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1 Introduction

The remarkable sequence of groups O(7) ⊃ G2 ⊃ SU(3) attracted attention in particle

physics long ago. In a seminal paper Gunaydin and Gürsey [1] have given an extensive

discussion of their properties, representations and applications to model building. Within

the Lie algebra of O(7), the subalgebras G2 and SU(3) form rather sophisticated closed

structures which were explicitly given in [1] in terms of rotation generators of O(7).

The maximally non-compact forms of the same groups O(4, 3) ⊃ G2(2) ⊃ SU(2, 1)

play an important role in the gravity/supergravity context [2]. These group are hidden

symmetries of six-dimensional minimal supergravity (MSG6) [3], five-dimensional mini-

mal supergravity (MSG5) [4, 5] and four-dimensional Einstein-Maxwell (EM4) [6–9] (su-

per)gravity respectively, which are manifest as isometries of the target spaces of sigma

models arising in their toroidal compactification to three dimensions [10–13]. More pre-

cisely, the compactified theories are gravity coupled scalar sigma models on the coset

spaces O(4, 3)/(O(4)×O(3)), G2(2)/(SU(2)×SU(2)), SU(2, 1)/S(U(2)×U(1)) if the com-

pactification tori are purely space-like, and O(4, 3)/(O(2, 2) × O(1, 2)), G2(2)/(SL(2, R) ×
SL(2, R)), SU(2, 1)/S(U(1, 1) × U(1)) if one of the reduced dimensions is time. The last

coset has been known for a long time as the manifold where the famous Ernst-Kinnersley-

Mazur [6–9, 14] symmetry operates. Its natural matrix representation is given in terms

of 3× 3 (pseudo)unitary matrices. The G2(2) coset was extensively explored recently as a

tool for solution generation [5, 15–17] in MSG5. Fruitful for this purpose is the novel 7× 7

– 1 –



J
H
E
P
0
3
(
2
0
1
3
)
1
4
3

matrix representation [5, 18] essentially related to the matrix representation of G2 given by

Gunaydin and Gürsey [1]. The coset O(4, 3)/(O(4)×O(3)) constitutes a particular case of

the Hassan-Sen-Maharana-Schwarz (HSMS) cosets O(n+p, n)/(O(n+p)×O(n)) arising in

toroidal compactification of heterotic string effective theory, its matrix representation was

given in [19–21]. In the case of O(4, 3) theory it is also realized in terms of 7× 7 matrices.

This representation, however, is rather complicated and not convenient to make contact

with the sequence of subspaces G2(2)/(SU(2)× SU(2)) and SU(2, 1)/S(U(2)×U(1)) which

can be useful in relating solutions of EM4, MSG5 and MSG6 theories between themselves.

The purpose of the present paper is to construct a new matrix representative of the

coset O(4, 3)/(O(4)×O(3)) which allows for simple truncation to subspaces corresponding

to MSG5 and EM4 theories. This is based again on the 7 × 7 representation, but with

different parametrization of moduli. The new matrix is much simpler than the correspond-

ing HSMS matrix and can be truncated to lower cosets by imposition of purely algebraic

constraints. Our derivation is based on the direct toroidal reduction of MSG6 to three

dimensions, explicit determination of target space isometry generators and subsequent ex-

ponentiation of the Borel subalgebra. We then extract the generators of the G2(2) and

SU(2, 1) subgroups of O(4, 3) and derive algebraic constraints selecting the corresponding

invariant subspaces of the coset O(4, 3)/(O(4)×O(3)) on which they act transitively.

2 D = 6 minimal supergravity

The bosonic action of six-dimensional minimal supergravity contains the metric and self-

dual three-form field

SMSG6 =

∫ (

R̂− 1

12
Ĝ

µ̂ν̂λ̂
Ĝµ̂ν̂λ̂

)

√

−ĝd6x , (2.1)

where Ĝ
µ̂ν̂λ̂

≡ 3Ĉ[µ̂ν̂,λ̂], with subsidiary condition

Ĝ
µ̂ν̂λ̂

=
1

6

√

−ĝǫ
µ̂ν̂λ̂ρ̂σ̂τ̂

Ĝρ̂σ̂τ̂ , (2.2)

which has to be imposed after variation of the action.1 The action (2.1) is a lowest-

dimensional member of the even-dimensional sequence of actions containing self-dual form

fields, the largest representative of which is the IIB ten-dimensional supergravity.

Somewhat unexpectedly, this action, being compactified on a circle, turns out to be

non-locally dual to the truncated five-dimensional heterotic string effective action [19–21]

which belongs to another sequence of the string actions. This can be hinted from the

fact that the D = 5 heterotic string effective action truncated to the one-vector case gives

1As in some other supergravity actions involving self-dual form fields, the quadratic action of the

type (2.1) does not imply the self-duality condition (2.2), moreover it is zero, if self-duality is imposed

in the action itself. One needs extra fields to construct a consistent action for chiral forms in a Lorentz-

covariant way. We thank Dmitri Sorokin for drawing our attention to the references [22, 23] where such an

action for D = 6 minimal supergravity was presented. Here we deal with classical equations of motion, so

it will be sufficient to impose the condition (2.2) by hand after variation is performed. The dimensional

reduction of the full action [22, 23] is more involved, but this does not change the results on the classical

level.
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rise to the D = 3 O(4, 3)/(O(4) × O(3)) coset theory (a particular case of the Sen’s coset

O(d+1, d+1+p)/(O(d+1)×O(d+1+p)) where d is the number of compactified dimensions

and p is the number of vector fields in the initial dimension [24]). Meanwhile the generic

oxidation of the O(4, 3)/(O(4) × O(3)) coset has apart from the regular oxidation point

D = 5 (which is the above heterotic effective action) also an anomalous six-dimensional

oxidation point [3] which is just minimal D = 6 self-dual supergravity. This leads to a

non-local duality between the two theories which can be made explicit as follows.

Denoting the coordinates xµ̂ = (xµ, z) and assuming existence of the Killing vector ∂z,

we decompose the metric and the two-form potential as

ds26 = e2αφgµνdx
µdxν + e−6αφ(dz +Aµdx

µ)2 , (2.3)

Ĉ =
1

2
Bµνdx

µ ∧ dxν + 1√
2
Aνdz ∧ dxν , (2.4)

where α2 = 1/24. The field equations are then equivalent to those derived from the five-

dimensional action

S5 =

∫ (

R− 1

2
(∂φ)2 − 1

4
e4αφFµνF

µν − 1

12
e8αφHµνλH

µνλ

)√−g5d5x , (2.5)

with

Fµν ≡ 2A[ν,µ] , Hµνρ ≡ − 1

2
√−g5

e−8αφǫµνρστFστ , Hµνρ = 3

(

B[µν,ρ] +
1

2
F[µνAρ]

)

.

(2.6)

This is a heterotic string type effective action [21, 24] with one vector and one antisymmetric

second rank tensor fields. Note that the Maxwell field Fµν in this action originates from

the six-dimensional three-form, while the five-dimensional three-form Hµνρ is obtained by

dualisation of the Kaluza-Klein two-form. Therefore the relation between the six and

five-dimensional metrics and matter fields is non-local.

Due to this duality one can reduce the six-dimensional action (2.1) (which is the

subject of the present paper) to three dimensions along two different compactification

schemes. The first consists in using the well-studied compactification of the corresponding

five-dimensional heterotic string action (2.5) along the lines of [21, 24]. The second, sug-

gested in the present paper, consists in direct compactification of the initial six-dimensional

action (2.1) on a three-torus.

The first way which we briefly sketch here gives Sen’s type representation for the coset

matrix [24]. Splitting the coordinates as za, xµ = xi, a = 1, 2, i = 1, 2, 3, with za along

the compactified dimensions, we parameterize the metric and the matter fields as

ds2 = λab(dz
a +Aa

i dx
i)(dzb +Ab

jdx
j) + τ−1hijdx

idxj , τ = − detλ ,

Aµdx
µ = ψa(dz

a +Aa
i dx

i)−A5
i dx

i , (2.7)

Bµνdx
µ ∧ dxν = Bab(dz

a +Aa
i dx

i) ∧ (dzb +Ab
jdx

j)

+

(

Ai(a+2) −
1

2
ψaA

5
i

)

(dza ∧ dxi − dxi ∧ dza)

+(Bij +Aa
[iAj](a+2))dx

i ∧ dxj .
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The three-dimensional reduced action can be presented in terms of the matrix sigma model

S3 =

∫ {

R3(h)−
1

8
Tr
[

(∂iM)M−1 (∂jM)M−1
]

hij
}√

hd3x . (2.8)

According to [24], the coset matrix M is constructed in three steps: first one defines of the

matrix M of non-dualized moduli, then dualisation of three-dimensional vectors to scalar

potentials is performed, and finally the matrix M is constructed in terms of M and the

new scalars. To built the moduli matrix M one arranges the five vector fields in a column

matrix AA
i (A = 1, . . . , 5),

AA
i = (Aa

i , Ai(a+2), A
5
i ) , (2.9)

with the field strengths

FA
ij ≡ 2∂[iA

A
j] , Hijk = 3

(

∂[iBjk] +
1

2
AA

[iLABF
B
jk]

)

, (2.10)

where L is the 5× 5 matrix written in block form

L =







0 1 0

1 0 0

0 0 −1






. (2.11)

The 2-form Bij is actually fixed by the gauge condition

Hijk = 0 . (2.12)

The 5× 5 moduli matrix MAB then reads, in block form,

M =







γ−1 γ−1C γ−1ψ

CTγ−1 (γ + CT )γ−1(γ + C) (γ + CT )γ−1ψ

ψTγ−1 ψTγ−1(γ + C) 1 + ψTγ−1ψ






, (2.13)

where γab ≡ e−νφλab (ν =
√

2/3), and C is the 2× 2 matrix C = B + 1
2ψψ

T . The matrix

M is symmetric, and satisfies

MLMT = L . (2.14)

The next step involves dualisation of the three-dimensional vector fields according to

τ
√
heνφhii

′

hjj
′

(ML)ABF
B
i′j′ = ǫijk∂kωA , (2.15)

defines the row matrix

ω ≡ (ωa, ωa, ω5) . (2.16)

Now, using the result of [24] it is straightforward to write down the 7 × 7 matrix M in a

block form:

M =







M + e−νφωωT −e−νφωT MLωT + 1
2e

−νφωT (ωLωT )

−e−νφω e−νφ −1
2e

−νφ(ωLωT )

ωLM + 1
2e

−νφω(ωLωT ) −1
2e

−νφ(ωLωT ) eνφ + ωLMLωT + 1
4e

−νφ(ωLωT )2






.

(2.17)
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Thus, in principle, the Sen’s matrix can be also used in the case of D = 6 minimal

supergravity not belonging to the sequence of the heterotic string effective actions. But

disadvantage of such an approach, apart from relative complexity of the matrix (2.17), lies

in the fact that the variables of the five-dimensional heterotic action in terms of which

this representation is written, are still non-trivially related to the initial six-dimensional

variables. Another desired feature which can be demanded from the coset representation

of the D = 6 theory is the possibility of its simple truncation to five-dimensional minimal

supergravity whose D = 3 coset G2(2)/(SU(2)×SU(2)) is an invariant subspace of the coset

O(4, 3)/(O(4) × O(3)). This can be achieved using the direct toroidal compactification of

D = 6 minimal supergravity to three dimensions. Before doing this, we briefly review the

coset structure of five-dimensional minimal supergravity. In both cases we will use the

technique applied in [5] which consists in i) obtaining an explicit form of the target space

metric, ii) identifying its isometry algebra, iii) exponentiating the Borel subalgebra to get

suitable matrix representation. Though technically different, it is conceptually the same

construction as used by Maharana-Schwarz and Sen [20, 24].

3 D = 5 minimal supergravity

The action of MSG5 reads

SMSG5 =

∫ ([

R− 1

4
FµνFµν

]√
g5 −

1

12
√
3
ǫµνρσλFµνFρσAλ

)

d5x , (3.1)

with F = dA. We compactify on a two-torus using

ds25 = λab(dz
a + aai dx

i)(dzb + abjdx
j) + τ−1hijdx

idxj , (3.2)

A(5)µdx
µ =

√
3(ψadz

a +Aidx
i) , (3.3)

where a, b = 0, 1 and τ ≡ |detλ|. The ν = i components of the Maxwell-Chern-Simons

equations allow to dualize the vector magnetic potential Ai to a scalar magnetic potential

µ defined by

F ij = aaj∂iψa − aai∂jψa +
1

τ
√
h
ǫijkηk , ηk = ∂kµ+ ǫabψa∂kψb . (3.4)

Similarly, the µ = i, ν = a components of the Einstein equations are integrated by

λabG
bij =

1

τ
√
h
ǫijkVak , Vak = ∂kωa − ψa

(

3∂kµ+ ǫbcψb∂kψc

)

, (3.5)

where Gb = dab, and ωa is the ‘twist’ or gravimagnetic two-potential. The D = 3 sigma

model

S3 =

∫ (

R3(h)−
1

2
GAB∂iΦ

A∂jΦ
Bhij

√
h

)

d3x , (3.6)

is then obtained with eight target space coordinates ΦA = {λab, ωa, ψa, µ} and metric

dl2 = GABdΦ
AdΦB

=
1

2
Tr(λ−1dλλ−1dλ) +

1

2
τ−2dτ2 − τ−1V Tλ−1V + 3

(

dψTλ−1dψ − τ−1η2
)

. (3.7)
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This space has 14 Killing vectors which were determined in terms of these variables in [5, 18].

Nine manifest infinitesimal symmetries (or generalised gauge transformations), grouped

according to their transformations under GL(2R) (the group of linear transformations in

the (z1, z2) plane) into the quadruplet

Ma
b = 2λac

∂

∂λcb
+ ωa

∂

∂ωb
+ δbaωc

∂

∂ωc
+ ψa

∂

∂ψb
+ δbaµ

∂

∂µ
(3.8)

(the generators of the gl(2, R) subalgebra), the doublet and the singlet associated with the

the three cyclic ‘magnetic’ coordinates:

Na =
∂

∂ωa
, Q =

∂

∂µ
, (3.9)

and the doublet generating infinitesimal gauge transformations of the ψa

Ra =
∂

∂ψa
+ 3µ

∂

∂ωa
− ǫabψb

(

∂

∂µ
+ ψc

∂

∂ωc

)

. (3.10)

The five remaining, non trivial infinitesimal isometries La, Pa and T closing the Lie al-

gebra g2(2) are more complicated, their full expression is given in [18]. The La, Ma
b and

Na generate the vacuum subalgebra sl(3, R). Assuming a spacelike two-torus, the target

space (3.7) is identified as the coset space G2(2)/(SU(2)× SU(2)).

The 7 × 7 symmetric matrix representative of the coset obtained by exponentiation

of the Borel subalgebra [5, 18] exhibits a highly nonlinear dependence on the moduli. Its

structure is quite different from that of the Sen matrix (2.17) for the coset O(4, 3)/(O(4)×
O(3)), so it is practically impossible to relate them.

4 New representative for D = 6 minimal supergravity

A simpler representation of the coset O(4, 3)/(O(4) × O(3) may be achieved by perform-

ing direct compactification of the six-dimensional theory on T 3. We start with the La-

grangian (2.1), and assume 3 Killing vectors ∂a (a = 1, 2, 3). The six-dimensional metric

and 3-form may be parameterized by

ds26 = λab(dz
a + aai dx

i)(dzb + abjdx
j) + τ−1hijdx

idxj ,

Ĝabc = 0 , Ĝabi = B̂ab,i , (4.1)

(τ ≡ − detλ, i, j = 4, 5, 6) and the 10 remaining components of Ĝ related to these by

self-duality. Put

B̂ab ≡ ǫabcχ
c . (4.2)

Then,

Ĝabi = ǫabcχ
c
,i , Ĝaij = − τ√

h
ǫijkχa

,k . (4.3)

The mixed Einstein equations

R̂i
a ≡ τ

2
√
h
∂j

[

τ
√
hλabFbij

]

=
1

2
ĜibjĜabj =

τ

2
√
h
∂j

[

ǫijkǫabcχ
b
,kχ

c
]

(4.4)
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(Fb ≡ dab) are solved by

λabFbij =
1

τ
√
h
ǫijkVak , Vak ≡ ∂kωa + ǫabcχ

b
,kχ

c . (4.5)

The remaining Einstein equations then lead to the gravitating sigma model with target

space metric

dl2 =
1

2
Tr(λ−1dλλ−1dλ) +

1

2
τ−2dτ2 − τ−1V Tλ−1V − 2τ−1dχTλdχ , (4.6)

where

V ≡ dω − χ ∧ dχ . (4.7)

The dimension of this target space is twelve: six components of the symmetric matrix

λab and two triplets ωa, χ
a. In appendix A we check that it admits 21 Killing vectors

generating the Lie algebra o(4, 3). These include nine Killing vectors Ma
b generating the

algebra gl(3, R) of linear transformations in the three-Killing vector space, six vectors Na

and La which together with the Ma
b generate the isometry algebra sl(4, R) for the target

subspace corresponding to the six-dimensional vacuum sector, and six more vectors Ra and

P a which complete the algebra o(4, 3). The fifteen Killing vectorsMa
b, Na and Ra generate

generalized gauge transformations, with the Na generating translations of the twists ωa

and the Ra generating gauge transformations of the χa.

In appendix B we construct real matrix representatives of o(4, 3), beginning with the

subalgebra o(3, 3) ∼ sl(4, R). Rather than using the Maison parametrization [25] of sl(4, R)

in terms of 4 × 4 matrices (which presumably would lead to a representation of o(4, 3) in

terms of 8 × 8 matrices), we use the representation of o(3, 3) in terms of 6 × 6 matrices.

These are then promoted to 7 × 7 matrices by the addition of a row and a column, and

completed by six 7 × 7 matrices Ra and P a closing the algebra o(4, 3). The 7 × 7 coset

matrix representative is then constructed in a standard fashion as

M = N T ηN , (4.8)

where N is obtained by exponentiating a suitable Borel subalgebra of 0(4, 3), and η is a

suitably chosen constant matrix. The resulting coset representative is, in block form,

M =







µ
√
2µχ µγ√

2χTµ −1 + 2χTµχ
√
2(χTµγ + χ̃)

γTµ
√
2(γTµχ+ χ̃T ) γTµγ − 2χ̃T χ̃+ µ̃−1






(4.9)

where ˜ denotes the anti-transposition, i.e. transposition relative to the anti- (or minor)

diagonal, and

µ = τ−1λ = τ−1







λ11 λ12 λ13
λ21 λ22 λ23
λ31 λ32 λ33






,

χ =







χ1

χ2

χ3






, χ̃ = (χ3, χ2, χ1) , γ = ω̂ − χχ̃ , ω̂ =







−ω2 ω3 0

ω1 0 −ω3

0 −ω1 ω2






. (4.10)
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One can check that the target space metric (4.6) can be expressed as

dl2 =
1

4
Tr(M−1dMM−1dM) . (4.11)

In the case of a Lorentzian six-dimensional space E6 with signature (−+++++) and

an Euclidean reduced three-space (so that one of the Killing vectors of E6 is timelike), the

symmetric target space T of metric (4.6) is the coset G/H = O(4, 3)/O(2, 2)×O(2, 1). H

is the isotropy group leaving invariant any given point of the target space, which may be

chosen to be the point at infinity of T . Thus it is relevant to examine the various possible

asymptotic behaviors for asymptotically flat six-dimensional configurations.

Minkowski asymptotics. For an asymptotically Minkowskian metric, or for a metric

which is asymptotically the product of a four-dimensional black hole by a 2-torus, with x1

the time coordinate, the asymptotic coset representative is

M∞ = ηM =

























−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

























. (4.12)

This asymptotic behavior is preserved by the nine Killing vectors

X̄1 = −M2
3 +M3

2 , X̄2 =M3
1 +M1

3 , X̄3 = −M1
2 −M2

1 ,

Ȳ1 = N1 + L1 , Ȳ2 = N2 − L2 , Ȳ3 = N3 − L3 ,

Z̄1 = P 1 −R1 , Z̄2 = P 2 +R2 , Z̄3 = P 3 +R3 (4.13)

(with the first three pure gauge), satisfying the commutation relations

[

X̄a, X̄b

]

=
[

Ȳa, Ȳb
]

= ǫabcηcX̄c ,
[

Z̄a, Z̄b

]

= 2ǫabcηc(X̄c + Ȳc) ,
[

X̄a, Ȳb
]

= ǫabcηcȲc ,
[

Ȳa, Z̄b

]

=
[

Z̄a, X̄b

]

= ǫabcηcZ̄c , (4.14)

with η1 = −1, η2 = η3 = +1. The combinations

K0
a =

1

2
(X̄a − Ȳa) , K±

a =
1

4
(X̄a + Ȳa ± Z̄a) (4.15)

generate three commuting copies of the Lie algebra of O(2, 1),

[Ka,Kb] = ǫabcηcKc . (4.16)

We thus recover the isotropy subgroup H = O(2, 2)×O(2, 1) = O(2, 1)3.

Black string asymptotics. The static Myers-Perry (Tangherlini) six-dimensional black

string (the product of a five-dimensional black hole by a circle) is

ds26 = −(1−m/r2)dt2+ dr2

1−m/r2
+
r2

4

[

(dη − cos θdϕ)2 + dθ2 + sin2 θdϕ2
]

+(dζ)2 . (4.17)
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This has four commuting Killing vectors. Reduction relative e.g. to ∂1 = ∂t, ∂2 = ∂η and

∂3 = ∂ζ leads to

λ = diag[−(r2 −m)/r2, r2/4, 1] , τ =
r2 −m

4
, a2ϕ = − cos θ ,

dσ2 ≡ hijdx
idxj =

r2

4

[

dr2 +
r2 −m

4
(dθ2 + sin2 θdϕ2)

]

, (4.18)

leading to

ω2 =
r2 + c

4
, (4.19)

with c a constant of integration. Computation of the asymptotic behavior of the lower

right-hand side 3× 3 block in (4.9) gives

τ−1γTλγ + τ λ̃−1 ≃
r→∞ diag[−(m+ 2c)/4, 1, (m+ 2c)/4] , (4.20)

which is equal to the asymptotic behavior of the upper left-hand side block for the value

c = −m/2. In this case,

M∞ =

























0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 −1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

























. (4.21)

This asymptotic behavior is preserved by the nine Killing vectors

X+ = −M2
1 − L1 , X0 =M2

2 , X− = −M1
2 +N1 ,

Y+ =M2
3 − L3 , Y0 =M1

3 +M3
1 , Y− =M3

2 +N3 ,

Z+ = −P 1 + P 3 , Z0 = P 2 +R2 , Z− = −R1 +R3 . (4.22)

X0, X−, Y0, Y− and Z− are pure gauge. The first three generate an SL(2, R),

[X0, X±] = ±X± , [X+, X−] = X0 , (4.23)

or symbolically [X,X] = X. The full algebra

[X,X] = [Y, Y ] = X , [Z,Z] = 2(X + Y ) ,

[X,Y ] = [Y,X] = Y , [X,Z] = [Z,X] = [Y, Z] = [Z, Y ] = Z , (4.24)

(with commutators such as [X0, Y0] and [X±, Y±] vanishing) can be split, as in the case of

Minkowski asymptotics, into three commuting sl(2, R) = O(2, 1) generated by the combi-

nations

J0 =
1

2
(X − Y ) , J± =

1

4
(X + Y ± Z) , (4.25)

so that the isotropy subgroup H = O(2, 2)×O(2, 1) is again recovered.
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Black hole asymptotics. The static six-dimensional black hole

ds26 = −(1−m/r3)dt2 +
dr2

1−m/r3
+ r2

[

dθ2 + cos2 θdζ2 + sin2 θ(dη2 + sin2 ηdϕ2)
]

(4.26)

has only three commuting Killing vectors ∂t, ∂ζ and ∂ϕ. Reduction relative to these vectors

leads to

µ = diag[−4/r4 sin2 2θ sin2 η, r/(r3 −m) sin2 θ sin2 η, r/(r3 −m) cos2 θ] .

χ = γ = 0 . (4.27)

The resulting matrix M has no regular limit at spatial infinity. As in the well-known

case of four-dimensional Einstein-Maxwell theory reduced relative to the azimuthal Killing

vector [26], new solutions can be generated from this by O(4, 3) transformations, but these

will be always non-asymptotically flat.

5 Invariant subspaces

The new matrix (4.9) parameterizes the twelve-dimensional coset space of MSG6 the-

ory. It may be also applied as a representative of the embedded eight-dimensional coset

G2(2)/(SU(2)×SU(2) corresponding to MSG5 and four-dimensional coset SU(2, 1)/S(U(2)×
U(1)) corresponding to EM4. These may be selected by purely algebraic constraints on

the potentials. To find these constraints one has to consider dimensional reductions and

consistent truncations which relate these theories to MSG6.

5.1 D = 5 minimal supergravity

The coset G2(2)/(SU(2)×SU(2) is a totally geodesic subspace of the coset O(4, 3)/(O(4)×
O(3)), so MSG6 compactified on a circle can be consistently truncated to MSG5. Indeed,

it can be checked [27] that the equations of motion following from (2.5) are consistent with

the constraints

φ = 0 , Fµν = ∓
√−g5
3
√
2
ǫµνρστH

ρστ , (5.1)

in which case they reduce to those of MDG5, provided the two-form field Fµν is rescaled by

Fµν → ±
√

2

3
Fµν . (5.2)

Note that, in view of the second relation in (2.6), the second contraint (5.1) is equivalent

to identification of the Maxwell two-form and the Kaluza-Klein two-form of the reduced

theory (2.5), in which case the dilaton can be consistently set to zero. We must now

identify the corresponding constraints in terms of the target space variables. Inspecting

the definitions of the three-dimensional target space variables (4.1)–(4.5) one finds

λ33 = 1 , λa3 = ∓ǫabχb , ω3 = ∓χ3 . (5.3)

Since the G2 sector arises as a consistent truncation of the five-dimensional reduction of the

original six-dimensional model, it is not surprising that in the reduction to three dimensions
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the three-covariance is broken down to two-covariance. Actually, knowing this (and making

some educated guesses) is enough to find the two g2 subalgebras generated by the Killing

vectors preserving the constraints (5.3). In the two-covariant notation of section 4 of [5],

their generators are related to those of o(4, 3) by

g2 o(4, 3)

Ma
b = Ma

b

Na = Na

La = La

Q = −N3 ±R3

T = −L3 ∓ P 3 ,

Ra = −M3
a ± ǫabRb

Pa = −Ma
3 ± ǫabP

b

(5.4)

with a, b = 1, 2. It is easy to check that these combinations satisfy the commutation

relations (92)–(97) of [5].

Conversely, comparing the covariant three-dimensional reductions of MSG5 and MSG6,

we see that any solution (ds2(5), A(5)) of MSG5 with two commuting Killing vectors can be

oxidized to a solution of MSG6 with three commuting Killing vectors given by

ds(6)
2 = ds2(5) + (−ψadx

a + dz −Aidx
i)2 ,

χ = ±(−ψ2, ψ1, µ) . (5.5)

It follows that, given a solution of MSG5 with two commuting Killing vectors, one can

generate from this a new solution by going through the following steps: 1) oxidize the

seed solution to a solution of MSG6 by (5.5); 2) construct its coset representative (4.9); 3)

transform this,

M′ = P TMP , (5.6)

by the action of an O(4, 3) transformation P generated by the generators of the second

column of (5.4); 4) extract from M′ the new solution of MSG6; 5) reduce this to five

dimensions by (5.5). In view of the simplicity of the matrix representation (4.9) compared

to that previously known for MSG5, this procedure might be easier to implement than

direct generation by G2(2) transformations.

The generators preserving both five-dimensional Myers-Perry (or black string) asymp-

totics and G2 truncation are

J∓ =
1

4
(X + Y ∓ Z) , J0 + J± =

1

4
(3X − Y ± Z) , (5.7)

generating two commuting copies of sl(2, R) = o(2, 1). The non-trivial generators are

±G0(±) = Z0 ∓ Y0 = P 2 +R2 ∓ (M1
3 +M3

1) (electric charge) ,

±G+(±) = Z+ ∓ Y+ = −P 1 + P 3 ∓ (M2
3 − L3) (two dipole charges) ,

F+ = X+ = −M2
1 − L1 (angular momentum) . (5.8)
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Clearly, all the generators (4.22) preserving black string asymptotics are linear combina-

tions of the four non-trivial generators F+, G+(+), G+(−), and one of the G0(±), together

with gauge transformations. These four generators applied to a black string will do the

same job as the corresponding G2 generators (and in particular, preserve the black string

condition λ33 = 1), but in a simpler fashion. The non-vanishing commutators between

these four generators are

[

G0(±), F+

]

= G+(±) ,
[

G0(±), G+(±)

]

= 3F+ − 2G+(±) , (5.9)
[

G0(±), G+(∓)

]

= F+ −G+(+) −G+(−) .

5.2 D = 4 Einstein-Maxwell

To identify the constraints selecting the SU(2, 1)/S(U(2)×U(1)) subspace of the G2 coset,

one must first compactify MSG5 on a circle [5], since this subcoset corresponds to four-

dimensional Einstein-Maxwell theory. Assuming the existence of a space-like Killing vector

∂z, we parametrize the five-dimensional metric and Maxwell field by

ds25 = e−2φ(dz + Cµdx
µ)2 + eφds24, (5.10)

A5 = Aµdx
µ +

√
3κdz, (5.11)

(µ = 1 . . . 4). The corresponding four-dimensional action

S4 =

∫

d4x
√−g

[

R− 3

2
(∂φ)2 − 3

2
e2φ(∂κ)2 − 1

4
e−3φG2 − 1

4
e−φF̃ 2 − 1

2
κFF ∗

]

, (5.12)

where

G = dC, F = dA, F̃ = F +
√
3C ∧ dκ, (5.13)

and F ∗ is the four-dimensional Hodge dual of F , describes an Einstein theory with two

coupled abelian gauge fields F and G, a dilaton φ and an axion κ. The field equations in

terms of the four-dimensional variables read

∇2φ− e2φ(∂κ)2 +
1

4
e−3φG2 +

1

12
e−φF̃ 2 = 0, (5.14)

∇µ

(

e2φ∇µκ
)

− 1

3

[√
3∇µ(e

−φF̃µνCν) +
1

2
FµνF

∗µν

]

= 0, (5.15)

∇µ

(

e−φF̃µν + 2κF ∗µν
)

= 0, (5.16)

∇µ

(

e−3φGµν
)

+
√
3 e−φF̃µν∂µκ = 0 . (5.17)

Truncation to the Einstein-Maxwell system is achieved by imposing

φ = 0 , κ = 0 , Gµν =
1

2
√
3

√
g4ǫµνρσF

ρσ

(4) . (5.18)

After reduction to three dimensions, this leads to the constraints

λ22 = 1 , ψ2 = 0 , λ12 = µ , ω2 = −ψ1 . (5.19)
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We find that these constraints are preserved by the eight infinitesimal transformations

K1 =M1
1 ,

K2 =M2
1 +Q , K3 =M1

2 − T ,

K4 = N1 , K5 = L1 ,

K6 = N2 −R1 , K7 = L2 + P1 ,

K8 = P2 −R2 . (5.20)

From the commutation relations given in [18], we find that the KM (M = 1, . . . , 8) generate

the Lie algebra of SU(2, 1), which may be put in the Cartan-Weyl form [28], with

H1 =
1

2
√
3
K1 , H2 =

i

6
K8 ,

E1 =
1√
6
K5 , E− = − 1√

6
K4 , α1 =

1√
3
(1, 0) , (5.21)

E2 =
1

4
√
3
(−K6 + iK2) , E−2 =

1

4
√
3
(K7 − iK3) , α2 =

1√
3

(

− 1

2
,

√
3

2

)

, (5.22)

E3 =
1

4
√
3
(K3 − iK7) , E−3 =

1

4
√
3
(K2 − iK6) , α3 =

1√
3

(

1

2
,

√
3

2

)

. (5.23)

6 Outlook

The main result of this paper is the new representative (4.9) of the coset O(4, 3)/(O(4)×
O(3)) which is a symmetric 7 × 7 matrix, given in block form. This matrix is substan-

tially simpler than the matrix (2.17) constructed by Sen’s method. Moreover, it also looks

simpler than the G2 matrix for the coset G2(2)/(SU(2) × SU(2)) constructed by us previ-

ously [5] and used for solution generation in [5, 15]. The reason is that constraining to the

subspace G2(2)/(SU(2) × SU(2)) one loses the O(4, 3) covariance which simplifies the un-

derlying matrix structure. After truncation to vacuum five-dimensional gravity (χa = 0),

the new matrix leads to a 7× 7 matrix representative of the coset SL(3, R)/O(2, 1) which

is different from that resulting from the truncation to vacuum gravity (ψa = µ = 0) of our

previous G2 matrix [5]. It is therefore expected that imposing the constraints (5.3) on the

coordinates of the full coset O(4, 3)/(O(4)×O(3)) one should obtain a 7×7 representative

of the G2 coset different from our previous one. This new G2 matrix could also be obtained

as in [5, 18] by direct exponentiation of the Borel subalgebra using the new representa-

tion (5.4), (B.3)–(B.4) of the g2 algebra. Alternatively, one can as we have shown use the

full new matrix (4.9) together with the corresponding transformations (5.4) to generate

from a given seed a new solution of five-dimensional minimal supergravity.

At the same time, one can also transform solutions of MSG5 to non-trivial solutions of

MSG6 by performing O(4, 3) transformations which do not belong to the G2(2) subgroup,

which may be chosen to have required asymptotic properties, as discussed at the end of

section 4. The same arguments equally apply to the SU(2, 1)/S(U(2)× U(1)) subspace of

the G2 coset.
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A Isometry algebra of the metric (4.6)

Fifteen obvious Killing vectors are:

Ma
b = 2λac

∂

∂λcb
+ ωa

∂

∂ωb
+ δbaωc

∂

∂ωc
− χb ∂

∂χa
+ δbaχ

c ∂

∂χc
, (A.1)

generating linear transformations in the three-Killing vector space,

Na =
∂

∂ωa
, (A.2)

generating translations of the “magnetic” coordinates ωa, and

Ra =
∂

∂χa
+ ǫabcχ

b ∂

∂ωc
, (A.3)

generating gauge transformations of the χa.

Their commutation relations are
[

Ma
b,Mc

d
]

= δbcMa
d − δdaMc

b , (A.4)
[

Ma
b, N c

]

= −δcaN b − δbaN
c , (A.5)

[

Ma
b, Rc

]

= δbcRa − δbaRc , (A.6)
[

Na, N b
]

= 0 , (A.7)
[

Na, Rb

]

= 0 , (A.8)
[

Ra, Rb

]

= −2ǫabcN
c . (A.9)

Three more vectors La are needed to complete the algebra sl(4, R) of the vacuum sector:

[

Ma
b, Lc

]

= δbcLa + δbaLc , (A.10)
[

Na, Lb

]

= Mb
a , (A.11)

[

La, Lb

]

= 0 . (A.12)

Adding to the known form of the sl(4, R) for 6D Einstein the information from (A.11),

La = ωaωb
∂

∂ωb
+ 2ωbλac

∂

∂λbc
+ χb

(

ωa
∂

∂χb
− ωb

∂

∂χa

)

+ τλab
∂

∂ωb
+ · · · (A.13)
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(the omitted terms are of order 0 in ωa). Assuming that the full Lie algebra is O(4, 3), it

must close with the three remaining generators P a defined by

[Ra, Lb] = ǫabcP
c , (A.14)

leading to

P a = ωb

(

χb ∂

∂ωa
− χa ∂

∂ωb
− ǫabc

∂

∂χc

)

+ · · · , (A.15)

and obeying the commutation relations
[

Ma
b, P c

]

= −δcaP b + δbaP
c , (A.16)

[

Na, P b
]

= ǫabcRc , (A.17)
[

Ra, P
b
]

= 2Ma
b − δbaTr(M) , (A.18)

[

La, P
b
]

= 0 , (A.19)
[

P a, P b
]

= −2ǫabcLc . (A.20)

The degrees of the various fields can be found from their commutators with Tr(M);

[λ] = 2 , [ω] = 4 , [χ] = 2 . (A.21)

This leads to the degrees of the various Killing vectors
[

Ma
b
]

= 0 , [Ra] = −2 ,
[

P b
]

= 2 ,
[

N b
]

= −4 , [La] = 4 . (A.22)

The six unknown Killing vectors La and P a can be determined, up to a sign, by solving

the commutation relations (A.18) and (A.20). The relatively simple result is

La = ωaωb
∂

∂ωb
+ 2ωbλac

∂

∂λbc
+ χb

(

ωa
∂

∂χb
− ωb

∂

∂χa

)

+ τλab
∂

∂ωb

−2ǫabcχ
bχdλde

∂

∂λec
− ατǫabcλ

bdχc

(

∂

∂χd
− ǫdefχ

e ∂

∂ωf

)

, (A.23)

P a = ωb

(

χb ∂

∂ωa
− χa ∂

∂ωb
− ǫabc

∂

∂χc

)

+ 2χb

(

2λbc
∂

∂λca
− δabλdc

∂

∂λcd

)

−χaχb ∂

∂χb
− ατλab

(

∂

∂χb
− ǫbcdχ

c ∂

∂ωd

)

, (A.24)

with α2 = 1.

The value of α = ±1 is presumably related to the signature of λ (here − + +). It

can be determined by enforcing that e.g. γaP
a (γa constant vector) is a Killing vector of

the target space metric. The action of (Pγ) leads to the first order variations (written in

matrix notation)

δλ = 2 [γ · χλ+ λχ · γ − (χγ)λ] ,

δω = γ(χω)− (χγ)ω + ατλ−1γ ∧ χ , (A.25)

δχ = −γ ∧ ω − (χγ)χ− ατλ−1γ .
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This leads to

δ(dl2) = 4(1− α)
[

(dχdλλ−1γ)− τ−1(dτ + (χλdχ))(dχγ)

+τ−1(χγ)(dχλdχ)− τ−1(γ, λdχ, dω)
]

, (A.26)

which vanishes provided

α = +1 . (A.27)

B Matrix representative

The first step is to construct real matrix representatives of O(4, 3), beginning with the

subalgebra O(3, 3) ∼ sl(4, R). Rather than using the Maison parametrisation of sl(4, R)

in terms of 4× 4 matrices (which presumably would lead to a representation of O(4, 3) in

terms of 8 × 8 matrices), we use the representation of O(3, 3) in terms of 6 × 6 matrices,

decomposed in 3× 3 blocks according to

Ma
b =

(

ma
b 0

0 −m̃ b
a

)

, Na =

(

0 na

0 0

)

, La =

(

0 0

−naT 0

)

, (B.1)

where ˜ denotes the anti-transposition, i.e. transposition relative to the anti- (or minor)

diagonal, and

(ma
b)αβ = δαa δ

b
β − δbaδ

α
β , (B.2)

n1 =







0 0 0

1 0 0

0 −1 0






, n2 =







−1 0 0

0 0 0

0 0 1






, n3 =







0 1 0

0 0 −1

0 0 0







(α, β = 1, 2, 3). These matrices satisfy the commutation relations (A.4), (A.5), (A.10),

(A.7), (A.11) and (A.12).

The 7×7 matrix generators of O(4, 3) contain the preceding, promoted to 7×7 matrices

by the addition of a central 3-row and a central 3-column, in block form

Ma
b =







ma
b 0 0

0 0 0

0 0 −m̃ b
a






, Na =







0 0 na

0 0 0

0 0 0






, La =







0 0 0

0 0 0

−naT 0 0






, (B.3)

together with

Ra =
√
2







0 ra 0

0 0 −r̃a
0 0 0






, P a =

√
2







0 0 0

rTa 0 0

0 −r̃Ta 0






, (B.4)

where ra is the column matrix of elements

rαa = δαa . (B.5)

Using

rar̃b − rbr̃a = ǫabcn
c , (B.6)
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these can be checked to satisfy the remaining commutation relations of O(4, 3).

The 7× 7 coset matrix representative is

M = VTM0V , (B.7)

with

M0 =







µ 0 0

0 −1 0

0 0 µ̃−1






, µ = τ−1λ , (B.8)

and

V = eχ
aRaeωaN

a

=







1
√
2χ γ

0 1 −
√
2χ̃

0 0 1






, (B.9)

where

χ =







χ1

χ2

χ3






, γ = ω̂ − χχ̃ , ω̂ =







−ω2 ω3 0

ω1 0 −ω3

0 −ω1 ω2






. (B.10)

The resulting coset representative

M =







µ
√
2µχ µγ√

2χTµ −1 + 2χTµχ
√
2(χTµγ + χ̃)

γTµ
√
2(γTµχ+ χ̃T ) γTµγ − 2χ̃T χ̃+ µ̃−1






(B.11)

is related to its inverse by

M−1 = M̃ (B.12)

(use Ṽ(ω, χ) = V(−ω,−χ)). Taking into account the identity

Tr[λ̃V TλV ] = −2τ(V Tλ−1V ) ,

which follows from (B.14), one checks that the target space metric (4.6) can be expressed as

dl2 =
1

4
Tr(M−1dMM−1dM) . (B.13)

The Kaluza-Klein vectors aai can be recovered directly by solving the duality equa-

tion (4.5), where the field V is contained in the block

J31 = τ−2λ̃(dω̂ + dχχ̃− χdχ̃)Tλ = −τ−1(λ̂−1V )T (B.14)

of the current

J = M−1dM (B.15)

(with the hatˆvector-to-matrix transformation defined as in the last equation (B.10)).
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