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matter, and direct searches, involving novel sterile neutrino dark matter production mech-

anisms from the pseudo-Goldstone-mediated scattering or decay, modifications of BBN

bounds on sterile neutrinos, suppression of canonical sterile neutrino decay channels at

direct search experiments, late injection of an additional population of neutrinos in the

Universe after neutrino decoupling, and measurable dark radiation.
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1 Motivation

The most straightforward explanation of tiny neutrino masses is the seesaw mechanism,

involving Standard Model (SM) singlet (sterile) right-handed neutrinos at a heavier scale.

GUT (grand unified theory) scale seesaw models [1–6] accomplish this with O(1) couplings

with heavy sterile neutrinos at M ∼ 1010−1015 GeV. However, the seesaw mechanism is also

consistent with masses below the electroweak scale, which are motivated by connections to

dark matter (DM) and leptogenesis as in the neutrino Minimal Standard Model (νMSM) [7–

9] and involve potentially rich phenomenology in cosmology, indirect detection, and direct

searches [10, 11].

Drastic departures from the seesaw phenomenology is possible if additional symme-

tries or particles exist in the sterile neutrino sector beyond the basic elements of the seesaw

framework (see e.g. [12–14]). Since the Majorana mass of a pure singlet fermion is ex-

pected to lie at the ultraviolet (UV) cutoff scale of the theory (such as the GUT or Planck

scale), light sterile neutrinos are plausibly charged under some symmetry. If this symmetry

is related to lepton number, the sterile neutrino masses emerge from a low scale of lep-

ton number breaking [15–21]; rich phenomenology ensues from the existence of additional

scalars [22–25] and massive gauge bosons [2, 3, 26] or a (pseudo-) Goldstone boson, the

majoron [15–21].

This symmetry can, however, be confined entirely to the sterile neutrino sector. This

can occur, for instance, if the sterile neutrinos originate from a separate hidden sector. As

discussed in the next section, even with a GUT-scale realization of the seesaw mechanism,

exotic fermions from hidden sectors that couple to the GUT scale right-handed neutrinos

develop couplings to the SM neutrinos, mimicking a low energy seesaw setup, effectively

acting as light sterile neutrinos akin to those studied in, e.g. the νMSM.

In this letter, we consider a global symmetry confined to, and spontaneously broken

in, such a light (GeV scale) exotic sterile neutrino sector, and study the phenomenology
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of the pseudo-Goldstone boson η of this broken symmetry. GeV scale sterile neutrinos

can equilibrate with the thermal bath and dominate the energy density of the Universe

before big bang nucleosynthesis (BBN) [27] — their interplay with η can therefore give

rise to novel cosmological scenarios. The η phenomenology can be very different from

the more familiar majoron phenomenology, as the scale of symmetry breaking, lepton

number breaking, and sterile neutrino masses are all different, which can enable several

new possibilities for cosmology, dark matter, and direct searches that are not possible in

the majoron framework.

2 Charged-singlet seesaws

The canonical seesaw mechanism involves three SM-singlet, right-handed neutrinos Ni,

with:

L ⊃ yijLihNj +MiN̄
c
iNi. (2.1)

Li and h are the SM lepton doublet and Higgs fields, and yij are dimensionless Yukawa

couplings. The hierarchy M � yv (where v is the Higgs vacuum expectation value (vev))

leads to the familiar seesaw mechanism, resulting in active and sterile neutrino masses

ma ∼ y2v2/M, ms ∼M , with an active-sterile mixing angle sin θ ∼ y v/M . M ∼ 1014 GeV

produces the desired neutrino masses for y ∼ O(1), whereas M ∼GeV requires y ∼ 10−7.

A global or gauged U(1)lepton or U(1)B−L symmetry for Ni [15–21] precludes the Ma-

jorana mass term; the lagrangian is instead

L ⊃ yijLihNj + xiφN̄
c
iNi + λ(H†H)φ2 + V (φ). (2.2)

A vev for the exotic Higgs field φ, appropriately charged under the lepton or B−L symme-

try, breaks the symmetry and produces sterile neutrino masses Mi ∼ x〈φ〉. If the symmetry

is global, a physical light degree of freedom, the Goldstone boson, known as the majoron,

emerges [15, 16].

In this paper, we consider instead a global symmetry, for instance a U(1)′, that is

confined to the sterile neutrinos and does not extend to any SM field. Such a symmetry

forbids both terms in eq. (2.1). However, a scalar field φ carrying the opposite U(1)′ charge

to Ni enables the higher dimensional operator 1
ΛLhNφ, where Λ is a UV-cutoff scale.1 A

φ vev breaks the U(1)′ and produces the Yukawa interaction term from eq. (2.1) with the

effective Yukawa coupling y ∼ λ1〈φ〉/Λ; thus such an operator also provides a natural

explanation for the tiny Yukawas in terms of the hierarchy between the two scales 〈φ〉 and

Λ. Next, we discuss a UV completion of this setup in terms of singlet fermions from a

hidden sector that couple to heavy right-handed seesaw neutrinos.

2.1 “Sterile neutrinos” from a hidden sector with a heavy right-handed neu-

trino portal

We start with the original seesaw motivation of pure singlet, heavy (scale M , possibly close

to the GUT scale) right-handed neutrinos that couple to SM neutrinos through Yukawa

1Such operators have been studied in the context of supersymmetry [28–32], including the freeze-in

production of sterile neutrino DM [33–35].
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terms yijLihNj . If the Nj also act as portals to a hidden sector,2 this invokes the generic

prospect of an analogous Yukawa term y′ijL
′
ih
′Nj , where L′ih

′ is a singlet combination

of hidden sector fields analogous to Lih. Integrating out the Ni produces the following

dimension-5 operators connecting the visible and hidden sectors:3

L ⊃ 1

M
y2(Lh)2 +

1

M
yy′(Lh)(L′h′) +

1

M
y′2(L′h′)2. (2.3)

In the above we have ignored flavor structure and dropped indices for simplicity, assum-

ing all yij(yij) are roughly the same, so that the above terms should only be taken as

approximate. If the hidden sector scalar acquires a vev v′, the above can be rewritten as

L ⊃ 1

Λeff
(Lh)2 + yeffLhL

′ +MeffL
′L′ (2.4)

where we have defined Λ−1
eff ≡ y2/M , yeff ≡ yy′v′/M , and Meff ≡ y′2v′2/M . Here, the first

term accounts for the active neutrino masses y2v2/M from the primary seesaw involving

integrating out the pure singlet neutrinos Ni. The latter two terms give a similar contri-

bution to the active neutrino masses from the secondary seesaw resulting from integrating

out the L′i fermions (note the analogy between eq. (2.4) and eq. (2.1)).

The mixing angle between the active neutrinos and these hidden sector singlets L′ is

approximately

sin θ′ ∼ yeff v

Meff
=

yv

y′v′
=

√
ma

Meff
, (2.5)

which is the relation expected from a seesaw framework. Therefore, light sterile neutrinos

that appear to satisfy the seesaw relation could have exotic origins in a hidden sector

connected via a high scale neutrino portal, with symmetries unrelated to the SM, and

themselves obtain light masses via the seesaw mechanism.4 We will henceforth ignore the

integrated out “true” right-handed seesaw neutrinos and work with the effective field theory

(EFT) in eq. (2.4), switching the notation Ni to refer to these light sterile states L′, whose

phenomenology we will pursue in this paper.

2.2 Pseudo-Goldstone boson

The spontaneous breaking of the global U(1)′ by 〈φ〉 ≡ f gives rise to a massless Goldstone

boson, which we will call the η-boson. It is conjectured that non-perturbative gravitational

effects explicitly break global symmetries, leading to a pseudo-Goldstone boson mass of

order m2
η ∼ f3/MPl via an operator of the form φ5

MPl
[49, 50].5 For generality, we treat mη

as a free parameter, but this approximate mass scale should be kept in mind.

2For recent studies of right-handed neutrinos acting as portals to a hidden/dark sector, see [36–43].
3We assume that the Ni sector is sufficiently extended and general that one cannot rotate the L,L′

system to suppress couplings of any particular L,L′ to the Ni sector.
4This setup holds similarities with extended seesaw models [44–48], which also employ a seesaw suppres-

sion for sterile neutrino masses to naturally accommodate an eV scale sterile neutrino.
5An explicit U(1)′ breaking Goldstone mass term is also possible. A small η mass is also generated from

the Yukawa coupling [51], but is negligible for the parameters we are interested in.
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Next, we draw the distinction between the η-boson and the more familiar majoron [15–

21]. For both, couplings to (both active and sterile) neutrinos are proportional to the neu-

trino mass suppressed by the scale of symmetry breaking, as expected for Goldstone bosons,

hence several phenomenological bounds on the majoron symmetry breaking scale [11, 19,

52–55] are also applicable to η. However, the majoron is associated with the breaking of

lepton number — a symmetry shared by the SM leptons as well as the sterile neutrinos —

and the sterile neutrino mass scale approximately coincides with the scale of lepton num-

ber breaking. This results in the majoron being much lighter that the sterile neutrinos.

Furthermore, this scaling leads to specific relations between majoron couplings and sterile

neutrino masses, which drives many of the constraints on majorons [11, 19, 52–55].

In contrast, these energy scales are distinct in the η framework: the symmetry breaking

scale f (i.e., the scale of U(1)′ breaking) is independent of the breaking of lepton number

(at the much higher real seesaw scale M) and is also distinct from the sterile neutrino mass

scale (Meff ∼ f2/M), which, as discussed above, is suppressed by a seesaw mechanism.

The ability to vary them independently opens up phenomenologically interesting regions of

parameter space. Furthermore, the sterile neutrino masses Meff ∼ f2/M can be comparable

to the η-boson mass m2
η ∼ f3/MPl (if f ∼ M2/MPl); this coincidence of mass scales can

carry important implications for cosmology and DM, as we will see later.

3 Framework and phenomenology

We focus on the low-energy effective theory containing three sterile neutrinos (which we

have reset to the label Ni rather than L′), and the pseudo-Goldstone boson η. We treat

mNi , f , and mη as independent parameters. We assume mNi ∼GeV scale, and yij are

correspondingly small in a natural way that matches the measured ∆m2
ν and mixings

among the light active neutrinos. We will consider the interesting and widely studied

possibility that the lightest sterile neutrino N1 is DM, which is especially appealing given

recent claims of a 3.5 keV X-ray line [56, 57] compatible with decays of a 7 keV sterile

neutrino DM particle. We also assume f � v; the U(1)′ breaking singlet scalar is then

decoupled and irrelevant for phenomenology.

Lifetime. The η lifetime is controlled by decay rates into (both active and sterile) neu-

trinos. For instance,

Γ(η → νν) ≈ 1

8π

(
mν

f

)2

mη, (3.1)

where mν ∼ 0.1 eV is the active neutrino mass scale. For the decay channels η → Niν and

η → NiNi involving the sterile neutrinos, mν is replaced by
√
mNimν and mNi respectively.

Figure 1 shows the η lifetime as a function of mη, with MN2,N3 = 1 GeV and MN1 =

7 keV, for two different values of f . Depending on the scale f and the available decay

channels, a range of interesting lifetimes are possible: η can decay before or after BBN

(and before/after Cosmic Microwave Background (CMB) decoupling), or live longer than

the age of the Universe, providing a potential DM candidate (for studies of majoron DM,

see [48, 49, 51, 58–63]).
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Figure 1. Contours of lifetime Log10(τη/s) with MN2,3
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= 7 keV for f = 109 GeV
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(top) and the time of BBN (bottom).
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Figure 2. Sterile neutrino annihilation processes involving the pseudo-Goldstone boson η.

A pseudo-Goldstone coupling to neutrinos faces several constraints [64–68]. However,

many of these constraints weaken/become inapplicable if the pseudo-Goldstone is heavy or

can decay into sterile neutrinos. We remark that these constraints are generally not very

stringent in the parameter space of interest in our framework.

Cosmology. In the early Universe, GeV scale sterile neutrinos N2,3 (but not the DM

candidate N1, which has suppressed couplings to neutrinos) are in equilibrium with the

thermal bath due to their mixing with active neutrinos, decouple while relativistic at

T ∼ 20 GeV [27], can grow to dominate the energy density of the Universe, and decay

before BBN [27, 69, 70].

η couples appreciably only to the sterile neutrinos, and is produced via sterile neutrino

annihilation NiNi → ηη (see figure 2 (a)) or decay (if kinematically open). The annihilation

process, despite p-wave suppression, is efficient at high temperatures T & mN2,3 . The

magnitude of f for such annihilations to be rapid can be estimated by comparing the

annihilation cross section [71, 72] with the Hubble rate at T ∼ mN2,3

nNiσv ∼ H ⇒
m4
Ni

f4
mNi ∼

m2
Ni

MPl
⇒ f ∼ m3/4

Ni
M

1/4
Pl . (3.2)

For mN2,3 ∼GeV, this process is efficient for f . 105 GeV, and produces an η abundance

comparable to the N2,3 abundance. For f > 105 GeV, the annihilation process is feeble,

and a small η abundance will accumulate via the freeze-in process instead [73, 74].
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Dark Matter production. η can also mediate NiNi → NjNj interactions between

the sterile neutrinos (figure 2 (b)), which enables a novel DM production mechanism

NiNi → N1N1. One can analogously estimate the scale f below which this process [75] is

efficient: f ∼ √mN1(MPlmN2,3)1/4. This would generate an N1 abundance comparable to

relativistic freezeout, which generally overcloses the Universe, hence this scenario is best

avoided. Likewise, η decays can also produce DM if mη > 2mN1 . By comparing rates, we

find that production from such decays dominates over the annihilation process provided

mη > m3
N2,3

/f2, which generally holds over most of our parameter space. Additional

DM production processes, such as η annihilation and N2,3 decays via an off-shell η, are

always subdominant and therefore neglected. The novel production processes discussed

here do not rely on N1 mixing with active neutrinos, which is particularly appealing since

this canonical (Dodelson-Widrow) production mechanism [76] is now ruled out by various

constraints [9, 77–84].

Next, we discuss various cosmological histories that are possible within this framework.

Our purpose is not to provide a comprehensive survey of all possibilities, but simply to

highlight some novel and interesting features that can be realized. Since available decay

channels and lifetimes are crucial to the cosmological history, we find it useful to organize

our discussion into the following three different regimes.

Heavy regime: mη > mNi. All η decay channels to sterile neutrinos are open, and

η decays rapidly, long before BBN. If NiNi → ηη is rapid, η maintains an equilibrium

distribution at T & mη, and the decay η → N1N1 generates a freeze-in abundance of N1,

estimated to be [33, 35, 74, 85–90]

Yeq ∼ 0.1
MPl

mη

(
mN1

f

)2

. (3.3)

The observed DM abundance is produced, for instance, with f ∼ 105 GeV, mη ∼ 10 GeV,

and mN1 ∼ 10 keV.

If the NiNi → ηη annihilation process is feeble, a freeze-in abundance of η is generated

instead, and its decays produce a small abundance of N1. The N1 yield is suppressed by

the branching fraction BR(η → N1N1) = Γ(η→N1N1)
Γ(η→N2,3N2,3) =

m2
N1

mN2,3
. The resulting abundance

is much smaller than Yeq from eq. (3.3) and cannot account for all of DM unless mN1 ∼
mN2,N3 .

Intermediate regime: mN2,3 > mη > mN1. In addition to annihilation processes, η

can now also be produced directly from heavy sterile neutrino decay. Ignoring phase space

suppression, the decay rate is

Γ(Ni → ην) ≈ 1

16π

mNimν

f2
mNi . (3.4)

If sufficiently large, this exotic decay channel can compete with the standard sterile neutrino

decay channels induced by active-sterile mixing [91]. In figure 3, we plot (blue curve) the

scale f below which this channel dominates (assuming standard seesaw relations). In this

– 6 –
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Figure 3. Solid blue: symmetry breaking scale f below which the exotic decay N → ην dominates

over the standard sterile neutrino decay channels imposed by seesaw relations. Below the dashed

red line, this decay channel causes the sterile neutrinos to decay before BBN. Below the dotted

green line, sterile neutrino — pseudo-Goldstone interactions are sufficiently rapid to thermalize the

two populations in the early Universe.

region, the traditionally searched-for decay modes are suppressed, rendering the sterile

neutrinos invisible at detectors such as at DUNE [92] and SHiP [93] (unless N1 also decays

in the detector, as can occur if it is not DM).

N2,3 are generally required to decay before BBN due to constraints from several recom-

bination era observables [94–96], necessitating τN2,N3 . 1 s and consequently mN2,N3 &
O(100) MeV in the standard seesaw formalism. The new decay channel Ni → ην, if dom-

inant, can reduce the sterile neutrino lifetime, allowing lighter masses to be compatible

with BBN. In figure 3, the red dashed line shows the scale f below which the sterile neu-

trino decays before BBN. For f . 106 GeV, even lighter (MeV scale) sterile neutrinos are

compatible with the seesaw as well as BBN constraints, in stark contrast to the standard

seesaw requirements.

Depending on parameters, η can decay before or after BBN (figure 1), but its dominant

decay channel is to the DM candidate η → N1N1. If N2,3 decay dominantly into η, or if

N1 thermalizes with N2,3, the N1 relic density is overabundant for DM. Viable regions of

parameter space instead involve a small fraction of N2,3 decaying into η, which subsequently

decays toN1. In this case, N1 accounts for the observed DM abundance (for mN2,3 = 1 GeV)

for f ≈ 109 GeV
√

mN1
GeV . For instance, mN1 = 7 keV requires f ∼ 106 GeV.

Here, DM (N1) is produced from late decays of heavier particles (η and N2,3) and can

be warm. Such late production of warm DM can carry interesting cosmological signatures

and structure formation implications, which lie beyond the scope of this paper.

Light regime: mNi > mη > mν . All sterile neutrinos can now decay into η. In par-

ticular, a new, very long-lived DM decay channel N1 → ην emerges. Since η subsequently

decays into two neutrinos, this can provide distinct signatures at neutrino detectors such

as IceCube, Borexino, KamLAND, and Super-Kamiokande. Note that, unlike the standard

N1 → γν decay channel, this has no gamma ray counterpart.

Unlike previous scenarios, η is extremely long-lived, and if sufficiently light, can con-

tribute measurably to dark radiation at BBN or CMB [71, 97, 98]. A Goldstone that freezes

– 7 –
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out above 100 MeV contributes ∼ 0.39 to Neff at CMB [99]; this is the case if the sterile

neutrino annihilation to η is efficient or if sterile neutrinos decay dominantly to η. If η

decays after neutrino decoupling, neutrinos from its decays provide additional radiation

energy density in the CMB [75].

Finally, if η is sufficiently long-lived and heavy, it can also account for part or all of

DM. The phenomenology in this case is similar to that of the majoron [48, 49, 51, 58–63],

with neutrino lines as an interesting signal [55].

4 Discussion

We studied the phenomenology of a pseudo-Goldstone boson η associated with a sponta-

neously broken global symmetry in a light (GeV scale) sterile neutrino sector. The presence

of sterile neutrinos and η at similar mass scales gives rise to several novel possibilities for

cosmology, DM, and direct searches. Primary among these are novel sterile neutrino DM

production mechanisms from η-mediated scattering or decay, and new decay channels for

heavy sterile neutrinos, which can alleviate BBN bounds and suppress standard search

channels at direct search experiments, or provide distinct DM signals at neutrino detec-

tors. Likewise, η can contribute measurably to dark radiation at BBN or CMB, inject a

late population of SM neutrinos from its late decays, or account for DM. We have only

touched upon a few interesting phenomenological possibilities in this framework, and sev-

eral directions, such as the effect of η on leptogenesis [7–9, 72, 100], or differences in the

flavor structure and mixing angles from the hidden sector interpretation compared to the

canonical seesaw mechanism, could be worthy of further detailed study.
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[2] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity

nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
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[26] W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the

right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

[27] T. Asaka, M. Shaposhnikov and A. Kusenko, Opening a new window for warm dark matter,

Phys. Lett. B 638 (2006) 401 [hep-ph/0602150] [INSPIRE].
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