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1 Introduction

Maximal supergravity in D ≥ 2 dimensions has a global hidden U-duality group with

Lie algebra E11−D [1–4]. The theory admits propagating and non-propagating p-form

potentials that transform in representations of this algebra in what is known as the tensor

hierarchy [5–8]. Since all these algebras are embedded into each other, E11−D ⊂ E11−(D−1),

it is natural to consider them as subalgebras of the infinite-dimensional Kac-Moody algebra

E11 [6, 7, 9, 10] obtained when continuing to the extreme case D = 0 (see also [11, 12]

for related work in the E10 context). Based on the assumption that all U-dualities can be

combined in E11, this gives a convenient unified description of all the tensor hierarchies in

the various dimensions in that the hierarchies stem from various subalgebra decompositions

of the adjoint of E11 under its gl(D)⊕ E11−D subalgebra.

On the other hand, each of the finite-dimensional U-duality algebras E11−D for D ≥ 3

can alternatively be extended to an infinite-dimensional so-called ‘V-duality’ algebra [13,

14]. This V-duality algebra admits a decomposition under the U-duality subalgebra and all

the representations of the p-form potentials appear in this decomposition. The V-duality

algebra is not a Kac-Moody algebra, but a generalization thereof known as a Borcherds

(super)algebra [15, 16], which in turn is a special case of a contragredient Lie superalge-

bra [17, 18].
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The fact that the same representations appear in the level decompositions of both E11

and the Borcherds algebra was explained in [14] (see also [19, 20]). However, it should

be stressed that E11 contains representations that are not present (at the same level)

in the Borcherds algebra, and the other way around. More precisely, the Kac-Moody

algebra E11 also has an infinity of tensor fields with mixed space-time symmetry besides

the antisymmetric fields [6, 7, 10, 21], some of which can be turned into antisymmetric

fields in lower dimensions by dimensional reduction. By contrast, the spectrum of the

Borcherds V-duality algebra consists only of (antisymmetric) forms but of arbitrarily high

rank; there is no upper limit from the space-time dimension D. In fact, the space-time

form-rank information is obtained by assigning an additional ‘V-degree’ to the simple roots

of the Borcherds algebra and this V-degree is then identified with the rank of the form in

the tensor hierarchy. In the relation of [13, 14] between the Borcherds algebra and E11 the

V-degree is associated with the tensor product of a parabolic subalgebra of E11 and the

outer form algebra in D dimensions.

The interpretation of the additional representations on each side is not clear so far and

it remains to be seen whether one of the algebras is more likely than the other as a symmetry

of M-theory. One advantage of the E11 approach in this respect is its universality — the

same algebra can be used to derive the spectrum of p-form potentials for all D, whereas

the Borcherds algebras are different for different D.

In this paper we will show that there is a similar universality also on the Borcherds

side, and that the V-duality algebras can be embedded into each other. This leads to the

proposal of new V-duality algebras for 9 ≤ D ≤ 11, different from the ones given in [13, 14].

We emphasize that these algebras lead to the same spectrum of p-form potentials, i.e., their

‘upper triangular’ subalgebras are isomorphic, but there is no isomorphism when the whole

algebras are considered. The embedding we study is physically motivated by the process

of dimensional oxidation that allows us to identify which parts of an algebra have a higher-

dimensional origin.

The paper is organized as follows. In section 2, we review Borcherds (super)algebras

and which ones appear for maximal supergravity. We show that there is a natural embed-

ding of the Borcherds algebras that arise in the various dimensions. The physical reason

for this natural embedding is explained in more detail in section 3. In section 4, we discuss

some more aspects of the symmetry algebras and their spectra, in particular in relation to

Hodge duality.

2 Chain of Borcherds algebras

After defining the concept of a Borcherds algebra in a way sufficient for our purposes, we

will prove the main mathematical result of the paper: there exists a distinguished chain

of Borcherds V-duality algebras that obey subalgebra relations. We give several different

perspectives on this result from the mathematical side in this section. In section 3, we

reinterpret this result in physical terms.
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2.1 Borcherds preliminaries

Like a Kac-Moody algebra [22], a Borcherds algebra is uniquely defined by its Cartan

matrix, which is a square matrix where each row and column corresponds to a simple

root of the algebra [15, 16]. However, the conditions that this matrix has to satisfy are

less restrictive than in the Kac-Moody case so that Borcherds algebras constitute a true

extension of the class of Kac-Moody algebras. In particular, they allow for the existence

of imaginary simple roots. The original Borcherds algebras defined in [15] were further

generalized to Borcherds superalgebras in [23], allowing also for the existence of ‘fermionic’

simple roots (the usual ones being ‘bosonic’). Borcherds superalgebras are in turn (in the

case of finitely many simple roots) special cases of contragredient Lie superalgebras, defined

already in [17, 18].

Borcherds algebras are also called ‘generalized Kac-Moody’ (GKM) algebras or

‘Borcherds-Kac-Moody’ (BKM) algebras, but here we stick to the term ‘Borcherds al-

gebras’ for simplicity, and also use it for the Lie superalgebras generalizing the original

Borcherds Lie algebras.

Given a Cartan matrix AIJ where I and J belong to a countable set of indices, one

introduces so-called Chevalley generators eI , fI and hI for each value of I. Furthermore,

one assigns a Z2-grading to the Chevalley generators eI and fI , so that for each I, they

are either both even (bosonic), or both odd (fermionic).

In order for the matrix AIJ to be a Cartan matrix of a Borcherds algebra it has to be

real-valued and symmetric (AIJ = AJI), with non-positive off-diagonal entries (AIJ ≤ 0 if

I 6= J) satisfying

2
AIJ
AII

∈ Z if AII > 0,

AIJ
AII

∈ Z if AII > 0 and I ∈ S, (2.1)

where S is the set of indices I such that eI and fI are odd. For simplicity we furthermore

assume the Cartan matrix to be non-degenerate (otherwise one has to include additional

semi-simple generators ha). The restriction to symmetric matrices means that one does

not necessarily have AII = 2 if AII > 0.

The Chevalley generators generate the Borcherds superalgebra B subject to relations

that we now specify, writing the supercommutator of any two elements x, y ∈ B as [[x, y]].

One has [[x, y]] = {x, y} = {y, x} if x and y are two odd elements and [[x, y]] = [x, y] = −[y, x]

if at least one of them is even. The relations imposed on the generators of B are

[[hI , eJ ]] = AIJeJ , [[eI , fJ ]] = δIJhJ ,

[[hI , fJ ]] = −AIJfJ , [[hI , hJ ]] = 0, (2.2)

and the Serre relations

(ad eI)
1− 2AIJ

AII (eJ) = (ad fI)
1− 2AIJ

AII (fJ) = 0 if AII > 0 and I 6= J,

[[eI , eJ ]] = [[fI , fJ ]] = 0 if AIJ = 0. (2.3)
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The Z2-grading on the Chevalley generators is extended to the whole of B so that any

supercommutator [[x, y]] is an even element if x and y have the same Z2-degree (odd/even),

and an odd element if the Z2-degrees are opposite. As a consequence of this Z2-grading

and the relation [[eI , fJ ]] = δIJhJ , the generators hI are always even, and all the Lie super-

commutators in (2.2) involving hI can in fact be replaced by ordinary Lie commutators.

As for a Kac-Moody algebra the generators hI = [[eI , fI ]] span an abelian Cartan

subalgebra h of B, and the dual space h∗ is spanned by the simple roots αI , defined by

αI(hJ) = AIJ . An arbitrary element α in h∗ is a root if there is an element eα in B such that

[hI , eα] = α(hI)eα. In particular eαI = eI and e−αI = fI for the simple roots, which can

consequently be divided into odd and even ones, with the Z-grading inherited from B. The

Cartan matrix defines a non-degenerate inner product on h∗ by (αI , αJ) = AIJ , so that

the diagonal value AII is the length (squared) of the simple root αI . As for a Kac-Moody

algebra we can also visualize the Cartan matrix with a Dynkin diagram, where −AIJ is

the number of lines between two different nodes I and J . But for a Borcherds algebra we

also need to ‘paint’ the nodes with different ‘colors’, depending on the diagonal values AII
and whether the corresponding simple roots are even or odd. Following [13, 14] we will

here use white nodes for even simple roots of length (squared) 2, and black nodes for odd

simple roots of zero length. (However, when we consider the more general contragredient

Lie superalgebras in section 2.8, we will switch to the convention of [17, 18] for the odd

simple roots of zero length, representing them by ‘gray’ nodes instead of black ones.) In

cases where other types of simple roots appear, we will just write down the Cartan matrix

instead of visualizing it with a Dynkin diagram (until we consider the contragredient Lie

superalgebras in section 2.8).

As mentioned in the introduction, one should also assign a V-degree to the simple

roots of the Borcherds algebras that describe the V-duality of maximal supergravity in D

dimensions. This assignment can then be extended to a linear map from the root space h∗

to the set of non-negative integers. Defining it appropriately, all basis elements eα of the

Borcherds algebra, where α is a root with V-degree p (1 ≤ p ≤ D), transform in the same

representation of the U-duality subalgebra as the p-form potentials of the theory [13, 14].

2.2 Embedding of Borcherds algebras for 2 ≤ D ≤ 7

We now consider the specific Borcherds algebras that were introduced in [13] (see also [14]),

starting with maximal supergravity in D dimensions with 2 ≤ D ≤ 7. Here we call these

algebras Bn, with n = 11−D. The U-duality algebra is En, and the Borcherds superalgebra

Bn that gives the tensor hierarchy is obtained by adding a single fermionic null root to the

set of simple roots of En with the resulting Dynkin diagram shown in figure 1, which

also exhibits the labelling of nodes. For this particular class of algebras Bn the Serre

relations (2.3) simplify and reduce to

(ad eI)
1−AIJ (eJ) = (ad fI)

1−AIJ (fJ) = 0. (2.4)

for AIJ < 0. The V-degree of the fermionic simple root α0 is equal to one, so that it

generates a vector field (1-form). All other simple roots have V-degree zero [13].
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Figure 1. The Dynkin diagram of Bn.

2.3 The embedding Bn ⊂ Bn+1 for 3 ≤ n ≤ 8

As we will have to refer to the Chevalley generators of both Bn and Bn+1 in this subsection,

we need to introduce different notations for them. The convention that we will use is to label

the Chevalley generators of the larger Bn+1 with capital letters. The Chevalley generators

of the embedded smaller Bn will be denoted in turn by lowercase letters.

Let e0, f0 and h0 be given by

e0 = [[E0, E1]], f0 = −[[F0, F1]], h0 = H0 +H1. (2.5)

Define also for i = 1, . . . , n

ei = Ei+1, fi = Fi+1, hi = Hi+1, (2.6)

so that the En part of the diagram is inherited directly from Bn+1 to Bn. The generators eI ,

fI and hI for I = 0, 1, . . . , n can be checked easily to be associated with the Cartan matrix

of Bn. It is straightforward to show that the above generators eI , fI and hI satisfy the

defining relations (2.4) of Bn. For instance, using the Jacobi superidentity one checks that

[[e0, e0]] = [[[[E0, E1]], [[E0, E1]]]]

= [[[[E0, [[E0, E1]]]], E1]] + [[E0[[E1, [[E0, E1]]]]]] = 0, (2.7)

where the terms on the second line vanish by the Serre relations (2.4) for Bn+1. The other

checks are similar. This proves that Bn is a subalgebra of Bn+1 for all n ≥ 3. Another way

to see this is to consider the root α0 +α1 of Bn+1, with the labelling of figure 1. It satisfies

(α0 + α1, α0 + α1) = 0, (α0 + α1, α2) = −1, (2.8)

which shows that the root space of Bn is a subspace of the root space of Bn+1. In the

remaining cases we will only describe the embeddings in this way, and leave as an exercise

for the reader to accordingly define the generators corresponding to the roots. This way

of describing subalgebras is very similar to the one employed in [24] for hyperbolic Kac-

Moody algebras.

The smallest algebra obtained by this construction is B3, corresponding to D = 8

maximal supergravity, and its Dynkin diagram is shown in figure 2 on the left.
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Figure 2. The Dynkin diagrams of B3 (left) and B2 (right).

2.4 From D = 8 to D = 9: B2 ⊂ B3

For D = 8 the black node is attached to two white nodes in the Dynkin diagram (see

figure 2). From each of the two corresponding simple roots of length 2 we can obtain a null

root by adding the simple null root corresponding to the black node. With the labelling of

figure 2 we thus have the two null roots α0 + α1 and α0 + α3. Together with α2, they can

be considered as simple roots of a subalgebra of B3 which we call B2. Its Cartan matrix is 0 −1 −2

−1 2 0

−2 0 0

 (2.9)

and its Dynkin diagram is displayed in figure 2 on the right. The double line indicates that

the entries in the off-diagonal corners of the Cartan matrix are equal to −2 instead of −1

as we would have for a single line, and thus that the scalar product of the corresponding

simple roots is equal to −2. Indeed, one checks easily using the embedding in B3 that

(α0 + α1, α0 + α3) = (α0, α1) + (α0, α3) = −2. (2.10)

The V-degree of both fermionic simple roots is equal to one.

The Cartan matrix (2.9) is different from the one proposed in [13, 14] which has

inner product −1 between the two fermionic simple roots. Due to the Chevalley-Serre

relations (2.2)–(2.3) this does not lead to any difference in the structure of the algebra

in the positive triangular part generated by the eI . Therefore the spectrum of p-forms

is identical in both cases. However, the algebra B2 of (2.9) and the one of [13] are not

isomorphic when the remaining generators (Cartan and negative triangular) are taken

into account.

2.5 From D = 9 to D = 10, type IIA and type IIB

When going from D = 9 to D = 10 there are two choices associated with type IIA and

type IIB supergravity. We start with type IIB.

One combines the two simple fermionic null roots of B2 into a bosonic root of length

−4. Using the labelling of figure 2 for B2 we have:

(α0 + α2, α0 + α2) = 2(α2, α0) = −4. (2.11)
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Taking this as a simple root of a subalgebra B1B, together with α1, the resulting Cartan

matrix is (
−4 −1

−1 2

)
(2.12)

and this is now a Borcherds Lie algebra, not a proper Borcherds Lie superalgebra. The

V-degree of the simple root of negative length, which is the root α0 + α2 of B2, is equal to

2, the sum of the V-degrees of α0 and α2 in B2.
For type IIA we again combine the two simple fermionic null roots into a bosonic root of

length −4, but we also combine α0 and α1 into a simple fermionic null root of a subalgebra

B1A. The reason for this will be clear in the next section when we discuss the relation to

oxidation. Using the labelling of figure 2 for B2 we end up with the scalar product

(α0 + α1, α0 + α2) = −3 (2.13)

and the Cartan matrix (
−4 −3

−3 0

)
. (2.14)

These algebras are again not isomorphic to the ones in [13] but agree on the positive

triangular part. The V-degrees of the two simple generators are 2 and 1, corresponding to

the two-form and vector field of type IIA.

2.6 From D = 10 to D = 11

Here we combine the two simple roots of the type IIA algebra into a simple fermionic root of

length −10. The Borcherds algebra is finite-dimensional in this case, and isomorphic to the

one given in [13], where the simple fermionic root has length −1. Since the Cartan matrix

has only one single entry (and this entry is non-zero), this is just a matter of normalisation,

and both Borcherds algebras coincide with the 5-dimensional Lie superalgebra osp(1|2).

The V-degree of the only simple root is equal to 3 (the sum of the V-degrees of the simple

roots of B1A), corresponding to the three-form of eleven-dimensional supergravity.

2.7 Decomposition of the representations

The construction above can be understood also in the following way. The (adjoint of the)

superalgebra Bn+1 has a level decomposition with respect to node 0 from the following

subalgebra

En+1 ⊕ R ⊂ Bn+1 (2.15)

which arranges the Bn+1 generators in En+1 representations as

Bn+1 =
⊕
p∈Z

sp. (2.16)
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Here sp is related to the space of p-forms in 10−n dimensions (for p ≤ 10−n). The space

sp is odd/even when p is odd/even and is a (finite-dimensional) representation of En+1.

We can also perform a Z2-graded decomposition of Bn+1 corresponding to

En ⊕ R⊕ R ⊂ Bn+1, (2.17)

that is, a double level decomposition with respect to nodes 0 and 1. (For n < 2, the grading

has to be adapted but the results below still hold.) Associated with this double grading

one obtains a graded decomposition of sp:

sp =
⊕
q∈Z

sp,q, (2.18)

where we have normalised the grading generator such that the charges are integral. (The

q-sum is only finite, but we write it in this more general form for simplicity.) The double

grading of the superalgebra Bn+1 can be written as:

Bn+1 =
⊕
p,q

sp,q, [[sp,q, sp′,q′ ]] = sp+p′,q+q′ . (2.19)

All sp,q are representations of En. If we now restrict to the ‘diagonal’ spaces sp,p, i.e. p = q,

we can study the superalgebra ⊕
p∈Z

sp,p ⊂ Bn+1. (2.20)

This is a subalgebra of Bn+1 and is exactly the algebra that is generated by the simple

generators that were defined above. We conclude that

Bn =
⊕
p∈Z

sp,p ⊂ Bn+1. (2.21)

As all the Borcherds superalgebras can be embedded into one another, one might work

simply with a large one, say B11, with Dynkin diagram as in figure 1 with n = 11, that

generates all the p-form hierarchies in all dimensions. With this we mean that B11 contains

the subalgebra Bn that generates the p-form hierarchy in D = 11 − n dimensions. The

p-form hierarchy is obtained from the space sp in the standard way by attaching to each

sp the V-degree as form rank [14].

2.8 Non-distinguished Dynkin diagrams

The embeddings that we have described are not obvious from the Dynkin diagrams, in

contrast to the embeddings En ⊂ En+1, where one just has to remove a node from the

Dynkin diagram of En+1 to obtain the one of En. However, considered as special cases of

contragredient Lie superalgebras, the Dynkin diagrams of the Borcherds algebras are not

unique. In this subsection1 we will show that one can in fact choose the Dynkin diagrams

of Bn and Bn+1 such that the embedding Bn ⊂ Bn+1 becomes manifest, just as En ⊂ En+1.

1For these results, we benefitted greatly from discussions with Bernard Julia and Victor Kac.
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These new Dynkin diagrams can be obtained from those in figure 1 and 2 by applying

so-called generalized Weyl reflections (or ‘odd reflections’) [25] that transform the set of

simple roots into a new one. A generalized Weyl reflection is associated to an odd simple

null root αI (I ∈ S, AII = 0), and acts on the simple roots by (J 6= I)

αI 7→ −αI , (2.22a)

αJ 7→

{
αJ + αI , if AIJ 6= 0,

αJ , if AIJ = 0.
(2.22b)

Applying this repeatedly to B11, with a set of simple roots corresponding to the Dynkin

diagram in figure 1 (with n = 11), one obtains different sets of simple roots corresponding

to different Dynkin diagrams, as illustrated in figure 3. The first Dynkin diagram is the

distinguished one in the sense that there is only one odd simple null root, and the others

are non-distinguished Dynkin diagrams of B11.
Generalized Weyl reflections do not preserve the inner product on the root space h∗

(unlike the standard Weyl reflections) and can thus transform a standard Cartan matrix

into one with positive off-diagonal entries. Such a matrix does not satisfy the require-

ments for a Cartan matrix of a Borcherds algebra, but it still defines a contragredient Lie

superalgebra [17, 18]. Although we do not change the Borcherds algebra, it is thus con-

venient to go to the more general class of contragredient Lie superalgebras. In the figure

we therefore switch to the convention of [17, 18] for the coloring of the nodes associated

to odd simple roots of zero length. Instead of black nodes, we use ‘gray’ ones (⊗). This is

summarized below, where we also introduce two more types of nodes for the simple roots

that we encounter:

# even root of length 2 (I /∈ S, AII = 2),

⊗ odd root of length 0 (I ∈ S, AII = 0)

(previously represented by a black node),

� even root of length −4 (I /∈ S, AII = −4),

} odd root of length −10 (I ∈ S, AII = −10).

The number of lines between two nodes I and J is still related to off-diagonal entry

AIJ in the Cartan matrix, but it is not always equal to −AIJ as for a Borcherds algebra.

Rather, it is equal to |AIJ | — since the off-diagonal entries can be positive, the number of

lines between the nodes only determine them up to a sign. However, as long as one of the

nodes I and J is white, AIJ is still negative (in the diagrams that we consider), and in the

remaining cases we have written out AIJ explicitly next to the lines to fix the ambiguity.

We stress that all these diagrams describe the same algebra, namely B11. But the same

procedure can be applied also to the Borcherds algebras Bn with n < 11, and we will end

up with a diagram without any branching, like the ones in figure 3 for B11 corresponding

to D = 11 or D = 10, type IIB, but with fewer white nodes. Then it becomes obvious that
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Figure 3. Different Dynkin diagrams of B11. See the main text for explanations.

Bn ⊂ Bn+1: we can obtain the Dynkin diagram of Bn from that of Bn+1 by just removing

the leftmost white node.

This way of analysing the algebra B11 also makes an easier contact to the space-time

structure of the generators: As indicated in the figure, the diagrams can be associated to
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maximal supergravity in D dimensions, 0 ≤ D ≤ 11. In each diagram there is an odd

simple null root such that its removal leads to two diagrams corresponding to sl(D) on

the left hand side, and B11−D on the right hand side (for D ≥ 2). We have put a circle

around this node, which is also associated to the generalized Weyl reflection that ‘reduces’

the diagram from D to D − 1 dimensions. Thus one can see that there is an algebra

sl(D) commuting with B11−D within B11. This is very similar to the way one obtains the

forms in D dimensions from E11 by decomposing the adjoint representation of E11 into

representations of sl(D)⊕ E11−D [6, 7, 10].

3 Relation to decompactification/oxidation

The algebraic construction of the embedding of the various Borcherds algebras has a sim-

ple physical counterpart in terms of Kaluza-Klein reduction and oxidation of maximal

ungauged supergravity. Let the D-dimensional metric come from a circle reduction of a

(D + 1)-dimensional theory as in

ds2D+1 = e2αφds2D + e2βφ (dz +Aµdx
µ)2 , (3.1)

where z is the circle direction, φ the dilaton and Aµ the Kaluza-Klein vector. The exponents

α = − 1√
2(D − 1)(D − 2)

, β =

√
D − 2

2(D − 1)
(3.2)

are chosen such that one reduces from Einstein frame to Einstein frame with a canonically

normalised scalar field φ. The (expectation value of the) dilaton is related to the radius

RD+1 of the circle in the direction D + 1 via

e〈βφ〉 =
RD+1

`D+1
, (3.3)

where `D+1 is the (D + 1)-dimensional Planck length. The scalar field φ parametrises a

particular direction in the Cartan subalgebra of E11−D that is the symmetry of the reduced

theory. The p-forms in D dimensions transform in a representation of E11−D and they carry

a particular weight under this direction in the Cartan subalgebra. In fact, the direction

corresponds to the decomposition

E10−D ⊕ R ⊂ E11−D. (3.4)

It is now important that the power of the dilaton also depends on the form degree and

so it is a combination of the eigenvalue of the fundamental weight associated with the

R summand in the decomposition above and the form degree. This exactly parallels the

discussion of the double gradation in section (2.7). More precisely, a p-form potential

reduces from D + 1 to D dimensions via

|Fp+1|2 → e−2α(p+1)φ|Fp+1|2 + (p+ 1)e−2(αp+β)φ|Fp|2, (3.5)
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p sp q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

1 248 1 56 133 ⊕ 1 56 1

2
3875 133 912 ⊕ 56

1539⊕

133⊕ 1
912 ⊕ 56 56

1 1

3

147 250 912

8645

⊕ 1539

⊕ 133

27 664

⊕ 6480

⊕ 2× 912

⊕ 56

40 755

⊕ 8645

⊕ 2× 1539

⊕ 2× 133

27 664

⊕ 6480

⊕ 2× 912

⊕ 56

8645

⊕ 1539

⊕ 133

912

3875 133 912 ⊕ 56
1539⊕

133⊕ 1
912 ⊕ 56 133

248 1 56 133⊕ 1 56 1

Table 1. Hierarchy of p-form fields as predicted by the Borcherds algebra B8. The column sp
lists the E8 representations of the p-forms (to be precise, sp is the direct sum of the irreduciple

representations given for each p). The following columns contain the decomposition under E7⊕R ⊂
E8. The label q is related to the charge under the summand R as explained in section 2.7. The

hierarchy predicted by B8 for p > 3 is also non-empty but not displayed here. We discuss some

aspects of it in section 4.2.

where we have written everything in terms of the field strengths and the right hand side

contains the fields in D space-time dimensions.

The key point is now that in oxidation from D to D + 1 dimensions, the terms with

the largest powers of (RD+1/`D+1) are dominant and are the only ones that survive. These

are the ones to be kept in the decompactification process and is a condition on the dilaton

power. When normalising the R factor conveniently, the powers become integral. We

illustrate this by some examples.

In D = 3 one obtains the decomposition of the various fields in the hierarchy as

displayed in table 1. We have underlined in all cases the pieces where the R-charge q is

equal to the p-form rank, according to condition (2.20). In all cases except for p = 1,

this piece also corresponds to the lowest charge that is available for a given value of p.

Therefore these terms are the ones that decompactify to D+ 1 dimensions to give p-forms

there. The reason that there is one additional more dominant singlet vector (p = 1) is

that it comes from the Kaluza-Klein vector of the metric reduction and also oxidises to the

higher-dimensional metric. With this reasoning one obtains exactly the right fields from

oxidation and one has the same condition that the R-charge q equals the form rank as

in the algebraic construction (2.20). In principle, the Borcherds algebra B8 also predicts

representations with p = 4 that would be interpreted as four-forms in three dimensions.

We will come back to these representations in section 4.2.

As another example we consider the oxidation of the tensor hierarchy from eight to

nine dimensions. For D = 8 one has the U-duality symmetry algebra E3 = sl(3) ⊕ sl(2)

whereas the D = 9 algebra is E2 = gl(2) = sl(2)⊕R. We label the representations of E2 as

nh where n is the dimension of an irreducible sl(2) representation and h is the eigenvalue

under the direct R summand that appears in E2 for which we choose the normalisation

that the vector doublet is a genuine doublet. (In most literature on the subject this charge

is not given explicitly.) The q-grade is defined by the sum of the fundamental weights of

nodes 1 and 3 in figure 2. With this we obtain table 2.
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p sp q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

1 (3,2) 10 21 ⊕ 1−4/3 2−1/3

2 (3,1) 2−1/3 12/3

3 (1,2) 12/3 1−2/3

4 (3,1) 1−2/3 21/3

5 (3,2) 21/3 2−1 ⊕ 14/3 10

Table 2. Hierarchy of p-form fields in D = 8 as predicted by the Borcherds algebra B3. The

column sp lists the E3 = sl(3)⊕ sl(2) representation and the columns with different q represent the

decomposition under E2 = sl(2) ⊕ R. The notation nh denotes the n-dimensional representation

of sl(2) with eigenvalue h under the R summand. The underlined representations are the ones

that survive the oxidation process (besides the Kaluza-Klein vector). We have truncated the table

at p = 5.

p sp q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

1
21 1 1

1−4/3 1

2 2−1/3 1 1

3 12/3 1

4 1−2/3 1

5 21/3 1 1

6
12/3 1

2−1 1 1

Table 3. Hierarchy of p-form fields in D = 9 as predicted by the Borcherds algebra B2. The column

sp lists the E2 = sl(2) ⊕ R representation and the columns with different q represent the various

powers that arise in the oxidation process to type IIA supergravity and the entries represent the

numbers of such fields. The notation nh for E2 denotes the n-dimensional representation of sl(2)

with eigenvalue h under the R summand. The underlined representations are the ones that survive

the oxidation process to type IIA (besides the Kaluza-Klein vector). We have truncated the table

at p = 6.

For the decomposition of the D = 9 representations we have to distinguish two dif-

ferent oxidation processes depending on whether we are aiming for type IIA or type IIB

supergravity in D = 10. We start with the type IIA case, for which table 3 is the relevant

one. We note in particular that there is no four-form that oxidizes from D = 9 to type

IIA supergravity. In the case of type IIB supergravity we are left with an sl(2) symmetry

algebra in D = 10. The relevant table for the oxidation of forms is table 4. The D = 9

representations and their contributions to p-form fields in D = 10 are also summarized in

table 5, for both type IIA and type IIB.
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p sp q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

1
1−4/3 1

21 2

2 2−1/3 2

3 12/3 1

4 1−2/3 1

5 21/3 2

6
2−1 2

12/3 1

Table 4. Hierarchy of p-form fields in D = 9 as predicted by the Borcherds algebra B2. The column

sp lists the E2 = sl(2) ⊕ R representation and the columns with different q represent the various

powers that arise in the oxidation process to type IIB supergravity and the entries represent the

representations of the type IIB symmetry algebra sl(2). The underlined representations are the

ones that survive the oxidation process to type IIB (besides the Kaluza-Klein vector). We have

truncated the table at p = 6.

`0 `2 = 0 `2 = 1 `2 = 2 `2 = 3 `2 = 4 `2 = 5 `2 = 6

0 1⊕ 3⊕ 1 1

1 2· 2·
2 1· 1

3 2· 2

4 1· 1⊕ 3· 3

5 2 2× 2⊕ 4· 2⊕ 4

6 1⊕ 2× 3· 2× 1⊕ 3× 3⊕ 5· 1⊕ 3⊕ 5

Table 5. Level decomposition of B2 with respect to the simple roots α0 and α2 (the two black

nodes to the right in figure 2). The corresponding levels are denoted by `0 and `2, respectively. For

each pair (`0, `2) there is a representation of the sl(2) subalgebra corresponding to the remaining

simple root α1 of B2. Whenever `0 = `2 this representation appears in the p-form spectrum of type

IIB supergravity, and is therefore underlined in the table. Any positive root of B2 is in addition

associated to a level `1 with respect to the remaining simple root α1. Whenever `0 − `2 = `1
this root is also a root of the type IIA subalgebra and thus contributes to the p-form spectrum of

type IIA supergravity. Any sl(2) representation for which such a root occurs (as a weight of the

representation) is marked with a dot in the table. The form degree is given by p = `0 + `2 for both

type IIA and type IIB. The table is truncated at `0 = 6 and `2 = 6.
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4 Further aspects of the Borcherds algebras

In this section, we highlight some additional properties of the spectra of the Borcherds

algebras Bn for n ≥ 3.

4.1 Hodge duality

In one respect the Borcherds algebra Bn is easier to handle than the Kac-Moody algebra

E11. Both algebras are infinite-dimensional, and for both algebras the number of irreducible

representations at level p increases with p. But for Bn it grows more slowly, and up to

p = D − 3 it is in fact always equal to one, i.e. the representations sp are irreducible.

Studying these irreducible representations one finds that sp is always the conjugate of

sD−2−p, which reflects the Hodge duality between p-forms and (D−2−p)-forms. This is of

course necessary on physical grounds but from an algebraic perspective it is less evident why

this has to be true. However, one can show that there is a special structure associated with

the analogue of the affine null that also forces this condition in the Borcherds superalgebra.

This analogue of the affine null root is the (positive) root associated to the Cartan element

that commutes with the En subalgebra.

The representations sp of En in the level decomposition of Bn can be determined up to

level p = D−2 by studying the corresponding level decomposition of the affine Lie algebra

E9. Thus we write

E9 =
⊕
p∈Z

(E9)p, (E9)0 = En ⊕ sl(9− n)⊕ R. (4.1)

For each p, the subspace (E9)p is a representation of both sl(9−n) and En. For p ≤ D−3,

the representation of sl(9− n) is the totally antisymmetric tensor power of p copies of the

fundamental representation. Thus we can use the result in [19, 20] which says that (E9)p as

an En representation is the same as sp in the level decomposition of Bn for 1 ≤ p ≤ 9− n.

Since E9 is the affine extension of E8 we know that its root system consists of all non-zero

linear combinations mδ+α where δ is the affine null root, α is a root of the E8 subalgebra or

zero, and m is an integer. The affine null root corresponds to elements at level 9−n = D−2

in the level decomposition above. It follows that the representation at level D − 2 is the

adjoint representation of En ⊕ sl(9 − n) ⊕ R, and more generally, that the representation

at level D − 2 − p is the same as at level −p, and the conjugate of the representation at

level p, for any p. Thus this holds also for the En representations sp in the corresponding

level decomposition of Bn, for 1 ≤ p ≤ D − 2.

4.2 Beyond the space-time limit

The Borcherds algebras Bn are infinite-dimensional and predict representations of arbitrary

‘rank’ p in the decomposition (2.16), also for p larger than the space-time dimension D.

Going beyond this space-time limit, we find that the representations sp for 2 ≤ p ≤ D − 3

come back at level p+ (D− 2), as they do in the E9 (note however that s1 is not included

in sD−1, and that there is no singlet in sD−2). But in addition there are many other

representations, and some of them can be shown to follow a certain pattern up to arbitrary
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high levels. This is done by restricting the root space of Bn to that of B3, using the

embedding of B3 into Bn that we have described. It is straightforward to show that

[[e0, [[e1, [[e0, [[e3, [[e2, [[e1, e0]]]]]]]]]]]] (4.2)

is a non-zero element of B3. If we keep alternating (ad e0) with alternatingly (ad e1) and

(ad e3), we can construct elements at arbitrary high levels with respect to α0. The E3

elements that these elements belong to can then be ‘lifted’ to Bn for n > 3 and will have

the Dynkin labels (
0, 0, . . . , 0, 0,

p− 3

2
, 1

)
(4.3)

if p is odd (p ≥ 3) and (
0, 0, . . . , 0, 1,

p− 4

2
, 0

)
(4.4)

if p is even (p ≥ 4). We recall that the Dynkin labels are the components of the highest

weight of the representation in the basis of fundamental weights Λ1, Λ2, . . . , Λn (in this

order), which is dual to the basis of simple roots, (Λi, αj) = δij . The representations given

by (4.3) and (4.4) will thus ‘survive’ the successive embedding, from B8 down to B3. This

result can also be generalised by involving (ad e2) more than once in the construction of

the elements, so that the general Dynkin labels generalising (4.3) and (4.4) will involve two

parameters instead of only p.

We stress that the Dynkin labels (4.3) and (4.4) only give some of the irreducible

representations contained in sp for arbitrary ‘rank’ p ≥ D (and also do not count for

multiplicities greater than one). In order to determine all the irreducible representations,

one can again use the isomorphism of [14, 19, 20] that relates the p-form representation

spaces sp of Bn to representations in a Kac-Moody algebra. Indeed, one can consider En+p
decomposed under En to obtain the space sp [14, 19, 20]. Doing this one finds for example

the following four-forms in the D = 3 hierarchy

p = 4 : 6 696 000⊕ 779 247⊕ 147 250⊕ 2× 30 380⊕ 3875⊕ 2× 248 (4.5)

of E8, which agrees with the result obtained from a study of Bianchi identities [28–30].

One can now perform the same analysis as in table 1. When decomposed under E7 the

dominant pieces (in terms of the oxidation procedure) are

8645⊕ 133 (4.6)

and come from the two largest E8 representations in (4.5). The E7 representations (4.6)

agree exactly with the four-forms of D = 4 supergravity [6–8, 26]. The role of (4.5) in

D = 3 is not so clear but some hints might be taken from the point of view of reducibility

of constraints in generalised geometry [27] or from a superspace point of view [28, 29]. It

has also been observed that the definition of the tensor hierarchy in terms of the embedding

tensor predicts an infinite hierarchy [8].
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4.3 Yet more subalgebras

We finally remark that the Borcherds algebras studied in [13, 14] can also be embedded in

B3, providing a different oxidation scheme than that used in sections 2.4 to 2.6. Starting

from the diagram of B3 in figure 2 we can consider the following roots

α0, α0 + α1, α2. (4.7)

It is not hard to check that they form a system of simple roots of a subalgebra of B3 and

that the subalgebra coincides with the one studied in [13]. Starting from the alternative

Borcherds algebra (4.7) as the V-duality algebra in D = 9 one can also recover the other V-

duality algebras of [13] that arise in D > 9 as subalgebras of B3. However, the subalgebras

correspond to different physical sets of fields that are being kept in the oxidation process

and therefore we prefer to study the algebras of sections 2.4 to 2.6.
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