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In the regime of highly boosted Higgs bosons, which offers better perspectives to observe

the t̄tH signal, we find significant distortions of the kinematic distributions. The one-loop
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diagrams and numerical tensor reduction. We find that this approach provides very high

numerical stability and CPU efficiency.
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1 Introduction

The discovery of the Higgs boson and the measurement of its interactions with massive

quarks and vector bosons represent a central goal of the ATLAS [1, 2] and CMS [3] experi-

ments at the Large Hadron Collider (LHC). The present limits from direct searches and elec-

troweak precision measurements favour a Higgs-mass range below the W-decay threshold.

In this light-Higgs scenario, the Higgs predominantly decays into bottom quarks, and its ob-

servation is very challenging at the LHC. In the dominant Higgs-production channel, i.e. in

gluon-gluon fusion, the H → bb̄ signal is completely obscured by a huge QCD background.

Associated production mechanisms, where the Higgs boson is accompanied by a mas-

sive gauge boson or top-quark pairs, feature more distinctive signatures that can be ex-

ploited to reduce the background to the H → bb̄ final state. These associated Higgs-

production channels provide direct access to the interactions of the Higgs boson with

gauge bosons and heavy quarks. Their observation would permit to test the electroweak

symmetry-breaking mechanism. But the QCD background to associated WH, ZH, and

t̄tH production followed by H → bb̄ decay remains a critical issue, which requires signifi-

cant progress in two directions. The low signal-to-background ratios must be increased by

means of improved selection strategies; and more precise descriptions of the background
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are needed in order to reduce systematic uncertainties. In this paper we address the latter

issue by providing next-to-leading-order (NLO) QCD predictions for the irreducible QCD

background to t̄tH(H → bb̄) production.

The strategies elaborated by ATLAS and CMS to identify the t̄tH(H → bb̄) signal [2–

9] are based on the full reconstruction of the t̄tbb̄ signature, starting from a final state with

four b quarks and additional light jets. After imposing four b-taggings, a reconstruction of

the top quarks is performed. This permits to identify two b quarks as top-decay products.

The remaining two b quarks constitute a Higgs candidate, and their invariant-mass distri-

bution is the relevant observable to find the Higgs signal. However, the presence of multiple

b quarks and light jets in the final state represents a serious obstacle to the correct identifi-

cation of the bb̄ Higgs candidates. Realistic simulations indicate that only about 1/3 of the

selected b-quark pairs have correct combinatorics, while the other Higgs candidates contain

b jets from top decays or miss-tagged light jets. This so-called combinatorial background

significantly dilutes the Higgs signal and increases its background contamination. The QCD

processes pp → t̄tbb̄ and t̄tjj are the main background components. The latest ATLAS and

CMS simulations [2, 3], for 30 fb−1 and 60 fb−1, respectively, anticipate a statistical signifi-

cance around 2σ (ignoring systematic uncertainties) and a fairly low signal-to-background

ratio of order 1/10. This calls for better than 10% precision in the background description,

a very demanding requirement both from the experimental and theoretical point of view.

More recently, alternative search strategies based on the selection of highly boosted

Higgs bosons, which decay into “fat jets” containing two b quarks, have opened new and

very promising perspectives, both for V H(H → bb̄) [10] and t̄tH(H → bb̄) [11]. In the case

of t̄tH, this novel approach might enable a better background suppression and increase the

signal-to-background ratio beyond 1/3. Moreover, three b-taggings would be sufficient to

strongly suppress the t̄tjj contamination. In this case the background would be completely

dominated by t̄tbb̄ production.

The calculation of the NLO QCD corrections to the process pp → t̄tbb̄, first presented

in refs. [12, 13] and subsequently confirmed in ref. [14], constitutes another important step

towards the observability of the t̄tH(H → bb̄) signal at the LHC. The ATLAS simulations

of the t̄tbb̄ background [2, 4–6] are based on leading-order (LO) matrix elements and the

scale choice µR = µF = Ethr/2, where Ethr = 2mt + mbb̄ is the partonic threshold energy.1

These predictions suffer from huge scale uncertainties: the LO t̄tbb̄ cross section can vary

up to a factor four if the renormalization and factorization scales are identified with differ-

ent kinematic parameters [4, 5]. However, in the case of the t̄tH signal [15–18] it was found

that setting the QCD scale equal to half the threshold energy leads to fairly moderate

NLO corrections (K ≃ 1.2). The same behaviour was subsequently observed in two other

processes that feature a final state similar to t̄tbb̄. At the scale µR,F = Ethr/2, the NLO

QCD corrections to pp → t̄tj [19, 20] and t̄tZ [21] at the LHC amount to K ≃ 1.0−1.15 (for

pT,jet & 20−50GeV) and K ≃ 1.35, respectively. On the basis of these observations one

might have expected that LO t̄tbb̄ predictions obtained with the same scale choice might

have a decent level of precision, say at the 20–30% level. However, it turned out that the

1The scale choice adopted in the CMS simulations [3, 7–9] is not documented.
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NLO corrections to t̄tbb̄ production, for µR,F = Ethr/2, are much larger and correspond to

a K factor of about 1.8 [13, 14]. Apart from the sizable impact on the t̄tH analysis, this

big K factor suggests the presence of large logarithms that tend to spoil the convergence

of the perturbative expansion. As we argue, this is mainly due to the fact that the scale

µR,F = Ethr/2 does not provide an adequate description of the QCD dynamics of t̄tbb̄

production. To cure this problem we introduce a new and more natural scale choice. This

leads to a much smaller K factor and also reduces the residual scale dependence at NLO.

Besides the issue of scale dependences, in this paper we also investigate NLO effects on

various differential distributions and selection cuts that are relevant for the t̄tH analysis,

both within the traditional ATLAS/CMS approach and in the boosted-Higgs framework.

In addition to its phenomenological relevance, the calculation of the NLO corrections

to pp → t̄tbb̄ constitutes also an important technical benchmark. The description of many-

particle processes at NLO plays an important role for the LHC physics programme [22, 23].

Numerous Higgs and new-physics signals, as well as their background, are characterized

by multi-particle final states. These processes often involve high powers of αs that give

rise to very large scale uncertainties if NLO effects are not taken into account. The most

prominent multi-particle reactions that require NLO predictions are summarised in the so-

called Les Houches priority list [22, 23]. In the recent years, the technical challenges raised

by these calculations have triggered an impressive amount of conceptual and technical

developments. In particular, in order to treat one-loop amplitudes with particle multi-

plicities higher than five, various methods based on tensor integrals [24–34] or on-shell

reductions [35–50] have been developed. Very recently, these different techniques have lead

to the first NLO results for six-particle processes at the LHC, namely for pp → t̄tbb̄ [13, 14],

the leading- [51] and the full-colour contributions [52] to pp → Wjjj, and for the qq̄ con-

tribution to pp → bb̄bb̄ [53].

To compute the virtual corrections to t̄tbb̄ production we employ explicit diagrammatic

representations of the one-loop amplitudes. A key feature of our approach is the factor-

ization of colour structures at the level of individual diagrams. This permits to reduce the

CPU cost of colour sums essentially to zero. Helicity-dependent structures are algebraically

reduced to a common set of so-called standard matrix elements. In this way the sums over

physical helicities are strongly boosted. Tensor loop integrals are related to scalar inte-

grals by means of numerical algorithms that systematically avoid numerical instabilities

from inverse Gram determinants and other spurious singularities [25, 26]. The efficiency of

the calculation is strongly increased by recycling a multitude of common subexpressions,

which occur both inside individual diagrams and in tensor integrals of different diagrams

that share common sub-topologies. As demonstrated by the remarkably high CPU speed of

the numerical code, these procedures strongly mitigate the factorial complexity that is in-

herent in Feynman diagrams. The real corrections are handled with the dipole subtraction

method [56–59], and the phase-space integration is performed with adaptive multi-channel

methods [60–66]. Our results have been confirmed with the OPP method [47–50] and

HELAC-1LOOP [54, 55] within the statistical Monte Carlo error of 0.2% [14].

The paper is organised as follows. Section 2 is devoted to technical aspects of the

calculation of the virtual and real corrections. In section 3 we present predictions for the
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Figure 1. Sample tree diagrams contributing to the qq̄ → t̄tbb̄ and gg → t̄tbb̄ channels.

Figure 2. Sample pentagon and hexagon graphs contributing to qq̄ → t̄tbb̄ and gg → t̄tbb̄.

The gg (qq̄) channel comprises in total 1003 (188) graphs, including 40 (8) hexagons and 114 (24)

pentagons.

Figure 3. Sample real-emission diagrams contributing to the channels qq̄ → t̄tbb̄g, qg → t̄tbb̄q,

and gg → t̄tbb̄g.

LHC. In particular, we discuss the scale dependence and investigate NLO effects on the

shape of several distributions. Our results are summarised in section 4. In appendix A

we outline the algebraic reduction of helicity structures, and in appendix B we provide

benchmark results for the matrix element squared in lowest order and including virtual

corrections for one phase-space point.

2 Details of the calculation

In LO, the hadronic production of t̄tbb̄ proceeds via the partonic processes qq̄ → t̄tbb̄ and

gg → t̄tbb̄, which are described by 7 and 36 tree diagrams, respectively (see figure 1). The

virtual NLO QCD corrections to these channels involve 188 and 1003 one-loop diagrams, re-

spectively. A few examples of pentagon and hexagon graphs are illustrated in figure 2. The

real emission contributions are induced by the partonic processes qq̄ → t̄tbb̄g, gg → t̄tbb̄g,

qg → t̄tbb̄q, and gq̄ → t̄tbb̄q̄. The gg channel involves 341 tree diagrams. The qq̄, qg

and gq̄ channels, which are related by crossing transformations, are described by 64 tree

diagrams each (see figure 3).

– 4 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
1

In the following we describe the calculation of the virtual and real NLO corrections.

Each of these contributions has been worked out twice and independently, resulting in

two completely independent computer codes. Top quarks are treated fully inclusively,

i.e. we do not include top decays. Moreover we handle bottom quarks in the massless

approximation, corresponding to the five-flavour scheme. However, we do not take into

account the suppressed contribution from initial-state bottom quarks.

2.1 Virtual corrections

The virtual corrections are generated with two in-house Mathematica programs that re-

duce Feynman diagrams and generate Fortran77 code in a fully automatized way. One

of the two programs relies on FormCalc 5.2 [67, 68] for preliminary algebraic manip-

ulations. Here we outline the underlying structure of the calculation, with emphasis on

colour/helicity structures and tensor integrals. In this respect, both programs are organ-

ised in a fairly similar way. Since the treatment of the qq̄ channel is already documented

in ref. [12], we focus on the gg channel.

Diagram-by-diagram approach. The virtual corrections are obtained from the inter-

ference of the one-loop and LO matrix elements summed over external-state colours and

helicities. This quantity is computed on a diagram-by-diagram basis,

∑

col

∑

hel

M(1-loop)
(

M(LO)
)∗

=
∑

Γ

[

∑

col

∑

hel

M(Γ)
(

M(LO)
)∗

]

. (2.1)

The contributions of individual loop diagrams (Γ) are evaluated by separate numerical rou-

tines and summed explicitly. The Feynman diagrams are generated with two independent

tools, FeynArts 1.0 [69, 70] and FeynArts 3.2 [71].

Colour factorization. One of the key features of the diagram-by-diagram approach is

that the cost related to the large number of diagrams is compensated by the possibility

to perform colour sums very efficiently. This is a consequence of colour factorization:

individual (sub)diagrams consist of a single colour-stripped amplitude A(Γ) multiplied by

a trivial colour factor C(Γ),

M(Γ) = A(Γ)C(Γ). (2.2)

More precisely, each diagram gives rise to 3n4 colour-factorized contributions of type (2.2),

where n4 is the number of quartic gluon vertices in the diagram. These terms are handled as

separate subdiagrams. However, most diagrams do not involve quartic couplings, and their

colour structures factorize completely. For instance, the last diagram in figure 2 involves a

single colour structure

C(hex) =
∑

b,c,d,e

fa1bcfa2cd
(

T bT e
)

i3i4

(

T dT e
)

i5i6
, (2.3)

where a1, a2 and i3, i4, i5, i6 are the colour indices of the gg and t̄tbb̄ external states,

numbered in this order. All colour structures can be easily reduced to Kronecker symbols
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and Gell-Mann matrices T a = λa/2 by using

fabcT c = −i[T a, T b], T a
ijT

a
kl =

1

2

(

δilδkj −
1

Nc
δijδkl

)

, (2.4)

and other well-known SU(Nc) relations. In the gg channel, this reduction leads to a colour

basis of 14 elements,

C1 = T a1
i3i4

T a2
i5i6

, C2 = δi3i4 (T a1T a2)i5i6
, C3 = δi3i4 (T a2T a1)i5i6

,

C4 = T a1
i5i6

T a2
i3i4

, C5 = δi5i6 (T a1T a2)i3i4
, C6 = δi5i6 (T a2T a1)i3i4

,

C7 = T a1
i3i6

T a2
i5i4

, C8 = δi3i6 (T a1T a2)i5i4
, C9 = δi3i6 (T a2T a1)i5i4

,

C10 = T a1
i5i4

T a2
i3i6

, C11 = δi5i4 (T a1T a2)i3i6
, C12 = δi5i4 (T a2T a1)i3i6

,

C13 = δa1a2δi3i4δi5i6, C14 = δa1a2δi3i6δi5i4 .

(2.5)

For Nc = 3, only 13 of these colour operators are independent owing to the relation

C14 = −2
6
∑

i=1

Ci + 2
12
∑

i=7

Ci + C13. (2.6)

The summation over external colours is performed once and for all at the level of the colour

basis and the LO matrix element. To this end, we compute the colour-interference matrix

Ikl =
∑

col

CkC∗
l , (2.7)

and reducing the tree matrix element in colour space,

M(LO) =
∑

l

M(LO)
l Cl, (2.8)

we build the interference of M(LO) with the elements of the colour basis as

M̃(LO)
k =

∑

col

Ck

(

M(LO)
)∗

=
∑

l

Ikl

(

M(LO)
l

)∗

. (2.9)

Then, upon reduction of the factorized colour structure of the loop diagrams,

M(Γ) = A(Γ)C(Γ) = A(Γ)

(

∑

k

c
(Γ)
k Ck

)

, (2.10)

we obtain the colour-summed loop-tree interference as

∑

col

M(Γ)
(

M(LO)
)∗

= A(Γ)

(

∑

k

c
(Γ)
k M̃(LO)

k

)

, (2.11)

where the coefficients c
(Γ)
k are simple numbers. The colour-summed result is given by a

combination of previously computed colour-Born interference terms (2.9). This requires a

single evaluation of the non-trivial colour-stripped amplitude A(Γ) of each (sub)diagram.

Helicity structures are handled in a very similar way. The helicity-dependent parts of

all diagrams are reduced to a common basis of so-called Standard Matrix Elements (SMEs),

and helicity sums are performed once and for all at the level of the SMEs-Born interference

(see below). The diagram-independent treatment of the helicity-dependent parts of loop

graphs is made possible by the covariant decomposition of tensor integrals, i.e. by replacing

loop momenta (in the numerator) with external momenta and metric tensors.
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Covariant decomposition and numerical reduction of tensor integrals. Tensor

one-loop integrals with N propagators and P Lorentz indices are expressed in terms of

totally symmetric covariant structures {g . . . gp . . . p}µ1...µP

j1...jP
involving gµν and the external

momenta p1, . . . , pN−1,

(2πµ)4−D

iπ2

∫

dDq
qµ1 . . . qµP

∏N−1
i=0

[

(q + pi)2 − m2
i + i0

]
=

N−1
∑

j1,...,jP =0

TN
j1...jP

{g . . . gp . . . p}µ1...µP

j1...jP
,

(2.12)

with D denoting the number of space-time dimensions. For details of the notation we refer

to ref. [26]. To describe N -point integrals with N ≥ 5, tensor structures with only four

external momenta would be sufficient. However, in order to avoid potential instabilities due

to inverse Gram determinants we use a redundant set of structures, including the metric

tensor and N − 1 momenta.

The virtual corrections to qq̄ → t̄tbb̄ and gg → t̄tbb̄ involve tensor integrals up to rank

P = 3 and P = 4, respectively. The one-loop amplitudes are expressed as linear combina-

tions of tensor-integral coefficients TN
j1,...,jP

. The latter are evaluated by numerical libraries

that recursively reduce them to master integrals using the methods of refs. [25, 26].2 Avoid-

ing an explicit reduction of analytic expressions to master integrals, this numerical approach

prevents prohibitively large expressions and permits to adapt the reduction strategy to the

specific numerical problems that appear in different phase-space regions.

Tensor N -point integrals with N ≥ 5 are expressed in terms of lower-rank and lower-

point integrals exploiting the four-dimensionality of space-time [25, 26].3 The tensor rank

and the number of propagators are simultaneously reduced without introducing inverse

Gram determinants. Consequently, the maximal power of inverse Gram determinants re-

sulting from the entire reduction is given by the maximal rank of four-point integrals, which

never exceeds four in renormalizable gauges. Scalar hexagons and pentagons are reduced

to boxes using Melrose’s method [72]. Tensor 4-point and 3-point integrals are reduced to

scalar integrals with the Passarino-Veltman algorithm [73] as long as no small Gram deter-

minant appears in the reduction. If small Gram determinants occur, alternative schemes are

applied [26].4 More precisely, we make use of expansions of the tensor coefficients about the

limit of vanishing Gram determinants and possibly other kinematical determinants. One-

and two-point tensor integrals are obtained with numerically stable analytic expressions.

Ultraviolet (UV) divergences are regularized dimensionally throughout, but infrared

(IR) divergences are treated in different variants, which comprise pure dimensional reg-

ularization with strictly massless light quarks and a hybrid scheme with small quark

masses. The corresponding scalar integrals are evaluated using the methods and results

of refs. [75, 76], and different regularization schemes are translated into each other as de-

scribed in ref. [78].

2We note in passing that the reduction methods of refs. [25, 26] have also been used in the related

calculation [74] of NLO QCD corrections to the 2 → 4 particle process γγ → tt̄bb̄ at a γγ collider.
3Similar reductions are described in ref. [31].
4Similar procedures based on numerical evaluations of specific one-loop integrals [24, 31] or expansions

in small determinants [29, 30] have also been proposed by other authors.
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The calculation of tensor integrals is implemented in two independent Fortran li-

braries. This permits to perform detailed cross checks, which confirm the excellent nu-

merical stability of the reduction procedure. An automatic cache system is implemented

that strongly boosts the reduction by recycling a multitude of tensor integrals among

Feynman diagrams with common sub-topologies. The virtual corrections to gg → t̄tbb̄

comprise about 350 different scalar integrals, which require roughly 10ms CPU time per

phase-space point on a 3 GHz Intel Xeon processor. The calculation of the complete set

of scalar and tensor integrals with and without cache system takes approximately 40ms

and 200ms, respectively.

Rational parts. In D = 4 − 2ǫ dimensions, UV-singular tensor integrals give rise to

1/ǫUV poles,

TN
j1...jP

= T̂N
j1...jP

+
RN

j1...jP

ǫUV
. (2.13)

Consequently, their D-dimensional coefficients need to be expanded in D − 4,

f(D)TN
j1...jP

= f(4)TN
j1...jP

− 2f ′(4)RN
j1...jP

, (2.14)

resulting in so-called rational terms that are proportional to the pole residues RN
j1...jP

.

Rational contributions originate from D-dependent terms in tensor-reduction identities

and in the loop-momentum-independent part of the diagram numerators. The relevant

expansions are automatically performed by means of a catalogue of residues of UV poles.

Note that in (2.14) we have implicitly assumed that rational terms resulting from 1/ǫ

and 1/ǫ2 poles of IR kind vanish. This is a non-trivial and general property of one-loop

QCD amplitudes. More precisely, while rational terms of IR origin can be present in the

wave-function renormalization factors, in truncated one-loop amplitudes they cancel. This

holds within the ’t Hooft-Feynman gauge and similar gauge fixings, as was explicitly proven

in appendix A of ref. [12].

Algebraic reduction of helicity structures and helicity sums. The helicity struc-

tures encountered in the explicit evaluation of all Feynman diagrams are algebraically

reduced to a common basis of SMEs as described below. The general form of SMEs for the

gg → t̄tbb̄ channel is5

M̂m = Qµ1µ2ρ1...ρl
m εµ1(p1)εµ2(p2) [v̄(p3)γρ1 . . . γρk

u(p4)]
[

v̄(p5)γρk+1
. . . γρl

u(p6)
]

, (2.15)

where Qµ1µ2ρ1...ρl
m consists of combinations of metric tensors and external momenta. These

compact spinor chains permit to decouple helicity information from the remnant parts of

the diagrams, so that helicity sums can be performed in a diagram-independent and efficient

way. In practice, the colour-stripped part of each loop diagram [see (2.10)] is expressed as

5For convenience we consider the crossed process ggt̄tb̄b → 0, i.e. we treat all particles and momenta as

incoming.
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a linear combination of SMEs and tensor integrals,

A(Γ) =
∑

m

F (Γ)
m M̂m,

F (Γ)
m =

∑

P

N−1
∑

j1,...,jP =0

K(Γ)
m;j1...jP

TN
j1...jP

+ rational parts. (2.16)

The coefficients K(Γ)
m;i1...iP

are rational functions of the kinematic invariants. These functions

involve only denominators from intermediate-particle propagators and are free of spurious

poles that might generate numerical instabilities.

Helicity sums are performed at the level of the interference of the diagram-independent

SMEs with the colour-projected Born amplitude (2.9),

Mkm =
∑

hel

M̂mM̃(LO)
k =

∑

l

Ikl

∑

hel

M̂m

(

M(LO)
l

)∗

. (2.17)

This matrix is computed only once per phase-space point employing the Weyl-van der

Waerden spinor formalism of ref. [82]. Using Mkm one can directly obtain the colour- and

helicity-summed contributions of each loop diagram in terms of its colour- and helicity-

independent form factors F (Γ)
m and the coefficients c

(Γ)
k of its factorized colour struc-

ture (2.10),

∑

col

∑

hel

M(Γ)
(

M(LO)
)∗

=
∑

m

F (Γ)
m

(

∑

k

c
(Γ)
k Mkm

)

. (2.18)

Owing to the high number of SMEs M̂m and the complexity of the corresponding form

factors F (Γ)
m , the representation (2.18) yields fairly large expressions. For instance, the

size of the numerical routines describing individual hexagon diagrams in the gg channel

is of the order of 0.5−1MB. The reduction of helicity structures to SMEs is one of the

key aspects that determine the size and the speed of the code. In order to avoid possible

numerical cancellations, this procedure is entirely based on algebraic identities that are

free of denominators. The reduction algorithm consists of two main steps. The first step is

based on process-independent identities in D dimensions. To reduce helicity structures of

type (2.15) we employ: momentum conservation; Dirac algebra; ordering of Dirac matri-

ces inside Dirac chains; Dirac equation; transversality and gauge-fixing conditions for the

gluon-polarization vectors, pµ
i εµ(pj) = 0 for i, j = 1, 2. The basis of SMEs obtained with

these identities contains more than thousand elements for the gg channel.

After these manipulations in D dimensions we extract all rational terms performing

the relevant expansions in D − 4. We then proceed with a second reduction step, based

on four-dimensional relations. Specifically, we apply two alternative reduction algorithms

that are based on relations derived from Chisholm’s identity.

The first algorithm is constructed along the lines of the reduction described in ref. [12]

for the qq̄ channel. Each fermion chain is split into two contributions via insertion of chiral

projectors ω± = (1 ± γ5)/2,

[v̄(p3)Γau(p4)] [v̄(p5)Γbu(p6)] =
∑

λ,ρ=±

[v̄(p3)Γaωλu(p4)] [v̄(p5)Γbωρu(p6)] . (2.19)
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This permits to employ various relations of the type [12, 79]

γµγαγβω± ⊗ γµ = γµω± ⊗
(

γµγβγαω± + γαγβγµω∓

)

, (2.20)

where the tensor product connects Dirac matrices that belong to different fermion chains.

By means of such identities one can exchange Dirac matrices between chains that are

connected by γµ ⊗ γµ contractions. As described in ref. [12], using identities of type (2.20)

in combination with the above-mentioned D-dimensional relations (Dirac equation, etc.)

one can obtain a rich variety of non-trivial reduction identities. In this way we have

constructed a fairly sophisticated reduction algorithm (see appendix A) that relates all

helicity structures present in the gg channel to 502 SMEs. In spite of its efficiency, this

reduction procedure has the disadvantage of depending on process-specific aspects, like

the number of massive and massless fermion chains and the number of external momenta.

It is thus important to investigate the trade-off between the obtained efficiency and the

time-consuming task of designing the reduction on a process-by-process basis. To this end,

we have implemented an alternative and much simpler reduction method. This procedure

is entirely process-independent. It does not make use of chiral projectors, and consists of

a single four-dimensional identity,

γµ1γµ2γµ3γµ4γµ5 =gµ1µ2γµ3γµ4γµ5−gµ1µ3γµ2γµ4γµ5 +gµ1µ4γµ2γµ3γµ5−gµ1µ5γµ2γµ3γµ4

+ gµ2µ3γµ1γµ4γµ5 − gµ2µ4γµ1γµ3γµ5 + gµ2µ5γµ1γµ3γµ4 + gµ3µ4γµ1γµ2γµ5

− gµ3µ5γµ1γµ2γµ4 + gµ4µ5γµ1γµ2γµ3 − (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3) γµ5

+ (gµ1µ2gµ3µ5 − gµ1µ3gµ2µ5 + gµ1µ5gµ2µ3) γµ4 − (gµ1µ2gµ4µ5 − gµ1µ4gµ2µ5

+gµ1µ5gµ2µ4) γµ3 + (gµ1µ3gµ4µ5 − gµ1µ4gµ3µ5 + gµ1µ5gµ3µ4) γµ2 − (gµ2µ3gµ4µ5

−gµ2µ4gµ3µ5 + gµ2µ5gµ3µ4) γµ1 , (2.21)

which can be derived from Chisholm’s identity and permits to eliminate any spinor chain

involving more than three Dirac matrices without introducing γ5 and ǫ-tensors.6 In this

case we could reduce all gg-channel helicity structures to 970 SMEs.

Comparing the number of SMEs obtained with the process-dependent and process-

independent algorithms, we observe that the former is superior by roughly a factor two.

Thus, if we naively assume that the CPU efficiency scales with the number of SMEs, we

would expect a factor-two difference in the speed of the numerical code. In contrast, we find

that the CPU efficiency obtained with the two reductions is almost identical. This suggests

that the reduction of the number of SMEs is compensated by an increase in the size of the

form factors. This unexpected result means that the obtained CPU performance — at least

for this process — does not depend on sophisticated and process-dependent optimisations.

2.2 Real corrections

The calculation of the qq̄ channel has been described in ref. [13]. The evaluation of the
(−)
q g channels is done in the same way. In the following we sketch the calculation for the gg

channel. We have again performed two independent calculations of all building blocks.

6Products of four Dirac matrices can occur only inside the massive top-quark chain. In this case one

can introduce a fifth Dirac matrix by rewriting the massive spinor as u(p) = /pu(p)/m, and then use (2.21).
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In both evaluations of the real corrections the amplitudes are calculated as helicity

matrix elements which have been generated with Madgraph 4.1.33 [80, 81]. While the

amplitudes for qq̄ → t̄tbb̄g and
(−)
q g → t̄tbb̄

(−)
q have been checked with the Weyl-van der

Waerden spinor formalism of ref. [82], those for gg → t̄tbb̄g have been verified with an im-

plementation of off-shell recursion relations [83–85]. The singularities for soft and collinear

gluon emission are isolated via dipole subtraction [56–59] for NLO QCD calculations using

the formulation [59] for massive quarks. Soft and collinear singularities in the “endpoint

part” of the subtraction function (the I operator of refs. [56, 59]), i.e. the part of the sub-

traction terms that has to be combined with the virtual corrections, are regularized using

the same regularization prescription (dimensional or with small quark masses) as the cor-

responding virtual corrections. No regularization is needed in the subtraction terms for the

real corrections. For both the qq̄ and gg channels 30 different dipole subtraction terms need

to be included while each
(−)
q g channel requires only 10, since we demand b quarks with finite

transverse momentum in the final state. After combining virtual and real corrections, sin-

gularities connected to collinear configurations in the final state cancel for “collinear-safe”

observables after applying a jet algorithm. Singularities connected to collinear initial-state

splittings are removed via MS QCD factorization by PDF redefinitions. In both evaluations

the phase-space integration is performed with multi-channel Monte Carlo generators [60–

63] and adaptive weight optimisation similar to the one implemented in Lusifer [66].

Version 1 of the real corrections employs the MadDipole implementation of dipole

subtraction [86]. The phase-space integration, implemented in C++, is based on

RacoonWW, but the phase-space mappings are built up in a more generic way very

similar to the approach of Lusifer [66]. For each of the 341 bremsstrahlung Feynman

diagrams a corresponding channel is taken into account in the Monte Carlo integration.

In version 2 all dipole subtraction terms have been implemented directly into the

Monte Carlo generator. The Monte Carlo generator is a further development of the one used

in COFFERγγ [87] and for the calculation of the NLO corrections to pp → Hjj+X [88, 89].

In addition to the Monte Carlo channels for the bremsstrahlung diagrams 30 × 36 = 1080

channels are used to map the dipole subtraction terms in the gg channel. These additional

channels lead to some improvement in the convergence of the Monte Carlo integration.

All real bremsstrahlung amplitudes of Madgraph have been checked against indepen-

dent calculations for several phase-space points. The cancellation between real matrix ele-

ments and dipole subtraction terms has been verified numerically in all soft and collinear

regions. The individual dipole subtraction terms, the subtracted real matrix elements, and

the integrated subtraction terms (P and K terms of refs. [56, 59]) have been compared

point-wise between the two independent calculations. The agreement was generally at the

level of 13 digits. The integrated LO cross section has been verified with SHERPA [90] at the

level of the integration errors of 0.2%. From the point of view of Monte Carlo integration

the most complicated and time-consuming part is the integration of the real corrections in

the gg channel. For the complete NLO cross section we found agreement between the two

versions of our code within 1–3σ, where 1σ corresponds to 0.1–0.2%. The results for the

distributions coincide within 1–3σ for each bin.
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σ/σLO # events (∆σ)stat/σ runtime time/event

(after cuts)

tree level 86% 5.3 × 106 0.4 × 10−3 38min 0.4ms

virtual −11% 0.26 × 106 0.6 × 10−3 13 h 180ms

real + dipoles 49% 10 × 106 3 × 10−3 40 h 14ms

total 124% 4 × 10−3 53 h

Table 1. Statistics and speed of various parts of the calculation based on 2×107 events before apply-

ing cuts generated on a 3GHz Intel Xeon processor using the pgf77 compiler with standard options.

In order to give an impression on the statistics and the required CPU time we show

in table 1 some numbers for 2× 107 generated phase-space points before cuts. This yields

an accuracy for the NLO cross section of about 0.5%. The contributions of the
(−)
q g channel

were calculated for every 4th event and those of the virtual corrections in the gg channel

and the contributions of the qq̄ channel for every 20th event. The bulk of the runtime is

taken by the gg channel. For the virtual corrections the CPU time is dominated by the

gg channel and amounts to 180ms per event. The virtual correction in the qq̄ channel are

by a factor 20 faster. In order to produce the plots for the scale variations we generated

2 × 107 phase-space points for the NLO predictions and 2 × 108 for the LO cross section.

To generate the distributions we used about 20 times more events for the NLO results.

3 Predictions for the LHC

The thorough description of a complex signature like t̄tbb̄ involves numerous possible

observables. Here we investigate distributions and cuts that are relevant for the search of

t̄tH(H → bb̄) at the LHC [6, 8, 9], where t̄tbb̄ contributes to the irreducible background.

In our previous work [13] we found a K factor of about 1.8 for the integrated t̄tbb̄ cross

section at the LHC. This unexpectedly large NLO effect raises two important issues that

we address in the present analysis. Firstly, we discuss the relation between the large K

factor and the scale choice. This leads us to a new and more appropriate scale choice, which

improves the convergence of the perturbative expansion. Secondly, we consider possible

strategies to reduce the tt̄bb̄ cross section in order to facilitate the extraction of the t̄tH

signal. In particular, we study the influence of a jet veto on the NLO cross section and

its perturbative stability. We also explore the kinematic region of highly-boosted bb̄ pairs,

which helps to separate the Higgs signal from its QCD background, as first suggested for

associated WH and ZH production [10] and, very recently, also for t̄tH production [11].

Let us remind that top-quark decays are not included in our calculation. In practice we

treat top quarks in a completely inclusive way, and we restrict our analysis to the kinematic

properties of those two b quarks that do not result from top decays. From the experimental

view-point, the presented distributions correspond to the unrealistic situation of perfect

top-quark reconstruction. The detailed description of top-decay products and the related

issue of b-quark combinatorics are left for future studies.
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3.1 Input parameters, jet definition, and cuts

We study the process pp → t̄tbb̄ + X at
√

s = 14TeV. For the top-quark mass, renor-

malized in the on-shell scheme, we take the numerical value mt = 172.6GeV [91]. All

other QCD partons, including b quarks, are treated as massless particles. Collinear final-

state configurations, which give rise to singularities, are recombined into IR-safe jets using

a kT-algorithm [92]. Specifically, we adopt the kT-algorithm of ref. [93] and recombine

all final-state b quarks and gluons with pseudorapidity |η| < 5 into jets with separation
√

∆φ2 + ∆y2 > D = 0.4 in the rapidity-azimuthal-angle plane. Requiring two b jets, this

also avoids collinear singularities resulting from massless g → bb̄ splittings.7

After recombination, we impose the following cuts on the transverse momenta and

rapidities of the b jets:

pT,b > pT,b,cut = 20GeV, |yb| < yb,cut = 2.5. (3.1)

This choice is dictated by the detector geometry and the search for a t̄tH(H → bb̄) signal at

the LHC [6, 8, 9]. The outgoing (anti)top quarks are neither affected by the jet algorithm

nor by phase-space cuts. For what concerns b quarks, the jet algorithm and the requirement

of having two b jets with pT,b > 20GeV sets an effective lower limit on the bb̄ invariant

mass of roughly 10GeV. But the mbb̄-range that is relevant for the Higgs-boson search is

actually much higher. In this kinematic region, with pT,b ≫ mb and mbb̄ ≫ mb, we expect

that the mb = 0 approximation works fairly well. To asses its precision we compared the

LO cross section for mb = 0 and mb = 4.2GeV using SHERPA [90]. For the integrated cross

section, which is dominated by mbb̄ values well below 100GeV, we found that the finite-mb

effect is smaller than 3%.

We consistently use the CTEQ6 [94, 95] set of PDFs, i.e. we take CTEQ6L1 PDFs

with a one-loop running αs in LO and CTEQ6M PDFs with a two-loop running αs in NLO,

but neglect the suppressed contributions from b quarks in the initial state. The number

of active flavours is NF = 5, and the respective QCD parameters are ΛLO
5 = 165MeV and

ΛMS
5 = 226MeV. In the renormalization of the strong coupling constant the top-quark

loop in the gluon self-energy is subtracted at zero momentum. In this scheme, the running

of αs is generated solely by the contributions of the light-quark and gluon loops.

3.2 Renormalization and factorization scales

The perturbative expansion of the pp → t̄tbb̄ cross section starts with the fourth power

of αs. Consequently the LO predictions, and also the K factor, are extremely sensitive

to variations of the renormalization scale. In ref. [4] it was pointed out that the LO t̄tbb̄

cross section can vary by up to a factor four if the QCD scale is identified with different

kinematic parameters. In all recent ATLAS studies of t̄tH(H → bb̄) [2, 4–6] the signal and

its t̄tbb̄ background were simulated by setting the renormalization and factorization scales

equal to half the threshold energy, Ethr = 2mt + mbb̄. For pp → t̄tH + X, this choice was

7Note that, as compared to our previous analysis [12, 13], we have reduced the jet-algorithm parameter

from D = 0.8 to D = 0.4. This is particularly important for highly boosted b-quark pairs with mbb̄ ∼ MH,

since D = 0.8 would lead to their recombination into a single jet and, consequently, to their rejection.

– 13 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
1

well supported by the existing NLO analysis [15–18]. But, in the absence of NLO predic-

tions for t̄tbb̄, the choice of the same scale for signal and background was motivated solely

by the assumption that the two processes have similar kinematics. However, in ref. [13] we

found that, if both processes are evaluated at µR = µF = Ethr/2, pp → t̄tbb̄ receives much

larger NLO corrections (K ≃ 1.8) than pp → t̄tH (K ≃ 1.2). This is mainly due to the

fact that the scale Ethr/2 does not provide an adequate description of the QCD dynamics

that governs t̄tbb̄ production.

The main difference between pp → t̄tH(H → bb̄) and its irreducible QCD background

is that the former process involves only two powers of αs at LO. Moreover, the part of

the signal process that is mediated by strong interactions does not involve any scale sig-

nificantly smaller than Ethr/2. In contrast, pp → t̄tbb̄ is entirely driven by QCD and is

proportional to α4
s at LO. In the mbb̄ → 0 limit, the dominant t̄tbb̄ production mechanism

is pp → t̄tg(g → bb̄), where a gluon with small virtuality plays a role analogous to the

intermediate Higgs boson in the signal process. In this regime, the factorization of t̄tg

production and g → bb̄ splitting provides two well-defined and widely separated scales:

Ethr/2 and mbb̄, respectively. This simple picture is, however, not applicable to the kine-

matic region of interest, where mbb̄ & 100GeV. Here, pp → t̄tbb̄ involves various other

mechanisms. For instance, the radiation of one or both b quarks off initial-state gluons can

play an important role due to collinear enhancements. In order to find an optimal QCD

scale, we have tried to identify a dominant production mechanism. To this end, we have

inspected the relative weights of the channels corresponding to various Feynman-diagram

topologies in our adaptive Monte Carlo generator. However, we found that none of these

channels is strongly enhanced with respect to the others. Similarly we were not able to re-

produce the bulk of the cross section in terms of effective approximations based on collinear

g → bb̄ splittings of the incoming gluons. This suggests that pp → t̄tbb̄ is a genuinely

multi-scale and multi-channel reaction.

We thus decided to adopt a pragmatic scale choice, based on the kinematic properties

of the t̄tbb̄ final state. While mt sets a clear scale for the couplings to the top quarks,

the inspection of differential distributions reveals that the cross section is saturated by b

quarks with pT,b ≪ mt (see figures 8 and 9). In order to account for these different scales

we have adopted a dynamical QCD scale corresponding to their geometric average,

µ2
0 = mt

√

pT,bpT,b̄. (3.2)

Our LO and NLO predictions are obtained by varying the renormalization (µR) and fac-

torization (µF) scales around the central value (3.2),

µR = ξRµ0, µF = ξFµ0. (3.3)

In the following sections we investigate the dependence of the LO and NLO integrated

cross section with respect to uniform (ξF = ξR) and antipodal (ξF = ξ−1
R ) scale variations

in the range 1/8 ≤ ξF, ξR ≤ 8. We find that uniform variations have a larger impact

on the cross section as compared to antipodal variations. For all distributions we pro-

vide LO and NLO predictions with uncertainty bands corresponding to factor-two uniform
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Setup mbb̄,cut pT,bb̄,cut pjet,veto pT,b,cut yb,cut σLO σNLO K

I 100 - - 20 2.5 786.3(2)
+78%

−41%
978(3)

+13%

−21%
1.24

II - 200 - 20 2.5 451.8(2)
+79%

−41%
592(4)

+13%

−22%
1.31

III 100 - 100 20 2.5 786.1(6)
+78%

−41%
700(3)

+0.4%

−19%
0.89

IV 100 - - 50 2.5 419.4(1)
+77%

−40%
526(2)

+13%

−21%
1.25

Table 2. Cut parameters (in GeV), integrated LO and NLO cross section (in fb) with statistical

errors and scale variations by factors 2 up and down as well as K factors for the four different

setups.

scale variations. More precisely, all observables are evaluated at three different scales:

ξF = ξR = 0.5, 1, 2. As we will see from the reduction of the K factor and the scale

uncertainties, the scale choice (3.2) clearly improves the convergence of the perturbative

expansion as compared to ref. [13].

3.3 Additional cuts

Besides the standard cuts (3.1), we have imposed the following kinematic restrictions to

the bb̄ system and the extra jet that is radiated at NLO:

mbb̄ > mbb̄,cut, pT,bb̄ > pT,bb̄,cut, pT,jet < pjet,veto. (3.4)

In order to investigate the individual effect of these extra cuts and correlations with

other observables, we have generated differential distributions in four different setups de-

scribed in table 2. The setups I–III implement the standard cuts (3.1) and explore the

individual impact of the extra cuts (3.4). Setup IV is a variant of setup I, where the

cut (3.1) on the b-jet pT is increased from 20GeV to 50GeV.

3.4 Setup I

In this setup we impose the cut mbb̄ > 100GeV. This removes a large part of the cross

section and selects the kinematic region of interest for the t̄tH(H → bb̄) signal.

Scale dependence. The LO and NLO integrated cross sections and their dependence

with respect to uniform (left plot) and antipodal (right plot) scale variations are displayed

in figure 4. At the central scale we obtain σLO = 786.3(2) fb and σNLO = 978(3) fb, where

the numbers in parentheses are the errors of the Monte Carlo integration for 2 × 108 LO

events and 2 × 107 NLO events before applying cuts. These predictions are not directly

comparable to those of ref. [13], where we did not apply any cut to mbb̄. Still we can

compare the K factors, which are rather insensitive to mbb̄. We observe that the new

scale choice (3.2) reduces the NLO corrections from K ≃ 1.77 [13] to K ≃ 1.24. We note

that, in spite of the smaller K factor, the new scale choice yields larger LO and NLO

cross sections as compared to the scale Ethr/2 used in ref. [13]. This can be easily seen
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Figure 4. Scale dependence of the LO and NLO pp → t̄tbb̄ + X cross section at
√

s = 14 TeV in

setup I. The left and the right plots describe uniform (ξR = ξF = ξ) and antipodal (ξR = ξ−1
F = ξ)

scale variations, respectively.

from figure 4, where the new and the previous central scales correspond to µR/µ0 = 1 and

µR/µ0 = Ethr/(2µ0) ≫ 1, respectively.8 In addition to the K factor, the new scale choice

reduces also the NLO scale uncertainty. Varying the scale up or down by a factor 2 changes

the LO and NLO cross section by 78% in LO and by 21% in NLO. The improvement with

respect to ref. [13], where we had a 33% NLO uncertainty, is evident also from the shape of

the NLO curves in figure 4. Now we observe a stable point in the vicinity of the central scale.

Jet veto. As anticipated in ref. [13], a jet veto can significantly reduce the large cross

section of the t̄tbb̄ background. This could facilitate the extraction of the t̄tH signal at

the LHC. In figure 5, the integrated t̄tbb̄ cross section is plotted versus the upper bound,

pjet,veto, imposed to the jet transverse momentum. Here, as well as in the following figures,

the left plot shows the absolute LO (blue) and NLO (red) predictions. The curves and

their uncertainty bands represent factor-two (uniform) scale variations around the central

value (3.2). The right plot displays the LO and NLO bands normalized to the central

value of the LO prediction. There the blue band illustrates the relative uncertainty of

the LO cross section, i.e. σLO(ξ)/σLO(ξ = 1), the red curve corresponds to the K factor,

K = σNLO(ξ = 1)/σLO(ξ = 1), and the red band shows the variation of the K factor when

varying the scales in the NLO cross section but keeping them fixed in the LO cross section,

Kξ = σNLO(ξ)/σLO(ξ = 1). In figure 5 the red (NLO) curve tends to saturate the upper

bound of its uncertainty band, a feature that can be observed in various other distributions.

8Using setup-I cuts and the ATLAS scale choice µR,F = Ethr/2 we obtain σLO(Ethr/2) = 448.7(1) fb and

σNLO(Ethr/2) = 751(2) fb. The increase of the cross section due to the combined effect of the new scale

choice and the NLO correction factor is thus σNLO(µ0)/σLO(Ethr/2) ≃ 2.18 while the K factor for setup-I

cuts and the ATLAS scale choice results in K ≃ 1.67.
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Figure 5. Dependence of the pp → t̄tbb̄ + X cross section on a jet veto (pT,jet < pjet,veto) in

setup I: absolute LO and NLO predictions (left) and NLO K factor (right). The uncertainty bands

correspond to factor-two scale variations.

This is consistent with the shape of the NLO curve in figure 4, which develops a maximum

in the vicinity of the central scale.

The NLO curve in figure 5 shows that a sizable reduction of the cross section requires

a jet veto well below 200GeV. For pjet,veto = 150, 100, and 50GeV, the K factor is reduced

to 1.03, 0.89, and 0.54, respectively. However, there is a trade-off between suppressing

the NLO cross section and increasing its perturbative uncertainty. The jet veto tends to

destroy the cancellation between IR logarithms of virtual and real origin and its effect

grows as −α5
s ln2(Ethr/pjet,veto) when pjet,veto becomes small. Since they are accompanied

by an α5
s coefficient, these logarithms can give rise to huge scale uncertainties already for

moderate values of pjet,veto.

This is reflected by the dramatic amplification of the NLO uncertainty band in figure 5.

Its lower bound enters the pathologic regime of negative cross sections around pjet,veto =

50GeV. Here, besides the NLO cross section itself, also its uncertainty estimate becomes

completely unreliable. The region of small pjet,veto would require a resummation. This

would stabilize the perturbative calculation and compensate for its divergent behaviour.

As a result, the unphysical suppression of the NLO cross section for pjet,veto ≪ 100GeV

would be washed out. If we restrict ourselves to the fixed-order NLO result, the plot tells

us that jet-veto values around 100GeV provide a good compromise: the reduction of the

K factor is already significant (K ≃ 0.89) and the NLO scale uncertainty (19%) is at the

same level as for the total cross section (21%).

Invariant-mass distributions. The invariant-mass distribution of the bb̄ pair, shown

in figure 6, constitutes a key observable for the search of the t̄tH signal. Because of lim-

ited resolution and b-quark combinatorial problems, the Higgs boson would appear as a
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Figure 6. Invariant-mass distribution of the bb̄ pair in setup I: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.
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Figure 7. Dependence of the cross section with respect to a cut on the t̄tbb̄ invariant mass

(mt̄tbb̄ > mt̄tbb̄,cut) in setup I: absolute LO and NLO predictions (left) and NLO K factor (right).

The uncertainty bands correspond to factor-two scale variations.

relatively broad and small peak on top of this distribution. The subtraction of the t̄tbb̄

background requires an accurate determination of its normalization, possibly by direct

measurement in a signal-free region, and a precise theoretical description of its shape.
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In figure 6 we observe that the NLO predictions perfectly fit within the LO band and

significantly reduce the QCD uncertainty over the entire invariant-mass range. The numer-

ical impact of the corrections is moderate and almost constant (1.21 < K < 1.27). This

favourable behaviour is ensured by the dynamical scale choice (3.2). At high invariant

masses the upper bound of the NLO uncertainty band slightly decreases and approaches

the central NLO prediction. The same trend appears in the high-energy tail of other

distributions.

Figure 7 displays the dependence of the cross section with respect to a cut on the

total invariant mass of the t̄tbb̄ system (mt̄tbb̄ > mcut,t̄tbb̄). Since it corresponds to the

invariant mass of the W+W−bb̄bb̄ final state, this quantity is independent of the b-jet

combinatorics. It can thus be measured with better resolution as compared to observables

that involve only a particular subset of the four b jets. This property might be exploited in

order to improve the signal-to-background ratio. Apart from a slight increase in the high

invariant-mass tail, the NLO corrections behave similarly as for the mbb̄ distribution.

Transverse-momentum distributions. The transverse-momentum distributions of

the individual b jets, ordered according to their pT, are presented in figure 8 (harder b

jet) and figure 9 (softer b jet). While the softer b jet tends to saturate the lower bound of

20GeV (3.1), the harder behaves rather differently. Its distribution has a maximum around

100GeV and a tail that extends up to fairly high transverse momenta. These shapes sug-

gest that one of the two quarks is often emitted from initial-state gluons, while the other

one participates to the hard scattering. In contrast, none of the b quarks resulting from

t̄tH originates from initial-state radiation. This feature, which renders the cross section

quite sensitive to pT,b, might be exploited to improve the separation of the t̄tH signal.

The dynamical scale introduced in (3.2) accounts for the different kinematics of the two

b jets and the extension of their transverse momenta over a wide pT range. The goodness

of this choice is confirmed by the stability of the K factor over the entire pT-spectrum.

The transverse-momentum distribution of the bb̄ pair is shown in figure 10. Its shape

resembles fairly closely that of the harder b-jet distribution. Also the K factor and the

scale uncertainties behave similarly.

Rapidity and azimuthal distributions. The rapidities of the individual b jets, ordered

in pT, are shown in figure 11 (harder b jet) and figure 12 (softer b jet). Both b jets tend

to populate the central region. But this feature is much more pronounced for the harder b

jet, while the softer one has a significant probability to be emitted also in the forward and

backward directions. The rapidity distribution of the bb̄ system (not plotted) resembles

that of the harder b jet, and the rapidity-separation distribution (figure 13) does not suggest

any strong correlation between the two b jets. All rapidity distributions receive moderate

and almost constant NLO corrections.

The rapidity-azimuthal-angle separation, ∆Rbb̄ =
√

(yb − yb̄)
2 + (φb − φb̄)

2, of the

b jets is displayed in figure 14. The shape of this distribution is determined by three

kinematic constraints: the rapidity cut (3.1) is responsible for the suppression at high

∆Rbb̄; the sharp lower bound at ∆Rbb̄ = 0.4 results from the jet algorithm; and the

invariant-mass cut mbb̄ > 100GeV keeps the two b jets at intermediate ∆R-separations.
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Figure 8. Transverse-momentum distribution of the harder b jet in setup I: absolute LO and

NLO predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two

scale variations.
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Figure 9. Transverse-momentum distribution of the softer b jet in setup I: absolute LO and NLO

predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale

variations.

The NLO corrections induce a 30–40% distortion of the shape of this distribution in the

region 0.4 < ∆Rbb̄ . 1. This effect can be attributed to the recombination of b quarks and

non-b partons, which can turn b-quark pairs with ∆R < 0.4 into b-jet pairs with ∆R > 0.4.

– 20 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
1

400350300250200150100500

10

1

0.1

NLO
LO

dσ
dpT,bb̄

[

fb
GeV

]

mbb̄ > 100GeV

pp → t̄tbb̄ + X

pT,bb̄ [GeV]

400350300250200150100500

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

dσNLO
dσLO

mbb̄ > 100GeV

pp → t̄tbb̄ + X

pT,bb̄ [GeV]

Figure 10. Transverse-momentum distribution of the bb̄ system in setup I: absolute LO and NLO

predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale

variations.

Finally, in figure 15, we plot the angular variable φbb̄, which describes the azimuthal

orientation of the b jets. This observable is defined as the opening angle between two planes:

the “production” plane spanned by the beam axis and the total momentum of the bb̄ sys-

tem, and the “decay” plane, which contains the momenta of the individual b jets, defined by

cos φbb̄ =
[pbeam × (pb + pb̄)] · (pb × pb̄)

|pbeam × (pb + pb̄)||pb × pb̄|
. (3.5)

Equivalently φbb̄ represents the azimuthal orientation of the b jets with respect to the

beam direction in the plane perpendicular to the bb̄ momentum. In the case where

the bb̄ pair results from the decay of an intermediate particle, like the Higgs boson

in t̄tH production, the spin of the latter can be determined from the φbb̄ distribution.

Since the Higgs boson has spin 0, the φbb̄ distribution is expected to be isotropic, i.e.

φbb̄-independent. As we see from figure 15, the NLO corrections have a negligible influence

on the shape of this observable for the t̄tbb̄ background.

3.5 Setup II

As discussed in the introduction, the selection of t̄tbb̄ signatures with highly boosted b-

quark pairs may help to separate the t̄tH(H → bb̄) signal from its backgrounds. This

motivates us to study the irreducible t̄tbb̄ background in this particular phase-space re-

gion. Specifically, in setup II, we select highly boosted bb̄ pairs with pT,bb̄ > 200GeV,

as proposed in ref. [11]. In contrast to setup I, here we do not impose any cut on the bb̄

invariant mass. Nevertheless the cuts on pT,bb̄, pT,b, and pT,b̄, together with the bound
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Figure 11. Rapidity distribution of the harder b jet in setup I: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.
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Figure 12. Rapidity distribution of the softer b jet in setup I: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.

∆Rbb̄ > 0.4 resulting from the jet algorithm, impose an effective lower bound

mbb̄ ≃ ∆Rbb̄ pT,bb̄

√

z(1 − z) > ∆Rbb̄ pT,b,cut

√

pT,bb̄,cut

pT,b,cut
− 1 = 24GeV, (3.6)
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Figure 13. Rapidity separation of the two b jets in setup I: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.
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Figure 14. Rapidity-azimuthal-angle separation of the two b jets in setup I: absolute LO and NLO

predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale

variations.

where z and 1− z are the (transverse) momentum fractions of the two b jets, and the first

equation holds for small ∆Rbb̄.

Scale dependence. The scale dependence of the LO and NLO integrated cross

sections is shown in figure 16. At the central scale we obtain σLO = 451.8(2) fb and
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Figure 15. Azimuthal orientation of the b jets in the plane perpendicular to the bb̄ system (see

text) in setup I: absolute LO and NLO predictions (left) and NLO K factor (right). The uncertainty

bands correspond to factor-two scale variations.
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Figure 16. Scale dependence of the LO and NLO pp → t̄tbb̄ + X cross section at
√

s = 14 TeV in

setup II. The left and the right plots describe uniform (ξR = ξF = ξ) and antipodal (ξR = ξ−1
F = ξ)

scale variations, respectively.

σNLO = 592(4) fb. This corresponds to an NLO correction factor K = 1.31. The absolute

NLO cross section is reduced by about 40% as compared to setup I. The shape of the

scale-dependence curves is quite similar as in figure 4 and indicates good convergence and

stability of the perturbative expansion. The shifts induced by factor-two variations of the

QCD scales amount to 79% in LO and 22% in NLO.
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Figure 17. Invariant-mass distribution of the bb̄ pair in setup II: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.

Investigating the sensitivity of the NLO cross section to a jet veto we found similar

results as in setup I. For a jet veto of 100 GeV the K factor and the NLO uncertainty

amount to 0.84 and 33%, respectively.

Invariant-mass and transverse-momentum distributions. The bb̄ invariant-mass

distribution is displayed in figure 17. Its behaviour in the region mbb̄ . 50GeV reflects the

effective lower bound (3.6). We find that the NLO corrections induce an appreciable shape

distortion of about 20%, in particular near the physically interesting region of mbb̄ ∼
100GeV. Such effect tends to mimic a Higgs signal and should be carefully taken into

account in the t̄tH(H → bb̄) analysis.

The transverse-momentum distributions of the harder and softer b jets are presented

in figure 18 and figure 19, respectively. As a consequence of the cut imposed on the trans-

verse momentum of the b pair, the harder b jet is pushed to much higher pT values as

compared to setup I. The maximum of its distribution is located around 200 GeV. In con-

trast, the softer b jet is much less sensitive to the pT,bb̄ cut and is predominantly produced

in the region 20GeV < pT < 100GeV. This different kinematic behaviour of the two b jets

might be exploited to separate the t̄tbb̄ background from the t̄tH signal, where both b jets

are produced by the Higgs boson and should thus have more similar pT-values. The NLO

corrections to both pT,b distributions feature a slight transverse-momentum dependence,

with 10% variations of the K factor within the plotted range.

Rapidity and azimuthal distributions. The rapidities of the harder and softer b jets

are shown in figures 20 and 21, respectively. Due to the high pT of the b-pair system,

both b jets tend to be more central as compared to setup I. While the K factor is almost

insensitive to the rapidity of the soft b jet, the NLO corrections have a non-negligible
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Figure 18. Transverse-momentum distribution of the harder b jet in setup II: absolute LO and

NLO predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two

scale variations.
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Figure 19. Transverse-momentum distribution of the softer b jet in setup II: absolute LO and

NLO predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two

scale variations.

influence on the shape of the hard-b-jet distribution for |yb| > 1. The rapidity distribution

of the bb̄ system (not plotted) behaves similarly to the one of the harder b jet.
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Figure 20. Rapidity distribution of the harder b jet in setup II: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.
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Figure 21. Rapidity distribution of the softer b jet in setup II: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.

The rapidity-separation distribution (figure 22) is strongly peaked at small ∆ybb̄ and

the NLO corrections have an appreciable influence on its shape. In the region ∆ybb̄ < 2

the K factor varies between 1.17 and 1.38.

Finally, in figure 23 we show the rapidity-azimuthal-angle separation of the b jets,

which is strongly peaked at small ∆Rbb̄. Also in this distribution we observe a significant
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Figure 22. Rapidity separation of the two b jets in setup II: absolute LO and NLO predictions

(left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale variations.
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Figure 23. Rapidity-azimuthal separation of the two b jets in setup II: absolute LO and NLO

predictions (left) and NLO K factor (right). The uncertainty bands correspond to factor-two scale

variations.

shape distortion. In the region ∆Rbb̄ < 1, which corresponds to invariant masses of the

order of 100 GeV, the K factor increases by about 20%. This NLO effect might have an

important impact on the measurement of t̄tH in the highly-boosted Higgs regime.
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Figure 24. Scale dependence of the LO and NLO pp → t̄tbb̄ + X cross section at
√

s = 14 TeV in

setup III. The left and the right plots describe uniform (ξR = ξF = ξ) and antipodal (ξR = ξ−1
F = ξ)

scale variations, respectively.

3.6 Setup III

In order to explore the effect of a jet veto and its possible correlation with other observables,

we have generated events with mbb̄ > 100GeV and pT,jet < 100GeV. The LO and NLO

cross sections and their scale dependence are shown in figure 24. At the central scale

we obtain σLO = 786.1(6) fb and σNLO = 700(3) fb, corresponding to a correction factor

K = 0.89. It is evident from figure 24 that the central scale is very close to a stable

point. This demonstrates that a jet-veto value of 100 GeV is sufficiently large to avoid

perturbative instabilities. Varying the QCD scales up and down by a factor two shifts the

NLO cross section by only 0.4% and −19%, respectively.

Inspecting various kinematic distributions we find that the NLO corrections have a

much bigger impact on shapes as compared to setup I. In particular, we observe that the

suppression effect resulting from the jet veto is rather sensitive to the transverse momentum

of the b jets. For instance, the NLO correction to the pT distribution of the harder b jet

varies by about 15% in the range 20GeV < pT,b1 < 200GeV.

3.7 Setup IV

As observed in figure 9, the t̄tbb̄ cross section is dominated by relatively soft b jets, which

tend to saturate the pT,b > 20GeV cut. It is thus interesting to investigate the influence of

this cut on the t̄tbb̄ background and, in particular, on the NLO corrections. To this end,

we have studied a variation of setup I where the pT,b cut is increased from 20 to 50 GeV.

The LO and NLO cross sections and their scale dependence are shown in figure 25. At

the central scale we obtain σLO = 419.4(1) fb and σNLO = 526(2) fb, corresponding to a

correction factor K = 1.25. The higher pT,b cut reduces the NLO cross section by 46%
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Figure 25. Scale dependence of the LO and NLO pp → t̄tbb̄ + X cross section at
√

s = 14 TeV in

setup IV. The left and the right plots describe uniform (ξR = ξF = ξ) and antipodal (ξR = ξ−1
F = ξ)

scale variations, respectively.

as compared to setup I. The LO and the NLO scale dependence remain very similar as in

setup I (cf. figure 4): the uncertainty corresponding to factor-two scale variations amounts

to 77% in LO and 21% in NLO.

Inspecting various kinematic distributions we find, as in setup I, that the NLO correc-

tions have little impact on the shapes. In general the kinematic dependence of the NLO

correction factor is below 10%. The largest shape distortion is observed in the ∆Rbb̄ dis-

tribution: similarly as in setup I (cf. figure 14) we find an increase of the K factor in the

region 0.4 < ∆Rbb̄ . 1 by about 30%.

4 Conclusions

The direct production of t̄tbb̄ final states represents the major background to the produc-

tion of Higgs bosons in association with top-antitop-quark pairs at the LHC, pp → t̄tH,

where the Higgs boson decays into bb̄ pairs. This process can lead to a direct measurement

of the top-quark Yukawa coupling. Apart from improvements in the experimental analysis,

a successful exploitation of this demanding channel requires predictions for t̄tbb̄ production

at the next-to-leading-order level in QCD, and maybe even further improvements.

Extending our first results on the total cross section for pp → t̄tbb̄ published earlier,

we have presented a detailed study of integrated and differential cross sections at the LHC,

discussing in particular a dynamical scale choice, the influence of various cuts on the out-

going b quarks, and the impact of a veto on an additional hard jet. We observe that the

traditional choice of a constant scale determined by the energy threshold for the process un-

derestimates the tt̄bb̄ background by a factor of two, while an appropriate dynamical scale,

which is tied to the transverse momenta of the b quarks, stabilizes the perturbative predic-
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tions much better. Moreover, the K factor is reduced from 1.8 to 1.2. Using the new scale

choice, the corrections have little impact on the shapes of distributions if standard cuts are

applied. Strengthening the cut on the transverse momentum of the bottom quarks has no

big influence on the K factor and the effect of the NLO corrections on the shape of the distri-

butions. On the other hand, imposing a jet veto of 100GeV reduces the K factor to 0.9 and

enhances the impact of the NLO corrections on the shapes of distributions. In the regime

of highly boosted Higgs bosons, which offers better perspectives to observe the t̄tH signal,

we find significant distortions of the kinematic distributions, while the K factor is 1.3.

Our calculation builds on the Feynman-diagrammatic approach, i.e. on an algorithmic

reduction of each Feynman diagram to a canonical standard form, which is automatically

processed to Fortran output, and on a numerical reduction of tensor loop integrals to

an appropriate set of scalar master integrals. A key feature of the diagram-by-diagram

approach is that colour sums can be preformed very efficiently. Helicity summation is sim-

plified by introducing a basis of O(1000) basic structures. The reduction to these structures

can be performed in a process-independent way. The numerical tensor-integral reduction

employs dedicated methods that have been developed to treat the numerically delicate

phase-space regions where small Gram determinants appear in denominators during the

traditional tensor reduction. Real corrections are integrated using well-known dipole sub-

traction methods. We find that our Feynman-diagrammatic approach provides very high

numerical stability and CPU efficiency, a result that is very encouraging in view of future

challenging next-to-leading-order calculations for important multiparticle processes.
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A Some details on the reduction of standard matrix elements

In section 2.1 we have briefly described our prodecure to reduce the numerous helicity

structures for gg → t̄tbb̄ to a standard form. We proceed in two steps, the first step

employing only identities that hold in arbitrary D 6= 4 space-time dimensions, followed by

the second step (after cancelling UV divergences) that builds on four-dimensional identities.

As also anticipated in section 2.1, we support two different versions of step 2. The first

variant only uses the reduction (2.21) of products of five Dirac matrices to products of

three or only single matrices, leading to 970 SMEs. In this approach no chiral projectors

or γ5 factors are introduced. The second variant employs more four-dimensional identities,

such as (2.20), which are derived from Chisholm’s identity in ref. [12, 79], and leads to 502

SMEs, which however involve the γ5 matrix.

– 31 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
1

In the following we describe the second procedure for the crossed process

g(p1) g(p2) t̄(p3) t(p4) b̄(p5) b(p6) → 0, (A.1)

where the incoming momenta of the corresponding incoming particles are given in paren-

theses. The individual steps to reduce the structures

[v̄(p3)Γaωσu(p4)][v̄(p5)Γbωτu(p6)] ≡ [Γa]
σ
34[Γb]

τ
56 (A.2)

are as follows:

1. First, we eliminate multiple contractions of Dirac matrices between the two Dirac

chains9 by identities like

γµγαγνω± ⊗ γµγβγν = 4gαβγµω± ⊗ γµω± + 4γβω± ⊗ γαω∓,

γµγαγνω± ⊗ γνγβγµ = 4gαβγµω± ⊗ γµω∓ + 4γβω± ⊗ γαω±.
(A.3)

2. Next we shorten strings of five or more Dirac matrices using (2.21) in the massless

bottom-quark chain, [v̄(p5)Γbωτu(p6)], leaving three or only one Dirac matrix in this

chain. There is at most one contraction of Dirac matrices between the two chains.

3. Now we simplify structures that involve bottom-quark Dirac chains with three

slashed vectors using the trick described in (3.40) and (3.41) of ref. [79]. In more

detail, this manipulation replaces the product of two Dirac chains of the form

[/a/b/c . . . ]σ34[/d/e6f ]τ56 by products in which either the top chain [. . . ]σ34 has two Dirac

matrices less or in which the bottom chain contains only one slashed vector. Using

this procedure recursively we obviously achieve that bottom chains with three

slashed vectors are multiplied by top chains containing only a single Dirac matrix,

i.e. they appear in the form [/a]σ34[/d/e6f ]τ56.

4. In a further step it is possible to eliminate all products of three Dirac matrices in the

bottom chain, so that this massless Dirac chain contains exactly one Dirac matrix.

If there is a contraction between the top and bottom chain, two Dirac matrices can

easily be shifted from the bottom to the top chain using (2.20). If there is no contrac-

tion the product of chains looks like [/a]σ34[/d/e6f ]τ56 owing to the previous step. If the

set {d, e, f} contains at most one polarization vector εi (i = 1, 2) of the two incoming

gluons, we can assume that {d, e, f} contains either the momentum p3 or p4. If this

is not the case, it can be achieved upon using momentum conservation and the Dirac

equation in the bottom chain. The factors /pi
(i = 3, 4) in the bottom chain easily

allow for shifting all but one Dirac matrix to the top chain by the manipulations,

[

/a
]±

34

[

/p3
/e6f
]±

56
=

1

2

(

[

γµ/p3
/a
]±

34
− m3

[

γµ/a
]±

34

)

[

γµ/e6f
]±

56

=
1

2

(

[

γµ6f/e/p3
/a
]±

34
− m3

[

/e6fγµ/a
]±

34

)

[

γµ
]±

56
,

9In this context we recall that multiple contractions of Dirac matrices inside a single Dirac chain have

already been eliminated in the first (D-dimensional!) step of the algebraic reduction.
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[

/a
]±

34

[

/p3
/e6f
]∓

56
= · · · =

1

2

(

[

/e6fγµ/p3
/a
]±

34
− m3

[

γµ6f/e/a
]±

34

)

[

γµ
]∓

56
,

[

/a
]±

34

[

/p4
/e6f
]±

56
= · · · =

1

2

(

[

/a/p4
γµ6f/e

]±

34
+ m4

[

/a/e6fγµ

]∓

34

)

[

γµ
]±

56
,

[

/a
]±

34

[

/p4
/e6f
]∓

56
= · · · =

1

2

(

[

/a/p4
/e6fγµ

]±

34
+ m4

[

/aγµ6f/e
]∓

34

)

[

γµ
]∓

56
, (A.4)

where we used pµ
i = {/pi

, γµ}/2 and the Dirac equation in the 34-chain and (2.20).

We recall that we consistently take momenta as incoming. The case that no factor

/p3/4
appears in the bottom chain can only occur if the other two slashed vectors

in the bottom chain belong to polarization vectors. Thus, we can assume that the

vector a is a momentum out of {p1, p2, p5, p6} and that {d, e, f} contains p1 or p2.

We can even omit p2 on either side if we eliminate it via momentum conservation,

so that the considered bottom chains all contain a factor /p1
. Two Dirac matrices

can now be shifted from the bottom to the top chain using the relations

[

/p1

]±

34

[

/p1
/e6f
]±

56
=

1

2

(

[

/p1
γµ/p1

]±

34
+ p2

1

[

γµ

]±

34

)

[

γµ/e6f
]±

56

=
1

2

(

[

/p1
/e6fγµ/p1

]±

34
+ p2

1

[

γµ6f/e
]±

34

)

[

γµ
]±

56
,

[

/p1

]±

34

[

/p1
/e6f
]∓

56
= · · · =

1

2

(

[

/p1
γµ6f/e/p1

]±

34
+ p2

1

[

/e6fγµ

]±

34

)

[

γµ
]∓

56
,

[

/p5

]±

34

[

/p1
/e6f
]±

56
=

1

2

[

γµ

]±

34

[

γµ
/p5/p1

/e6f
]±

56
=

1

2

[

γµ/p1/p5

]±

34

[

γµ/e6f
]±

56

=
1

2

[

γµ6f/e/p1/p5

]±

34

[

γµ
]±

56
,

[

/p5

]±

34

[

/p1
/e6f
]∓

56
= · · · =

1

2

[

/p5/p1
/e6fγµ

]±

34

[

γµ
]∓

56
,

[

/p6

]±

34

[

/p1
/e6f
]±

56
= · · · =

1

2

[

/p6
6f/e/p1

γµ

]±

34

[

γµ
]±

56
,

[

/p6

]±

34

[

/p1
/e6f
]∓

56
= · · · =

1

2

[

γµ/p1
/e6f/p6

]±

34

[

γµ
]∓

56
, (A.5)

where we have used that the bottom mass is set to zero, i.e. m5 = m6 = 0. Note

that we did not use p2
1 = 0 in the first relation, in order to indicate that the whole

reduction procedure described here does not only apply to gluons but also to the

case where gluons are replaced by massive vector bosons.

5. After having reduced all bottom chains to contain only one Dirac matrix we

apply (2.21) to the top chain recursively as far as possible. In this way the top

chains contain only up to four Dirac matrices.

6. Next we reduce products of the form [/a/b/c/d]σ34[/e]
τ
56, which do not involve a contrac-

tion. After eliminating p2 via momentum conservation, the product /a/b/c/d contains

one of the factors /p1/p5
, /p1/p6

, or /p5/p6
, because at most two of the slashed vectors

can be polarization vectors. The majority of such cases can be reduced with the
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following relations,
[

Γ/a/p5

]±

34

[

/e
]±

56
=

1

2

[

Γ/aγµ

]±

34

[

γµ
/p5

/e
]±

56
=

1

2

[

Γ/aγµ/e/p5

]±

34

[

γµ
]±

56

= −1

2

[

Γ/aγµ/p5
/e
]±

34

[

γµ
]±

56
+ (ep5)

[

Γ/aγµ

]±

34

[

γµ
]±

56

= −1

2

[

Γγµ/e
]±

34

[

/aγµ
/p5

]±

56
+ (ep5)

[

Γ/aγµ

]±

34

[

γµ
]±

56

= −
[

Γ/p5
/e
]±

34

[

/a
]±

56
+ (ap5)

[

Γγµ/e
]±

34

[

γµ
]±

56
+ (ep5)

[

Γ/aγµ

]±

34

[

γµ
]±

56

=
[

Γ/e/p5

]±

34

[

/a
]±

56
+ (ap5)

[

Γγµ/e
]±

34

[

γµ
]±

56
− (ep5)

[

Γγµ/a
]±

34

[

γµ
]±

56
,

[

Γ/a/p5

]±

34

[

/e
]∓

56
= · · · = −

[

Γ/e/p5

]±

34

[

/a
]∓

56
+ (ap5)

[

Γ/eγµ

]±

34

[

γµ
]∓

56

− (ae)
[

Γ/p5
γµ

]±

34

[

γµ
]∓

56
+ (ep5)

[

Γ/aγµ

]±

34

[

γµ
]∓

56
,

[

Γ/a/p6

]±

34

[

/e
]±

56
= · · · = −

[

Γ/e/p6

]±

34

[

/a
]±

56
+ (ap6)

[

Γ/eγµ

]±

34

[

γµ
]±

56

− (ae)
[

Γ/p6
γµ

]±

34

[

γµ
]±

56
+ (ep6)

[

Γ/aγµ

]±

34

[

γµ
]±

56
, (A.6)

[

Γ/a/p6

]±

34

[

/e
]∓

56
= · · · =

[

Γ/e/p6

]±

34

[

/a
]∓

56
+(ap6)

[

Γγµ/e
]±

34

[

γµ
]∓

56
−(ep6)

[

Γγµ/a
]±

34

[

γµ
]∓

56
.

Here Γ is any string of Dirac matrices, and again m5 = m6 = 0 was used. If a 6= e,

these relations interchange a and e (if a = e they are useless). Since e can only be

p1, p3, or p4, we can use these identities to shift p3 or p4 to the top chain, where

these momenta are eliminated by the Dirac equation, so that we are left with the

cases e = p1. For [Γ/p5/p6
]σ34[/p1

]τ56 this relation can be used to transfer p6 to the

bottom chain, again triggering the Dirac equation there. We are left with the two

cases [Γ/p1/p5
]σ34[/p1

]τ56 and [Γ/p1/p6
]σ34[/p1

]τ56, which are reduced according to

[

Γ/p1/p6

]±

34

[

/p1

]±

56
=

1

2

[

Γ/p1
γµ

]±

34

[

/p1/p6
γµ
]±

56
=

1

2

[

Γ/p1/p6/p1
γµ

]±

34

[

γµ
]±

56

= (p1p6)
[

Γ/p1
γµ

]±

34

[

γµ
]±

56
− p2

1

2

[

Γ/p6
γµ

]±

34

[

γµ
]±

56
,

[

Γ/p1/p5

]±

34

[

/p1

]∓

56
= · · · = (p1p5)

[

Γ/p1
γµ

]±

34

[

γµ
]∓

56
− p2

1

2

[

Γ/p5
γµ

]±

34

[

γµ
]∓

56
,

[

Γ/a/p1/p5

]±

34

[

/p1

]±

56
= · · · = 2(ap1)

[

Γ/p5

]±

34

[

/p1

]±

56
− 2(ap5)

[

Γ/p1

]±

34

[

/p1

]±

56

+ (p1p5)
[

Γ/p1
γµ/a
]±

34

[

γµ
]±

56
− p2

1

2

[

Γ/p5
γµ/a
]±

34

[

γµ
]±

56
,

[

Γ/a/p1/p6

]±

34

[

/p1

]∓

56
= · · · = 2(ap1)

[

Γ/p6

]±

34

[

/p1

]∓

56
− 2(ap6)

[

Γ/p1

]±

34

[

/p1

]∓

56

+ (p1p6)
[

Γ/p1
γµ/a
]±

34

[

γµ
]∓

56
− p2

1

2

[

Γ/p6
γµ/a
]±

34

[

γµ
]∓

56
, (A.7)

where the Dirac structure Γ and the vector a can be chosen arbitrarily.

7. Now we reduce products of Dirac chains of the type [γµ/a/b/c]σ34[γ
µ]τ56, i.e. four Dirac

matrices in the top chain with a contraction to the bottom chain. Among the vectors
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a, b, c, there is at least one of the momenta p1, p5, p6. The momenta p5, p6 can be

shifted to the bottom chain via (2.20) and subsequently eliminated with the Dirac

equation. If only p1 (but not p5, p6) occurs in the top chain, the full Dirac structure

can only be [γµ/p1
/ε1/ε2]

σ
34[γ

µ]τ56, which is kept as a standard structure.

8. Now we repeat steps 6 and 7 for top chains involving three Dirac matrices, in order

to eliminate such structures as far as possible, and subsequently again for top chains

with two matrices.

9. The remaining products of the form [/pi
]σ34[/pj

]τ56 are reduced as far as possible as

described in (B.4) of ref. [12].

10. Finally, it is convenient to replace all chirality projectors ω± = (1 ± γ5)/2 in terms

of vector (no γ5) and axial-vector (∝ γ5) structures in the two Dirac chains, because

only the combinations vector⊗vector and axial-vector⊗axial-vector contribute owing

to the parity symmetry of the process in NLO QCD.

B Benchmark numbers for the virtual corrections

In order to facilitate a comparison to our calculation, in this appendix we provide explicit

numbers on the squared LO amplitude and the corresponding virtual correction for a

single non-exceptional phase-space point. The set of momenta for the partonic reaction

gg → t̄tbb̄ is chosen as

pµ
g = (500,0,0,500),

pµ
g = (500,0,0,−500),

pµ
t = (327.5045589027869,107.1276753641986,−107.9290580423663,−233.1168284428635),

pµ
t̄ = (276.6425142763093,−107.4949148022111,153.8289259355409,−107.3397668261919),

pµ
b = (233.9459027189062,82.55875671042013,−77.70592645955253,204.6375480757531),

pµ
b̄

= (161.9070241019976,−82.19151727240762,31.80605856637796,135.8190471933023), (B.1)

which defines the same phase-space point as already chosen for qq̄ → t̄tbb̄ in ref. [12]. The

components are given in GeV and mt = 172.6GeV. For the spin- and colour-averaged

squared LO amplitude we obtain

|MLO|2/g8
s = 5.437061775267626 · 10−9 GeV−4,

|MLO|2/g8
s

∣

∣

∣

Madgraph
= 5.437061775267649 · 10−9 GeV−4, (B.2)

where we divided out the strong coupling constant gs.

We express NLO contributions in the 2 → 4 phase space as Laurent series in ǫ =

(4 − D)/2,

|M|2 =

(

1 + cΓ

2
∑

k=0

δ
(k)
NLOǫ−k

)

|MLO|2, (B.3)
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δ(2) δ(1) δ(0)

loops version 1 −0.1484719139263099 0.0986990876957258 0.4123948722195028

version 2 −0.1484719139260971 0.0986990876958276 0.4123948722188028

I version 1 0.1484719139263437 −0.0986990876957289 −0.2125642646365643

version 2 0.1484719139263439 −0.0986990876957291 −0.2125642646365644

NLO version 1 0.0000000000000338 −0.0000000000000031 0.1998306075828831

version 2 0.0000000000002467 0.0000000000000985 0.1998306075822384

Table 3. Various contributions to the virtual NLO corrections to gg → t̄tbb̄ at the phase-space

point (B.1).

where we factor out the LO term and the normalization factor

cΓ =
(4π)ǫΓ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
=

(4π)ǫ

Γ(1 − ǫ)
+ O(ǫ3)

= (4π)ǫΓ(1 + ǫ) − π2

6
ǫ2 + O(ǫ3). (B.4)

We split the result into the two parts,

δ
(k)
NLO = δ

(k)
loops + δ

(k)
I , (B.5)

which correspond to the contributions of renormalized loop diagrams (loops) and the I oper-

ator of the dipole subtraction function as defined in ref. [59]. The numbers in table 3 have

been obtained in the ’t Hooft-Feynman gauge using the ’t Hooft-Veltman variant of dimen-

sional regularization (four-dimensional external partons). We set the scale of dimensional

regularization and the renormalization scale as µ = µR = mt. The corresponding values of

the strong coupling constant in the renormalization scheme described in section 3 are

αs(mt)|LO = 0.1178730139006150, αs(mt)|NLO = 0.1076396017050965. (B.6)

The agreement between our two independent versions of the virtual corrections is typically

about 10 digits at regular phase-space points.

Another benchmark result for the virtual corrections to gg → t̄tbb̄ can be found

in ref. [50]. The quantity presented there and denoted as ‘HELAC-1L’ corresponds to the

unrenormalized virtual one-loop correction plus the mass-renormalization contribution

(without wave-function and coupling constant renormalization). We find agreement at the

10-digit level.
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