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Föhringer Ring 6, 80805 Munich, Germany
dDepartment of Physics, University of Wisconsin-Madison,

Madison, WI 53706, U.S.A.
eDepartment of Physics and Institute for Advanced Study,

Hong Kong University of Science and Technology, Hong Kong

E-mail: inaki@cern.ch, hayashi@kias.re.kr, savelli@mpp.mpg.de,

shiu@physics.wisc.edu

Abstract: We work out the exact in gs and perturbatively exact in α′ result for the vector

multiplet moduli Kähler potential in a specific N = 2 compactification of F-theory. The

well-known α′3 correction is absent, but there is a rich structure of corrections at all even

orders in α′. Moreover, each of these orders independently displays an SL(2,Z) invariant

set of corrections in the string coupling constant. This generalizes earlier findings to the

case of a non-trivial elliptic fibration. Our results pave the way for the analysis of quantum

corrections in the more complicated N = 1 context, and may have interesting implications

for the study of moduli stabilization in string theory.

Keywords: Compactification and String Models, F-Theory, Superstrings and Heterotic

Strings, Superstring Vacua

ArXiv ePrint: 1212.4831

Open Access doi:10.1007/JHEP03(2013)005

mailto:inaki@cern.ch
mailto:hayashi@kias.re.kr
mailto:savelli@mpp.mpg.de
mailto:shiu@physics.wisc.edu
http://arxiv.org/abs/1212.4831
http://dx.doi.org/10.1007/JHEP03(2013)005


J
H
E
P
0
3
(
2
0
1
3
)
0
0
5

Contents

1 Introduction 1

2 Setting up the problem 3

3 Review of the model 8

3.1 Generalities 8

3.2 Duality dictionary 9

3.2.1 10d duality 9

3.2.2 4d duality 10

4 Threshold corrections and SL(2,Z) invariance 11

4.1 Ignoring Wilson lines 12

4.2 Inclusion of Wilson lines 16

4.3 Non-perturbative α′ corrections 19

5 F-theory picture 19

5.1 Preliminaries 19

5.2 F-theory lifts 21

5.3 Classical theory 22

5.4 Quantum corrections 24

5.4.1 Sources 24

5.4.2 Computation 25

6 Conclusions 29

A Explicit expressions of the prepotential 30

A.1 Generalities 30

A.2 A universal prepotential without Wilson lines 33

A.3 Inclusion of specific Wilson lines 39

B Duality to type IIA string compactifications 45

1 Introduction

In recent years, there has been a resurgence of interest in F-theory [1]. This renewed interest

is due largely to the observation that certain realistic particle physics features, such as the

gauge group, matter content, and couplings of Grand Unified Theories (GUTs), can be

elegantly obtained in this framework [2–5] (see [6, 7] for recent reviews). Besides extending

the D-brane phenomenology program to describe realistic GUTs, another (perhaps the
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original) appeal of F-theory is that it provides a geometrical way to formulate and analyze

type IIB string vacua non-perturbatively.

The power of F-theory lies in its potential to geometrically describe the non-

perturbative physics of string theory, but aspects of its effective action obtained so far

have not yet fully exploited this property. In lack of an action principle or a micro-

scopic formulation of F-theory, one often has to rely on F-theory as a limit of M-theory

to obtain its low energy effective action [8–14] (see [15] for the starting M-theory solu-

tions). While geometry and low energy consistency conditions impose constraints on the

low energy effective action,1 the underlying symmetries of type IIB string theory are not

always apparent. In this paper, we shall make extensive use of string dualities in order

to derive aspects of the quantum corrected effective action of F-theory. In particular, we

explore simple F-theory models which admit several dual descriptions (see figure 2 for the

web of string dualities involved). The dual descriptions enable one to compute in some

cases not only the perturbative α′ corrections to F-theory, but also results that are fully

non-perturbative in the string coupling. In our approach, the non-perturbative SL(2,Z)

symmetry is manifest in the effective action. The Kähler potential so obtained should

generalize fully non-perturbatively the type IIB result.

One of the interesting features of F-theory compactifications is that one may be able

to naturally combine phenomenological model construction with moduli stabilization anal-

ysis [18–20]. Given that the leading α′ corrections to the Kähler potential has played a key

role in the so-called LARGE Volume Scenario (LVS) of [21, 22], we expect that our gen-

eralization of these type IIB results to F-theory should have some interesting implications

to moduli stabilization. In LVS, string corrections to the tree-level supergravity effective

action computed in [23] play an essential role, and a volume modulus is stabilized so that

the compactification volume is as large as 1015 in string units. Since the scenario relies on

the specific string correction of O(α′3) in the string frame to the Kähler potential, other

corrections might have some effects on the moduli stabilization. Indeed, some perturba-

tive one-loop gs corrections to some N = 1 and N = 2 toroidal orientifold models were

computed in [24] (see also [25]). Ref. [24] found corrections of order O(g2
sα
′2) in the string

frame to the Kähler potential.2 Hence, one has to check which corrections are leading,

in order to find a true minimum. Interestingly, there can be certain cancellations for the

latter correction in the scalar potential, and some models are robust against the inclusion

of the latter correction in a certain region of the moduli space [26, 28–30]. In this respect,

one of our aims here is to generalize the result in [24] to full gs corrections including non-

perturbative terms in gs. This is particularly important for F-theory compactifications

since typical GUTs require a strong coupling effect in gs for generating some favorable

phenomenological features. Although N = 1 models are of interest for this purpose, N = 2

models will still exhibit interesting structures in the corrections. In fact, the qualitative

1In [16, 17], additional constraints from the proper coupling between open and closed strings were used

to determine the Kähler potential for type IIB theory in the presence of fluxes as well its generalization to

F-theory.
2The parametric form of these loop corrections was earlier found in [26]. A similar set of corrections

were found from the heterotic perspective in [27].
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features of N = 2 corrections is similar to the N = 1 corrections in toroidal orientifold

models considered in [24]. As mentioned before, on the other hand, N = 2 supersymme-

try is powerful enough to obtain fully non-perturbative gs corrections as well as all the

perturbative α′ corrections. Motivated by these observations, we will work on finding the

effective action of a particular N = 2 F-theory model in this paper.

More precisely, we concentrate on F-theory compactified on K3×K3. We shall be able

to disentangle gs and α′ corrections and discuss the roles played by the various moduli of

the two K3 manifolds. In particular, Kähler modulus and complex structure moduli of the

elliptic K3, while decoupled at tree-level in α′, are non-trivially mixed at loop-level. The

structure of this mixing is rigidly constrained by the SL(2,Z) invariance of the underlying

type IIB theory and we will propose a purely F-theoretic interpretation of this fact coming

from the M-theory description of F-theory, generalizing the results for compactifications

on trivial elliptic fibrations first found in [31–34].

This paper is organized as follows. In section 2, we discuss some general issues about

the effective action of F-theory, and set up the computation of the Kähler potential which

we aim to address in this work. In section 3, we review the basics of the string theory model

under consideration, focusing on how various supersymmetry multiplets transform and on

the duality relations connecting the type IIB model to type I and to heterotic. In section

4, we systematically analyze the threshold corrections to the Kähler metric of the vector

multiplet moduli space of type I′ string (and hence F-)theory, both with and without Wilson

lines. We will check explicitly that the Kähler potential to each perturbative order in α′

is invariant under an SL(2,Z) symmetry. In section 5, we provide a geometric, F-theory

interpretation of the type IIB result in section 4 by making use of the F/M-theory duality.

We shall argue that the threshold corrections to the Kähler potential can be interpreted in

F-theory as coming from integrating loops of 11D super gravitons with various momenta.

We conclude in section 6. Some important but more technical details are relegated to

the appendices.

2 Setting up the problem

We would like to take some steps towards understanding quantum corrections to the Kähler

potential of F-theory compactifications. In particular, F-theory already represents a com-

pletion of type IIB string theory as far as string-loop corrections are concerned, but it is

perturbative with respect to α′ corrections, exactly on the same footing as type IIB super-

gravity. This fact is reflected in the basic objects of the effective field theory arising from

an F-theory compactification [9, 10]. For instance, consider F-theory compactified on a

smooth, elliptically fibered Calabi-Yau fourfold. At tree level in α′, the 4d, N = 1 Kähler

potential splits in two decoupled contributions:

K = KK +Kc , (2.1)

where the first is due to moduli of the Kähler structure only and the second to moduli of

the complex structure only of the internal fourfold. Explicitly they look like:

KK = −3 logVCY4 , Kc = − log

∫
CY4

Ω4 ∧ Ω̄4 , (2.2)

– 3 –



J
H
E
P
0
3
(
2
0
1
3
)
0
0
5

where VCY4 is the classical volume of the Calabi-Yau fourfold, while Ω4 is its unique

holomorphic (4, 0)-form. The complex structure moduli of the internal fourfold contain

three different kinds of moduli of the underlying type IIB weak coupling orientifold com-

pactification (Sen limit): The bulk moduli of the internal Calabi-Yau threefold (closed

string moduli), the 7-brane deformation moduli (open string moduli)3 and the axio-dilaton

S = C0 + ie−φ, thought of as an actual 4d modulus. Indeed, generically the complex struc-

ture of the torus fiber is not a modulus because it varies over the internal space according

to the implicit relation

j(S(z)) =
4(24f)3

27g2 + 4f3
(z) , (2.3)

where j is the modular invariant Klein function while f and g are polynomial functions of

the base coordinates z, defining the Weierstrass representation of the elliptic fibration. The

solution for S of eq. (2.3) encodes the backreaction on the axiodilaton of a given 7-brane

solution of type IIB string theory. However, the Sen parameterization of f and g allows to

isolate from the backreacted solution a constant piece S0, which represents the asymptotic

value of the axiodilaton far away from the 7-brane sources in a given chart,4 and thus

behaves as a true 4d modulus.

In general the computation of the periods of Ω4 to evaluate Kc is extremely hard,

and possible only in case one has few moduli. However, to make clear our purposes, it

is instructive to consider its weak coupling limit. Taking the Sen limit of an F-theory

compactification just means finding a region in the complex structure moduli space of the

fourfold in which the imaginary part of the axio-dilaton can be sent to infinity in a globally

well-defined way. In doing so one sees that the discriminant of the elliptic fibration gets

factorized in two pieces, whose vanishing locus can be interpreted in a suitable SL(2,Z)

frame as a D7-brane and an O7-plane. Since now the string coupling constant gs can be

kept small everywhere on the base (except on the locus where the O7 sits), one can make

a perturbative expansion5 of Kc in gs:

Kc = − log(ImS0)− log i

∫
CY3

Ω3 ∧ Ω̄3 +
gs

2i
∫

CY3
Ω3 ∧ Ω̄3

KD7 +O(g2
s) , (2.4)

where the first two terms are respectively the standard Kähler potentials for the dilaton

and for the complex structure moduli of the CY threefold in type IIB string theory. The

third term governs the D7-brane moduli and it depends on both open and closed string

moduli. Notice that it enters at linear order in gs, which means that the backreaction of

the D7-branes on the bulk geometry is suppressed by a power of gs. Therefore at lowest

order in gs no open string moduli appear at all.

From the analysis above one therefore expects that the full Kc in eq. (2.2) contains

all the gs corrections of type IIB string theory, perturbative or not. Moreover, since Kc
3The separation between bulk and brane-type moduli is not canonical, but for our illustrative purposes

it is not needed to go into the details of this subtlety.
4In Sen’s limit all 7-brane sources are mutually local, and one can always choose the frame where they

are D7-branes. Consequently, there will be no monodromies affecting the dilaton.
5One can also obtain in the Sen limit a complete perturbative expression, which is only up to purely

non-perturbative terms going like e−1/gs [9].
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only depends on the fibration structure of the fourfold, one also expects that the whole

set of corrections appears in it in an SL(2,Z) invariant fashion6 for the complex structure

of the fiber. Indeed, in any point of the moduli space, if one applies an overall SL(2,Z)

transformation to the corresponding fourfold one does not change its intrinsic fibration

structure, but rather one is trivializing each chart of the base in a different way, but all at the

same time, so that the transition functions do not change. In other words, over each chart of

the base, one is taking a different representative of the complex structure of the torus fiber

above that chart, in such a way that the transitions between two intersecting charts do not

change. Consequently, one changes the names of all the 7-branes which appears (namely

the monodromy that defines them), but their mutual relations are untouched. Of course in

the perturbative expansion just described the SL(2,Z) symmetry is explicitly broken by a

preferred choice of SL(2,Z)-frame (in the weak coupling limit only D7’s and O7’s appear),

which allows us to consistently retain only a few orders in gs (neither the monodromy

around a D7 nor the one around an O7 contains the ‘S’ generator of SL(2,Z)). The essence

of section 4 will be to use, in a concrete model, powerful results from heterotic string theory

to sum up all gs corrections in type IIB for a given α′ order. In doing so, each O7-plane

is actually resolved in a couple of mutually non-perturbative (p,q)7-branes. Nevertheless

our focus will not be on the full backreacted solution S(z), as the latter is a consequence

of the intrinsic structure of the F-theory fibration. Rather we will concentrate on the 4d

modulus S0 and on its SL(2,Z)-class. To anticipate the result, we will verify that physical

quantities will not depend on the specific representative of that class at every order in α′.

Consequently, the Kähler potential will only be invariant up to Kähler transformations

and this is due to the fact that the explicit expression for the Kähler potential is usually

written in the covering space of the modulus S0, namely the upper half complex plane.

Hence the Kähler transformations are changes between patches within the Kähler moduli

space induced by the SL(2,Z) transition functions acting on the local coordinate S0.7

By viewing F-theory as M-theory on the same fourfold upon sending the volume of

the fiber to 0 (F-theory limit), one may suspect that the SL(2,Z) invariance of the Kähler

potential (up to Kähler transformations) only holds when the CY fourfold is trivially fibered

(no 7-branes, thus constant axiodilaton, i.e. S = S0). Indeed, in this case CY4 = CY3×T 2

and SL(2,Z) is now a target space duality of the M-theory background and hence any

physical quantity is invariant under this group. This property has been highlighted in the

computations of [35]. However, the geometrical, sketchy argument presented above is not

restricted to the trivial case and suggests that this invariance property persists in more

general cases.

One can also argue the SL(2,Z) invariance at the level of the Weierstrass form at least

for a smooth case. At each point in the base of a smooth elliptically fibered Calabi-Yau

fourfold, the defining equation with a section may be written by the Weierstrass form

y2 = x3 + fx+ g, (2.5)

6We mean here that all the physical quantities, like the Kähler metric, should be invariant.
7As we will see in our working model, S0 may not be a good Kähler coordinate everywhere in the moduli

space [24].
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where f and g may be expressed as

f = −15
∑

ω∈mω1+nω2

1

ω4
, g = −35

∑
ω∈mω1+nω2

1

ω6
. (2.6)

Here m and n in the sum are integers except for (m,n) = 0, and ω1 and ω2 are the two

periods of the lattice defining the torus. The complex structure τ of the torus is related to

the periods by τ = ω2
ω1

. Since the sum in (2.6) is taken for all the periods except for 0, the

SL(2,Z) transformation for ω1 and ω2

ω′2 = aω2 + bω1, (2.7)

ω′1 = cω2 + dω1 (2.8)

with a, b, c, d ∈ Z and ad− bc = 1 does not change f and g. One can do the same SL(2,Z)

transformation at every point in the base of the elliptically fibered Calabi-Yau fourfold.

Therefore, the defining equation of the smooth elliptically fibered Calabi-Yau fourfold does

not change by the SL(2,Z) transformation. For a singular Calabi-Yau fourfold, we may

have 7-branes and also matter fields from the intersection between 7-branes in some singular

loci. The gauge fields or matter fields may be realized by string junctions between the 7-

branes. The configurations of the string junctions also do not change by the overall SL(2,Z)

transformation.

In order to argue the SL(2,Z) invariance at the level of the Kähler potential in a low

energy effective field theory, there might be a subtlety if the SL(2,Z) transformation in-

volves a weak-strong coupling transformation. For example, one might not have a local

Lagrangian description if the SL(2,Z) transformed theory becomes strongly coupled. How-

ever, the gauge couplings of the gauge fields coming from the Kaluza-Klein reduction or

the gauge fields on the D7-branes do not change under the SL(2,Z) transformation. For

the Kaluza-Klein gauge fields, the kinetic term arises from the dimensional reduction of

the ten-dimensional Einstein-Hilbert action in the Einstein frame. Since the metric in the

Einstein frame does not change under the SL(2,Z) transformation, the gauge coupling for

the Kaluza-Klein gauge fields does not change. For the gauge fields on D7-branes, the

gauge coupling is roughly
1

g2
YM

∼ Vol(4-cycle)

gs
, (2.9)

where the Vol(4-cycle) stands for the string frame volume of the four-cycle which the D7-

branes wrap. The expression (2.9) becomes in the Einstein frame

1

g2
YM

∼ Vol(4-cycle)

gs
= V̂ol(4-cycle), (2.10)

where V̂ol(4-cycle) represents the Einstein frame volume of the four-cycle. Therefore, the

gauge coupling for the gauge fields on the D7-branes does not change under the SL(2,Z)

transformation. To summarize, the gauge couplings for the two types of the gauge fields

remains to be weak after the SL(2,Z) transformation if the original gauge couplings are

– 6 –
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Figure 1. Quantum corrections to the prepotential of F-theory on K3×K3. The horizontal axis

labels the degree in α′ of the correction, and the vertical one the degree in gs. The circles represent

the non-vanishing perturbative terms in the prepotential. The solid band on top represents the set

of non-perturbative corrections in gs; Notice that there are no such corrections at tree level in α′,

as discussed in the text.

weak. Hence, one may safely use the Kähler potentials on both sides and argue the SL(2,Z)

invariance of the corresponding Kähler metrics.

Moreover we expect that this property still holds at higher order in α′. Eq. (2.2) is

only the tree-level expression in α′. At higher α′-orders, in general, Kähler and complex

structure moduli will mix. Nevertheless, since the SL(2,Z) duality of type IIB string

theory is believed to hold at all orders in α′, we expect that, at each α′-order, there will be

a suitable F-theoretic expression depending on geometrical quantities of the internal CY

fourfold which contains a sum of all gs corrections in an SL(2,Z) invariant fashion, as Kc
in eq. (2.2) does for the lowest α′ order. In other words, all kinds of corrections take place

in a square (see figure 1), in which the horizontal line corresponds to α′ corrections and

the vertical to gs ones. Each α′-tower of corrections to physical quantities should display

the SL(2,Z) invariance.

In the following we try to verify the above statements by studying a specific, well

known F-theory background, namely F-theory on K3×K3 [36–44]. On the one hand this

is more general than in [35] because it involves a non-trivial fibration (the second K3 is

elliptically fibered over a 2-sphere). On the other hand, however, this model is particularly

well tractable because it leads to an N = 2 four-dimensional effective theory which enjoys
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all the nice non-renormalization theorems for its relevant quantities. In addition, in this

case, we have at our disposal a well-studied dual heterotic model, in which corrections

have been computed explicitly. This will help us understand systematically the structure

of both α′ and gs corrections, which will turn out to be particularly easy. We will find all

our expectations verified and provide a clear picture of the whole duality web of corrections,

stating precisely which points of the square in figure 1 is occupied by a correction, and

what is the explicit form of the latter. Notice that the simplification arising in this model

is actually a consequence of the N = 2 supersymmetry. In N = 1 models α′ and gs
corrections might be entangled in an intricate way, which may not allow one to easily

isolate the α′-towers of gs corrections and check their SL(2,Z) invariance.

3 Review of the model

In this section we will review the basics of the string theory model which we want to work

with, focusing on the susy representations in which the various low-energy fields transform

and on the duality relations connecting the type IIB model to type I and to heterotic. We

will not give an extensive treatment, but rather pay attention only to the details we will

make use of in the sequel and, in particular, describe the F-theory lift of this model.

3.1 Generalities

We consider the so called type I′ string theory, namely type IIB compactified onK3×T 2/Z2,

where the Z2 quotient is an orientifold, whose geometrical action is just to reflect the

coordinates of T 2. This action has four fixed points which are regarded as the positions of

four O7−-planes wrapping R1,3×K3. This compactification leads to an N = 2, 4d effective

theory, which is the orientifold truncation of an N = 4 one. The various moduli fields of the

low-energy theory will arrange into vector multiplets and hypermultiplets as follows. The

complex structure of T 2 (U), the overall Kähler modulus (volume plus axion) of K3 (T ), the

axio-dilaton (S)8 and the transverse positions of the 16 D7-branes (Ci) which are needed to

cancel the 7-brane tadpole are all scalar components of 19 vector multiplets.9 The complex

structure moduli of K3 plus the Kähler modulus of T 2 will instead constitute the scalar

fields of a number of hypermultiplets. Note that this is different from the compactifications

of Type IIB string theory on Calabi-Yau threefolds where the dilaton is a scalar component

of the universal hypermultiplet. This is because [45] there the vector fields come from the

reduction of RR fields in the usual Calabi-Yau threefold compactifications. Hence, the

gauge kinetic terms do not have the dilaton dependence. On the other hand, in the present

case, there are gauge fields coming from the reduction of B2. Therefore, there exists a

gauge kinetic term of the form [46]

e−2φI
′

10

√
G4

√
GT 2

√
GK3G

µ1ν1Gµ2ν2Gij
T 2Hµ1µ2iHν1ν2j . (3.1)

8We mean here S0 in the notation introduced previously. But to avoid cluttering notations, we will drop

the subscript throughout the rest of the paper.
9When we do not write a subscript on the moduli fields we will always mean quantities in the type

I′ theory.
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where i, j are directions of the torus.10 Then the kinetic term of the gauge fields contain the

dilaton e−2φI
′

10 , the volume of K3,
√
GK3, and the complex structure of T 2,

√
GT 2Gij . Since

the gauge kinetic term in N = 2 supersymmetric field theory is written in terms of N = 2

vector multiplets, we conclude that SI′ , TI′ , UI′ are scalar components of vector multiplets.

Our main interest here is to study corrections to the metric of the vector multiplet

moduli space, which is a Special Kähler manifold. Hence all we need is the prepotential as

a function of our 19 moduli. Due to its holomorphicity property, quantum corrections to

the prepotential are very well under control and this constitutes an enormous simplification

in carrying out our analysis.

This type IIB model has also the advantage of admitting a chain of dualities to other

type of string theories. Indeed, type I′ string theory can be obtained via T-duality from

type I compactified on K3×T 2 which in turn is S-dual to heterotic string theory again on

K3×T 2. In the next subsection we define the fields we are going to deal with and provide

a complete, clear dictionary of this chain of dualities acting on them.

3.2 Duality dictionary

In this subsection we determine how the classical moduli fields of N = 2, 4d vector mul-

tiplets coming form heterotic string theory compactified on K3 × T 2 are related with the

ones from type I and type I′ string theories under the following chain of dualities:

S-duality T-duality

Heterotic ←→ Type I ←→ Type I′

3.2.1 10d duality

Let us first consider the duality between SO(32) heterotic string theory and type I string

theory in ten dimensions. We have the following relations [47]

φH10 = −φI10, (3.2)

GH = e−φ
I
10GI , (3.3)

where φ
H,(I)
10 is the ten dimensional dilaton and GH,(I) is the metric in heterotic string

theory (type I string theory). The relations (3.2), (3.3) can be derived from the low-energy

effective actions of heterotic string theory and type I string theory. The heterotic string

effective action in ten dimensions scales with the dilaton φH10 like∫
d10x

√
GHe

−2φH10(RH + |∇φH10|2 + F 2 + |dB|2). (3.4)

If we transform (3.4) using (3.2), (3.3), the scaling becomes∫
d10x

√
GI(e

−2φI10(RI + |∇φI10|2) + e−φ
I
10F 2 + |dC|2). (3.5)

Then, (3.5) has the correct scaling behavior for the type I string effective action.

10Although B2 itself is odd under the Z2 action, B2 with one leg on T 2 is Z2 even.
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3.2.2 4d duality

Now we consider the compactification on T 2 ×K3 and see how the S-duality relates the

moduli on both sides [25]. Since the moduli spaces of vector multiplets and hypermultiplets

are factorized underN = 2 supersymmetry, the Kähler metric on the full moduli spaces will

also appear as a direct product. Then, the Kähler potentials are factorized up to Kähler

transformations. Furthermore, the dilaton is a scalar component of a vector multiplet also

in heterotic string theory on T 2×K3. As anticipated, we concentrate on the moduli coming

from the vector multiplets. To begin with, we ignore the Wilson line moduli, which dualize

in type I′ to D7 positions. Then, there are only three vector multiplets and their scalar

components are

SH = Bd + ie−2φH10Vol(T 2 ×K3)H , (3.6)

TH =

∫
T 2

B45 + iVol(T 2)H , (3.7)

UH =
GH45 + i

√
GH
T 2

GH44

, (3.8)

where Bd is the axion dual in 4d to Bµν and 4, 5 are the T 2 directions. (3.6) and (3.7)

can be interpreted respectively as the classical action for a 5-brane instanton wrapping

the whole internal manifold and a worldsheet instanton wrapping T 2. By applying the

relations (3.2), (3.3) to (3.6)–(3.8), we can obtain the corresponding moduli fields in type

I string theory. Because of the Weyl transformation (3.3), the d-dimensional volume Vold
also gets transformed as

VolHd = e−
dφI10

2 VolId. (3.9)

Hence we have:

SH −→ Cd + ie−φ
I
10Vol(T 2 ×K3)I =: SI , (3.10)

TH −→
∫
T 2

C45 + ie−φ
I
10Vol(T 2)I =: S′I , (3.11)

UH −→ UI , (3.12)

where Cd denotes the axion dual in 4d to the RR two-form Cµν and C45 denotes the latter

form on T 2. SI , S
′
I , UI are scalar components of the vector multiplets in type I string

theory.11 Again it is clear that (3.10) and (3.11) are respectively the classical action for a

D5 instanton wrapping the whole internal manifold and a D1 instanton wrapping T 2.

Let us move on to the next step, namely the duality between type I string theory and

type I′ string theory. Our ultimate goal is α′ corrections in F-theory compactifications in

the presence of 7-branes. In order to achieve this situation, one can take two T-dualities

11[24] discussed the one-loop corrections to Kähler potentials in terms of the moduli SI , S
′
I , UI plus Wilson

line moduli coming from the reduction on T 2. These results were later generalized in [48] to include both

types of open string moduli of type I′ (i.e. positions in T 2 of D7 and D3).
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on T 2. In doing so, one converts the 16 D9 branes (plus images) and the O9-plane into 16

D7-branes (plus images) and 4 O7-planes in type IIB respectively, the latter being placed

in the 4 fixed points of the Z2 action on the torus. The duality transformations are:

Vol(T 2)I =
1

Vol(T 2/Z2)I′
, (3.13)

e−2φI10(Vol(T 2)I)2 = e−2φI
′

10 . (3.14)

The last equality comes from the requirement that the four dimensional dilaton becomes

the same on both sides [49]

e−2φI10Vol(T 2 ×K3)I = e−2φI
′

10Vol(T 2/Z2 ×K3)I
′
. (3.15)

After rewriting (3.10)–(3.12) in terms of the variables in type I′ string theory through the

relations (3.13) and (3.14), we have the relations between moduli on both sides:

SI −→
∫
K3

C4 + ie−φ
I′
10Vol(K3)I

′
=: TI′ , (3.16)

S′I −→ C0 + ie−φ
I′
10 =: SI′ , (3.17)

UI −→ UI′ . (3.18)

One readily sees that (3.16) and (3.17) are the classical actions of an Euclidean D3-brane

wrapping K3 and of a D(-1) instanton respectively. These are the three moduli we are

most interested in: The first is the standard complexified Kähler modulus for K3, whose

imaginary part is of order g−1
s α′−2; the second is the usual axio-dilaton, whose imaginary

part is g−1
s ; the third is the complex structure modulus of T 2.

Let us now consider Wilson line moduli in heterotic string theory. We take them to

be defined as

AiH := UHA
i
4 −Ai5 i = 1, . . . , 16 , (3.19)

where Ai4,5 are the components of the i-th vector in the Cartan torus of the heterotic gauge

group SO(32) along the directions of T 2. They trivially map under S-duality to Wilson

line moduli CiIalong T 2 of the vector fields living on the 16 D9-branes of type I. The

latter, in turn, map under the two T-dualities to the positions of the 16 D7-branes of type

I′ on T 2/Z2:

CiI −→ UI′p
i
4 − pi5 . (3.20)

4 Threshold corrections and SL(2,Z) invariance

Let us now systematically analyze the threshold corrections to the Kähler metric of the

vector multiplet moduli space of type I′ string theory. As anticipated, the N = 2 super-

symmetry allows us to extract all these corrections from the ones of the prepotential. The

Kähler potential expressed in terms of F is:

K = − log i

[
2F − 2F̄ −

∑
α

(φα − φ̄α)
(
∂φαF + ∂φ̄αF̄

) ]
, (4.1)
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where φa are all the scalars of the vector multiplets. We will therefore use known results

for the corrections to the prepotential in heterotic string theory and translate them to

corrections to the Kähler potential of type I′ using the duality dictionary of subsection 3.2.

Moreover, we will analyze the SL(2,Z) properties of the results, showing invariance for the

Kähler potential up to Kähler transformations.

In the orbifold12 limit of K3, CFT techniques have been used in the heterotic side to

compute explicitly all α′ corrections, perturbative and non-perturbative [50, 51]. However,

the orbifold limit is incompatible with the large volume expansion, as some 2-cycles of K3

are shrinking to zero size. Nevertheless, this will not affect our type IIB analysis because,

as mentioned, those 2-cycles produce moduli in the hypermultiplet moduli space. Therefore

α′ corrections to the latter become important, but α′ corrections to the vector multiplet

moduli space are still subdominant in the orbifold limit of K3.

4.1 Ignoring Wilson lines

We begin by analyzing the easier case in which we consider the region of the moduli space

where all the Wilson line moduli of heterotic string theory are vanishing. We will consider

a type I′ string theory dual to a particular type of the Bianchi-Sagnotti-Gimon-Polchinski

model [52, 53]. We may maximally have an SU(16) gauge group in a special region we

have chosen of the hypermultiplet moduli space.13 The Ci moduli introduced above will

locally parameterize the directions normal to the SU(16) region in the moduli space of type

I′ theory. In our model, the tadpole cancellation condition is satisfied without including

mobile D3-branes. Therefore, we do not have D3-brane moduli in our type I′ string theory

simply because all D3-branes needed for tadpole cancellation are stuck at the 16 orbifold

points of T 4/Z2 and have no deformation moduli along the T 2 either (see appendix A).14

In the heterotic model at hand, the prepotential F has been computed to all orders

in α′ using CFT techniques in [50, 51]. Due to the holomorphicity of the prepotential

and to the fact that the real axionic shift SH → SH + λ is an exact symmetry of the

perturbative theory, F is exact already at one-loop order in perturbation theory for the

heterotic string coupling constant contained in 1/ImSH . Thus, up to non-perturbative

corrections in 1/ImSH , the result is:

FH(SH , TH , UH) = ŜHTHUH + h(TH , UH) ,

ŜH = SH +
1

2
∂TH∂UHh(TH , UH) ,

(4.2)

where ŜH is the corrected SH modulus, at all orders in α′ [56] (see also [57]).15 Like for

the prepotential, SH is corrected only at one-loop in string perturbation theory.

12Which orbifold and how the orbifold action is embedded in the gauge degrees of freedom are all infor-

mation affecting the low energy physics in the hypermultiplet sector, and they do not enter the prepotential

for vector moduli [50], which we are interested in here.
13This is due to the lack of vector structure arising from the particular embedding in the gauge degrees

of freedom of the orbifold action which describes the K3 (see appendix A).
14In the dual heterotic string theory, we have 16 small instantons [54, 55]. They dualize to 16 rigid,

space-filling half-D3-branes with total charge of 8.
15Actually, as explained in [56], one has to further require the difference SH − ŜH to be finite throughout
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Before giving the definition of the function h, we can directly write the prepotential in

type I′ string theory using the dictionary given in subsection 3.2. One caveat must be made,

though.16 We are going to assume that this dictionary does not itself receive quantum

corrections, at least in perturbation theory for 1/ImSH . The fact that the result we find

via duality exactly contains the corrections found in [24] via a genuine type I computation

suggests that at least the heterotic/type I S-duality is robust against quantum corrections.

Moreover, since we make two T-dualities along a factorized T 2, makes us confident that

also the T-duality step is safe. Thus we have:

F(S, T̂ , U) = ST̂U + h(S,U) ,

T̂ = T +
1

2
∂S∂Uh(S,U) .

(4.3)

Notice that, as a consequence of the exactness (both perturbatively and non-perturbatively)

of (4.2) in 1/ImTH (i.e. in α′), the corresponding type IIB expression above is exact in

gs = 1/ImS. Namely it contains all perturbative and non-perturbative corrections in the

type IIB string coupling constant. However, since α′ is only contained in T , (4.3) does not

contain non-perturbative α′ corrections, because (4.2) is up to non-perturbative corrections

in 1/ImSH . T̂ is analogously the corrected type IIB Kähler modulus at all order in gs, but

only perturbatively in α′ (one-loop is again the only non-trivial contribution).

The function h has a very explicit expression in terms of tri-logarithmic functions. The

one valid in the region ImS > ImU is (see appendix A.2 for the computation):

h(S,U) = − i

(2π)4

[
Li3

(
e2πi(S−U)

)
+

∑
k,l≥0

(k,l) 6=(0,0)

c(kl)Li3

(
e2πi(kS+lU)

)]
+

15i

2π4
ζ(3) +

U3

12π
,

(4.4)

where

Lim(z) =
∞∑
n=1

zn

nm
,

∞∑
n=−1

c(n)zn =
E6E4

η24
(z) , (4.5)

E6,4 and η being the usual Eisenstein series and Dedekind function respectively. In order

to extend h to the complement of the S,U moduli space, one performs an analytic contin-

uation. This leads simply to the expression h(U, S) (i.e. (4.4) with S and U exchanged)

valid in the region ImU > ImS. The two expressions clearly connect at the branch locus

S = U . Let us remark that the expression (4.1) for the Kähler potential in terms of the

prepotential is invariant under shift of F by any polynomial at most quadratic in the φa,

with real coefficients. As a consequence, the functions h(S,U) and h(U, S) are defined up

to a polynomial at most quadratic in S,U with real coefficients. This ambiguity is related

to non-trivial quantum monodromies. In special regions of the (S,U) moduli space the

the (TH , UH) moduli space, in order that the value of SH still plays the role of the universal string-loop

counting parameter. This condition leads to the addition of a counterterm in the definition of ŜH , which,

being modular invariant, will not be important for our analysis.
16We thank James Gray and Ioannis Florakis for pointing this issue out and for related discussions.
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function h develops logarithmic singularities. This is due to the fact that some massive

vector multiplets which have been integrated out become massless on these loci and thus

have to be included among the low energy excitations. Correspondingly, the gauge group

gets enhanced. In particular, from U(1)×U(1) corresponding to the S,U moduli, one has

SU(2)×U(1) along the codimension one locus S = U and SO(4) , SU(3) on the codimension

two loci S = U = i , S = U = ρ (= e2πi/3) modulo SL(2,Z) respectively. This phenomenon

results in a modification of the classical duality group due to non-trivial monodromies

around the singular loci [57]. The duality group must not change the physical metric. This

means that the prepotential will generically transform covariantly under the duality group

up to a shift by polynomials at most quadratic in S,U with real coefficients. The specific

form of these monodromies will not be of interests to us and thus in the sequel we will

focus only on the modular properties of the prepotential.

Using the quantum corrected N = 2 Kähler variables S, T̂ , U , we can now insert (4.3)

in (4.1) and expand the logarithm. We thus obtain the full quantum Kähler potential of

type I′ theory, up to non-perturbative α′ corrections:

K(S, T, U) = K(0)(S, T, U) +
∞∑
n=1

1

n
K(n)(S, T, U) ,

K(0)(S, T, U) = − log
[
−i(S − S̄)(T − T̄ )(U − Ū)

]
,

K(n)(S, T, U) = − (−1)n

(T − T̄ )n

[
2h− 2h̄

(S − S̄)(U − Ū)
− ∂Sh+ ∂S̄ h̄

U − Ū
− ∂Uh+ ∂Ū h̄

S − S̄

−
1

2
(∂S∂Uh− ∂S̄∂Ū h̄)

]n
. (4.6)

For reasons that will be clear shortly, in this expression we kept the dependence on T , even

though at the quantum level (n > 0) the latter is not anymore a good Kähler variable

and it must be replaced by T̂ . Of course in (4.6) one has to pick the right convergent

expression for the function h, depending on which region of the (S,U) moduli space one is

looking at. We can appreciate the easy structure of such corrections. First of all, the α′

parameter is only appearing in the classical T modulus in front, and only even powers of α′

are present (because 1/ImT is of order α′ 2). Hence the famous α′ 3 correction computed

in [23] is not included in (4.6).17 This is explained by the fact that this α′ 3 correction

is proportional to the Euler characteristic of the type IIB Calabi-Yau threefold, which in

our case is vanishing, because the threefold is K3×T 2. Another important feature is that,

at the perturbative level for the string coupling constant, only even powers of gs appear

in (4.6). This is due to the fact that the function ∂Sh goes to zero in the perturbative limit

for 1/ImS:

∂Sh −→ 0 exponentially for S −→ i∞ , (4.7)

where we used the following property of logarithmic functions:

d

dz
Lim(z) =

1

z
Lim−1(z) . (4.8)

17To form odd powers of α′ one would need to use the Kähler modulus for the torus T 2, which in our

case belongs to the hypermultiplet moduli space.
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Therefore in K(n) only terms which have an overall factor
(

1
ImT ImS

)n
in front survive,

which means, recalling definitions (3.16) and (3.17), two powers of gs. This is explained

by the fact that we are freezing open string moduli, thus neglecting the effect of 7-branes

on the bulk low energy fields. The latter indeed induces also odd powers of gs and we will

take them into account in the next subsection (see (2.4) for the F-theory picture at tree

level in α′).

As one immediately sees the Kähler modulus and the axio-dilaton, while decoupled

at tree level in α′, already mix at the first non-trivial α′ order. In particular, one can

recognize in (4.6) the threshold correction of [24] at α′ 2 order (n = 1) (see also [29]):

K(1) = − E(U, Ū)

(T − T̄ )(S − S̄)
E := lim

S→i∞

2h− 2h̄

U − Ū
− ∂Uh− ∂Ū h̄ . (4.9)

This perturbative correction comes from the joint contribution of two different kinds of BPS

states: The Kaluza-Klein states exchanged between the D7-branes and the non-mobile D3-

branes (also viewable as one-loop of open strings) and the non-orientable open stings with

Möbius strip topology stretched between parallel D7-branes. Notice that, in contrast to

ref. [29], in (4.6) there is no correction proportional to
(

1
ImT

)2
with no power of ImS.

This is because the latter correction would come from the exchange of strings wound along

circles in the intersection of two D7-branes; But those circles are not there in our situation,

because D7’s are just points on T 2, thus they either do not intersect or they coincide, and

K3 has no non-trivial 1-cycles.

By looking at (4.6) one can easily infer which kind of correction occupies a given

point in figure 1. For instance, there is no non-perturbative gs correction in the first α′

tower, namely tree level in α′. This property still holds after the inclusion of Wilson line

moduli. With no Wilson line moduli, only the lowest gs order is non-zero in the first α′

tower. Wilson line moduli will only add perturbative gs corrections. Non-perturbative gs
corrections are instead present at all non-trivial orders in α′. However, again because of

the absence of Wilson line moduli, there is just one perturbative gs correction for each α′

tower (i.e. for each value of the integer n): For the relative order α′ 2n, such a correction

is of relative18 order g2n
s .

As a final comment, let us stress again that (4.6) does not include non-perturbative

corrections in α′. However, worldsheet and D1 instantons are not present, because they

are projected out by the orientifold.19 On the other hand, corrections from the SL(2,Z)-

invariant euclidean D3 instantons wrapped on K3 are missing in (4.6) and will be briefly

discussed in section 4.3. Euclidean D3 branes wrapping T 2 times a 2-cycle of K3 correct the

metric of the hypermultiplet moduli space and will not be discussed here. D(-1) instanton

corrections, instead, which are non-perturbative only in gs, are contained in (4.6).

SL(2,Z) invariance. Let us now analyze the SL(2,Z) properties of (4.6). First of all

we notice that K is perfectly symmetric under exchange of S and U , at each α′ order,

18Of course we mean relative with respect to the first α′ tower. Analogously gs powers are relative to the

string tree level power.
19More precisely, F1 and D1 with one leg along the T 2 in principle survive the projection, but there is

no non-trivial circle in K3 to wrap the other leg around.
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thanks to the symmetry of the function h (taking into account that this Z2 symmetry also

changes the region of convergence of Li3). Therefore an SL(2,Z) invariance for S would

automatically imply an SL(2,Z) invariance for U . Let us then verify that this invariance

is actually there, at each α′ order. To see this, it is enough to check invariance for the two

generators of SL(2,Z), namely

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
. (4.10)

Under T-transformations h is invariant in either region of the S,U moduli space (h(S,U) is

obviously invariant and h(U, S) is invariant up to a quadratic polynomial in S with real co-

efficients, which, as said, is immaterial for the Kähler potential). Under S-transformations,

h transforms as follows [50]:

h
S−→ h

S2
, (4.11)

where on both sides one has to use the right definition of h (for instance, if one begins

in the region ImS > ImU and the S-transformation sends to the other region, one has

h(U,−1/S) = h(S,U)/S2). On the other hand, the classical T modulus is invariant under

SL(2,Z). Indeed, ImT is e−φ times the volume of K3 in the string frame, that means that

it is simply the volume of K3 in the Einstein frame, which is SL(2,Z) invariant (as the

Einstein frame metric is SL(2,Z) invariant). It is then easy to check, using (4.11), that

K(0) and each of the K(n) in (4.6) are separately SL(2,Z) invariant. In summary at each

perturbative α′ order the Kähler potential of type I′ string theory is invariant under the

following group:

O(2, 2,Z) = SL(2,Z)S × SL(2,Z)U o Z2 . (4.12)

4.2 Inclusion of Wilson lines

Let us now include the 16 Wilson line moduli Ci defined in (3.20). This will generically

break the gauge group to U(1)15 ⊂ SU(16). In total, the vector multiplet moduli space will

have 19 complex dimensions. Before introducing the Kähler potential, we must say that

in the presence of Wilson line moduli the axiodilaton S is no longer a good N = 2 Kähler

coordinate, but it has to be replaced by [24]

Ŝ = S +
1

2

s∑
i=1

Ci
Ci − C̄i

U − Ū
, (4.13)

where s = 0, . . . , 16 indicates the number of Wilson lines we have turned on. The exact

prepotential up to non-perturbative α′ corrections looks like

F = ŜT̂U − T̂

2

s∑
i=1

(Ci)2 + h̃(Ŝ, U, Ci) , (4.14)

where the h̃ function is given by (A.9) with a particular embedding of the orbifold action,

with the arguments (ȳ, y+, y−) transformed into (Ci, Ŝ, U) respectively and also with an
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appropriate normalization (see appendix A.3 for explicit formulae). Moreover, the quantum

corrected T -modulus has the following general expression [50]

T̂ = T +
1

s+ 4

[
2∂Ŝ∂U h̃(Ŝ, U, Ci)−

s∑
i=1

∂Ci∂Ci h̃(Ŝ, U, Ci)

]
, (4.15)

Equation (4.15) reduces, as it should, to the second equation of (4.3) for s = 0 (absence of

Wilson line moduli), and has to be used with s = 16 in the most generic case.

Note that the obtained prepotential (4.14) is the generalization of [24] including the

non-perturbative terms in gs if one uses the orbifold action (A.18) for T 4/Z2 embedded

in a sixteen dimensional self-dual lattice of the gauge degrees of freedom. The explicit

expression of the prepotential is (A.44) without Wilson line moduli and (A.77) with Wilson

line moduli, with (T̂H , UH) transformed into (Ŝ′I , UI). By taking a weak coupling limit

(Ŝ′I)2 → ∞, one can show that the prepotentials (A.44) and (A.77) exactly reduce to the

ones obtained in [24]. Since the explicit computation is rather technical and not relevant

here, we will postpone it to appendix A.3.

Let us now focus on the first α′ tower of figure 1. Again the volume modulus T

decouples, as it factorizes in the prepotential

Ftree = T

(
ŜU − 1

2

16∑
i=1

(Ci)2

)
. (4.16)

Using eq. (4.1), the Kähler potential at tree level in α′ looks like

K(0) = − log[−i(T − T̄ )]− log

[
(Ŝ − ¯̂

S)(U − Ū)− 1

2

16∑
i=1

(Ci − C̄i)2

]

= − log[−i(T − T̄ )]− log
[
(S − S̄)(U − Ū)

]
. (4.17)

As it is shown in the last equality above, this Kähler potential is still invariant under the

duality group (4.12) (up to a Kähler transformation). While the second line in eq. (4.17)

makes manifest the modular properties of K(0), one has to use the first line to compute the

Kähler metric because in this case, as said, S is not a good N = 2 special coordinate any

more, whereas Ŝ is. In fact, the duality group in the presence of Wilson line moduli gets

enlarged from (4.12) to O(2, 2 + s,Z). By embedding SO(2, 2,Z) into SO(2, 2 + s,Z), one

realizes [56] that the duality group which was rotating only the axiodilaton in the absence

of Wilson lines, i.e. SL(2,Z)S , generalizes to the following group of transformations acting

on Ŝ and touching the U and the Ci moduli as well

Ŝ −→ aŜ + b

cŜ + d
,

U −→ U − c

2(cŜ + d)

s∑
i=1

CiCi ,

Ci −→ Ci

cŜ + d
,

(4.18)
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where a, b, c, d are the integral entries of an SL(2,Z) matrix. It is easy to see that the

group of transformations (4.18) leaves invariant K(0) expressed in terms of the good N = 2

coordinates (first line of (4.17)). Another important property of K(0) is that still it does not

undergo non-perturbative corrections in the type IIB string coupling gs = 1/ImS. On the

other hand, the presence of Wilson line moduli seems to introduce perturbative corrections

in gs. Indeed, already at tree level in α′, we can perform the expansion

K(0) = − log
[
−i(T − T̄ )(Ŝ − ¯̂

S)(U − Ū)
]
−
∞∑
k=1

(−1)k

k

( ∑
i(C

i − C̄i)2

2(Ŝ − ¯̂
S)(U − Ū)

)k
, (4.19)

where string loop corrections are explicit in the last term. However, the second line in (4.17)

shows that, at least at the level of the Kähler potential, such corrections can be reabsorbed

in the old definition of the axiodilaton, thus implying that also in this case the Kähler

potential at tree level in α′ is exact in gs.

Eq. (4.19) is the analog of the general expansion (2.4) ensuing from the F-theory

Calabi-Yau fourfold. However, as we will see explicitly in section 5, the particular model

at hand lifts to F-theory on an elliptic K3, whose period structure is far easier than the

fourfold one. For this reason, (4.19) is an exact expression in gs and no Sen’s weak coupling

limit is required to write it.

Analogously, for higher α′ towers, K(n) will not contain only one perturbative gs cor-

rection, but many others again due to 7-brane deformations which are now included in the

calculation (in the previous section these degrees of freedom were frozen by the condition

Ci = 0). Indeed, inserting (4.14) in (4.1) and expanding the logarithm one finds

K(n) = −
∞∑
k=n

n(−1)k

k(T − T̄ )n

(
k

n

) ∑
i(C

i − C̄i)2(k−n)hn

2(k−n)(Ŝ − ¯̂
S)k(U − Ū)k

, (4.20)

where

h = 2h̃− 2
¯̃
h−

∑
φ=Ŝ,U,Ci

(φ− φ̄)(∂φh̃+ ∂φ̄
¯̃
h)

−(T̂ − ¯̂
T − T + T̄ )

[
(Ŝ − ¯̂

S)(U − Ū)−
1

2

∑
i

(Ci − C̄i)2

]
. (4.21)

Eq. (4.20) reduces to the last of eq. (4.6) by putting Ci = 0, because only the term k = n

of the sum survives. In the presence of Wilson lines all the following terms of the sum

seem to contain an infinite amount of perturbative gs corrections. However, again, we may

try to get rid of them, at least at the level of the Kähler potential, by rewriting them in

terms of the old axiodilaton S. In this way, the Kähler potential looks exactly like the one

in (4.6), with

K(n)(S, T, U,Ci) = − (−1)n

(T − T̄ )n

[
h(Ŝ(S), U, Ci)

(S − S̄)(U − Ū)

]n
. (4.22)

In the specific example with Wilson lines presented in appendix A.3, we will indeed see that

the dependence on S of the function h above does not introduce any further perturbative

gs corrections in each α′ tower. We believe that the same conclusion holds more generally.
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SL(2,Z) invariance. We have already seen the SL(2,Z) invariance of the Kähler poten-

tial at tree level in α′, i.e. K(0). To prove the invariance for each of the higher α′ towers one

needs to work out the modular properties of the function h̃(Ŝ, U, Ci) under the SL(2,Z)

duality (4.18). Luckily, a quick argument allows us to avoid any hard computation. As

mentioned, in the presence of Wilson lines the target space duality of the dual heterotic

string theory enhances to O(2, 2 + s,Z). This is an exact symmetry of the effective ac-

tion at all orders in perturbation theory [58]. This means that the full Kähler potential

is invariant under this group (and in particular under its SL(2,Z) subgroup (4.18)) up to

Kähler transformations. To see that the invariance actually holds separately for each α′

tower, we just have to remember that the various towers are labeled by different powers

of the T -modulus. The latter, in turn, is left invariant by O(2, 2 + s,Z), being the dual to

the heterotic axiodilaton SH . In other words, target space dualities do not mix SH with

the other moduli. This concludes the argument and shows SL(2,Z) invariance for each α′

tower independently, even in the presence of Wilson line moduli.

4.3 Non-perturbative α′ corrections

The last set of corrections to the vector multiplet metric of type I′ string theory which we

have not yet discussed are the ones coming from euclidean D3-brane wrapping K3. They

are non-perturbative in both α′ and gs as they involve the exponential of the T modulus

and they must be trivially SL(2,Z)-invariant, as their sources are singlets.

The exact prepotential for the type I′ model is [59]

F = ŜT̂U − T̂

2

16∑
i=1

(Ci)2 + h̃(Ŝ, U, Ci) +
∑
m

Am(Ŝ, U, Ci)e2πimT , (4.23)

where m is the instanton charge. The A factors may for example be computed using

the duality of type I′ theory with type IIA on a Calabi-Yau threefold which admits a K3

fibration over a two-sphere. A partial computation of these terms from this perspective was

provided in [59]. This duality originates from the six-dimensional one between heterotic on

T 4 and type IIA on K3 [60–62], just by fiberwise iteration on an S2. Under this duality,

D3-branes wrapping K3 on the type I′ side are mapped to world-sheet instantons wrapping

the base S2 on the type IIA side.

5 F-theory picture

5.1 Preliminaries

In this section we will describe the F-theory counterpart of the type IIB picture given in

section 4, by making use of the F/M-theory duality. Before we begin, a comment concerning

the F-theory limit of M-theory compactification on elliptically fibered Calabi-Yau manifolds

is in order. To obtain F-theory from M-theory [9] one has to send the volume of the elliptic

fiber to zero, which will therefore not be a modulus of the effective theory of F-theory (see

below). Now M2-branes wrapping on the T 2 fiber have tension proportional to RMRT /l
3
M ,

where lM is the 11d Planck length, RM is the radius of the M-theory circle and RT is
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the radius of the circle along which we take T-duality to transform type IIA into type

IIB string theory. After the reduction, those M2-branes become strings wound around the

T-duality circle, with mass proportional to RT /α
′. On the other hand, they are mapped by

T-duality to KK modes in type IIB string theory with the same mass. Under the F-theory

limit RT goes to 0. Hence, all the KK modes become massless and another dimension

comes out in the type IIB side (because the IIB circle has radius α′/RT ). From the M-

theory perspective, this limit means that M2-branes wrapped on the vanishing T 2 behave

as massless particles and they affect the low energy effective theory as lM -corrections, i.e.

the large volume approximation for the M-theory compactification clearly breaks down.

This important deviation from 11d supergravity is fully kept by summing up all the KK

modes mentioned above in the type IIB effective theory. The latter modes are indeed

becoming massless as the F-theory limit decompactifies the third spatial dimension. All

the other deviations are, instead, normally sub-leading as long as all the other volumes of

the elliptic Calabi-Yau are large.

The low energy field theory of the model we have been discussing so far is a four-

dimensional N = 2 supergravity. The vector multiplet moduli space of this theory is a

19-dimensional Special Kähler manifold which classically looks like

MV =
SU(1, 1)

U(1)
× O(2, 18)

O(2)×O(18)×O(2, 18,Z)
, (5.1)

where the first factor is parameterized locally by the volume modulus T . The gravitational

multiplet introduces yet another vector field, but no physical scalar is associated to it.

Thus we can describe the physical scalar manifold (5.1) by embedding it in an ambient 20-

dimensional projective space parameterized by homogeneous coordinates XΛ. The theory

in this sector is specified by an holomorphic prepotential F (X), which is an homogeneous

function of degree two. Moreover one defines the standard symplectic section

S =

(
XΛ

∂XΛF

)
, Λ = {0, α(= 1, . . . , 19)} . (5.2)

The manifold MV is then taken to be the codimension one hypersurface with equation

S̄ΩS = const. , Ω =

(
0 I20x20

−I20x20 0

)
. (5.3)

In the local patch where X0 6= 0, the prepotential can be written as

F (XΛ) = (X0)2 · F(φα) , φα ≡ Xα

X0
, (5.4)

where φα = {T, S, U,Ci} is a convenient choice of local coordinates on this hypersurface.

Therefore, locally in the moduli space (5.1), we can write the symplectic section (5.2) as

S = X0 ·


1

φα

2F −
∑

α φ
α∂φαF

∂φαF

 . (5.5)
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The Kähler potential for the vector multiplet moduli space is then of the form

K = − log
(
iS̄ΩS

)
, (5.6)

which, up to a Kähler transformation, is equal to (4.1). The discrete reparameterizations

O(2, 18,Z) in (5.1) can be embedded in the group of symplectic rotations of S, i.e. Sp(40),

which clearly leaves all the physical quantities invariant. The duality group (4.12) acting

on the S,U moduli only is a subgroup of O(2, 18,Z).

5.2 F-theory lifts

Let us now come to F-theory. It is known that the heterotic SO(32) theory compactified

on T 2 is dual to F-theory on an elliptically fibered K3 which admits another global section

except for the zero section [63]. The model we have been discussing so far is a further

K3 compactification of this theory down to four dimensions. The type I′ theory of the

previous sections is related by two T-dualities to the BSGP model, which in turn is S-dual

to an heterotic SO(32) theory without vector structure. In the absence of Wilson lines, the

maximal surviving gauge group is SU(16) rather than SO(32). As argued below, we may

forget about this subtlety when focusing on the vector multiplet moduli space.

It turns out [64] that the heterotic SO(32) theory without vector structure is dual to

the heterotic E8 × E8 theory with instanton embedding (12, 12). At generic points of the

hypermultiplet moduli space of the dual pair the non-Abelian gauge group is completely

broken by the vevs of the instanton moduli (hypermultiplets) and only an U(1)4 factor is

left (which corresponds to the three vector moduli SH , TH , UH and the graviphoton). On

the other hand, the heterotic SO(32) theory with vector structure happens to be dual to the

heterotic E8 × E8 theory with a different kind of instanton embedding. As there will not

be enough instantons for a complete higgsing, non-trivial Wilson lines need to be turned

on to break the gauge group to U(1)s. For example, in the extreme case of the instanton

embedding (24, 0), the left gauge theory can be completely higgsed by instantons, while

we need 8 Wilson line moduli which, by taking non-trivial vevs, break the right E8 to the

Cartan torus U(1)8.

We are analyzing in this paper only the vector multiplet moduli space of these theories.

In particular, when all Wilson lines are turned-off, the prepotential of the theory without

vector structure (A.44) perfectly matches the one of the theory with vector structure (A.45),

regardless of them being dual to E8×E8 theories with different instanton embeddings and

of the consequent fact that we have different gauge groups in four dimensions. This can

be explained using the relation between the prepotential for vector multiplets and the

supersymmetric index, which, in the absence of Wilson lines, turns out to be insensitive

to the instanton embedding [65] (see also appendix A.2 for a detailed discussion about

this fact).

In this paper, heterotic string theory is compactified on K3×T 2. Consider for simplicity

the regime in which the K3 manifold admits an elliptic fibration over P1.20 The theory

admits three possible F-theory duals:

20The dualities hold throughout the moduli space. The elliptic fibration limit just allows to derive the

duality from an adiabatic argument.
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1. Using the prototype, eight-dimensional duality between heterotic on T 2 and F-theory

on K3 and upon further compactification on K3, we obtain F-theory on K3×K3.

2. By applying the 8d duality fiberwise for the heterotic K3 (which we took elliptically

fibered) we find a 6d duality with F-theory compactified on X3 × T 2, where X3 is

a Calabi-Yau threefold admitting a K3-fibration over P1 (the T 2 is just a spectator

here). It turns out that X3 is also elliptically fibered. But most importantly, it is the

same [66] Calabi-Yau threefold on which we compactify the type IIA dual to heterotic

on an elliptic K3×T 2 [61]. The duality with type IIA is described in appendix B. The

base of X3 as an elliptic fibration is an Hirzebruch surface Fn where n is related to the

instanton embedding of the dual E8×E8 heterotic theory [67]. The type IIA geometry

is smooth if the corresponding heterotic theory has no non-Abelian unbroken gauge

group. In the following we are mostly interested in the two geometries (see [68, 69]):

• X3 = WP1,1,2,8,12(24), which has h1,1 = 3, h2,1 = 243 and thus χ = −480. This is

the internal manifold of the type IIA dual to heterotic E8×E8 with instanton em-

bedding (12, 12). This theory has 3 vector moduli, corresponding to SH , TH , UH
and, in the Higgs phase, has no non-Abelian unbroken gauge symmetries.

• X3 = WP1,1,12,28,42(84), which has h1,1 = 11, h2,1 = 485 and thus χ = −960.

This is the internal manifold of the type IIA dual to heterotic E8 × E8 with

instanton embedding (24, 0). This theory has 11 vector moduli, corresponding

to SH , TH , UH as well as the 8 Wilson line moduli needed to completely break

the non-Abelian part of the gauge symmetry.21

3. By applying mirror symmetry to type IIA on X3, we get type IIB on the mirror

Calabi-Yau X̃3. The latter theory, which has no 7-branes, is equivalent to F-theory

on the trivially fibered Calabi-Yau fourfold X̃3 × T 2.

Let us discuss the first F-theory lift in light of the quantum corrected prepotential we

have in formula (4.3). We denote by a prime the F-theory K3 which is elliptically fibered.

5.3 Classical theory

We begin by writing the F-theory Kähler potential for the vector moduli at tree level in α′.

Recalling eq. (2.1) and (2.2) and that the lift of type I′ theory is F-theory on K3 ×K3′,

where K3′ is elliptically fibered, one has:

KK = − logVK3 − logVK3′ , Kc = − log

∫
K3

Ω2 ∧ Ω̄2 − log

∫
K3′

Ω′2 ∧ Ω̄′2 , (5.7)

where V are the classical volumes in the Einstein frame. As it should be clear from section 3,

only the first term in KK and the second in Kc of (5.7) enter the Kähler potential for vector

21This same theory in the absence of Wilson lines would have a non-Abelian gauge group still unbroken.

Correspondingly the type IIA Calabi-Yau threefold would develop singularities, and one has to blow it up

before computing topological quantities. Since we are only focusing on the vector multiplet moduli space,

by the argument above we can safely use the X3 dual to the (12, 12) theory with no Wilson lines, and still

get the correct answer for the prepotential.

– 22 –



J
H
E
P
0
3
(
2
0
1
3
)
0
0
5

multiplet moduli. In fact, the vector multiplet moduli are all the moduli of the upper K3

but one (h1,1 − 1 = 19). To see this recall that the elliptic fibration defining the upper

K3 breaks the ambiguity between its complex and Kähler structure. Indeed it selects a

particular direction in the space-like three-plane of self-dual harmonic 2-forms in the lattice

Γ3,19 = H2(K3′,Z) and identifies it with the Kähler form, i.e.

J = v0ω0 + vω , (5.8)

where ω0 is the class Poincaré dual to the 0-section and ω is the hyperplane class of the

base P1. This naturally singles out a sublattice U ⊂ Γ3,19, spanned by (ω0 + ω, ω), which

identifies the Kähler moduli of K3′. These two classes generate the Picard group, which

for a generic K3 is trivial. A choice of a spacelike two-plane in the orthogonal complement

Γ2,18 corresponds instead to a particular complex structure. Thus, the space of the 18

complex structure deformations of K3′ coincides with the second factor in (5.1). Not both

of the Kähler moduli on the other hand are physical in F-theory, because the F-theory

limit v0 → 0 kills one of them. The other one, after normalizing it by the total volume of

the internal manifold can be seen to coincide with T of eq. (3.16) [10, 11].

Let us now prove that the Kähler potential

K(0) = − logVK3 − log

∫
K3′

Ω′2 ∧ Ω̄′2 (5.9)

indeed coincides with (4.17). The first term of eq. (5.9) clearly coincides, up to a Kähler

transformation, with the first term in eq. (4.17). As for the second, let us observe that

a convenient parameterization of the periods of K3′ can be obtained by applying to S
the symplectic transformation which sends (T, ∂TF) to (−∂TF , T ). The periods of K3′

then coincide with the upper part of the transformed symplectic section. Recalling the

expression of the tree level prepotential (4.16), we thus have22

ΠΛ =


1

−SU + 1
2

∑
i(C

i)2

S

U

Ci

 . (5.10)

The Ci are identified with the Wilson line moduli, while U is identified with the complex

structure of the T 2 and S represents the asymptotic axiodilaton. The metric in the chosen

basis is of the block-diagonal form

MΛΣ = diag
(
σ1, σ1,−I16x16

)
, (5.11)

where σ1 is the hyperbolic plane metric. It is easy to see now that the second term in

eq. (5.9), namely ΠΛMΛΣΠΣ, coincides with the second term in eq. (4.17).

22There is a subtlety in the quantization properties of the chosen basis of H2(K3′,Z) [42]. A correctly

normalized basis can be found in [70].
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Therefore, classically in α′ the Kähler modulus is completely decoupled from the com-

plex structure moduli. As already observed, the expression (5.9) is exact in gs thanks to

the polynomial structure of the periods of K3′ (5.10). In contrast, in the fourfold case,

there is no guarantee that non-perturbative gs corrections are absent in the first α′ tower,

and thus the perturbative expansion (2.4) is only reliable in a regime (the Sen limit) where

O(e−1/gs)-corrections can be consistently neglected.

5.4 Quantum corrections

5.4.1 Sources

Let us now turn to quantum corrections, which will destroy the factorization of the Kähler

modulus and the complex structure moduli in (5.9), but will still preserve the special Kähler

geometry of the moduli space. In this respect, it is worth stressing that the classical vector

multiplet moduli space (5.1) of the theory under consideration exactly matches the classical

moduli space of elliptically fibered K3 manifolds. This means that the quantum corrected

Kähler potential we have in equation (4.6) is interpreted in this F-theory lift as the Kähler

potential of the quantum moduli space of the elliptic K3′. Quantum corrections non-

trivially mix its complex structure moduli with its unique physical Kähler modulus. A

natural question is now what are the M-theory BPS objects which generate the corrections

we have found in section 4. The answer may be deduced by investigating on the lift of the

known BPS objects correcting the Kähler metric in type IIB. Such an analysis leads us to

the following three sources of corrections:

1. The non-perturbative gs corrections in (4.6) are generated, as said, by D(-1) instan-

tons of type IIB string theory. They lift to loops of gravitons in eleven-dimensional

supergravity. More precisely a D(-1) T-dualizes to a D0-brane in type IIA whose

worldline wraps the T-duality circle of the torus fiber; the latter in turn lifts to a

KK particle with a unit of momentum along the M-theory circle, looping along the

T-duality circle of the F-theory fiber.

In the case of a trivial fibration, these are the types of higher derivative corrections

to 11d supergravity considered in the series of papers [31–34]. In particular they

contribute to the R4 coupling (four powers of the Riemann tensor), which gives the

famous α′3 coupling upon dimensional reduction [23, 71].

Our results show that the non-trivial fibration structure affects this computation in

a fundamental way, giving contributions already at order α′2.

Notice that the above corrections are part of those 11d Planck length (lM ) corrections

of the M-theory effective physics which stay finite in the F-theory limit.23 This limit,

indeed, sends v0 → 0, where v0 is the volume of the elliptic fiber. Given the relation [9]

l3M = α′
√
v0 , (5.12)

23While these corrections certainly represent α′ corrections to F-theory compactifications, the latter might

not all be of this type. See for instance [14], where α′ effects in the gauge coupling function of an F-theory

compactification are observed to arise from tree-level 11d supergravity, in the presence of G-flux.
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one deduces that in the quantum corrections to the F-theory effective physics the

parameter lM should always appear in the finite combination α′ = l3M/
√
v0 or powers

thereof. The loops of 11d supergravitons we are considering here should generate

corrections scaling in this way in order to survive the F-theory limit. The explicit

computation of the corresponding quantum correction would go pretty much like the

Schwinger loop calculation done in [35], except that in this case the elliptic fibration

is non-trivial, which as we have seen will change the result in important ways. In the

next section we obtain the final result of this computation via a chain of dualities,

but it would be interesting to perform the direct computation of the graviton loop.

2. The perturbative gs corrections, like the one displayed in (4.9), are generated, as

said, by states coming from D3-D7 and D7-D7 (non-orientable) open strings.24 As

we have explicitly seen in section 4, when combined with the non-perturbative gs
corrections described above, they lead to SL(2,Z) invariant sets of gs corrections for

each α′ tower. This fact suggests that the sources for perturbative gs corrections lift

in M-theory to two kinds of BPS states [32]: 11d supergravitons looping around the

T-duality circle but carrying zero momentum along the M-theory circle (they are in

fact bona fide 10d supergravitons) and 11d supergravitons possibly carrying units of

momentum along the T-duality circle but whose worldlines wrap the M-theory circle

of the F-theory fiber.

Being still loops of particles around a 1-cycle of the torus fiber, these sources should

generate corrections proportional to (5.12) and thus survive the F-theory limit.

3. While 1. and 2. are perturbative in α′, we know that non-perturbative α′ corrections

(for which we do not have an explicit expression in section 4) come from Euclidean

D3-branes wrapped on K3 in type IIB string theory. In F-theory they translate to

M5 branes over K3×T 2, where T 2 is the elliptic fiber over a point in the base. They

are SL(2,Z) invariant by themselves.

5.4.2 Computation

Now that we have identified the BPS objects responsible for the α′ corrections to the

vector multiplet moduli space of F-theory on K3×K3′, we can ask ourselves whether we

can actually compute these corrections directly in M-theory and then match the result with

the full quantum prepotential (4.3) we already have from type IIB. As anticipated above,

a direct Schwinger-loop calculation on K3′ of the contributions of 1. and 2., along the lines

of [35], would be hard, due to the non-trivial elliptic fibration. However, we can play with

the other F-theory duals of our model to handle this problem (see section 5.2 for the list

of them).

The third F-theory dual is not of great use in our case. It has the advantage though

that the Kähler potential for vector multiplets of the type IIB theory compactified on X̃3

is already exact at the classical level. This is because both the dilaton and the Kähler

moduli of this theory belong to hypermultiplets. Since the F-theory lift is trivial in this

24As we already observed in section 4, we do not have winding modes in this geometry.
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Figure 2. Atlas of dualities used to compute directly in M-theory the quantum corrections to the

vector multiplet moduli space of F-theory on K3×K3. In particular, the c-map is used to get a

trivial F-theory fibration (top right corner) from a non trivial one (top left corner). The information

of the non-trivial fibration is all encoded in the geometry of X3.

case (no 7-branes), we can immediately extract the holomorphic three-form of the type

IIB Calabi-Yau threefold X̃3 from the holomorphic four-form of the F-theory Calabi-Yau

fourfold X̃3 × T 2: Ω4 = Ω̃3 ∧ Ω1, with Ω1 being the unique holomorphic one-form of

the torus. Hence we can write our fully corrected Kähler potential (4.6), including the

non-perturbative α′ corrections, in the compact form

K(uk, ūk) = − log i

∫
X̃3

Ω̃3 ∧ ¯̃Ω3 , (5.13)

where uk are the complex structure moduli of X̃3, which the Kähler moduli of X3 map to via

mirror symmetry, and k = 1 . . . , h2,1(X̃3) = h1,1(X3). For instance, for the model without

Wilson lines, X̃3 is the mirror of WP1,1,2,8,12(24) and the moduli S, T, U get mapped to the

three complex structure moduli of X̃3.

On the other hand a suitable modification of the second F-theory dual allows us to re-

compute all the corrections of section 4 directly in M-theory, essentially using the method

of [35] for a trivial elliptic fibration. Provided the interpretation in section 5.4.1 of these

corrections as α′ corrections in F-theory, we thus provide a direct way of computing them,

using the M-theory definition of F-theory. The way we get a trivial elliptic fibration out

of the non-trivial one characterizing F-theory on25 X3 × T 2 is based on the so called c-

map [72]. The c-map basically consists in dimensionally reducing a 4d N = 2 theory on a

circle, T-dualizing, and decompactifying the T-dual circle to get another 4d N = 2 theory.

Thus it swaps type IIA and type IIB, and the roles of hyper and vector multiplets. In our

case, we need to apply the c-map to type IIA on X3, which will give us type IIB on X3,

which is equivalent to F-theory on the now trivial elliptic fibration X3 × T 2. The whole

path of dualities we want to follow is summarized schematically in figure 2.

Since we are interested in corrections to the vector multiplet moduli space of the

original type IIA, we should be looking at the hypermultiplet moduli space of the so

obtained type IIB. Note that this operation essentially amounts to swapping the role of

the two tori involved in the second F-theory lift of section 5.2: The elliptic fiber of X3

becomes part of the base and the factorized T 2 becomes the elliptic fiber. In this way,

in the F-theory compactification we end up with in the top right corner of figure 2, the

25Recall that X3 admits a non-trivial elliptic fibration and the F-theory torus is understood to be its

typical fiber.
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fibration is trivial and thus no 7-branes are present. We can now safely apply the same

method of [35] to compute corrections. We have to be careful though, as this procedure is

going to give us many more corrections than we actually need. Since we are dealing with

vector multiplets in type IIA,26 we only have α′ corrections; those turn via the c-map into

α′ corrections to the hypermultiplet metric of the ensuing type IIB, which also admits gs
corrections. Therefore, after the Schwinger-loop computations, we need to extract the tree

level part in gs, and that is going to give us all the α′ corrections of the original F-theory

we are aiming for.

Let us describe in detail this computation in the three moduli example, namely the

vector multiplet metric of F-theory on K3×K3 in the absence of Wilson lines. As said,

the relevant type IIA Calabi-Yau threefold for this model is X3 = WP1,1,2,8,12(24) (see

appendix B for more details on this duality). Now we are ready to apply the c-map to

this type IIA theory and look for quantum corrections to the hypermultiplet metric of the

ensuing type IIB on X3. We then compute the latter using the same method as in [35] and

we obtain the following prepotential (see also [73], where these corrections are computed

summing-up SL(2,Z) images)

Fclass =
1

6
καβγ tαtβtγ , (5.14)

Fpert = − i

4(2π)3(τ2)3/2
χ(X3)

∑
(m,n)6=(0,0)

τ
3/2
2

|mτ + n|3
, (5.15)

Fnon−pert =
i

2(2π)3(τ2)3/2

∑
d

ndα
∑

(m,n)6=(0,0)

τ
3/2
2

|mτ + n|3
e2πidα(mcα+nbα+i|mτ+n|jα) . (5.16)

Here, καβγ are the classical intersection numbers of X3, τ denotes the type IIB axiodilaton

(complex structure of the factorized torus of the F-theory fourfold), ndα are the genus-zero

Gopakumar-Vafa invariants of X3, and cα, bα, jα are the zero-modes of the RR 2-form, the

B-field and the Kähler form respectively, expanded along a basis of H1,1(X3,Z). In (5.14),

we have the tree-level prepotential, in both α′ and gs, of the hypermultiplet sector of type

IIB on X3. Formula (5.15) gives all the perturbative α′ towers of corrections to the prepo-

tential: Each α′ tower includes the tree level in gs, a single contribution perturbative in gs
and all non-perturbative gs corrections, in a completely SL(2,Z)-invariant fashion, much

like what we have seen in section 4. Finally, formula (5.16) gives some non-perturbative α′

corrections, again organized in SL(2,Z)-invariant sets of gs corrections: They are due to

euclidean (p,q)-strings wrapping rational curves of X3. It is worth pointing out here that

the above expressions do not provide the whole variety of quantum corrections of the hyper-

multiplet metric of type IIB on X3. The missing corrections are only non-perturbative in

α′ and are generated by Euclidean D3-branes wrapping divisors of X3 and by the SL(2,Z)-

invariant set of Euclidean (p,q)-5 branes wrapping X3 itself.

We are now ready to derive all the corrections to the vector multiplet of the original

F-theory on K3×K3. As already stressed, in order to obtain them, we have to select only

26For an exhaustive discussion about the heterotic/type IIA duality we refer to appendix B.
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the tree level part in gs out of the expressions (5.14), (5.15), (5.16). This can clearly be

done by sending gs to zero, i.e. τ2 → ∞. For this purpose, it is useful to recall here the

asymptotic behavior of the non-holomorphic Eisenstein series of weight 3/2 appearing in

these quantum corrections

Z3/2(τ, τ̄) ≡
∑

(m,n)6=(0,0)

τ
3/2
2

|mτ + n|3
τ2→∞−−−−→ 2 τ

3/2
2 ζ(3) . (5.17)

Hence we obtain:

- The prepotential in (5.14) is already tree-level in gs. This gives us directly the poly-

nomial expression in the S, T, U vector moduli of F-theory on K3×K3, as explained

in appendix B.

- Using (5.17), we immediately see that (5.15) at tree-level in gs becomes

Fpert
τ2→∞−−−−→ i ξ

(2π)3
, (5.18)

where ξ is defined in (B.14). This is exactly the constant term of the corrections

to the vector prepotential of F-theory on K3×K3, as can be seen in eq. (4.4).27 As

expected, the dependence of (5.15) on τ drops out in the tree-level part.

- Finally, in the limit gs → 0, the non-perturbative prepotential (5.16) is going to zero

exponentially, unless m = 0. By using (5.17) again, we get

Fnon−pert
τ2→∞−−−−→ i

(2π)3

∑
d

ndαLi3(e2πitαdα) , (5.19)

where we have defined tα ≡ bα + i jα, in analogy to (B.2). Again the dependence

on τ drops out at string tree level, as it should. These are the non-perturbative α′

corrections of type IIA on X3 and, as explained in appendix B, they are supposed

to include28 the infinite series of corrections in (4.4) which depend exponentially on

the moduli.

We have therefore computed the α′ corrections to the vector multiplet moduli space

of F-theory on K3×K3 in the absence of 7-brane moduli Ci. If the latter are present, one

should consider the type IIA K3-fibered Calabi-Yau threefold X3 with the right number

of vector moduli (3 plus the number of 7-brane moduli switched-on), regardless of the

instanton embedding of the dual E8 × E8 heterotic string theory, which should not affect

the vector multiplet prepotential.29 Then one computes the quantum corrections of the

hypermultiplet metric of type IIB compactified on X3 via the Schwinger-loop method

developed in [35], and finally takes the string tree-level part of the result sending the type

IIB string coupling to zero.

27Recall that in this case χ(X3) = −480
28Recall from appendix B that the set of type IIA worldsheet instanton corrections also contains the

corrections due to euclidean D3-branes on K3 in the dual F-theory on K3×K3. We do not have an explicit

expression for them in section 4.
29 For instance, if we have eight 7-brane moduli switched-on in F-theory on K3×K3, we have to consider

X3 = WP1,1,12,28,42(84).
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6 Conclusions

In this paper we have clarified various aspects of the Kähler potential for vector multiplets

in F-theory compactifications on K3 × K3. Since we make heavy use of various known

results in the literature, it is important to clarify which aspects of our analysis are new.

As a first technical result, let us highlight that we explicitly verify that the weakly coupled

limit of [50, 51] agrees with the computation in [24], confirming a conjecture in this last

paper. This calculation also explicitly shows the universal structure of the vector multiplet

prepotential in the absence of Wilson lines, as we obtain the same result for different

instanton embeddings.

The calculation in [50, 51] upon which we base our discussion is done in the context

of the heterotic string. By carefully following the duality map (which we have reviewed in

section 3), in section 5 we reinterpret these results in the context of F-theory compactified

on K3×K3, and identify the contributing states in the F-theory language. By analysis of

the explicit expressions we also show explicitly in section 4 that the quantum corrections to

the Kähler potential are SL(2,Z) invariant at each α′ level, as one may have expected from

the F-theory picture. (Contributions non-perturbative in α′ are missing from our analysis,

it would be interesting to verify explicitly their behavior under SL(2,Z).) We have also

seen that the Kähler modulus and the complex structure moduli of the internal manifold

indeed mix with each other from the α′2 order, which was not observed at tree-level in α′.

We have postponed some of the essential but more technical discussion of the explicit

form of the prepotentials to appendix A. Appendix B discusses a different dual of the

K3× T 2 compactification, given by type IIA string theory on a Calabi-Yau threefold.

We believe that these results are a modest but useful step towards the ultimate goal

of understanding α′ corrections to realistic N = 1 F-theory compactifications. Needless

to say, much remains to be done. Even within the realm of N = 2 compactifications, we

have focused on the easier half of the problem, the vector multiplet moduli space. Recently

there has been some remarkable work on the understanding of quantum corrections to

the hypermultiplet moduli space [73–87] (see also [88] for a nice review of many of these

results), and it would also be illuminating to carry over these results to the context of

F-theory compactifications, as we have done here for the vector multiplet moduli space.

More ambitiously, one may wonder how the results in this paper can shed light on

N = 1 compactifications. Since we now have a good understanding of the physical source

of the corrections in the K3×K3 case, it should be possible to understand at least in part the

structure of the corrections on K3-fibered Calabi-Yau fourfolds by taking an adiabatic limit.

Needless to say, this process can be rather subtle, but one very important aspect of our

analysis is that it clarifies which kinds of subtleties one finds in going from N = 4 to N = 2

compactifications (i.e. on going from a trivially fibered T 2 to an elliptically fibered K3). The

parentN = 4 theory is given by type IIB compactified on K3×T 2 (or equivalently F-theory

on K3 × T 4) with no 7-branes. The classical Kähler potential is given by the sum of KK
and Kc in (5.7), where now K3′ → T 2×T 2 and thus

∫
Ω′2∧Ω̄′2 → (S−S̄)(U−Ū). Quantum

mechanically, since χ(K3×T 2) = 0, there are neither perturbative gs corrections nor those

non-perturbative due to D(-1)-instantons (i.e. (5.15) vanishes identically). Moreover, on
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the one hand non-perturbative α′ corrections due to euclidean D3 branes are generically

all there (both the ones which correct the vector multiplets and the ones which correct the

hypermultiplets of our N = 2 theory). On the other hand, F1/D1-instantons and NS5/D5-

instantons, which are absent in our N = 2 theory due to the orientifold projection, do

induce non-perturbative α′ corrections to the Kähler potential of the parent N = 4 theory.

Hopefully this pattern can serve as a guide in going from the N = 2 theory arising from

F-theory on CY3 × T 2 to the N = 1 theory arising from F-theory on non-trivially fibered

CY4. One possible route would be trying to reproduce the corrections we discussed in this

paper by making the computation of the graviton loop processes directly on the non trivial

elliptic fibration. Succeeding in this aim would mean having at hand a concrete technique

to apply to the more complicated non-trivial fibrations involved in N = 1 compactifications

of F-theory.

Another possible avenue of research would be to study vacua that spontaneously break

the N = 2 symmetry down to N = 1 [89–93]. In this class of scenarios one can some-

times obtain interesting information about the N = 1 dynamics starting from the N = 2

theory [94, 95]. For instance, the spontaneous breaking can be generated by fluxes, which

in turn, in some cases, induce warping. The effects of the latter on the Kähler potential

are analyzed in [16, 17], where the authors also provide the lift of the type IIB results to

F-theory.

Finally, it would be interesting to see if it is possible to reproduce the effects that we

have found from a higher derivative modification of the 11d action, similarly to the effect

in the trivial fibration case analyzed in [31–33] (although possibly with a different number

of graviton insertions).

These are all interesting questions, and we hope to return to them in the near future.
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A Explicit expressions of the prepotential

A.1 Generalities

In this paper we have discussed the vector multiplet prepotential of type I′ string theory

which was obtained by the chain of dualities starting from the prepotential of SO(32) het-
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erotic string theory on K3× T 2. The general form of the prepotential has been calculated

in [51]. Ref. [51] obtained the explicit form of the prepotential of the E8 × E8 or SO(32)

heterotic string theory on T 4/Zn × T 2 with n = 2, 3, 4, 6 including general Wilson lines.

Hence, one can apply the result in [51] to compute the prepotential of any theory obtained

from the heterotic string theory on T 4/Zn × T 2. In particular, we have studied the pre-

potential of type I′ string theory which is dual to a particular type of the BSGP model.

That BSGP model has a dual heterotic description realized by an SO(32) heterotic string

theory on T 4/Z2 × T 2. Since our analysis used the explicit form of the prepotential, we

show in this appendix the computation of the prepotential of the theory by utilizing the

result in [51].

Before going to the specific example, let us summarize the general result of [51]. We

let the orbifold group Zn act on the complex coordinates z1, z2 of T 4 as

z1 → e2πia/nz1, z2 → e−2πia/nz2, (A.1)

where a = 0, · · · , n − 1. In the bosonic formulation of heterotic string theory, the gauge

degrees of freedom are described by sixteen left-moving bosons and they take their values

in the E8×E8 root lattice or the Spin(32)/Z2 weight lattice. From the T 2 compactifications

we also have two left-moving bosons and two right-moving bosons. In total, those fields take

their values in an even self-dual lattice Γ18,2, which can be taken to be Γ16,0 ⊕ Γ1,1 ⊕ Γ1,1.

Here Γ16,0 represents either E8 × E8 root lattice or Spin(32)/Z2 weight lattice. To cancel

the space-time anomaly, we embed the orbifold action in the gauge degrees of freedom by

a shift a
nγ where γ ∈ Γ18,2.

The moduli of the theory are described by the O(18, 2,R) rotations which produce in-

equivalent even self-dual lattices Γ18,2. After removing the redundancy which gives equiv-

alent even self-dual lattices, the classical moduli space is the quotient by the discrete

T-duality group of

O(2, 18,R)/(O(2,R)×O(18,R)). (A.2)

The space could be parameterized by complex moduli30 (ȳ, y+, y−) where y−2 > 0 and

(y2, y2) < 0 [56, 96]. Here the subscript 2 represents an imaginary part. The inner product

is defined as

(y, y′) = ȳ · ȳ′ − y+y−′ − y−y+′. (A.3)

The classical Kähler potential for the moduli y is written by means of the inner product

Kclassical = − log (−(y2, y2)) . (A.4)

For later convenience we introduce some further notations. We define R̄ = r̄ + a
n γ̄

where r̄, γ̄ ∈ Γ16,0. Also, we introduce R = (R̄,−l,−k) and define the positivity of R as

k > 0, or k = 0, l > 0, or k = l = 0, R̄ > 0 , (A.5)

30The bar on a letter always indicates that the element represented by the letter is in Γ16,0.
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where R̄ belongs to the weight lattices of various representations of the gauge group left

unbroken by the orbifold shift. Its positivity is defined by dividing each lattice in sets of

positive and negative weights, and usually this is conventionally done by declaring positive

a weight vector whose first non-zero component is positive (see appendix A.3 for an explicit

example). Furthermore, we denote by Q some generator of a simple factor in the gauge

group. Modular invariance of the torus partition function requires

ȳ · Q̄ = 0. (A.6)

By using the notation above, one can express the exact prepotential of heterotic string

theory on T 4/Zn × T 2. We focus on a fundamental chamber of the moduli space

0 <
R̄ · ȳ2

y−2
< 1 for R̄ > 0, R̄ · R̄ ≤ 2, (A.7)

0 < y−2 < y+
2 . (A.8)

When there are no Wilson lines, the fundamental Weyl chamber is characterized only

by (A.8). The fundamental Weyl chamber (A.7) and (A.8) may be understood by the con-

vergence of the series appearing in the prepotential. The final expression of the prepotential

is then

h(y) = − 1

32π
(dgauge)ABCy

AyByC − iζ(3)χ

8π4
− i

16π4

∑
R>0

′d(R)li3((R, y)), (A.9)

where the prime on the sum of the third term means that k = l = 0 and R̄ · ȳ = 0 for

generic values of the moduli are omitted, and

li3(x) = Li3(e2πix) =

∞∑
p=1

(e2πix)p

p3
. (A.10)

The coefficients of (A.9) are also explicitly computed, and (dgauge)ABC is

(dgauge)ABCy
A
2 y

B
2 y

C
2 =

∑
r̄,a

d(R̄)

(
(R̄ · Q̄)2

Q̄ · Q̄

(
− 2|R̄ · ȳ2|ȳ2 · ȳ2+4|R̄ · ȳ2|y+

2 y
−
2 +

2

3
ȳ2 · ȳ2y

+
2

−4

(
R̄ · ȳ2)2y+

2 +
1

3
ȳ2 · ȳ2y

−
2 −

2

3
y+

2 y
−
2 y
−
2 −

2

3
y+

2 y
+
2 y
−
2

)
+

2

3
|R̄ · ȳ2|3 −

1

30
ȳ2 · ȳ2y

+
2 −

1

3
(R̄ · ȳ2)2y−2 +

1

30
y+

2 y
+
2 y
−
2 +

1

90
y−2 y

−
2 y
−
2

)
.

(A.11)

d(R) in (A.9) is defined as

d(R) =
∑
b

1

n
e2πi b

n
R̄·γ̄ca,b

(
−1

2
(R,R)

)
, (A.12)

where ca,b(h) is an expansion coefficient of

e−2πi ab
n2 γ

2

η−20(τ)ZK3
a,b (τ) =

∑
h≥−1

ca,b(h)qh, (A.13)
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and b = 0, 1, · · · , n− 1. Here ZK3
a,b (τ) is

ZK3
a,b (τ) = ka,bq

−( an)
2

η2(τ)Θ−2
1

(
τ
a

n
+
b

n
|τ
)
, (A.14)

where η(τ) and Θ1(ν|τ) are the Dedekind eta function and the Jacobi theta function

respectively. The constant ka,b in (A.14) is

k0,b = 64 sin4 π
b

n
(A.15)

for a = 0 and
ka,b
ka,a+b

= eiπ
a2

n2 (2−γ2),
ka,b
kb,−a

= e−2πi ab
n2 (2−γ2) (A.16)

for a 6= 0. Finally χ in (A.9) is

χ =
1

4

∑
r̄,a

0d(R̄), (A.17)

where the superscript 0 indicates that the sum is only for a such that R̄ · ȳ = 0 for generic

values of the moduli ȳ for a given r̄.

The cubic terms (A.11) seems to depend on the choice of the generator Q of a simple

gauge group factor. However, (A.11) is independent of Q up to a term
∑

i(y2, y2)ciyi
for some real constant ci, by taking into account the constraint on Q (A.6). The term∑

i(y2, y2)ciyi can be reabsorbed in a shift of S in the classical prepotential and hence it

does not give any physical effect in the low energy effective theory.

A.2 A universal prepotential without Wilson lines

We now turn to a specific example, namely the heterotic string theory on T 4/Z2×T 2 with

a maximal SU(16)× U(1)4 gauge group31 which is dual to a particular BSGP model. We

have three scalars SH , TH , UH in the three vector multiplets associated to three of the four

U(1) symmetries, the other U(1) being associated to the photon in the N = 2 supergravity

multiplet. In the type I language, the SO(32) gauge group present on the 32 D9-branes gets

broken by the orbifold shift down to U(16). The center-of-mass U(1) symmetry, in turn, is

broken by a non-perturbative effect [64]. Moreover, at each fixed point in T 4/Z2, there is

a “half”-5-brane. These are the type I duals of the heterotic small instantons [54]. Each

carries charge 1/2 and, in the model we are focusing on, they exhaust, together with 16

units of non-vector instantons on the singularities, the total instanton number of 24. The

sixteen half-5-branes produce U(1)16 gauge bosons which get massive due to Stückelberg

couplings [55, 64]. By T-dualizing to type I′, we thus find 16 space-filling half-D3-branes,

which have the total charge of 8 and moreover are completely stuck in all the internal

directions (i.e. they have no deformation moduli at all). To cancel the remaining 16 units

of the gravitational D3-tadpole we have an appropriate flux background on the D7-branes,

which is induced by the instanton without vector structure.32

31The SU(16) gauge symmetry can be completely higgsed by the vev of the charged hypermultiplets.
32In the generic case one has just a smooth instanton bundle with instanton number 24 on a smooth K3.

In this case everything is higgsed, no D3-branes are present and the gravitational tadpole is canceled only

by fluxes.
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Let us first focus on the case without Wilson lines. The model can be obtained in

heterotic string theory by considering a special embedding of the orbifold action, namely

we take [55]

γ̄ =
1

2
(1, · · · , 1,−3) ∈ Γ16,0. (A.18)

The orbifold embedding breaks the gauge group SO(32) into SU(16)×U(1). Since we also

turn off all the Wilson lines, we set ȳ = 0. Therefore, the prepotential can be written only

in terms of two moduli, y+, y−. Those two moduli correspond to the complexified Kähler

modulus TH and the complex structure modulus UH of the torus T 2. We choose them as

(TH , UH) = (y+, y−). Then, the classical Kähler potential (A.4) is

Kclassical = − log (2(TH)2(UH)2) . (A.19)

There is also an axio-dilaton modulus SH which is the scalar component of another

vector multiplet. The full classical Kähler potential is

Kclassical = − log (α(SH)2)− log (2(TH)2(UH)2) , (A.20)

where α is a real constant and depends on the normalization of S. The prepotential which

reproduces (A.20) is

Fclassical = −α
4
SHTHUH . (A.21)

Let us first compute the coefficients (dgauge)ABC of the cubic terms in (A.9). After

setting ȳ = 0, (dgauge)ABCy
AyByC becomes

(dgauge)ABCy
AyByC =

∑
r̄,a

d(R̄)

90
U3
H + β THU

2
H + γ T 2

HUH (A.22)

with some constants β, γ. In fact, the terms like βTHU
2
H + γT 2

HUH can be absorbed by

the shift of −α
4SH → −

α
4SH + βUH + γTH in the classical prepotential (A.21). Hence, the

coefficients of the cubic term without the redundancy is

(dgauge)ABCy
AyByC =

∑
r̄,a

d(R̄)

90
U3
H . (A.23)

We move on to the computation of d(R̄). Although the calculation of d(R̄) in (A.11)

needs the summation over the r̄ ∈ Γ16,0, it turns out that only a finite number of r̄

contributes to (A.11). We first compute the contributions from the untwisted modes,

namely a = 0. When a = 0, (R̄, R̄) = r̄ · r̄ and the non-zero contribution should come from

r̄ with r̄ · r̄ ≤ 2. Therefore, those r̄s are r̄ = 0 or roots of SO(32). Hence the a = 0 part

of (A.23) is ∑
r̄

d(R̄) =
1

2
c0,1(0) +

1

2

∑
r̄∈roots of SO(32)

eπir̄·γc0,1(−1). (A.24)

Here, we used fact that c0,0(h) = 0 since the constants ka,b with n = 2 and the γ

of (A.18) are

k0,0 = 0, k0,1 = 64, k1,0 = 64, k1,1 = −64. (A.25)
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Since c0,1(h) is the expansion coefficient of∑
h≥−1

c0,1(h)qh = 64η−18(τ)Θ−2
1

(
1

2
|τ
)
, (A.26)

we have c0,1(−1) = 16, c0,1(0) = 256. Inserting these results into (A.24), we get∑
r̄

d(R̄) = 256/2 + 240× 16/2− 240× 16/2 = 128. (A.27)

Note that the contributions from the roots of SO(32) are canceled with each other in (A.27).

We also have a contribution from a = 1 part to (A.23), which corresponds to the

contributions from the twisted modes. Eq. (A.12) for a = 1 becomes

d(R̄) =
1

2
c1,0

(
− 1

2

(
r̄ +

1

2
γ

)2)
− 1

2
eπir̄·γc1,1

(
− 1

2

(
r̄ +

1

2
γ

)2)
. (A.28)

Here c1,0(h) and c1,1(h) are expansion coefficients of∑
h≥−1

c1,0(h)qh = 64η−18(τ)q−
1
4 Θ−2

1

(
1

2
τ |τ
)

= −64η−18(τ)Θ−2
4 (0|τ), (A.29)

∑
h≥−1

c1,1(h)qh = 64η−18q−
1
4 η−18(τ)Θ−2

1

(
1

2
τ +

1

2
|τ
)

= 64η−18(τ)Θ−2
3 (0|τ). (A.30)

Both series (A.29) and (A.30) start from q−3/4 and the power of each term is −3
4 + 1

2Z≥0.

Hence, the possibility for non-zero coefficients is −1
2

(
r̄+ 1

2γ
)2

= −3
4 or −1

2

(
r̄+ 1

2γ
)2

= −1
4 .

The elements in Γ16,0 which satisfy the above former equation are

r̄ = 0, (A.31)

r̄ = −ei + e16, (i = 1, · · · , 15), (A.32)

r̄ = ±1

2
e1 + · · ·+±1

2
e15 +

1

2
e16, (A.33)

r̄ = −γ, (A.34)

where only one sign of (A.33) has to be plus and all the other minus. e1, · · · , e16 are

orthonormal bases of the sixteen-dimensional space R16. Note that the sum r̄ + 1
2 γ̄ for all

the weights (A.31)–(A.34) are expressed as

±
(

1

4
, · · · , 1

4
,−3

4
,
1

4
, · · · , 1

4

)
. (A.35)

where only one component in the sixteen dimensional vector is −3
4 . The weights (A.35)

can be also expressed as

± ei ∓
(

1

4
, · · · , 1

4

)
, (i = 1, · · · , 16). (A.36)
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Therefore, the weight (A.36) may be understood as the fundamental or the anti-

fundamental weight of the SU(16) since
(

1
4 , · · · ,

1
4

)
is a singlet under the SU(16). On

the other hand, there are no elements in Γ16,0 which satisfy −1
2

(
r̄ + 1

2γ
)2

= −1
4 . Then,

the sum of (A.28) over the elements in Γ16,0 is

∑
r̄

d(R̄) =
1

2
c1,0

(
−3

4

)
× 32− 1

2
c1,1

(
−3

4

)
× 32 (A.37)

= −64× 32, (A.38)

where we used c1,0

(
−3

4

)
= −64, c1,1

(
−3

4

)
= 64.

Summarizing (A.27) and (A.38), we finally obtain∑
r̄,a

d(R̄) = 128− 64× 32 = −1920. (A.39)

Therefore, the net non-zero contributions to (A.39) come from the twisted modes at fixed

points. Finally, (A.23) is

(dgauge)ABCy
AyByC = −64

3
U3
H . (A.40)

The computation of (A.17) is also performed in a similar way. Since we turn off the

Wilson lines ȳ = 0, one always has R̄ · ȳ = 0. Therefore, the summation in (A.17) is exactly

the same as the summation in (A.23). The final result is

χ =
−1920

4
= −480. (A.41)

The remaining term is the third term in (A.9). Note that the prime in the sum of the

third term in (A.9) in this case indicates that there is no contribution from k = l = 0, R̄ > 0.

Then, let us compute the coefficients of a few terms with kl ≤ 0 as examples. Since

−1
2R̄ · R̄ + kl ≥ −1 due to eq. (A.13), the lowest value for kl is −1. In the fundamental

chamber, there is only one term with kl = −1, namely k = 1, l = −1. In this case, R̄ = 0

and we have ∑
R>0

′d(R)→ 1

2
c0,1(−1) = 8 for the term with kl = −1. (A.42)

Next, we consider the terms with kl = 0. Then, the constraint for R̄ is −1
2R̄ · R̄ ≥ −1.

Since −1
2R̄ · R̄ ≤ 0, the non-zero contributions come from r̄ · r̄ = 2 or r̄ = 0 for a = 0 and

−1
2

(
r̄ + 1

2γ
)2

= −3
4 ,−

1
4 for a = 1. Hence, the total contribution is the same as (A.39) and

we have ∑
R>0

′d(R)→ −1920 for the terms with kl = 0 (A.43)

Summarizing all the results we computed, we finally obtain the explicit expression for

the quantum prepotential of the heterotic string theory which is dual to the BSGP model
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without Wilson lines,

h(TH , UH) =
2

3π
U3
H + i

60ζ(3)

π4

− i

(2π)4

(
8Li3(e2πi(TH−UH))− 1920

∑
l>0

Li3(e2πilUH )

−1920
∑
k>0

Li3(e2πikTH ) + · · ·
)
. (A.44)

In the chamber (TH)2 < (UH)2, then the prepotential is the same one as (A.44) with TH
and UH exchanged. The full prepotential is the sum of (A.21) and (A.44).

One can compare the result (A.44) with the prepotential of E8 × E8 heterotic string

theory on T 4/Z2 × T 2 in the standard embedding. Certainly, the prepotential can be

obtained from the general form (A.9), but ref. [50] has a nicer expression for it. In the

absence of Wilson lines, the explicit form of the quantum prepotential is

hHM (TH , UH) =
U3
H

12π
+

15i

2π4
ζ(3) (A.45)

− i

(2π)4

[
Li3(e2πi(TH−UH)) +

∑
k,l≥0

(k,l)6=0

c(kl) Li3(e2πi(kTH+lUH))

]
,

where
∞∑

n=−1

c(n)qn =
E6E4

η24
(q) =

1

q
− 240 + · · · . (A.46)

E6,4 are the Eisenstein series. By multiplying (A.45) by eight, then one can see the exact

matching with (A.44),

h(TH , UH) = 8hHM (TH , UH), (A.47)

at least with respect to the terms explicitly written in (A.44).

For the sake of completeness, the classical Kähler potential in [50] is

KHM
classical = − log

(
8(SHMH )2

)
− log (−(y2, y2)) . (A.48)

Therefore, the classical prepotential which reproduces (A.48) is

FHMclassical = −2SHMH THUH . (A.49)

By taking into account the matching (A.47), one may identify the normalization of

SHMH with

SHMH = αSH . (A.50)

In fact, it is expected that the prepotential (A.44) exactly matches with (A.45). In

order to see that, let us first see the duality between the SO(32) heterotic string theories

and the E8×E8 heterotic string theories. The SO(32) heterotic string model which is dual

to the BSGP model is conjectured to be dual to the E8 × E8 heterotic string theory on
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K3× T 2 with the symmetric instanton embedding (12, 12) [64]. At a generic point in the

hypermultiplet moduli space, the vev of the charged hypermultiplet moduli can completely

break the non-Abelian gauge symmetry on both sides. On those points, we only have

U(1)3+1 gauge symmetries for both theories and they have the same prepotential for the

three vector multiplet moduli. Note that the explicit form of the prepotential would also

be the same as (A.44) since one can move to a smooth K3 surface by varying the neutral

hypermultiplet moduli which does not affect the vector multiplet moduli space.

Next, we will argue that the prepotential of the E8×E8 heterotic model in the standard

instanton embedding (24,0) without Wilson lines is the same as that of the E8×E8 heterotic

string model with the instanton embedding (12, 12). Recall that the prepotential (A.9) was

obtained by solving the differential equation [51]

Re

[
− 1

s+ 4

∂

∂y
· ∂
∂y

(−ih(y)) +
1

(y2, y2)

(
−ih(y)− iyA2

∂

∂yA
(−ih(y))

)]
=

1

16π2
∆gauge +

1

2(s+ 4)π2
Re logΨgauge +

bgauge

16π2
(−(y2, y2)) + const, (A.51)

where s is the number of Wilson lines, ∆gauge is the gauge threshold correction in string

theory and bgauge is the coefficient of the β function for the gauge coupling. Our case

corresponds to s = 0.

The differential equation (A.51) was obtained by comparing the string theoretic gauge

coupling with the field theoretic gauge coupling. The last constant term in (A.51) is due to

the fact that the classical Kähler potential appears in the expression of the field theoretic

gauge coupling. The Kähler potential is defined up to a sum of a holomorphic function

and an anti-holomorphic function, and hence we can choose the constant term as we like.

The gauge threshold correction ∆gauge has an ambiguous constant term which is subject

to an infrared regularization. We choose the constant term in (A.51) such that it precisely

cancels the constant term coming from ∆gauge.

In fact, the general formula for Ψgauge in the case without Wilson lines is [56]

1

8π2
logΨgauge =

bgauge

4π2
log[η(TH)η(UH)] +

1

8π2
log(j(TH)− j(UH)). (A.52)

Furthermore, the gauge threshold correction ∆gauge without Wilson lines has also a uni-

versal structure [97] and can be written as

∆gauge = bgauge∆ + (universal), (A.53)

where the (universal) part only depends on the difference between the number of hyper-

multiplets (nH) and the vector multiplets (nV ). As for the E8×E8 heterotic string without

Wilson lines in the standard embedding and the E8 ×E8 heterotic string with the (12, 12)

embedding, both have nH − nV = 240. The ∆ in (A.53) is

∆ =

∫
F

d2τ

τ2
[Γ2,2(TH , UH)− 1]

= −log(|η(TH)|4|η(UH)|4(TH)2(UH)2) + const. (A.54)
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The constant term in (A.54) represents the ambiguity of the infrared regularization. Then,

by inserting (A.52) and (A.53) into the right hand side of (A.51), one gets

1

16π2
(universal) +

1

8π2
Re[logj(TH)− j(UH)] + const. (A.55)

Therefore the differential equations for the prepotentials are completely the same for

the E8 × E8 heterotic string without Wilson lines in the standard embedding and the

E8 × E8 heterotic string with the (12, 12) embedding. Hence, one may conclude that the

prepotential of the E8×E8 heterotic string without Wilson lines in the standard embedding

is the same as that of the E8 ×E8 heterotic string with the instanton embedding (12, 12).

Based on this argument, we will use the expression (A.45) for the prepotential of the SO(32)

heterotic string model which is dual to the BSGP model.

A.3 Inclusion of specific Wilson lines

The explicit prepotential (A.9) is general enough to consider the case with Wilson line

moduli. For the description of the inclusion of the Wilson line moduli, we focus on a region

in the hypermultiplet moduli space where we have the whole SU(16) gauge group. The

SU(16) gauge group will be broken by turning on Wilson line moduli. Aiming for the

comparison with the result in [24], we turn on a Wilson line in the SU(16) gauge group

such that the Wilson line moduli have the following form

ȳ = (A1
H , · · · , A1

H , · · · , AkH , · · · , AkH). (A.56)

where the number of AiH is Ni and
∑k

i=1Ni = 16. We also have a relation

k∑
i=1

AiHNi = 0 (A.57)

due to the tracelessness condition on the generators of SU(16).

Let us first consider the classical prepotential. The classical Kähler potential (A.4)

including the axio-dilaton moduli is

Kclassical = − log (α(SH)2)− log

(
2(T̂H)2(UH)2 −

∑
i

Ni(A
i
H)2

2

)
. (A.58)

The classical prepotential which reproduces (A.58) is

Fclassical = −α
4
SH

(
T̂HUH −

1

2

∑
i

Ni(A
i
H)2

)
. (A.59)

Similarly, the classical prepotential including generic Wilson line moduli is

Fclassical = −α
4
SH

(
T̂HUH −

1

2
ȳ2

)
(A.60)
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Then, we move on to the computation of (A.9). First, let us focus on the cubic

terms (A.11). Some of the cubic terms in (A.9) again can be absorbed by the shift −α
4SH →

−α
4 + βUH + γT̂H +

∑
i ciA

i
H . A particular form of (A.11) is

(dgauge)ABCy
AyByC =

∑
r̄,a

d(R̄)

(
(R̄ · Q̄)2

Q̄ · Q̄

(
2

3
T̂ 2
HUH − 4(R̄ · ȳ)2T̂H

)
− 1

30
T̂ 2
HUH

+
2

3
sign(R̄ · y2)(R̄ · ȳ)3 − 1

3
(R̄ · ȳ)2UH +

1

90
U3
H

)
, (A.61)

The first line of (A.61) may be simplified further. Since (A.61) should not depend on

Q, we choose a specific Q in the SU(16)

Q̄ = (1,−1, 0, · · · , 0). (A.62)

without loss of generality for the computation of the first line of (A.61), assuming that

N1 ≥ 2. In fact, if Ni = 1 for all i, then one cannot satisfy (A.6). The computation

of the sum in (A.61) can be done in a similar way to the case without the Wilson line

moduli. For the untwisted sector, a = 0, the non-zero contributions come from r̄ = 0 or

r̄ = [roots of SO(32)]. The sum of the first and the third term in the first line in (A.61) is

∑
r̄,a

d(R̄)

(
(R̄ · Q̄)2

Q̄ · Q̄
2

3
T̂ 2
HUH −

1

30
T̂ 2
HUH

)
=

2

3
(32− 128)T̂ 2

HUH −
−1920

30
T̂ 2
HUH

= 0. (A.63)

On the other hand, the sum for the second term of the first line in (A.61) is

−4
∑
r̄,a

d(R̄)

(
(R̄ · Q̄)2

Q̄ · Q̄

)
(R̄ · ȳ)2T̂H

= −4

{
(8× 2)

[ k∑
i=2

Ni(−4A1
HA

i
H)T̂H − (N1 − 2)(2A1

H)2T̂H

]
+((−32)× 2× 2)(A1

H)2T̂H

}
= 0. (A.64)

Hence, the sum of the first line of (A.61) in fact vanishes. Therefore, eq. (A.61) finally

becomes

(dgauge)ABCy
AyByC =

∑
r̄,a

d(R̄)

(
2

3
sign(R̄ · y2)(R̄ · ȳ)3 − 1

3
(R̄ · ȳ)2UH +

1

90
U3
H

)
=:
∑
r̄,a

d(R̄)f(R̄ · ȳ, UH). (A.65)
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Aiming for the comparison with [24], we rewrite the sum of (A.65) in the following way,∑
r̄,a=0

d(R̄)f(R̄ · ȳ, UH) = 128f(0, UH)

+8
∑

1≤i<j≤k
NiNj

(
f(AiH −A

j
H , UH) + f(−AiH +AjH , UH)

−f(AiH +AjH , U)− f(−AiH −A
j
H , UH)

)
−4

k∑
i=1

(N2
i −Ni)

(
f(2AiH , UH) + f(−2AiH , UH)

)
+8

k∑
i=1

(N2
i −Ni)f(0, UH) (A.66)

= 4
∑
i,j

NiNj

(
f(AiH −A

j
H , UH) + f(−AiH +AjH , UH)

−f(AiH +AjH , UH)− f(−AiH −A
j
H , UH)

)
+4

k∑
i=1

Ni

(
f(2AiH , UH) + f(−2AiH , UH)

)
. (A.67)

On the other hand, the contributions from the twisted sector is

∑
r̄,a=1

d(R̄)f(R̄ · ȳ, UH) = −64

k∑
i=1

Ni(f(AiH , UH) + f(−AiH , UH)), (A.68)

where we used (A.57). Therefore, the sum of the untwisted sector (A.67) and the twisted

sector (A.68) is∑
r̄,a

d(R̄)f(R̄ · ȳ, UH) = 4
∑
i,j

NiNj

(
f(AiH −A

j
H , UH) + f(−AiH +AjH , UH)

−f(AiH +AjH , UH)− f(−AiH −A
j
H , UH)

)
−64

k∑
i=1

Ni(f(AiH , UH) + f(−AiH , UH))

+4
k∑
i=1

Ni

(
f(2AiH , UH) + f(−2AiH , UH)

)
. (A.69)

The constant term in (A.9) may be computed in a similar way. By summing over a

such that R̄ · ȳ = 0 is satisfied for the generic value of ȳ, one arrives at

χ =
1

4

(
256

2
+

16

2

∑
i

1

2
(N2

i −Ni)× 2

)
(A.70)

= 2

k∑
i=1

N2
i . (A.71)
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The computation of the tri-logarithmic terms in (A.9) may be also done in a systematic

way. Again we compute first a few terms which satisfies kl ≤ 0. For the term with kl < 0,

there is only one term with k = 1, l = −1 in the fundamental chamber which generates a

non-zero contribution

∑
R>0,kl<0

d(R)li3((R, y)) = 8Li3

(
e2πi(T̂H−UH)

)
. (A.72)

For the case with kl = 0, we have two cases, (i) k = 0, l > 0 or k > 0, l = 0, or

(ii) k = l = 0. In the case (i), the summation R > 0 involves r̄ = 0, r̄ = [roots of SO(32)]

for a = 0 and −1
2

(
R̄, R̄

)
= −3

4 for a = 1. The sum is exactly the same sum of the cubic

terms (A.69). Hence, we have

∑
R>0

(k=0,l>0)
(k>0,l=0)

d(R)li3((R, y)) (A.73)

=
∑
l>0

{
4
∑
i,j

NiNj

[
Li3

(
e2πi(lUH+AiH−A

j
H)
)

+ Li3

(
e2πi(lUH−AiH+AjH)

)
−Li3

(
e2πi(lUH+AiH+AjH)

)
− Li3

(
e2πi(lUH−AiH−A

j
H)
) ]

−64

k∑
i=1

Ni

[
Li3

(
e2πi(lUH+AiH)

)
+ Li3

(
e2πi(lUH−AiH)

) ]
+4

k∑
i=1

Ni

[
Li3

(
e2πi(lUH+2AiH)

)
+ Li3

(
e2πi(lUH−2AiH)

) ]}
+
∑
k>0

{
4
∑
i,j

NiNj

[
Li3

(
e2πi(kT̂H+AiH−A

j
H)
)

+ Li3

(
e2πi(kT̂H−AiH+AjH)

)
−Li3

(
e2πi(kT̂H+AiH+AjH)

)
− Li3

(
e2πi(kT̂H−AiH−A

j
H)
) ]

−64
k∑
i=1

Ni

[
Li3

(
e2πi(kT̂H+AiH)

)
+ Li3

(
e2πi(kT̂H−AiH)

) ]
+4

k∑
i=1

Ni

[
Li3

(
e2πi(kT̂H+2AiH)

)
+ Li3

(
e2πi(kT̂H−2AiH)

) ]}

For the computation of the latter case, we need to find out the weights which satisfy

R̄ > 0 with (R̄, R̄) ≤ 2. The positivity of the weights w̄ with (w̄, w̄) ≤ 2, w̄ ∈ Spin(32)/Z
can be defined by dividing the weights w̄ into two sets appropriately. Since we have the

relation (A.57), we define the positive weights as

R̄ = ei − ej , ei + ej , for a = 0, (A.74)

R̄ = em −
1

4
(e1 + · · ·+ e16) for a = 1, (A.75)
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where 1 ≤ i < j ≤ 16 and m = 1, · · · , 16. However, the weights which satisfies R̄ · ȳ = 0

for generic values of ȳ should be omitted in the sum. Therefore, we have∑
R>0
k=l=0

′d(R)li3((R, y)) = 8
∑

1≤i<j≤k
NiNj

[
Li3

(
e2πi(AiH−A

j
H)
)
− Li3

(
e2πi(AiH+AjH)

) ]

−4

k∑
i=1

(N2
i −Ni)Li3

(
e2πi(2AiH)

)
− 64

k∑
i=1

NiLi3

(
e2πi(AiH)

)
(A.76)

Finally, one obtains the quantum part of the prepotential by summing up all the

terms (A.69), (A.71), (A.73) and (A.76)

h(AiH , T̂H , UH) (A.77)

= −i
ζ(3)

∑
iN

2
i

4π4
− i

2π4
Li3

(
e2πi(T̂H−UH)

)
− i

16π4

{
8
∑

1≤i<j≤k
NiNj

[
Li3

(
e2πi(AiH−A

j
H)
)
− Li3

(
e2πi(AiH+AjH)

) ]

−4

k∑
i=1

(N2
i −Ni)Li3

(
e2πi(2AiH)

)
− 64

k∑
i=1

NiLi3

(
e2πi(AiH)

)}
+4
∑
i,j

NiNj

[
f̃(AiH −A

j
H , UH) + f̃(−AiH +AjH , UH)

−f̃(AiH +AjH , UH)− f̃(−AiH −A
j
H , UH)

]
−64

k∑
i=1

Ni

[
f̃(AiH , UH) + f̃(−AiH , UH)

]
+4

k∑
i=1

Ni

[
f̃(2AiH , UH) + f̃(−2AiH , UH)

]
− i

16π4

∑
k>0

{
4
∑
i,j

NiNj

[
Li3

(
e2πi(kT̂H+AiH−A

j
H)
)

+ Li3

(
e2πi(kT̂H−AiH+AjH)

)
−Li3

(
e2πi(kT̂H+AiH+AjH)

)
− Li3

(
e2πi(kT̂H−AiH−A

j
H)
) ]

−64

k∑
i=1

Ni

[
Li3

(
e2πi(kT̂H+AiH)

)
+ Li3

(
e2πi(kT̂H−AiH)

) ]
+4

k∑
i=1

Ni

[
Li3

(
e2πi(kT̂H+2AiH)

)
+ Li3

(
e2πi(kT̂H−2AiH)

) ]}
+ · · · ,

where the dots in (A.77) stands for the contributions of the tri-logarithmic terms with

kl > 0 and

f̃(AiH , UH) := − 1

32π
f(AiH , UH)− i

16π4

∑
l>0

Li3

(
e2πi(lUH+AiH)

)
. (A.78)
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It is suggestive to compare (A.77) with the result in [24]. Ref. [24] proposed a pre-

potential of a BSGP model with sixteen D9-branes and sixteen D5-branes which realize

a gauge group U(16)9 × U(16)5. Wilson lines are turned on only in a direction of the

gauge group from the D9-branes and the gauge group is broken to Πi U(Ni)×U(16)5 with∑
iNi = 16.

The prepotential (A.77) of the heterotic string theory can be mapped to the prepo-

tential of type I string theory by the maps (3.10)–(3.12). For the comparison with [24],

we take a weak coupling limit of the string coupling (T̂H)2 = (Ŝ′I)2 → ∞. Then, all the

tri-logarithmic terms with k > 0 vanish in the limit and we have

h(CiI , Ŝ
′
I , UI)|(Ŝ′I)2→∞ = −i

ζ(3)
∑

iN
2
i

4π4

− i

16π4

{
8
∑

1≤i<j≤k
NiNj

[
Li3

(
e2πi(CiI−C

j
I )
)
− Li3

(
e2πi(CiI+CjI )

) ]

−4
k∑
i=1

(N2
i −Ni)Li3

(
e2πi(2CiI)

)
− 64

k∑
i=1

NiLi3

(
e2πi(CiI)

)}
+4
∑
i,j

NiNj

[
f̃(CiI − C

j
I , UI) + f̃(−CiI + CjI , UI)

−f̃(CiI + CjI , UI)− f̃(−CiI − C
j
I , UI)

]
−64

k∑
i=1

Ni

[
f̃(CiI , UI) + f̃(−CiI , UI)

]
+4

k∑
i=1

Ni

[
f̃(2CiI , UI) + f̃(−2CiI , UI)

]
. (A.79)

The prepotential (A.79) is exactly the same as the proposed prepotential in [24] except

for the following three points. First, the second and the third line of (A.79) are twice as

large as the corresponding terms in [24]. Second, the terms

− i

32π4

{
8
∑

1≤i<j≤k
NiNj

[
Li3

(
e2πi(−CiI+CjI )

)
− Li3

(
e2πi(−CiI−C

j
I )
) ]

−4

k∑
i=1

(N2
i −Ni)Li3

(
e2πi(−2CiI)

)
− 64

k∑
i=1

NiLi3

(
e2πi(−CiI)

)}
(A.80)

in [24] are missing in (A.79). Third, the (CiI)
3 term of (A.65) does not have the sign factor,

sign((CiI)2), in [24].33

33The overall constant factor of the quantum correction to the prepotential is also different

− 1

8π
h(CiI , UI) = h(CiI , UI)

BHK. (A.81)

However this is irrelevant for the physics. Indeed, playing with the ambiguity of the factor in front the

axiodilaton, we can extract an overall factor in front of the full prepotential, which does not affect the low

energy effective theory since it vanishes in the Kähler metric.
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However all the three discrepancies can be cured by taking into account the conver-

gence of the tri-logarithmic series in (A.80). The missing terms (A.80) in fact diverge in

the fundamental chamber (A.7) and (A.8). The tri-logarithmic series can be analytically

continued outside the unit circle by the formula

Li3 (ex) = Li3
(
e−x
)

+
π2

3
x− iπ

2
x2 − 1

6
x3. (A.82)

The second and the third terms in the right-hand side of (A.82) become the ambiguity in the

prepotential and we can ignore them. The application of the formula (A.82) to the terms

in (A.80) precisely accounts for the fact that the second and the third lines of (A.79) are

twice as large as the corresponding terms in [24]. Furthermore, the term −1
6x

3 in (A.82)

exactly reproduces the sign factor sign((CiI)2) in (A.78). To summarize, the prepoten-

tial (A.79) precisely reproduces the prepotential in [24] when one takes into account the

fundamental chamber (A.7) and does the analytic continuation of the result in [24].

Let us see the correspondence of the origins of the corrections on both sides. In the one-

loop calculation in [24], there are three types of non-zero contributions to the prepotential.

First, the corrections which are proportional to NiNj come from the one-loop diagram

between the D9-branes. Second, the corrections which have a factor of 16Ni come from

the one-loop diagram between the D5 and D9-branes. Third, the corrections which have

a factor of Ni and the dependence of 2CiI or −2CiI come from the Möbius strip diagram

between the D9-branes. On the other hand, in the heterotic string theory which is dual

to the BSGP model with the SU(16) gauge group and sixteen half 5-branes, the first and

the third types of corrections originate from the sum of the roots and the weights of the

anti-symmetric representation of SU(16). The second type of corrections originates from

the contributions of the twisted modes at the fixed points.

When we restrict to the case without Wilson lines, by putting CiI = 0, only the second

and the third types of corrections survive and sum up, as is clear from (A.79). It is easy

to see that this operation gives us back the quantum corrections written in (4.4) in the

perturbative limit ImŜ′I →∞ (apart from the overall factor).

B Duality to type IIA string compactifications

The E8 × E8 heterotic string on K3 × T 2 with a particular instanton embedding has a

dual description of type IIA string theory on a certain Calabi-Yau threefold [61, 68]. The

number of vector multiplets (nV ) and of hypermultiplets (nH) arising from type IIA string

theory on a Calabi-Yau threefold X3 are

nV = h1,1(X3), nH = h2,1(X3) + 1, (B.1)

where h1,1(X3) and h2,1(X3) stand for the Hodge numbers of X3. The gauge group of the

theory is generically U(1)nV +1 where the plus one comes from the graviphoton in a N = 2

supergravity multiplet.

Note that the plus one in the number of hypermultiplets in (B.1) is related to the

type IIA dilaton. Hence, the vector multiplet moduli space does not receive any quantum

– 45 –



J
H
E
P
0
3
(
2
0
1
3
)
0
0
5

corrections of string loops. On the other hand, the heterotic dilaton sits in a vector multiplet

and the vector multiplet moduli space of the heterotic compactifications on K3×T 2 receives

quantum corrections due to string loops. Therefore, the tree-level vector multiplet moduli

space of the type IIA string compactifications should capture the information of string

loop effects in the vector multiplet moduli space of the heterotic string compactifications.

Moreover, the exact vector multiplet moduli of the type IIA string theory can be computed

from the vector multiplet moduli space of type IIB string theory on the mirror Calabi-

Yau threefold X̃3. This is because the vector multiplet moduli space of the type IIB

string compactifications on Calabi-Yau threefolds does not receive any quantum corrections,

neither from α′ nor string loops. Then, one can even study the non-perturbative effects of

the vector multiplet moduli space of the heterotic compactifications from the dual type II

string theory.

The vector multiplet moduli space of the type IIA string theory on X3 at the large

volume limit is described by the complexified Kähler moduli

B + iJ =

h1,1(X3)∑
α=1

tαeα, (B.2)

where eα is a integral basis of the cohomology H1,1(X3). The exact prepotential at large

volume can be written as

F IIA =
1

6

∑
(Dα ·Dβ ·Dγ)tαtβtγ +

i

(2π)3

∑
d1,··· ,dn

nd1,d2,··· ,dnLi3(Πn
i=1e

2πitidi), (B.3)

where Dα are the divisors associated with eα and nd1,··· ,dns are the rational

instanton numbers.

The first part of (B.3) is the tree-level result and the second part of (B.3) is the

worldsheet instanton effects which can be computed from the mirror Calabi-Yau threefold.

Apart from the non-perturbative effects, there are only cubic terms in the moduli in the

prepotential. The lower order terms are just ambiguity in the prepotential and do not

affect the Kähler metric. The higher order terms are absent by the following reason. Note

that the B-field has a shift symmetry and this can be rephrased as the symmetry under

tα → tα + 1. Namely, the low energy effective field theory should be invariant under the

shift tα → tα + 1. However, if we have some terms whose orders are higher than three,

then the shift symmetry generates terms whose order are higher or equal to three. Those

terms alter the Kähler metric and indeed affect the low energy effective theory. Therefore,

those terms should be absent and the perturbative prepotential contain terms whose order

is up to cube.

Let us move on to the specific examples. We considered the type I′ string theory

which is dual to the BSGP model. The SO(32) heterotic string is dual to the E8 × E8

heterotic string theory with the symmetric instanton embedding (12, 12), and this E8×E8

heterotic string model has a dual type IIA model. The dual Calabi-Yau threefold X3

is WP1,1,2,8,12(24) [61]. The Calabi-Yau manifold has three Kähler moduli which corre-

spond to the three vector multiplet moduli SH , T̂H , UH in heterotic compactifications. The
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intersection numbers of X3 in a particular phase can be found in [69], for example,

K(X3) = 8J3 − 2D2J − 2D2E + 8E3, (B.4)

where J is related to a divisor associated to the generating element in Pic(X3), D is

related to an exceptional divisor coming from the blow-up along a singular curve, and E

is related to an exceptional divisor coming from the blow up at a singular point. In order

to see the duality between the moduli of the type IIA compactification and the heterotic

compactification, one may move to Mori’s basis, which is often used in the context of mirror

maps. In this case, the relation between the divisors Di associated to Mori’s basis and the

divisors J,D,E associated to the integral basis of H1,1(X3,Z) is [69]

D1 = J + E, D2 = 2D, D3 = −D − 2E. (B.5)

Moreover, the explicit duality maps between the Kähler moduli ti associated to the divisors

Di and the vector multiplet moduli SH , TH , UH of (3.6), (3.7), (3.8) has been worked out

in [68] and the results are

t1 = TH , (B.6)

t2 = SH + aTH + bUH , (B.7)

t3 = UH − TH (B.8)

The ambiguity in (B.7) occurs since the duality map was analyzed in the weak coupling

limit (SH)2 →∞.

With the information above, let us compute the tree-level prepotential of the type IIA

compactifications on X3. The classical prepotential is

F IIA
classical =

1

6
(JtJ +DtD + EtE)3. (B.9)

Inserting (B.5) and (B.6)–(B.8) into (B.9), one obtains

F IIA
classical = SHTHUH +

T 3
H

3
+ bT 2

HUH + THU
2
H + aTHU

2
H . (B.10)

The comparison (B.10) with (A.45) determines (a, b) = (−1, 0). Note that the phase

generating the intersection numbers (B.4) corresponds to the chamber (TH)2 < (UH)2.

Furthermore, the comparison can determine the overall normalization for the prepotentials

in (A.44) or (A.45). The relevant part of the prepotential of (A.44) is

F ⊃ −α
4
SHTHUH +

2

3π
T 3
H (B.11)

in the region (TH)2 < (UH)2. Then, we choose34 the normalization α = − 8
π , and the

prepotentials on both sides are related by the overall factor

π

2
F = F IIA

(
= 4πFHM

)
. (B.12)

34Here, we implicitly assume that the normalization of SH in (A.44) and SH in (B.7) is the same.

This turns out to be true from the matching for the tri-logarithmic terms in the following analysis. The

normalization of SH in (B.7) is fixed by the relation (B.7).
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In fact, the overall factor of the prepotential does not affect the low energy effective theory.

From the explicit form of the Kähler potential (4.1), the overall factor of the prepotential

becomes just the constant addition in the Kähler potential. Then, the constant term

vanishes in the Kähler metric. Note that some one-loop corrections to the prepotential of

the heterotic string compactification are captured just by the tree-level computation of the

type IIA string compactification. This result is indeed expected since the classical vector

multiplet moduli space of the type IIA string compactification should capture string loop

effects in the vector multiplet moduli space of heterotic string compactification.

Moreover, note that the rational instanton numbers in the infinite sum of (B.3) are

nothing but the genus-zero Gopakumar-Vafa invariants of the Calabi-Yau X3. Indeed,

nd1,d2,··· ,dn counts rational representatives of the class dαeα, which world-sheet instantons

can supersymmetrically be wrapped on. This sum is supposed to reproduce the infinite

series of corrections in (A.45) which depend exponentially on the moduli. However, since

the sum is over all possible curve classes, there will be a term corresponding to the 0-class,

i.e. dα = 0. This term will be proportional to the Euler number of the manifold, as n0,··· ,0
is just enumerating points. In fact, the precise relation is [76]

n0,··· ,0 = −χ(X3)

2
. (B.13)

The tri-logarithmic function for dα = 0 gives rise to the Riemann zeta-function, i.e. Li3(1) =

ζ(3). Therefore the constant term of the infinite sum in (B.3) can be written as

F IIA
pert =

i ξ

(2π)3
, ξ ≡ −

χ(X3)

2
ζ(3) . (B.14)

Being constant, this is the only perturbative α′ correction to the type IIA vector multiplet

prepotential, which is compatible with the axion shift symmetry. It is the famous α′ 3

correction, which the authors of [23] revisited in the N = 1 context of type II orientifold

compactifications. In the case at hand, i.e. X3 = WP1,1,2,8,12(24), we have χ(X3) = −480.

Dividing by 4π to get the correct normalization, we can see that (B.14) reproduces the

constant term of (A.45).

Not only the constant term of the prepotential but also the terms of nd1,··· ,dn with

non-zero dα should match with the tri-logarithmic terms in the prepotential of heterotic

string compactifications. In other words, one may count the number of holomorphic curves

by utilizing modular forms [98]. Let us see this matching by comparing (B.3) in the

case of X3 = WP1,1,2,8,12(24) with (A.45). Some of the rational instanton numbers for

X3 = WP1,1,2,8,12(24) can be found in [69]. The labels appearing in [69] are the coefficients

of the expansion in terms of J,D,E. Hence we denote them by dJ , dD, dE . By using the

relation between the integral basis and the Mori basis as well as the type IIA - heterotic

maps (B.6)–(B.8), one can find

dJ = l + k, dD = −k, dE = l − k, (B.15)

where we set d2 = 0 since the duality holds only in the limit e2πit2 → 0. Hence, we

should have

− 1

2
nl+k,−k,l−k = c(lk) for kl 6= 0 , (B.16)
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where c(h)’s are expansion coefficients in (A.46). Indeed, we can check that (B.16) holds

true at least for the rational instanton numbers listed in [69]. This also ensures the as-

sumption that SH in (A.44) is the same as SH in (B.7) in the previous discussion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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[73] D. Robles-Llana, M. Roček, F. Saueressig, U. Theis and S. Vandoren, Nonperturbative

corrections to 4D string theory effective actions from SL(2,Z) duality and supersymmetry,

Phys. Rev. Lett. 98 (2007) 211602 [hep-th/0612027] [INSPIRE].

– 52 –

http://dx.doi.org/10.1016/0550-3213(95)00291-Y
http://arxiv.org/abs/hep-th/9504006
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504006
http://dx.doi.org/10.1016/0920-5632(96)00018-7
http://arxiv.org/abs/hep-th/9510079
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510079
http://dx.doi.org/10.1142/S0217751X94001497
http://dx.doi.org/10.1142/S0217751X94001497
http://arxiv.org/abs/hep-th/9402002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9402002
http://dx.doi.org/10.1007/JHEP01(2013)114
http://arxiv.org/abs/hep-th/0504058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504058
http://dx.doi.org/10.1016/0550-3213(95)00310-O
http://dx.doi.org/10.1016/0550-3213(95)00310-O
http://arxiv.org/abs/hep-th/9504047
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504047
http://dx.doi.org/10.1016/0550-3213(95)00307-E
http://dx.doi.org/10.1016/0550-3213(95)00307-E
http://arxiv.org/abs/hep-th/9505105
http://inspirehep.net/search?p=find+EPRINT+hep-th/9505105
http://dx.doi.org/10.1016/0370-2693(95)01074-Z
http://arxiv.org/abs/hep-th/9505162
http://inspirehep.net/search?p=find+EPRINT+hep-th/9505162
http://dx.doi.org/10.1016/0370-2693(96)01095-7
http://dx.doi.org/10.1016/0370-2693(96)01095-7
http://arxiv.org/abs/hep-th/9605131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605131
http://dx.doi.org/10.1016/0550-3213(96)00339-2
http://arxiv.org/abs/hep-th/9605184
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605184
http://dx.doi.org/10.1016/S0550-3213(97)00047-3
http://arxiv.org/abs/hep-th/9608154
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608154
http://dx.doi.org/10.1016/S0550-3213(96)00429-4
http://arxiv.org/abs/hep-th/9606049
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606049
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602114
http://dx.doi.org/10.1016/0370-2693(95)00937-G
http://dx.doi.org/10.1016/0370-2693(95)00937-G
http://arxiv.org/abs/hep-th/9506112
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506112
http://dx.doi.org/10.1007/BF02100589
http://arxiv.org/abs/hep-th/9308122
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308122
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.021
http://arxiv.org/abs/0801.2163
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2163
http://dx.doi.org/10.1016/S0550-3213(97)00572-5
http://arxiv.org/abs/hep-th/9707013
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707013
http://dx.doi.org/10.1016/0550-3213(90)90097-W
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B332,317
http://dx.doi.org/10.1103/PhysRevLett.98.211602
http://arxiv.org/abs/hep-th/0612027
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612027


J
H
E
P
0
3
(
2
0
1
3
)
0
0
5

[74] S. Alexandrov, F. Saueressig and S. Vandoren, Membrane and fivebrane instantons from

quaternionic geometry, JHEP 09 (2006) 040 [hep-th/0606259] [INSPIRE].

[75] F. Saueressig and S. Vandoren, Conifold singularities, resumming instantons and

non-perturbative mirror symmetry, JHEP 07 (2007) 018 [arXiv:0704.2229] [INSPIRE].

[76] D. Robles-Llana, F. Saueressig, U. Theis and S. Vandoren, Membrane instantons from mirror

symmetry, Commun. Num. Theor. Phys. 1 (2007) 681 [arXiv:0707.0838] [INSPIRE].

[77] S. Alexandrov, B. Pioline, F. Saueressig and S. Vandoren, D-instantons and twistors, JHEP

03 (2009) 044 [arXiv:0812.4219] [INSPIRE].

[78] B. Pioline and D. Persson, The automorphic NS5-brane, Commun. Num. Theor. Phys. 3

(2009) 697 [arXiv:0902.3274] [INSPIRE].

[79] L. Bao, A. Kleinschmidt, B.E. Nilsson, D. Persson and B. Pioline, Instanton corrections to

the universal hypermultiplet and automorphic forms on SU(2, 1), Commun. Num. Theor.

Phys. 4 (2010) 187 [arXiv:0909.4299] [INSPIRE].

[80] S. Alexandrov, D-instantons and twistors: some exact results, J. Phys. A 42 (2009) 335402

[arXiv:0902.2761] [INSPIRE].

[81] S. Alexandrov and F. Saueressig, Quantum mirror symmetry and twistors, JHEP 09 (2009)

108 [arXiv:0906.3743] [INSPIRE].

[82] S. Alexandrov, D. Persson and B. Pioline, On the topology of the hypermultiplet moduli space

in type-II/CY string vacua, Phys. Rev. D 83 (2011) 026001 [arXiv:1009.3026] [INSPIRE].

[83] S. Alexandrov, D. Persson and B. Pioline, Fivebrane instantons, topological wave functions

and hypermultiplet moduli spaces, JHEP 03 (2011) 111 [arXiv:1010.5792] [INSPIRE].

[84] S. Alexandrov, D. Persson and B. Pioline, Wall-crossing, Rogers dilogarithm and the QK/HK

correspondence, JHEP 12 (2011) 027 [arXiv:1110.0466] [INSPIRE].

[85] S. Alexandrov and B. Pioline, S-duality in twistor space, JHEP 08 (2012) 112

[arXiv:1206.1341] [INSPIRE].

[86] S. Alexandrov, J. Manschot and B. Pioline, D3-instantons, Mock theta series and twistors,

arXiv:1207.1109 [INSPIRE].

[87] S. Alexandrov and B. Pioline, Heterotic-type-II duality in twistor space, arXiv:1210.3037

[INSPIRE].

[88] S. Alexandrov, Twistor approach to string compactifications: a review, Phys. Rept. 522

(2013) 1 [arXiv:1111.2892] [INSPIRE].

[89] S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the

supersymmetries in N = 2 supergravity, Phys. Lett. B 366 (1996) 155 [hep-th/9510074]

[INSPIRE].

[90] S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid

and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180]

[INSPIRE].
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