and a column, and
completed by six 7 x 7 matrices R, and P closing the algebra o(4,3). The 7 x 7 coset
matrix representative is then constructed in a standard fashion as

M =N\, (4.8)

where N is obtained by exponentiating a suitable Borel subalgebra of 0(4,3), and 7 is a
suitably chosen constant matrix. The resulting coset representative is, in block form,

[ V2px Y
M= vV2xTu —1+2x"ux V20" + %) (4.9)
Y V2T +XT) ATy = 2XT X+
where ~ denotes the anti-transposition, i.e. transposition relative to the anti- (or minor)
diagonal, and

A1l A1z A1z
=7 A=7"1 Ay a2 Aas |
A31 A32 As3
Xt —wy w3 0
x=|xX|, x=0x»x), 7=o-—xx, @=| w 0 —ws|.(410)
X3 0 —wi1 wo



One can check that the target space metric (4.6) can be expressed as
1
di* = ZTr(/\/t—lcz/\/m/t—ldjvt) . (4.11)

In the case of a Lorentzian six-dimensional space Eg with signature (—++ + ++) and
an Euclidean reduced three-space (so that one of the Killing vectors of Eg is timelike), the
symmetric target space 7 of metric (4.6) is the coset G/H = 0(4,3)/0(2,2) x O(2,1). H
is the isotropy group leaving invariant any given point of the target space, which may be
chosen to be the point at infinity of 7. Thus it is relevant to examine the various possible
asymptotic behaviors for asymptotically flat six-dimensional configurations.

Minkowski asymptotics. For an asymptotically Minkowskian metric, or for a metric
which is asymptotically the product of a four-dimensional black hole by a 2-torus, with z!
the time coordinate, the asymptotic coset representative is

—-100 0 00 O
010 0000
0010000
Mo=nu=] 000-100 0 (4.12)
0000100
0000010
0000 O00-1
This asymptotic behavior is preserved by the nine Killing vectors
X; = —My® + M3?, Xy = Ms' + M, X3 =—M* - My',
Yi=N'+1Li, Yo = N?— Ly, Y3 =N°— Ls,
Z,=P'— Ry, Zy = P?+ Ry, Z3 = P3 + Ry (4.13)
(with the first three pure gauge), satisfying the commutation relations
[Xaa Xb] = [Yaa YE)] = 6abc"7cX'c ) [Zzza Zb] = 2€abc770(Xc + }70) s
[Xaa }_/27] = EabchYC) [Yaa Zb] = [Zaa Xb] = Eabc770207 (4.14)
with 71 = —1,7m2 = 73 = +1. The combinations
1,5 — 1 - _ _
Kg = §(Xa -Y,), Kczzt = Z(Xa + Yo £ Z,) (4.15)
generate three commuting copies of the Lie algebra of O(2,1),
[Kay Kb] = €abeNcKe - (4.16)

We thus recover the isotropy subgroup H = 0(2,2) x O(2,1) = O(2,1)3.
Black string asymptotics. The static Myers-Perry (Tangherlini) six-dimensional black
string (the product of a five-dimensional black hole by a circle) is
dr? r?

dst = —(1 —m/rz)dtQ—i—m—i—Z [(dn — cos dip)? + db” + sin® 0dp®] +(d¢)? . (4.17)



This has four commuting Killing vectors. Reduction relative e.g. to 0y = 0, 92 = 0, and
03 = O leads to

A = diag[—(r? —m)/r?, ?/4, 1], 7= T ;m , a, = —cost,
S 2 2 _
do® = hyjda'da’ = % dr? + - : ™ (36 + sin? 0dy?) | (4.18)
leading to
2
wy = Ic, (4.19)

with ¢ a constant of integration. Computation of the asymptotic behavior of the lower
right-hand side 3 x 3 block in (4.9) gives

7Ny 4+ 7ATL L 5 diag[—(m 4+ 2¢) /4, 1, (m +2¢)/4], (4.20)

which is equal to the asymptotic behavior of the upper left-hand side block for the value
¢ = —m/2. In this case,

000 0 100
010 0 000
000 0 001
Me=]1000-1000 ] . (4.21)
100 0 000
000 0010
001 0000

This asymptotic behavior is preserved by the nine Killing vectors

Xi=—M' — Ly, Xo = M, X_=-M?*+N",
Yy =M —Lg, Yo = Mi® + M, Y_ = M;s* + N?,
Z,=—-P'4+P3, Zo=P?+ R, Z_=—Ri+R;3. (4.22)

Xo, X_, Yy, Y_ and Z_ are pure gauge. The first three generate an SL(2, R),
[Xo, Xa| =Xy, [Xi, X ]=Xo, (4.23)
or symbolically [X, X] = X. The full algebra

X, X] = [Y,Y] = X, 12,2] = 2X +Y),
(with commutators such as [Xg, Yp] and [X4, Yy | vanishing) can be split, as in the case of

Minkowski asymptotics, into three commuting si(2, R) = O(2,1) generated by the combi-

nations 1 1
J0:§(X—Y), JiZZ(XJrYiZ), (4.25)

so that the isotropy subgroup H = O(2,2) x O(2,1) is again recovered.



Black hole asymptotics. The static six-dimensional black hole

d 2
dst = —(1 —m/r3)dt* + 1770/3 + 72 [d92 + cos? 0d¢? + sin? (dn?* + sin? ndch)] (4.26)
—m/r
has only three commuting Killing vectors d, O and d,. Reduction relative to these vectors
leads to

p = diag[—4/r*sin® 20sin®n, r/(r3 — m)sin® @sin®n, r/(r* —m) cos? 4] .
x =7=0. (4.27)

The resulting matrix M has no regular limit at spatial infinity. As in the well-known
case of four-dimensional Einstein-Maxwell theory reduced relative to the azimuthal Killing
vector [26], new solutions can be generated from this by O(4,3) transformations, but these
will be always non-asymptotically flat.

5 Invariant subspaces

The new matrix (4.9) parameterizes the twelve-dimensional coset space of MSG6 the-
ory. It may be also applied as a representative of the embedded eight-dimensional coset
Go(2)/(SU(2)xSU(2) corresponding to MSG5 and four-dimensional coset SU(2, 1)/S(U(2) x
U(1)) corresponding to EM4. These may be selected by purely algebraic constraints on
the potentials. To find these constraints one has to consider dimensional reductions and
consistent truncations which relate these theories to MSG6.

5.1 D = 5 minimal supergravity

The coset Go(2)/(SU(2) x SU(2) is a totally geodesic subspace of the coset O(4,3)/(O(4) x
0(3)), so MSG6 compactified on a circle can be consistently truncated to MSG5. Indeed,
it can be checked [27] that the equations of motion following from (2.5) are consistent with
the constraints

vV —9 oT
§b = 07 F,uu = :':37\/;6MV/)O'THp s (51)

in which case they reduce to those of MDG5, provided the two-form field F},, is rescaled by

2
F — j:\/;Fm,. (5.2)

Note that, in view of the second relation in (2.6), the second contraint (5.1) is equivalent
to identification of the Maxwell two-form and the Kaluza-Klein two-form of the reduced
theory (2.5), in which case the dilaton can be consistently set to zero. We must now
identify the corresponding constraints in terms of the target space variables. Inspecting
the definitions of the three-dimensional target space variables (4.1)—(4.5) one finds

A3z =1, Aa3=TFeax’, ws=Fx>. (5.3)

Since the G5 sector arises as a consistent truncation of the five-dimensional reduction of the
original six-dimensional model, it is not surprising that in the reduction to three dimensions

,10,



the three-covariance is broken down to two-covariance. Actually, knowing this (and making
some educated guesses) is enough to find the two go subalgebras generated by the Killing
vectors preserving the constraints (5.3). In the two-covariant notation of section 4 of [5],
their generators are related to those of o(4, 3) by

9o 0(4,3)

Mab — Mab

Ne = N@

Lo = La (5.4)
Q = —N3 &+ R3

T =-Ly¥P?,

R® = —M3% + ¢®R,

P, = —M,?+ e, PP

with a,b = 1,2. It is easy to check that these combinations satisfy the commutation
relations (92)—(97) of [5].

Conversely, comparing the covariant three-dimensional reductions of MSG5 and MSG6,
we see that any solution (ds(25), Asy) of MSG5 with two commuting Killing vectors can be
oxidized to a solution of MSG6 with three commuting Killing vectors given by

ds)” = ds%5) + (—tpada® + dz — Azdx)?
X = i(—¢2; wlv ,U) . (55)

It follows that, given a solution of MSG5 with two commuting Killing vectors, one can
generate from this a new solution by going through the following steps: 1) oxidize the
seed solution to a solution of MSG6 by (5.5); 2) construct its coset representative (4.9); 3)
transform this,

M =PTMP, (5.6)

by the action of an O(4,3) transformation P generated by the generators of the second
column of (5.4); 4) extract from M’ the new solution of MSG6; 5) reduce this to five
dimensions by (5.5). In view of the simplicity of the matrix representation (4.9) compared
to that previously known for MSGH5, this procedure might be easier to implement than
direct generation by Gy(o) transformations.

The generators preserving both five-dimensional Myers-Perry (or black string) asymp-
totics and G truncation are

1 1
JF=(X+YF2Z), ST = (BX-Y+2), (5.7)

generating two commuting copies of sl(2, R) = o(2,1). The non-trivial generators are

+Go)=ZoFYo=P*+ Ry F (M3 + M3 (electric charge),
+G 1) =24 FY} = —P' 4+ PP £ (My® — L3) (two dipole charges),
F,=X,=-M'—-1, (angular momentum).  (5.8)
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Clearly, all the generators (4.22) preserving black string asymptotics are linear combina-
tions of the four non-trivial generators F, G, (1), G, (_), and one of the Gy, together
with gauge transformations. These four generators applied to a black string will do the
same job as the corresponding G2 generators (and in particular, preserve the black string
condition A3z = 1), but in a simpler fashion. The non-vanishing commutators between
these four generators are

[Goxy, Fy] = Giay s
[Goz), Gyw)] = 3F — 2G4, (5.9)
[Go): Gp)] = Fr = Gir) — Go(o) -
5.2 D = 4 Einstein-Maxwell

To identify the constraints selecting the SU(2,1)/S(U(2) x U(1)) subspace of the G2 coset,
one must first compactify MSGH on a circle [5], since this subcoset corresponds to four-
dimensional Einstein-Maxwell theory. Assuming the existence of a space-like Killing vector
0., we parametrize the five-dimensional metric and Maxwell field by

ds? = e 2%(dz + O, dat)? 4 ¢?ds3, (5.10)
As = A,dat +V/3kdz, (5.11)

(w=1...4). The corresponding four-dimensional action

Sy = /d4x\/—g [R - g(agb)Q — ;ew(an)Q — %e*‘%a2 — %e*ﬁﬂ — %FLFF* . (5.12)
where
G=dC, F=dA, F=F+V3CAdx, (5.13)

and F* is the four-dimensional Hodge dual of F', describes an Einstein theory with two
coupled abelian gauge fields F' and G, a dilaton ¢ and an axion k. The field equations in
terms of the four-dimensional variables read

V26 — e (0r)* + %e*‘%GQ + %e*@? =0, (5.14)

Vi (209 - é [\/3 V(e O R C,) + ;FWF*‘“’] =0, (5.15)
v, (e*%ﬂ” n QHF*“V> — 0, (5.16)

Vi (TG ) + VBT PO = 0. (5.17)

Truncation to the Einstein-Maxwell system is achieved by imposing

1
(b = 0, R = 07 GM]/ = ﬁ\/gjeullpaF&U) . (518)
After reduction to three dimensions, this leads to the constraints

Ao =1, Po=0, Ap=p, wr=—Y;. (5.19)
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We find that these constraints are preserved by the eight infinitesimal transformations

Ky =M,

Ky =M +Q, Ky=M?-T,

Ky=N', K5 =L,

K¢ =N*-R', Kr=Ly+ P,

Ks =P, — R%. (5.20)
From the commutation relations given in [18], we find that the K (M = 1,...,8) generate

the Lie algebra of SU(2,1), which may be put in the Cartan-Weyl form [28], with

1 )
H —K7, Hy = —Kg,
1 23 1 2= s
1 1 1
Fi=—Ks5, E =——Ky4, a; = —(1,0), (5.21)

6 Outlook

The main result of this paper is the new representative (4.9) of the coset O(4,3)/(0(4) x
0O(3)) which is a symmetric 7 x 7 matrix, given in block form. This matrix is substan-
tially simpler than the matrix (2.17) constructed by Sen’s method. Moreover, it also looks
simpler than the G matrix for the coset Gy(9)/(SU(2) x SU(2)) constructed by us previ-
ously [5] and used for solution generation in [5, 15]. The reason is that constraining to the
subspace Gy(2)/(SU(2) x SU(2)) one loses the O(4,3) covariance which simplifies the un-
derlying matrix structure. After truncation to vacuum five-dimensional gravity (x* = 0),
the new matrix leads to a 7 X 7 matrix representative of the coset SL(3, R)/O(2, 1) which
is different from that resulting from the truncation to vacuum gravity (1, = p = 0) of our
previous G matrix [5]. It is therefore expected that imposing the constraints (5.3) on the
coordinates of the full coset O(4,3)/(0(4) x O(3)) one should obtain a 7 x 7 representative
of the G5 coset different from our previous one. This new G5 matrix could also be obtained
as in [5, 18] by direct exponentiation of the Borel subalgebra using the new representa-
tion (5.4), (B.3)—(B.4) of the g2 algebra. Alternatively, one can as we have shown use the
full new matrix (4.9) together with the corresponding transformations (5.4) to generate
from a given seed a new solution of five-dimensional minimal supergravity.

At the same time, one can also transform solutions of MSG5 to non-trivial solutions of
MSG6 by performing O(4, 3) transformations which do not belong to the G2y subgroup,
which may be chosen to have required asymptotic properties, as discussed at the end of
section 4. The same arguments equally apply to the SU(2,1)/S(U(2) x U(1)) subspace of
the G coset.
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A TIsometry algebra of the metric (4.6)

Fifteen obvious Killing vectors are:

Mt = 2Aacafcb - w“aib + 8bwe 81 —x aia + 62x© aic , (A1)
generating linear transformations in the three-Killing vector space,
0
N® = oo (A.2)
generating translations of the “magnetic” coordinates w,, and
Ru= oo+ e (A3)
generating gauge transformations of the x®.
Their commutation relations are
[Mab, M4 = oPM,d — odnrl, (A.4)
[Mab,NC_ = 6N — b N*, (A.5)
[Mab,Rc' — 6°R, — O°R,, (A.6)
[Na,Nb_ —0, (A7)
[N“,Rb_ ~0, (A.8)
[Ra, Ry| = —2eapeNC. (A.9)

Three more vectors L, are needed to complete the algebra si(4, R) of the vacuum sector:

[Mab,Lc} = 0Ly + 6L, (A.10)
[N“,Lb} — M, (A.11)
[La,Lb} —0. (A.12)

Adding to the known form of the sl(4, R) for 6D Einstein the information from (A.11),

0 0
L, = wowp5— + 2wpAgemi— + Xb (Wa

0 0
B I - wb> +TAps— +--- (A13)

axb ox° Owy
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(the omitted terms are of order 0 in w,). Assuming that the full Lie algebra is O(4, 3), it
must close with the three remaining generators P® defined by

[Ra, Lb] = €qpe P (A.14)
leading to

pa_ ”b(xbaia ~ Xaaib ~ eabcai) . (A.15)

and obeying the commutation relations
{Mab,PC_ — —sepPb 4+ gbpe (A.16)
[N“,Pb' — (R, (A.17)
[Ra, Pt = oM, — 6P Tr(M), (A.18)
[La,Pb_ ~0, (A.19)
[P“,Pb_ — _geaber, (A.20)

The degrees of the various fields can be found from their commutators with Tr(M);
N=2, w=4, [x]=2. (A.21)
This leads to the degrees of the various Killing vectors
[Mab} =0, [Rd=-2, [Pb} =2, [Nb] =4, [LJ=4. (A.22)

The six unknown Killing vectors L, and P can be determined, up to a sign, by solving
the commutation relations (A.18) and (A.20). The relatively simple result is

0 0 0 0 0
La: aWh 5 2 ac AN b af 5 A o aby
wwba + 2wpA 8)\bc+x <w N wp )—i—T)\b

Wy Ox? o\ Owy,
0 0 0
72 abe b d)\ . _ ac>\bd (& - e - A2
Cabe XX Ade gy = OT€abeATX" | 557G — €defX ;) (A.23)
a 9 o O abe O 9 ay 0
P = w, (xbaw X € ’ v ) +2x° (mm —5bAdcaAd>
0 0 0
a. b ab c
X = arA? [ = — e ) | A.24
X g T ( s CedX 8wd> (A.24)

with a? = 1.

The value of @ = +1 is presumably related to the signature of A\ (here — + +). It
can be determined by enforcing that e.g. v,P* (7, constant vector) is a Killing vector of
the target space metric. The action of (P7) leads to the first order variations (written in
matrix notation)

ON = 2[y-xA+Ax -7 — (xV)A],
ow = v(xw) — (x7)w + av-)flfy AX, (A.25)
ox = =y Aw—(x7)x —atA™y.
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This leads to

0(di*) = 4(1 = a) [(dxdAA™"'y) — 771 (d7 + (xAdx))(dx7)
+T*1(X’y)(dx)\dx) — 771(7, Adx, dw)] , (A.26)

which vanishes provided
a=+1. (A.27)

B Matrix representative

The first step is to construct real matrix representatives of O(4,3), beginning with the
subalgebra O(3,3) ~ si(4, R). Rather than using the Maison parametrisation of si(4, R)
in terms of 4 x 4 matrices (which presumably would lead to a representation of O(4,3) in
terms of 8 x 8 matrices), we use the representation of O(3,3) in terms of 6 x 6 matrices,
decomposed in 3 x 3 blocks according to

b a
0 0n 0 0
M= NO = L, = B.1
a < 0 _mé))’ <0 0 )7 a (_naT 0)7 ( )

where ~ denotes the anti-transposition, i.e. transposition relative to the anti- (or minor)
diagonal, and

(ma")* 5 = 0505 — 6455 | (B.2)
000 -100 01 0
nt=l100]|, n2=]000], n*=[00-1
0-10 001 00 0

(o, B = 1,2,3). These matrices satisfy the commutation relations (A.4), (A.5), (A.10),
(A.7), (A.11) and (A.12).

The 7x 7 matrix generators of O(4, 3) contain the preceding, promoted to 7 x 7 matrices
by the addition of a central 3-row and a central 3-column, in block form

mg” 0 0 00n® 0 00
MbP=1| 0 0 o0 , N*=|o000 |, L.= 0 00|, (B.3)
0 0 —mp 000 -nT 00
together with
0r, O 0 0 0
Ri=V2|00 =7 |, P*=v2[+T 0 0], (B.4)
00 0 0 710
where 7, is the column matrix of elements
Ty =04 (B.5)
Using
TaTh — ToTa = €aben’ ) (BG)
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these can be checked to satisfy the remaining commutation relations of O(4, 3).
The 7 x 7 coset matrix representative is

M=V My, (B.7)
with
w0 0
Mo=[0-1 0 |, p=71), (B.8)
00 gt
and
1V2y v
V=X BagwaN® — | g1 27 |, (B.9)
0 0 1
where
X! —w2 w3 O
x=| x|, 7v=o-xx, ¥=| w1 0 —ws3|. (B.10)
X 0 —w1 wo
The resulting coset representative
t V2px y
M= vV2xTu —1+2x"ux  V20Twy + %) (B.11)
Y V2 px +XT) Ty = 22X x
is related to its inverse by
M1 =M (B.12)

(use V(w, x) = V(~w, —x)). Taking into account the identity
TerAVIAV] = —2r(VIA V),

which follows from (B.14), one checks that the target space metric (4.6) can be expressed as
a2 — iTr(M‘ldMM_ldM). (B.13)

The Kaluza-Klein vectors af can be recovered directly by solving the duality equa-
tion (4.5), where the field V' is contained in the block

o —

a1 =1 2Nd@ + dxx — xdX)" A = —m(AV)T (B.14)

of the current
J = MtdM (B.15)

(with the hat " vector-to-matrix transformation defined as in the last equation (B.10)).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution and reproduction in any medium,
provided the original author(s) and source are credited.
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