
J
H
E
P
0
2
(
2
0
1
8
)
1
2
0

Published for SISSA by Springer

Received: January 5, 2018

Accepted: February 8, 2018

Published: February 20, 2018

String corrections to circular Wilson loop and

anomalies

Alessandra Cagnazzo,a,b Daniel Medina-Rincona,c and Konstantin Zaremboa,b,1

aNordita, Stockholm University and KTH Royal Institute of Technology,

Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
bDepartment of Physics, University of Oslo,

P.O. Box 1048 Blindern, N-0316 Oslo, Norway
cDepartment of Physics and Astronomy, Uppsala University,

SE-751 08 Uppsala, Sweden

E-mail: cagnazzo@kth.se, d.r.medinarincon@nordita.org,

zarembo@nordita.org

Abstract: We study string quantum corrections to the ratio of latitude and circular

Wilson loops in N = 4 super-Yang-Mills theory at strong coupling. Conformal gauge

for the corresponding minimal surface in AdS5 × S5 is singular and we show that an IR

anomaly associated with the divergence in the conformal factor removes previously reported

discrepancy with the exact field-theory result. We also carefully check conformal anomaly

cancellation and recalculate fluctuation determinants by directly evaluting phaseshifts for

all the fluctuation modes.

Keywords: AdS-CFT Correspondence, Wilson, ’t Hooft and Polyakov loops

ArXiv ePrint: 1712.07730

1Also at ITEP, Moscow, Russia.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2018)120

mailto:cagnazzo@kth.se
mailto:d.r.medinarincon@nordita.org
mailto:zarembo@nordita.org
https://arxiv.org/abs/1712.07730
https://doi.org/10.1007/JHEP02(2018)120


J
H
E
P
0
2
(
2
0
1
8
)
1
2
0

Contents

1 Introduction 1

2 Circular Wilson loop and latitude 2

2.1 Latitude Wilson loops 2

2.2 Classical solution 3

2.3 One-loop string corrections 4

2.4 Regularization and anomalies 5

3 Conformal anomaly cancellation 7

4 Determinants and phaseshifts 8

4.1 Preliminaries 9

4.2 Summation over frequencies 10

4.3 Phaseshifts and Jost functions 11

4.4 The phaseshift computation 12

4.4.1 Operator K̃1 12

4.4.2 Operator K̃2 12

4.4.3 Operator K̃3± 12

4.4.4 Operator D̃± 13

4.5 Collecting the pieces together 15

5 Conclusions 16

A Conformal anomalies 17

1 Introduction

We will study the ratio of two Wilson loops in N = 4 super-Yang-Mills (SYM) theory that

share a common contour in space-time, but differ in their coupling to scalars, following the

proposal of [1–3]. Wilson loops are important observables in gauge theories and are unique

probes of the AdS/CFT correspondence since they couple directly to the string worldsheet

in the dual gravitational background [4–6]. Some Wilson loops in the SYM theory can be

actually computed exactly, at any coupling strength, without making any approximations.

Subsequent extrapolation to strong coupling establishes a direct link between conventional

QFT calculations and holography.

The simplest example of this type is the circular Wilson loop whose exact expectation

value can be obtained by resumming diagrams of perturbation theory [7, 8] or, at a more

rigorous level, by localization of the path integral on S4 [9]. The strong-coupling extrapo-

lation of the cirlcle agrees precisely with the area law in AdS5 × S5, the result that can be
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generalized in many ways (see [10] for a review). Quite surprisingly, even the next order in

the strong-coupling expansion has not been reproduced from string theory thus far, despite

much effort [11–14], indicating that we do not understand in detail how strings in AdS5×S5

and other holographic backgrounds should be quantized in the Wilson-loop sector.

The difficulty lies in the defition of the measure in the string path integral and in the

delicate issues with reparameterization invariance on the string worldsheet. Taking the

ratio of similar Wilson loops [1, 2] avoids these complications, because the measure factors

simply cancel. For the ratio of the latitude and the circle, considered in [1, 2], quantum

string corrections can be computed exacty. Surprisingly, the result of the string calculation

disagrees with the field-theory prediction [15]. A different quantization prescription for

the string fluctuations around the latitude [3] brings the result to the agreement with

field theory, but the method of [3] only applies to infinitesimally small deviations from the

circle. The quantization prescritions in [1, 2] and in [3] differ essentially in the choice of

the conformal frame on the string worldsheet, which a priori should not matter as long as

the conformal anomaly cancels.

We reconsider string quantum corrections to the latitude Wilson loops, working in

the same conformal frame as [1, 2]. We pay special attention to regularization issues and

ensuing anomalies and will also carefully check that the conformal anomaly cancels, which

is an important consistency condition in string theory.

2 Circular Wilson loop and latitude

2.1 Latitude Wilson loops

The Wilson loop expectation value in the N = 4 SYM is defined as [4]

W (C;n) =

〈
tr P exp

[
i

∫
C
dτ
(
ẋµAµ + i|ẋ|nIΦI

)]〉
, (2.1)

where ΦI are the six scalar fields from the N = 4 supermultiplet and n is a unit six-

dimensional vector that may change along the contour C. In string theory, the Wilson

loop expectation value maps to the disc partition function with the boundary conditions

determined by the contour C = {xµ(τ)| τ ∈ (0, 2π)} for the embedding coordinates in AdS5,

and by n(τ) for S5.

We concentrate of a particular family of Wilson loops, for which C is a unit circle and

n is a latitude of S5 [15]: n = (sin θ0 cos τ, sin θ0 sin τ, cos θ0,0). The expectation value of

the latitude is known exactly [15]:1

W (θ0) =
2√

λ cos θ0
I1

(√
λ cos θ0

)
, (2.2)

and interpolates between the simple circle at θ0 = 0 and a supersymmetric Wilson loop

with trivial expectation value [18] at θ0 = π/2. Here λ = g2N is the ’t Hooft coupling of

1The latitude belongs to a more general class of supersymmetric Wilson loops which live on S2 ∈ S5

and reduce to the effective 2d Yang-Mills theory [16] upon localization of the path integral [17]. The result

quoted in the text is large-N exact.
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the N = 4 SYM. At strong coupling,

W (θ0) =

√
2

π cos3 θ0
λ−

3
4 e
√
λ cos θ0

(
1 +O

(
λ−

1
2

))
. (2.3)

Notice that the strong coupling and BPS (θ0 → π/2) limits do not commute with one

another.

In string theory, the exponent in the Wilson loop vev is determined by the area of the

minimal surface with the given boundary conditions, while the prefactor is a contribution

of the string fluctuations and of the measure in the string path integral. Following [1–3],

we consider the ratio of the circle to the latitude in which the complicated measure factor

is expected to cancel.2 The field-theory prediction for the Wilson loop ratio is

Γ ≡ ln
W (0)

W (θ0)
=
√
λ (1− cos θ0) +

3

2
ln cos θ0 +O

(
λ−1/2

)
. (2.4)

Our goal will be to reproduce this result from the explicit one-loop calculation in string

theory.

2.2 Classical solution

In the standard Poincaré coordinates {xµ, z} of AdS5 and in the angular coordinates θ, ϕ

of S2 ⊂ S5, the minimal surface for the latitutde is [22]

x1 =
cos τ

coshσ
, x2 =

sin τ

coshσ
, z = tanhσ ,

cos θ = tanh(σ + σ0), ϕ = τ, (2.5)

where σ changes from 0 to ∞ and θ0 is related to σ0 as

tanhσ0 = cos θ0. (2.6)

The induced worldsheet metric is given by

ds2 = Ω2
(
dτ2 + dσ2

)
(2.7)

with the scale factor

Ω2 =
1

sinh2σ
+

1

cosh2 (σ + σ0)
.

Substituting the solution into the string action, and taking into account that the string

tension is given by
√
λ/2π, in terms of the ’t Hooft coupling, one gets the correct exponent

in (2.3).

The field-theory prediction for the next, O(1) term in the strong-coupling expansion

of (2.4) is

Γ1−loop =
3

2
ln tanhσ0. (2.8)

In string theory, this is expected to come from the one-loop quantum fluctuations of the

string worldsheet [11, 23–25].

2Another way to get rid of the measure factors is to consider infinitely stretched Wilson loops and

concenrate on extensive quantities. In that case an agreement between field theory and quantum corrections

in string theory was obtained for the quark-anti-quark potential in the N = 4 SYM [19, 20] and for the

quark self-energy in the N = 2∗ theory [21].
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2.3 One-loop string corrections

The string oscillation modes around the classical solution (2.5) are described by the fol-

lowing fluctuation operators [1–3]:3

K̃1 = −∂2τ − ∂2σ +
2

sinh2σ
(2.9)

K̃2 = −∂2τ − ∂2σ −
2

cosh2 (σ + σ0)
(2.10)

K̃3± = −∂2τ − ∂2σ ± 2i (tanh (2σ + σ0)− 1) ∂τ

+ (tanh (2σ + σ0)− 1) (1 + 3 tanh (2σ + σ0)) (2.11)

D̃± = i∂στ1 −
[
i∂τ ∓

1

2
(1− tanh (2σ + σ0))

]
τ2

+
1

Ω sinh2σ
τ3 ∓

1

Ω cosh2 (σ + σ0)
, (2.12)

where τi are the standard Pauli matrices. The operator K̃1 describes three string modes in

AdS5, the operator K̃2 describes three modes on S5, K̃3± arise as a result of mixing between

the two remaining modes — one from the sphere, another from AdS5. The Dirac operators

D̃± originate from the kinetic terms for the eight fermions remaining after kappa-symmetry

gauge-fixing in the Green-Schwarz action.

The operators above are related to the ones that appear in the string action by a

conformal transformation [1]:

K =
1

Ω2
K̃, (2.13)

for bosons, and

D =
1

Ω
3
2

D̃Ω
1
2 , (2.14)

for fermions. The fluctuation modes of the string are naturally normalized with respect to

the invariant measure of the induced metric (2.7):

〈φ1 | φ2〉 =

∫
d2σ
√
h φ†1φ2 =

∫
dτ dσΩ2φ†1φ2, (2.15)

and the fluctuation operators are Hermitian with respect to this scalar product, while the

tilded operators are Hermitian with respect to the usual flat measure:

˜〈φ1 | φ2〉 =

∫
dτ dσ φ†1φ2. (2.16)

The one-loop partition function, that determines the Wilson loop expectation value,

is given by the ratio of determinants of the physical, untilded operators [1]:

Z(σ0) =
det2D+ det2D−

det3/2K1 det3/2K2 det1/2K3+ det1/2K3−
. (2.17)

3These can be obtained by specializing the general formalism of [11, 26] to the classical solution (2.5).
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The Wilson loop is actually proportional to Z(σ0), but does not literally coincide with it.

The string path integral contains some additional measure factors that are rather difficult

to control. Fortunately, these factors do not depend on σ0 and cancel in the ratio of the

latitude to the circle. The one-loop free energy, if normalized as in (2.4), is given by the

log-ratio of the partition functions:

Γ1−loop = ln
Z(∞)

Z(σ0)
. (2.18)

This is the object we concentrate upon in the rest of the paper.

The tilded operators are technically easier to deal with, and in much of the previous

work the conformal factors have been simply dropped. Independence on the conformal

frame is a basic principle of string theory. It is thus natural to assume that the untilded

operators can be seamlessly replaced by the tilded ones. However, the log-ratio of deter-

minants computed under this assumption (which we denote by Γ̃1−loop) differs from the

field-theory prediction (2.8) by an additional “remainder” term [1, 2]:

Γ̃1−loop =
3

2
ln tanhσ0 −

1

2
ln

1 + tanhσ0
2

. (2.19)

An obvious possible cause for the discrepancy, the one that first comes to mind, is the

conformal anomaly. However it was argued in [2] that the conformal anomaly is unlikely to

account for the discrepancy. We refer to [2, 11] for technical details, and just remark that

anomaly cancellation is very important in string theory. A non-zero contribution from the

conformal anomaly would rather signal an internal inconsistency of the string calculation.

A caveat here is that the conformal transformation from the metric of the disc (2.7)

to the flat metric of the semi-infinite cylinder changes the topology of the worldsheet and

is actually singular at σ = ∞. The point σ = ∞ is a regular in the induced metric (2.7)

but not in the flat metric, as illustrated in figure 1. The spectral problem for a fluctuation

operator on a cylinder differs from that on a disk in an essential way and requires an IR

regularization. Even if the cutoff dependence eventually cancels out, regularization may

leave a finite residue. We first give a simple but not very rigorous derivation of such an IR

anomaly based on elementary thermodynamics, and then proceed with a more systematic

analysis of the fluctuation determinants.

2.4 Regularization and anomalies

The change of the conformal frame of the form (2.13) corresponds to the following chain

of transformations on the determinant of K:

detK =

(
detK
det K̃

)
anom.

(
det K̃

det K̃∞

)
cyl.

det K̃∞, (2.20)

where K̃∞ is the asymptotic operator obtained by taking σ →∞ in (2.9)–(2.11), which is

just the free Klein-Gordon operator:

K̃∞ = −∂2τ − ∂2σ, (2.21)
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(a) (b)

Figure 1. Schematic representation of the induced metric on the minimal surface (a), and of the

flat coordinates on the cylinder (b). The conformal transformation between the two is singular at

the symmetry point of the minimal surface (σ =∞). The region σ > R, removed by regularization,

maps to a small circle of area s on the minimal surface in the target space.

or the free Dirac operator, in case of fermions:

D̃∞ = iτ1∂σ − iτ2∂τ . (2.22)

The first ratio in (2.20) is the conformal anomaly, the second one is well-defined on a

cylinder, while separately det K̃ and det K̃∞ require an IR regularization. The IR cutoff

is manifestly necessary for the Gelfand-Yaglom method used in [1, 2], and is implicit in a

more direct phase-shift calculation that will be carried out in section 4.

The standard way to regularize the problem is to impose the Dirichlet boundary con-

ditions on the wavefunction of K̃ (or K̃∞) at some large but finite σ = R. This corresponds

to removing a small segment of the minimal surface shown as a red circle in figure 1a.

This is not such an innocent procedure, as can be seem by comparing determinants of the

Laplacian on a disk and on a disk with a small hole [27]. Even though the IR cutoff cancels

in the final answer, intermediate steps do depend on R. At the same time, the cutoff R

does not have any invariant meaning by itself. To faithfully compare partition functions

at different values of σ0, we need a diffeomorphism-invariant regularization.

As an invariant regularization parameter we can take the area of the segment removed

from the minimal surface when Dirichlet boundary conditions are imposed at σ = R:

s =

∫
σ>R

d2σ
√
h = 2π

∫ ∞
R

dσΩ2 ' 4π
(
1 + e−2σ0

)
e−2R. (2.23)

The coordinate-dependent cutoff is related to the invariant one as

R =
1

2
ln

8π

s (1 + tanhσ0)
≡ Rinv −

1

2
ln

1 + tanhσ0
2

. (2.24)
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Because R is a coordinate-dependent quantity with no invariant meaning, in comparing

the partition functions at different σ0, it is Rinv rather than R that should be kept fixed.

Diffeomorphism-invariant regularization implies that R has to dependent on σ0.

The partition function depends on R through the last factor in (2.20) and since K̃∞
and D̃∞ are just the free Klein-Gordon and Dirac opertors, the asymptotic contribution

to the partition function is given by the free energy of a gas of free particles in 1 + 1

dimensions, given by

F = − (2Nb +Nf )
π

12
T 2V. (2.25)

In our case Nb = 8 = Nf , T = 1/(2π) and V = R. We thus have

ln Z̃∞ = −F
T

= R. (2.26)

The IR divergence cancels in the ratio (2.18), but leaves a finite, σ0-dependent remnant

due to (2.24):

Γ̃∞ = −R(σ0) +R(∞) =
1

2
ln

1 + tanhσ0
2

. (2.27)

Combined with (2.19), this gives

Γ̃1−loop + Γ̃∞ =
3

2
ln tanhσ0 , (2.28)

which agrees with the localization prediction (2.8).

This is the main result of the paper. To validate this result we need to check that the

conformal anomaly cancels, which we do in the next section. Later we will also reanalyze

the partition function on the cylinder and will derive the above result by a direct spectral

analysis of the fluctuation operators.

3 Conformal anomaly cancellation

The anomaly contribution to the free energy is

Γanom =
1

2

∑
a

(−1)Fa ln
detKa
det K̃a

. (3.1)

where the summation runs over all operators in (2.17) with the appropriate multiplicities.

The operators in the numerator and denominator differ by the conformal factor, and if one

were allowed to factorize the determinants, the sum would trivially vanish. The story is

more complicated because of the need in the intermediate UV regularization.

The anomaly, being a local effect of UV divergences, can be computed by the standard

DeWitt-Seeley expansion. For completeness we give a brief derivation of the conformal

anomaly adpated to our case in the appendix A. The results (A.10) and (A.15) directly ap-

ply to the operators (2.9)–(2.14), upon bringing them to the standard Klein-Gordon/Dirac

– 7 –
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form (A.1), (A.2), with the identifications

φ = − ln Ω

E1 =
2

sinh2 σ

E2 = − 2

cosh2(σ + σ0)

E3± = − 2

cosh2(2σ + σ0)

a± =
1

Ω sinh2 σ

v± = ∓ 1

Ω cosh2(σ + σ0)
. (3.2)

First we notice that the boundary terms in the anomaly trivially cancel between bosons

and fermions, just by matching the number of degrees of freedom. To see that the bulk

anomaly also cancels it is convenient to bring the scale factor of the metric to the follow-

ing form:

Ω2 =
coshσ0 cosh(2σ + σ0)

sinh2 σ cosh2(σ + σ0)
, (3.3)

from which it immediately follows that

∂2σφ = −∂2σ ln Ω =
1

cosh2(σ + σ0)
− 1

sinh2 σ
− 2

cosh2(2σ + σ0)
.

This enters the anomaly with a prefactor(
1

6
× 8 +

1

12
× 8

)
φ = 2φ.

On the other hand,

3E1 + 3E2 + E3+ + E3− + 4
(
v2+ − a2+

)
+ 4

(
v2− − a2−

)
=

2

cosh2(σ + σ0)
− 2

sinh2 σ
− 4

cosh2(2σ + σ0)
,

and the two terms in the anomaly completely compensate one another.

The anomaly thus cancels in the partition function (2.17) at each value of σ0, not only

in the ratio, as actually expected.

4 Determinants and phaseshifts

The fluctuation determinants were evaluated in [1, 2] with the help of the Gelfand-Yaglom

method. Here we recalculate them by a more direct approach, evaluating phaseshifts for

each operator and then integrating over the phase space of string fluctuations. First we set

up the general scheme for the phaseshift computation and then apply it to each operator

in turn.

– 8 –
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4.1 Preliminaries

The operators at hand have the general form (we start with bosons, for fermions the same

scheme works with minor modifications):

K̃ = −∂2σ + V (∂τ , σ). (4.1)

The asymptotics at infinity are that of the free d’Alambert operator:

V (∂τ ,∞) = −∂2τ . (4.2)

The Fourier expansion in τ replaces ∂τ by −iω, with integer frequency, or half-integer

depending on whether the boundary conditions are periodic or anti-periodic in the τ di-

rection. The spectrum thus decomposes into a sequence of one-dimensional problems for

each Fourier mode: (
−∂2σ + V (−iω, σ)

)
Ψ = ΛΨ. (4.3)

The boundary condition at σ = 0 is

Ψ(0) = 0. (4.4)

After the boundary condition is imposed the wavefunction is fixed up to normalization.

Since the potential vanishes at infinity, the wavefunction asymptotically has an oscillating

behavior:

Ψ(σ)
σ→∞' C sin(pσ + δ). (4.5)

The eigenvalue can be read off the asymptotic form of the Schrödinger equation (4.3):

Λ = ω2 + p2. (4.6)

To define the determinant of an operator with a continuous spectrum we need to

introduce an IR cutoff by imposing another boundary condition at σ = R:

Ψ(R) = 0. (4.7)

The spectrum then becomes discrete due to momentum quantization condition:

pnR+ δ(ω, pn) ' πn, (4.8)

which follows from the asymptotic form of the wavefunction (4.5) and is thus valid as long

as R is much larger than the range of the potential in the Schrödinger equation. The

density of states ρ = ∂n/∂p in the limit of R→∞ hence takes the form

ρ(p) =
1

π

(
R+

∂δ(ω, p)

∂p

)
. (4.9)

Often omitted extensive piece proportional to R has to be kept here, since it only cancels

in the ratio of the two partition functions at different σ0 and the cutoff R as we have seen

depends on σ0 if regularization is to preserve general covariance.

– 9 –
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Figure 2. Contours of integration in the complex frequency plane.

The determinant of K̃ is obtained by multiplying all the eigenvalues:

ln det K̃ =
∑
ω

∫ ∞
0

dp

π

(
R+

∂δ(ω, p)

∂p

)
ln(ω2 + p2)

= −
∑
ω

∫ ∞
0

dp

π

2p

ω2 + p2
(δ(ω, p) +Rp) , (4.10)

with ω ∈ Z or ω ∈ Z + 1/2 for periodic/anti-periodic boundary conditions.

Our strategy will be to directly evaluate phaseshifts for all the operators, sum over fre-

quencies and integrate over spacial momenta. Before proceeding with explicit calculations

we sum over the Matsubara frequency using standard tools of Statistical Mechanics [28],

and make a few technical remarks that streamline calculation of the phaseshifts.

4.2 Summation over frequencies

The standard trick is to replace summation by integration along the contour shown in

figure 2:

ln det K̃ = −
∫
C

dω

2πi
cotπω

∫ ∞
0

dp
2p

ω2 + p2
(δ(ω, p) +Rp) . (4.11)

The poles of the cotangent recover the sum over the Matsubara frequencies.

Assuming that the phaseshift does not grow too fast at large frequencies (in the simplest

cases the phaseshift does not depend on the frequency at all), the contour of integration

can be closed in the upper and lower half-planes, as shown in figure 2, after which the

integral over ω picks up residues at ω = ±ip. Denoting

δ±(p) ≡ δ(±ip, p), (4.12)

we get for the determinant:

ln det K̃ = −
∫ ∞
0

dp cothπp (δ+(p) + δ−(p) + 2Rp) . (4.13)

– 10 –
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This equation expresses the determinant entirely through the on-shell data. It suffices to

solve the Schrödinger equation (4.3) at ω = ±ip and Λ = 0.

If the boundary conditions are anti-periodic and the Matsubara frequencies ω are half-

integer, the summation formulas differ by substitutions cot → − tan, coth→ tanh:

ln det K̃F = −
∫ ∞
0

dp tanhπp (δ+(p) + δ−(p) + 2Rp) . (4.14)

Normally, the particle and anti-particle phaseshifts δ+ and δ− are equal, but some

operators that we encounter have a spectral asymmetry resulting in different density of

states for particles and anti-particles.

4.3 Phaseshifts and Jost functions

Instead of solving the Schrödinger equation with the correct boundary conditions (4.4) it

is sometimes easier to find the Jost functions, which are the solutions that asymptote to

unit-normalized plane waves at infinity:

Yp(σ)
σ→∞' e ipσ, Ȳp(σ)

σ→∞' e−ipσ. (4.15)

For a self-adjoint Schrödinger operator with a real potential the Jost functions are complex

conjugate to one another: Ȳp = Y ∗p , but if the potential is complex, which is the case for the

operators K̃3± for example, then the two Jost functions are not related in any simple way.

The Jost functions form a complete set of solutions to the Schrödinger equation. The

solution that satisfy the correct boundary conditions is a linear combination of the two

Jost functions:

Ψp(σ) = Ȳp(0)Yp(σ)− Yp(0)Ȳp(σ). (4.16)

This linear combination indeed vanishes at σ = 0. Comparing its behaviour at infinity

with (4.5), we find:

Ȳp(0) e ipσ − Yp(0) e−ipσ =
C

2i
e ipσ+δ − C

2i
e−ipσ−δ, (4.17)

which expressed the phaseshift through the Jost data:

Ȳp(0)

Yp(0)
= e 2iδ . (4.18)

In the self-adjoint case the Jost functions are complex conjugate and their ratio is a

pure phase. The phaseshift is real in this case. If the Schrödinger operator is not self-

adjoint, the phaseshift may have an imaginary part. In general,

δ(p) =
i

2
ln
Yp(0)

Ȳp(0)
. (4.19)

We will use this formula to evaluate the phaseshifts of the fluctuation operators for the

latitude by explicitly calculating the Jost functions in each case. The same scheme can be

applied to fermions with minor modifications related to their two-component nature.
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4.4 The phaseshift computation

4.4.1 Operator K̃1

The differential equation for this operator is given by(
−∂2σ +

2

sinh2σ

)
χ1 = p2χ1. (4.20)

The solutions to this equation are given by the Jost functions

Yp (σ) = e ipσ
ip− cothσ

ip− 1
, Ȳp (σ) = e−ipσ

ip+ cothσ

ip+ 1
, (4.21)

satisfying Yp =
(
Ȳp
)∗

and Ȳp = (Yp)
∗. Using equation (4.19), we obtain

δ1 =
i

2
ln
ip+ 1

ip− 1
=
π

2
− arctan p. (4.22)

4.4.2 Operator K̃2

The corresponding differential equation is given by(
−∂2σ −

2

cosh2 (σ + σ0)

)
χ2 = p2χ2. (4.23)

In this case, the Jost functions are

Yp = e ipσ
ip− tanh (σ + σ0)

ip− 1
, Ȳp = e−ipσ

ip+ tanh (σ + σ0)

ip+ 1
, (4.24)

satisfying Yp =
(
Ȳp
)∗

and Ȳp = (Yp)
∗. From equation (4.19), we have

δ2 =
i

2
ln

(
1 + ip

1− ip
tanhσ0 − ip
tanhσ0 + ip

)
= − arctan p+ arctan

p

tanhσ0
. (4.25)

4.4.3 Operator K̃3±

The Schrödinger problem for K̃3+ is[
−∂2σ + (3 tanh(2σ + σ0) + 1± 2ip) (tanh(2σ + σ0)− 1)

]
ψp = p2ψp, (4.26)

where we have set ∂τ → −iω = ±p. The ± sign refers to particle/anti-particle modes.

The potential in the Schrödinger equation is of the solvable Rosen-Morse type. The

solution4 can be found by the substitution [29]

x =
1− tanh(2σ + σ0)

2
(4.27)

4The Rosen-Morse potential is solvable in hypergepmetric functions for any values of the frequency ω,

not necessarily on-shell [29]. Using this general solution an analytic expression for the off-shell phaseshift

δ(ω, p) can be found for any ω and p. We do not display this more general function here, because we only

need the on-shell phaseshifts δ±(p) to compute the determinant.
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accompanied by the following ansatz for the wavefunction:

ψp(σ) = e∓ipσ+σ cosh−
1
2 (2σ + σ0)χ(x), (4.28)

which leads to [
d

dx
x (1− x)

d

dx
−
(
x∓ ip

2

)
d

dx

]
χ = 0, (4.29)

or

ψp(σ) = e±ipσ−σ cosh
1
2 (2σ + σ0)χ̃(x), (4.30)

which leads to [
d

dx
x (1− x)

d

dx
+

(
x∓ ip

2

)
d

dx
+ 1

]
χ̃ = 0. (4.31)

These equations have simple solutions:

χ(x) = 1, χ̃(x) = x− 1± ip

2
. (4.32)

From here we find the Jost functions:

Y +
p (σ) = e ipσ−σ−

σ0
2

√
2 cosh(2σ + σ0)

1− ip+ tanh(2σ + σ0)

2− ip
,

Ȳ +
p (σ) =

e−ipσ+σ+
σ0
2√

2 cosh(2σ + σ0)
,

Y −p =
(
Ȳ +
p

)∗
, Ȳ −p =

(
Y +
p

)∗
. (4.33)

The Jost functions Yp and Ȳp are not complex conjugate to one another, because the

potential is complex, and consequently the phaseshifts will have an imaginary part. There

is also a spectral asymmetry between particle and anti-particle phaseshifts, but it is easy

to quantify it because particle and anti-particle Jost functions are related by complex

conjugation: δ−(p)∗ = δ+(p). Taking into account the last equation in (4.33), we get

from (4.19):

δ3+(p) + δ3−(p) =
i

2
ln
Y +
p (0)Ȳ +

p (0)∗

Y +
p (0)∗Ȳ +

p (0)
= arctan

p

1 + tanhσ0
− arctan

p

2
. (4.34)

The answer for K̃3− is the same up to exchanging δ3+ with δ3−.

4.4.4 Operator D̃±

It is convenient to consider, instead of D̃α, the eigenvalue problem for iτ2D̃α. The index α

that takes values ± is introduced here in order to distinguish the operator label from the

particle/anti-particle index. The spectral problem for the resulting Dirac operator takes

the form:(
iτ3∂σ+

iα

2
[1−tanh(2σ+σ0)]1−

1

Ωsinh2σ
τ1−i

α

Ωcosh2 (σ+σ0)
τ2

)
χα =∓pχα, (4.35)
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where the ∓ sign comes from the two choices of closing the integration contour described

in figure 2.

The most general solution of the Dirac equation is a superposition of the Jost functions

Y ±p,α = e±αipσ

(
δα,+

(
cI
cII

)
+ δα,−

(
cII
cI

))
, (4.36)

Ȳ ±p,α = e∓αipσ

(
δα,+

(
c̄I
c̄II

)
+ δα,−

(
c̄II
c̄I

))
, (4.37)

where

cI =
1(

±αip− 3
2

)(
±αip− 1

2

) 2−7/4eσ/2e−5σ0/4Ω1/2

cosh1/4σ0
√

sinhσ cosh(σ+σ0)[
e−3σ

(
p2+

1

4

)
+

(
±αip− 3

2

)(
e−σ

(
±αip+

1

2

)
+2e2σ0 sinhσ

(
±αip− cothσ

2

))]
,

cII =
iα(

±αip− 3
2

)(
±αip− 1

2

) 2−7/4e−σ/2e−σ0/4Ω

coshσ0cosh3/4 (2σ+σ0)[(
±αip− 1

2

)
(2+cosh(2(σ+σ0))−cosh(2σ))−sinh(2(σ+σ0))+sinh(2σ)

]
,

c̄I =
iα(

±αip+ 1
2

) eσ/2eσ0/4Ω

25/4cosh1/4 (2σ+σ0)
,

c̄II =
1(

±αip+ 1
2

) eσ/2eσ0/4

21/4cosh1/4 (2σ+σ0)

(
±αip+

1

2

(
cosh(2σ+σ0)

sinhσ cosh(σ+σ0)
−1

))
.

Asymptotically, the two solutions behave as

lim
σ→∞

Y ±p,α = e±αipσ

(
δα,+

(
1

0

)
+ δα,−

(
0

1

))
,

lim
σ→∞

Ȳ ±p,α = e∓αipσ

(
δα,+

(
0

1

)
+ δα,−

(
1

0

))
.

Close to σ = 0, the Yost functions behave as

lim
σ→0

Y ±p,α =
v±α
σ

(
δα,+

(
i

1

)
+ δα,−

(
1

−i

))
+O (σ) ,

lim
σ→0

Ȳ ±p,α =
v̄±α
σ

(
δα,+

(
i

1

)
+ δα,−

(
1

−i

))
+O (σ) ,

where

v±α = iα
cosh1/4σ0

23/4eσ0/4
±αip− 1

2 − tanhσ0(
±αip− 3

2

) (
±αip− 1

2

) , v̄±α =
eσ0/4

25/4cosh1/4σ0

1

±αip+ 1
2

.

From the above, it is easy to see that the superposition

χ±α = v̄±α Y
±
p,α − v±α Ȳ ±p,α
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vanishes for σ → 0, and therefore satisfies the right boundary conditions at σ = 0. At

σ →∞, the correct solution behaves as

χ±α ' δα,+

(
v̄±+ e±ipσ

−v±+ e∓ipσ

)
+ δα,−

(
−v±− e±ipσ

v̄±− e∓ipσ

)
. (4.38)

To define the fermion phaseshift we need to understand what replaces the auxiliary

boundary condition (4.7) for fermions. Since the Dirac equation is of the first order it

is impossible to set both spinor components of the wavefunction to zero. Only a chiral

projection of the wavefunction can vanish. Choosing the chirality condition (any other

choice leads to equivalent results) as

τ2χ(R) = χ(R), (4.39)

we get the momentum quantization condition in the form (4.8) with

δ±α = ±α
2

Arg

(
v̄±α
v±α

)
=
π

2
+

1

2
arctan

p
1
2 + tanhσ0

− arctan 2p− 1

2
arctan

2p

3
. (4.40)

4.5 Collecting the pieces together

Expressing the determinants in (2.17) through the on-shell phaseshifts with the help

of (4.13) and (4.14), and collecting all the pieces together we get for the log of the partition

function:

lnZ(σ0) =

∫ ∞
0

dp

[
cothπp

(
arctan

p

1 + tanhσ0
+ 3 arctan

p

tanhσ0
− arctan

p

2

− 6 arctan p+
3π

2

)
− 4 tanhπp

(
arctan

p
1
2 + tanhσ0

− 2 arctan 2p

+ arctan
2p

3
+ π

)
+ 8Rp (cothπp− tanhπp)

]
. (4.41)

The easiest way to compute the integral is by differentiation in σ0:

d

dσ0
lnZ(σ0) =

1

cosh2 σ0

∞∫
0

dp p

[
4 tanhπp

p2 +
(
1
2 + tanhσ0

)2 − cothπp

p2 + (1 + tanhσ0)
2

− 3 cothπp

p2 + tanh2 σ0

]
+
dR

dσ0
. (4.42)

The following inditities reduce the remaining integral to elementary functions:

tanhπp = 1− 2

e 2πp + 1
, cothπp = 1 +

2

e 2πp − 1
,

∞∫
0

dp p

(e2πp + 1) (p2 + c2)
= − ln c

2
+

1

2
ψ

(
c+

1

2

)
,

∞∫
0

dp p

(e2πp − 1) (p2 + c2)
=

ln c

2
− 1

4c
− 1

2
ψ (c) , (4.43)
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and we get:

d

dσ0
lnZ(σ0) =

1

2 cosh2 σ0

(
1

tanhσ0 + 1
− 3

tanhσ0

)
+
dR

dσ0
. (4.44)

Intergation over σ0 gives:

Γ1−loop ≡ ln
Z(∞)

Z(σ0)
=

3

2
ln tanhσ0 −

1

2
ln

tanhσ0 + 1

2
+R(∞)−R(σ0). (4.45)

The first two terms arise from the determinants normalized by the free Klein-Gordon/Dirac

operators and agree with the calculation based on the Gelfand-Yaglom method. The last

two terms is the IR anomaly. Re-expressing the coordinate cutoff R through the invariant

cutoff according to (2.24), we find that the last three terms cancel and we are left with

Γ1−loop =
3

2
ln tanhσ0 =

3

2
ln cos θ0, (4.46)

in perfect agreement with the localization prediction (2.4), (2.8).

5 Conclusions

The IR anomaly, related to the singular nature of the conformal gauge, brings quantum

string corrections computed in [1, 2] in agreement with localization predictions. We also

checked that the conformal anomaly cancels in each individual expectation value, even be-

fore taking the ratio. This is an important consistency check of the underlying assumptions

behind this calculation (for example, that ghosts and longitudinal modes mutually cancel

in the ratio, or that the measure factors are constant and do not depend on the parameters

of the problem).

One can use other parameters to build ratios of Wilson loops which are easier to

compute in string theory, for instance an overall coupling to scalars as in [30]. But a really

intersting problem is to carry out a complete calculation of quantum corrections for a single

Wilson loop. A Wilson loop is a well-defined operator in field theory, and a holographic

prescription to compute its expectation value in string theory should be unambiguously

defined.
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A Conformal anomalies

Consider a second-order differential operator

K(α) = e 2αφ (−DµD
µ + E) , (A.1)

where Dµ = ∂µ+ iAµ, and Aµ and E are n×n matrices. The bosonic fluctuation operators

in (2.13), (2.9)–(2.11) can be all brought to this form. The fermionic operator (2.14), (2.12)

has the standard Dirac form:5

D(α) = e
3αφ
2
(
iγµDµ + γ3a+ v

)
e−

αφ
2 , (A.2)

if we choose the basis of 2d gamma-matrices to be γτ = −τ2, γσ = τ1, and

γ3 ≡ −iεµνγµγν/2 = τ3. The paramater α is introduced for convenience, to interpolate

between tilded (α = 0) and untilded (α = 1) operators. The dependence of the determi-

nants of K(α) and D(α) on α is a textbook example of the anomaly [31, 32]. Here we give

a concise derivation, that closely follows [32].

The zeta-function regularized determinant of K(α) is defined through the Mellin trans-

form of its heat kernel:

ln detK = − lim
s→0

d

ds

1

Γ(s)

∫ ∞
0

dt ts−1 Tr e−tK. (A.3)

Taking into account that

∂

∂α
Tr e−tK = 2t

∂

∂t
Trφ e−tK, (A.4)

we find that
d

dα
ln detK = 2 lim

s→0

d

ds

s

Γ(s)

∫ ∞
0

dt ts−1 Trφ e−tK. (A.5)

Since the gamma-function has a pole at zero, the right-hand-side seems to vanish, which

would indicate that the determinant of K(α) does not depend on the scale factor at all.

But the Mellin transform generates a pole at s = 0, because the integrand is badly behaved

at t = 0. Indeed, for any function f(t) that admits a finite Laurent expansion at zero, the

residue of the Mellin transform coincides with the residue of the function itself:∫ ∞
0

dt tsf(t)
s→0
=

1

s
res
t=0

f(t) + regular.

The small-t behavior of the heat kernel is controlled by the DeWitt-Seeley expansion:

Trφ e−tK =

∞∑
k=0

t
k
2
−1ak(φ|K), (A.6)

where ak are local functionals of φ, E and Aµ that can be computed algebraically. We thus

find that
d

dα
ln detK = 2a2(φ|K). (A.7)

5Here we assume that the connection is Abelian, and that Aµ is a one-component U(1) gauge field.
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The second DeWitt-Seeley coefficient of the operator (A.1) is

a2(φ|K) = − 1

4π

∫
d2σ

(αn
3
∂µφ∂

µφ+ φ trE − n

2
∂µ∂

µφ
)
. (A.8)

Integrating (A.7) we express the anomaly as a local functional of the fields:

ln
detK(1)

detK(0)
= − 1

2π

∫
d2σ

(n
6
∂µφ∂

µφ+ φ trE − n

2
∂µ∂

µφ
)
. (A.9)

Written that way, the anomaly does not have any boundary terms,6 but it is more

natural to represent it in a different form:

ln
detK(1)

detK(0)
=

1

2π

∫
d2σ

(n
6
φ∂µ∂

µφ− φ trE
)

+
n

12π

∮
ds (φ∂nφ− 3∂nφ) , (A.10)

where ∂n is the inward normal derivative at the boundary. The bulk and boundary terms in

the anomaly actually arise in the computation of the Seeley coefficient exactly as written in

the last expression. The more compact two-dimensional form is obtained upon integration

by parts.

To compute the anomaly for fermions we first square the Dirac operator and then by

the same chain of argument that led to (A.7) arrive at

d

dα
ln detD2 = 2a2(φ|D2). (A.11)

The square of the Dirac operator (A.2) is

D2(α) = e 2αφ

[
−∇µ∇µ +

α

2
∂µ∂

µφ+ a2 − v2

+ εµν (∂µa+ αa∂µφ) γν +

(
1

2
εµνFµν + 2av

)
γ3
]
, (A.12)

where

∇µ = Dµ − ivγµ −
iα

2
εµν∂νφγ

3. (A.13)

This operator has the form (A.1) and its second DeWitt-Seeley coefficient can be read

off (A.9):

a2(φ|D2) =
1

4π

∫
d2σ

[α
3
∂µφ∂

µφ+ 2φ
(
v2 − a2

)
− α∂µ (φ∂µφ) + ∂µ∂

µφ
]
. (A.14)

We thus find for the fermion anomaly:

1

2
ln

detD2(0)

detD2(1)
=

1

2π

∫
d2σ

[
1

12
φ∂µ∂

µφ+ φ
(
a2 − v2

)]
− 1

12π

∮
ds (φ∂nφ− 3∂nφ) . (A.15)

Notice that the boundary anomaly has the same magnitude but different sign compared to

bosons.
6Here we assume that the metric is flat and the boudary is straight. These simplifying assumptions are

sufficient for our analysis. Otherwise curvature also contributes to the anomaly.
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