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1 Introduction

Conformal manifolds are the manifolds parametrized by the exactly marginal coupling con-

stants of a given conformal field theory (CFT). Of course, not every CFT can have exactly

marginal couplings, and in fact their existence imposes non-trivial constraints on the CFT

data (for recent discussions, see [1–4] and references therein). In two dimensions, exactly

marginal couplings occur in many CFTs, including all string compactifications with moduli

(see for example [5, 6]), of which there are many examples. In d > 2 spacetime dimen-

sions, conformal manifolds are less common, and all known examples are in superconformal

field theories (SCFTs). As shown in [7] using an abstract approach, the superconformal

algebra allows for the existence of marginal couplings only in SCFTs with N = 1 or 2

supersymmetry in 3d and N = 1, 2, or 4 supersymmetry in 4d. There are no 5d or 6d

SCFTs with exactly marginal couplings, and there are no interacting SCFTs in more than

six dimensions [8].

In 4d, one way to construct SCFTs with exactly marginal deformations is to use the fact

that, classically, the gauge coupling constant is marginal. Choosing the charged matter con-

tent appropriately and relying on supersymmetry, one can then ensure that this coupling is

exactly marginal, thus parameterizing a conformal manifold. A lot has been learned about

conformal manifolds of four-dimensional gauge theories employing important insights from

S-duality, D- and M5-brane realizations as well as some exact non-perturbative calculations

— see for instance [9–11] and references thereof for a sample of illustrative examples.

Conformal manifolds of 3d SCFTs have been somewhat less studied, in part because

the small amount of supersymmetry (N ≤ 2) required for their existence does not lead

to the powerful constraints present in 4d N = 2 and N = 4 CFTs. On the flip side,

unlike in 4d, in 3d it is possible to construct interacting (S)CFTs with UV Lagrangian

descriptions that use only scalars and fermions, without any need for gauge interactions.

Our goal in this work is to study one of the simplest examples of an SCFT in more than

two dimensions with an exactly marginal coupling: a Wess-Zumino model with a cubic

superpotential [12] that we will describe shortly. We will calculate various quantities along

the conformal manifold, both perturbatively in the 4 − ε expansion and exactly using the

conformal bootstrap technique directly in 3d.

Our interest in 3d conformal manifolds comes partly from the conformal bootstrap,

which is a technique that can be used primarily to put bounds on various quantities in CFT

(see [13, 14] for a review and further references). In special cases, such as the 3d Ising model

or critical O(N) vector models, these bounds take the form of islands in theory space, and

consequently this technique can be turned into a precision study of these CFTs [15–19].

Other 3d examples in which one can perform precision studies are Gross-Neveu-Yukawa

theories [20, 21], the N = 2 super-Ising model [22, 23], and N = 8 SCFTs with holographic

duals [24–26]. It would be very nice to expand the set of theories that can be solved exactly

using the conformal bootstrap technique, and, as we will see, the current work provides

another example. Apart from the pure theoretical interest in 3d SCFTs with exactly

marginal operators, it has been pointed out recently that similar N = 2 conformal models

may find phenomenological applications in condensed matter physics [27–32].
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Before we focus on our particular model, let us summarize some general results on 3d

N = 2 conformal manifolds. It can be shown along the lines of [33] (see also [34, 35]) that

3d N = 2 conformal manifolds admit a Kähler metric. The dimension of the conformal

manifold can be determined either by the well-known Leigh-Strassler method [9] or using

the results in [36–38]. The Leigh-Strassler approach is more explicit but is suitable only for

theories with an explicit Lagrangian description since it relies on knowing the β-functions of

the coupling constants in the theory. On the other hand one can generally show that locally

the conformal manifoldMC equals the space of complex marginal couplings, {λa}, modded

out by the complexification of the group, G, of continuous flavor symmetries [36–38]

MC = {λa}/GC . (1.1)

We emphasize that this result is local and fails to capture the global properties of the

conformal manifold. We will see an explicit example in the particular model of interest in

this work.

The theory we study in detail here is that of three chiral multiplets Xi, i = 1, 2, 3, with

canonical Kähler potential and cubic superpotential interaction

W = h1X1X2X3 +
h2

6
(X3

1 +X3
2 +X3

3 ) , (1.2)

where h1 and h2 are complex coupling constants. The model in (1.2) has two special limits

that have been well-studied (see for instance [39]): when h2 = 0 one finds the superpotential

of the well-known XYZ model; while for h1 = 0 we have three decoupled copies of the Wess-

Zumino model describing the N = 2 super-Ising model. In 3d the two complex couplings

h1,2 in (1.2) are relevant and one can argue for the existence of a manifold of IR fixed

points parametrized by the complex coupling τ = h2/h1 taking values in CP1 [12].1

The conformal manifold parameterized by τ does not admit a weakly coupled region

and thus is hard to access quantitatively. To understand it, we will employ various com-

plementary strategies. First, a careful study of the superpotential interaction (1.2) reveals

that this theory enjoys an order 54 discrete flavor symmetry group. In addition, there exist

field redefinitions that can be absorbed into a redefinition of the couplings h1,2 (acting on

τ as certain fractional linear transformations). This action manifests itself as a duality of

the IR conformal manifold. As we will explain, the duality symmetry group is isomorphic

to the symmetric group S4. It is akin to S-duality in four-dimensional gauge theories, but

with the notable difference that here, it acts linearly on the local operators of the SCFT.

We use the duality transformations in order to first understand, qualitatively, a general

picture of how the CFT data must change as a function of τ . The duality group also serves

as a stringent check on our more quantitative analyses.

To study the conformal manifold more quantitatively, we use two strategies. The first

approach is to continue this theory away from 3d. In 2d, this theory is equivalent to a

Z3 orbifold of an N = (2, 2) chiral multiplet and was studied in [43, 44] using the power

1The model (1.2) is related by 3d mirror symmetry [39–41] to N = 2 supersymmetric QED with 1 flavor

(SQED1). This SQED1 theory should also exhibit a conformal manifold, with the marginal direction being

a superpotential deformation by a chiral monopole operator (see section 4.1 of [42] for a recent discussion).

– 3 –
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of the Virasoro symmetry that is not available in d > 2.2 In d = 4 − ε dimensions, the

RG flow triggered by the interaction (1.2) becomes “short,” so the conformal manifold is

accessible in perturbation theory [46, 47]. The four-loop β-function for the couplings h1,2

can be extracted from results available in the literature, which then allow us to determine

the scaling dimensions of all unprotected quadratic operators in Xi to order ε4. These

perturbative results can be used to estimate the scaling dimensions of these operators in

3d. In addition to scaling dimensions, we also compute some OPE coefficients as well as

the Zamolodchikov metric in the 4 − ε expansion up to two-loops.

As already mentioned, the second approach we employ is the numerical conformal

bootstrap [13, 14]. This strategy has been applied successfully to extract constraints on the

spectrum of conformal dimensions and OPE coefficients in both the critical WZ model [22,

23] and the XYZ model [48]. Here we refine and generalize this analysis along the whole

conformal manifold parametrized by τ . The chiral ring relations that follow from (1.2)

and the structure of the crossing equations in our model imposed by supersymmetry and

the flavor symmetry allow us to extract numerical constraints on the spectrum and OPE

coefficients as a function of τ . To the best of our knowledge this is the first time the

numerical conformal bootstrap program has been applied successfully as a function of a

marginal coupling in d > 2.3 The results from the conformal bootstrap are non-perturbative

in nature and are applicable directly to the strongly coupled theory in three dimensions.

They confirm the general qualitative analysis based on symmetries and dualities and match

the perturbative 4− ε expansion to remarkable precision.

The rest of this paper is organized as follows. In section 2, we set the stage by presenting

the properties of the model (1.2), including the existence of a conformal manifold, global

symmetry, and duality group. We continue in section 3 with a detailed study of the model

of interest using the perturbative 4− ε expansion. In section 4 we describe the constraints

imposed by unitarity and crossing symmetry and apply the numerical conformal bootstrap

technology to extract bounds on conformal dimensions and OPE coefficients. We conclude

in section 5 with a discussion and a summary of some interesting open questions. Many

technical details on the perturbative analysis, four-point function crossing equations, as

well as the global symmetries of our model are delegated to the appendices. We also

summarize some results about the 2d analogue of the model (1.2) in appendix D.

2 The cubic model

In this section we introduce the model (1.2) in more detail and study abstractly some of

its properties. In particular, we first identify the flavor symmetry group, which for generic

values of the couplings turns out to be a discrete group of order 54. We use it to argue

that the model flows in the IR to a family of CFTs parametrized by the ratio of the two

coupling constants τ = h2/h1. We then show that field redefinitions imply that theories at

2See [45] for a curious appearance of this model in the context of the numerical bootstrap for two-

dimensional N = (2, 2) CFTs.
3See [49, 50] for conformal bootstrap studies of 4d N = 4 SYM which also has a one-dimensional complex

conformal manifold.
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different points in the conformal manifold are dual to each other. This allows us to identify

the conformal manifold with a 2-dimensional orbifold with three special points. Finally, we

derive some non-perturbative consequences of the duality on the operator spectrum. We

emphasize from the outset that our main interest is in studying this cubic model in 3d,

however many of the results we find below are applicable for any (even non-integer) value

of the dimension 2 ≤ d ≤ 4. Thus whenever possible we keep the dimension d general.

2.1 Global symmetries

In 3d, our model is an N = 2 theory that consists of three chiral superfields X1, X2, X3,

with the following Kähler potential K and superpotential W :

K =
3∑
i=1

XiX
i
, (2.1)

W = h1X1X2X3 +
h2

6
(X3

1 +X3
2 +X3

3 ) . (2.2)

In the absence of the superpotential interaction, the theory of the free massless chiral

superfields Xi and canonical Kähler potential has a U(3) flavor symmetry. We use lower

and upper indices for the 3 and 3̄ representations of U(3), respectively. In the presence of

the superpotential interaction, the complex couplings h1 and h2 are relevant and the model

becomes strongly coupled in the infrared.4

The model at hand enjoys a U(1)R R-symmetry that acts with charge 2/3 on the

complex scalar fields Xi in the three chiral superfields (we use Xi to denote both the

chiral superfields as well as their scalar components), ensuring that the superpotential

in (2.2) has R-charge 2. Generically, the model (2.2) does not have any other Abelian

symmetries, so if it flows to a superconformal fixed point in the IR, it must be that the U(1)R
symmetry mentioned above is the one appearing in the N = 2 superconformal algebra.5

At a superconformal fixed point, the scaling dimension of a chiral primary operator, ∆O,

is fixed in terms of its superconformal R-charge, qO, through the relation

∆O =
d− 1

2
qO . (2.3)

Therefore we conclude that ∆Xi = (d− 1)/3 at a superconformal fixed point.

At generic values of the coupling constants hi, the superpotential (2.2) is also invariant

under an order 54 discrete flavor symmetry group G = (Z3 × Z3) o S3, generated by the

three U(3) matrices

g1 =

0 1 0

1 0 0

0 0 1

 , g2 =

0 0 1

1 0 0

0 1 0

 , g3 =

1 0 0

0 ω 0

0 0 ω2

 , (2.4)

4When one expands the superfields Xi in components the resulting Lagrangian has quartic bosonic

interactions and the usual Yukawa couplings between the scalars and fermions, see equation (B.1).
5We assume that there are no accidental continuous symmetries emerging in the IR.
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where ω = e2πi/3 is a cubic root of unity. The matrices g1 and g2 generate an S3 subgroup

of G that simply permutes the three chiral superfields. More details on this discrete group,

including the classification of irreducible representations and the character table, can be

found in appendix A. It is important to notice that there are special values of h1 and

h2 at which the symmetry group is enhanced. For example, it is well-known that the

h2 = 0 theory (also known as the XYZ model) enjoys a continuous flavor symmetry U(1)×
U(1) (see for example [39]). We postpone the classification of these special points to

the next subsection, where we see that they correspond to orbifold singularities on the

conformal manifold.

2.1.1 Conformal manifold

We now argue that for generic hi, the theory flows to a family of strongly interacting CFTs

with N = 2 superconformal symmetry, parametrized by the ratio of the coupling constants6

τ =
h2

h1
. (2.5)

Since the theory is supersymmetric, we can choose a scheme where only the Kähler potential

is renormalized

K =
∑
i,j

ZijXiX
j
. (2.6)

Invariance under G implies that the matrix Zij is proportional to the identity matrix

Zij = Z δij . (2.7)

As a consequence, the three fields Xi receive the same wave-function renormalization, and in

turn the “physical” coupling constants h̃i ≡ Z−3/2hi are renormalized in the same way. This

immediately implies that the ratio in equation (2.5) is not renormalized and parametrizes

a marginal direction. Indeed, τ can be viewed as a coordinate on the conformal manifold,

taking values in CP1.

An alternative way to argue in favor of the existence of a one-dimensional conformal

manifold is offered by the method presented in [36] (see also [37, 38]). At the XYZ point we

have three complex cubic operators, X3
i . These operators are chiral with R-charge q = 2

and thus according to (2.3) have dimension ∆ = 2. In the same superconformal multiplet

there is a scalar descendant operator which is obtained by acting with two supercharges

on the superconformal primary and thus has dimension ∆ = 3. Therefore we conclude

that we have three complex marginal couplings. However we also have a U(1) × U(1)

global flavor symmetry at the XYZ point (see (2.20) below). As argued in [36] the space

of exactly marginal couplings is locally the quotient of the space of marginal couplings by

the complexified global continuous symmetry group. Applying this to our setup with three

marginal operators and a two-dimensional global symmetry group we conclude that there

is one exactly marginal complex operator at the XYZ point.

6To the best of our knowledge this was first pointed out in [12].

– 6 –
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2.1.2 Spectrum of operators

The spectrum of operators of the theory can be described in terms of irreducible represen-

tations of G. Since G is a discrete group, there are only a finite number of irreps:

1 , 1′ , 2 , 2′ , 2′′ , 2′′′ , 3 , 3′ , 3 , 3
′
. (2.8)

The scalar operators Xi sit in the 3. It is straightforward to decompose generic operators

built out of the Xi’s (and their complex conjugates) into irreducible representations using

the character table in appendix A.

For instance, let us describe the scalar operators that are quadratic in the Xi and/or

X
j
. The nine operators XiX

j
can be organized according to the decomposition

3⊗ 3̄ = 1⊕ 2⊕ 2′ ⊕ 2′′ ⊕ 2′′′ , (2.9)

as

O1,0 =
1√
3
XiX

i
,

O2,0 =
1√
2

(
X1X

1 −X3X
3
, X1X

1 −X2X
2
)
,

O2′,0 =
1√
3

(
X2X

1
+X3X

2
+X1X

3
, X3X

1
+X1X

2
+X2X

3
)
,

O2′′,0 =
1√
3

(
ω2X2X

1
+X3X

2
+ ωX1X

3
, ωX1X

2
+X2X

3
+ ω2X3X

1
)
,

O2′′′,0 =
1√
3

(
ω2X1X

2
+X2X

3
+ ωX3X

1
, ωX2X

1
+X3X

2
+ ω2X1X

3
)
.

(2.10)

Each of these operators is the bottom component of a long superconformal multiplet. We

see that all of the four inequivalent two-dimensional irreps of G appear, and so there should

be five distinct eigenvalues for the conformal dimensions in this sector. In section 3 we

explicitly compute the conformal dimensions of these operators using the 4 − ε expansion

to order ε4 and verify the predicted degeneracy of the spectrum.

To examine the operators XiXj (or their complex conjugates), consider the

decomposition

3⊗ 3 = 3̄s ⊕ 3̄s ⊕ 3′a , (2.11)

where s/a denotes the symmetric/antisymmetric product. Since the Xi are bosonic fields

and commute with each other, the scalar operators quadratic in Xi appear in the symmetric

product of 3 ⊗ 3, namely in the 3̄ irrep, which appears twice. The linearly independent

operators can be written as

O3̄1,0 = (X1X1, X2X2, X3X3) ,

O3̄2,0 = (X2X3, X1X3, X1X2) .
(2.12)

Due to the chiral ring relations, discussed in section 3.4 below, only half of these oper-

ators flow to chiral primaries of ∆ = 2 d−1
3 . The others, namely, O3̄2,0 + τ

2O3̄1,0 flow to

superconformal descendants of anti-chiral primaries and have dimension ∆ = d− 2d−1
3 .

– 7 –
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2.2 The duality group

Since the Kähler potential is invariant under U(3), we can use elements of this group to

perform field redefinitions. A generic U(3) element will transform the superpotential (2.2)

into a generic cubic superpotential of the form W ∼ hijkXiXjXk. As we now explain,

there is a discrete subgroup of U(3) that leaves the form of the superpotential invariant

and only changes the coupling constants h1 and h2. Theories whose coupling constants are

related in such a way are then equivalent, and define the same CFT in the infrared.

This “duality subgroup” of U(3) is generated by the following elements

u1 =

ω2 0 0

0 1 0

0 0 1

 , u2 =
1√
3

1 1 ω2

1 ω ω

ω 1 ω

 , (2.13)

where as before ω = e2πi/3 is a cubic root of unity. These field redefinitions lead to the

following duality transformation on the coupling constants:

d1(τ) = ωτ , d2(τ) =
τ + 2ω2

ωτ − 1
, (2.14)

meaning that two CFTs characterized by distinct values of the marginal coupling τ and τ ′ =

di(τ) are equivalent. It is easy to check that the group generated by the transformations

in (2.13) and their compositions is the alternating group A4, that is the group of even

permutations on four objects. This result was derived for the same superpotential in two

dimensions in [43].

Theories related by h′i = h∗i are also equivalent under complex conjugation Xi → X
i
,

so we can enlarge the group of dualities by including

d3(τ) = τ̄ . (2.15)

The duality group generated by (2.13) and (2.15) is then the symmetric group S4 = A4oZ2,

where Z2 is complex conjugation. This S4 is precisely the outer automorphism group of the

discrete symmetry group G, and it acts by permuting the four inequivalent two-dimensional

irreps of the group. This property will be very important when we discuss the action of

the duality group on the spectrum of operators.

2.2.1 The global structure of the conformal manifold

According to the preceding discussion, the conformal manifold M for our model is given

by the quotient

M = CP1
/
S4 . (2.16)

It turns out that the action of S4 is not free since there are fixed points under some elements

of S4, so the conformal manifold has the structure of a 2-orbifold.

– 8 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

●

●

●

▲

▲

▲ ▲⨯

⨯

⨯

⨯

⨯
⨯

-3 -2 -1 1 2 3
Re τ

-3

-2

-1

1

2

3

Im τ

Δ2'',ℓ = Δ2''',ℓ cWZ3XYZ

ℤ2×ℤ2

Δ 2
',ℓ
=
Δ 2
''',
ℓ Δ

2,ℓ =
Δ
2'',ℓ

●●▲▲

⨯⨯

0.2 0.4 0.6 0.8 1.0
Re τ

0.2

0.4

0.6

0.8

Im τ

Figure 1. The black lines denote the images of the real line Im τ = 0 under the various dualities,

and therefore each of them is invariant under an appropriate Z2 reflection subgroup of the duality

group. Each cell defines a fundamental domain, and the orange shading is the domain we chose

in (2.17). The triangles, circles, and crosses are dual to the XYZ, cWZ3, and Z2 × Z2 theories

with τ = 0, 1 and (1 −
√

3)ω2, which are self-dual under the S3, S3, and Z2 × Z2 subgroups of

S4 defined in (2.18). There is an extra circle at τ = ∞. The plot on the right is focused on a

particular fundamental domain and shows additional degeneracies in the spectrum of quadratic

operators (2.10) along the boundaries of the fundamental domain.

We can choose the fundamental domain F in the complex τ plane to be bounded by

the curves

L0 : Im τ = 0 for 0 ≤ Re τ ≤ 1 ,

L1 : Im τ =
√

3Re τ for 0 ≤ Re τ ≤ −1 +
√

3

2
,

L2 :

(
Re τ +

1

2

)2

+

(
Im τ +

√
3

2

)2

= 3 for
−1 +

√
3

2
≤ Re τ ≤ 1 ,

(2.17)

as shown in figure 1. The three boundary curves L0, L1, and L2 are self-dual under the Z2

reflections d3, d1d3 and d2d1d3 respectively.

The three vertices of the boundary are also fixed points under the action of the following

subgroups of S4:

τ = 1 fixed by S3 generated by {d3 , d2d1} ,
τ = 0 fixed by S3 generated by {d3 , d1} ,
τ = (1−

√
3)ω2 fixed by Z2 × Z2 generated by {d1d3 , d2} .

(2.18)

Two-dimensional orbifolds have been classified in [51] (see Chapter 13.3).7 Our confor-

mal manifold M is topologically a two-dimensional disk with three corner reflectors of

7Reference [51] is available online at http://library.msri.org/books/gt3m/.
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order (2, 3, 3).8 As shown in [51] its orbifold Euler characteristic is χ(M) = 1/12 and

its orbifold fundamental group is π1(M) = S4, i.e. it coincides with the duality symme-

try group.

We now describe the enhanced flavor symmetries at each of the special points.

• τ = 0: the superpotential is

Wτ=0 ∝ X1X2X3 , (2.19)

which describes the so called XYZ model. This theory has an enhanced U(1)×U(1)o
S3 flavor symmetry, where S3 permutes Xi and U(1)×U(1) is generated by

U(1)×U(1) :

eiθ1 0 0

0 ei(−θ1+θ2) 0

0 0 e−iθ2

 s.t. θ1, θ2 ∈ [0, 2π) . (2.20)

The S3 in (2.18) is a subgroup of U(1) × U(1) o S3. The quadratic operator O2,0

in (2.10) forms the lowest component of the current supermultiplets for each U(1),

and so has dimension

τ = 0 : ∆2,0 = d− 2 . (2.21)

• τ = 1: to describe this point, it is more convenient to use the duality transformation

τ → τ + 2

τ − 1
, (2.22)

which identifies this theory with the Wess-Zumino model at τ = ∞, with superpo-

tential

Wτ=∞ ∝ X3
1 +X3

2 +X3
3 . (2.23)

This superpotential describes three decoupled critical Wess-Zumino models (cWZ3).

From (2.10), we see that the quadratic operators O2′,0, O2′′,0, and O2′′′,0 in this

model are composites of a chiral field from two different cWZ’s, and so their scaling

dimensions are simply the sum of the two component chiral fields, i.e. 2 d−1
3 . As we

will see shortly, this implies that the operators in the dual τ = 1 theory then have

scaling dimensions

τ = 1 : ∆2,0 = ∆2′′,0 = ∆2′′′,0 = 2
d− 1

3
. (2.24)

• τ = (1−
√

3)ω2: the superpotential has no special form and does not correspond to

any well studied theory. We will refer to this theory by its extra Z2 × Z2 symmetry.

8If one does not include complex conjugation in the duality group, the resulting orbifold CP1/A4 is

topologically a sphere S2 with three elliptic points of order (2, 3, 3). This space is a double cover of CP1/S4

via the identification S4 = A4 o Z2.
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2.2.2 Duality action on the operator spectrum

Since the duality action is given by field redefinitions, we can determine explicitly how

operators transform under duality. In this section we focus on the quadratic operators

defined in (2.10) and derive some interesting consequences on physical observables. Since

O1,0 is invariant under complex conjugation and generic U(3) transformations, it transforms

into itself under all duality transformations, i.e. it is a self-dual operator. On the other

hand, the four operators O2,0,O2′,0,O2′′,0 and O2′′′,0 are permuted in the obvious way by

S4. This can be understood from the fact that S4, seen as the group of outer automorphisms

of G, acts by permuting the four two-dimensional representations. We also notice that along

the boundary of the fundamental domain, the Z2 reflections that leave the three segments

invariant relate operators in different pairs of doublet irreps, as indicated in figure 1.

The first consequence of this is the presence of monodromies as the coupling constant

is adiabatically varied along non-trivial loops in the conformal manifold. Such loops are

classified by π1(M) = S4 and the operators that mix under such motion are precisely those

in the four two-dimensional representations. This is a global version of the Berry phase,

which has recently been studied for infinitesimal loops in the conformal manifold in [52].

The other consequence is that the fixed points are critical points for the conformal

dimensions of operators in the theory. We illustrate this phenomenon explicitly for the

conformal dimension ∆1 of the singlet operator O1,0. This operator is self-dual, so at a

fixed point τ∗ = d(τ∗), where d is a holomorphic duality transformation (that is, belonging

to A4 ⊂ S4), we have

∂d

∂τ
(τ∗)∂τ∆1(τ∗) = ∂τ∆1(τ∗) . (2.25)

It is easy to check that for all the three inequivalent fixed points, there is a duality trans-

formation such that ∂d
∂τ (τ∗) 6= 1, which implies ∂τ∆1(τ∗) = 0. We conclude that the fixed

points are critical points for ∆1(τ). The singlet conformal dimension is then a function

on CP1 with 14 = 4 + 6 + 4 critical points, corresponding to the four XYZ points, the

six Z2 × Z2 points and the four cWZ3 points.9 Using Morse inequalities, we conclude

that four of these points are minima, four are maxima and six are saddles.10 Therefore

the Z2 × Z2 self-dual points are saddles for the singlet conformal dimension, while the

XYZ/cWZ3 points are either minima/maxima or maxima/minima.11 From the bootstrap

results of [23, 48], we conclude that the XYZ points are minima and the cWZ3 points are

maxima for ∆1(τ). Thus we have arrived at a qualitative picture of the behavior of the

function ∆1(τ) entirely based on non-perturbative arguments. This qualitative analysis is

9We assume that the only critical points are those predicted by the dualities and that they are non-

degenerate.
10More precisely, both minima and maxima must be present because the 0th and 2nd Betti numbers

of the 2-sphere are non-vanishing (b0 = b2 = 1). Then the only way to correctly reproduce the Euler

characteristic of the 2-sphere with these critical points is χ(CP1) = 4(−1)0 +6(−1)1 +4(−1)2 = 2, showing

that the six Z2 × Z2 points must be saddles.
11This analysis applies to all self-dual quantities in the CFT, including the appropriately contracted

OPE coefficient that we compute and compare in the 4 − ε-expansion and in the numerical bootstrap, see

equation (3.38) and figure 6.
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indeed confirmed by a fourth order 4− ε-expansion computation shown in figure 2 as well

as a numerical conformal bootstrap analysis.

The discussion above can be repeated almost verbatim for the doublet operators. To

illustrate this it is sufficient to study the operator O2,0 defined in (2.10). The results

then extend directly to the other three doublet operators in (2.10) by applying duality

transformations. Focusing on the A4 part of the duality group, it is possible to show that

the operator O2,0 is left invariant only by the transformation u1 defined in (2.13). This

duality transformation acts on the coupling τ as d1(τ) = ωτ , see (2.14). As a consequence,

∆2 obeys the equation (analogous to (2.25) above)

∂d1

∂τ
(τ∗)∂τ∆2(τ∗) = ∂τ∆2(τ∗) . (2.26)

Here τ∗ are the points on the complex τ plane left invariant by the action of d1, namely

τ = 0 and τ = ∞, which are XYZ and cWZ3 points respectively. Since ∂d1
∂τ (τ∗) 6= 1 at

these two fixed points, we find that the function ∆2(τ) exhibits critical points at τ = 0

and τ = ∞. Assuming that there are no other critical points on CP1, Morse inequalities

imply that one of them is a minimum and the other is a maximum. Since we know that

at τ = 0 the operator O2,0 is the lowest component of the U(1) × U(1) current multiplet,

its conformal dimension ∆2(0) = 1 saturates the BPS bound, so this critical point is

a minimum. It then immediately follows that τ = ∞ is a maximum. This qualitative

behavior of the conformal dimensions of the quadratic operators in the two-dimensional

representations is indeed realized as we show explicitly using the 4 − ε-expansion and the

numerical bootstrap, see figure 3.

2.3 Supersymmetric localization results

It is possible to calculate certain quantities at the IR fixed point of the model (2.2) us-

ing the technique of supersymmetric localization (see [53] for a recent review and a list

of references). For this model, in d > 2, we are aware of two quantities that can be

computed exactly.12

The first quantity is the coefficient CT that appears in the two point function of the

canonically normalized stress-energy tensor which in Euclidean R3 is given by:

〈Tµν(~x)Tρσ(0)〉 =
CT
96

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2~x2
, Pµν ≡ δµν∂2 − ∂µ∂ν .

(2.27)

It was shown in [58, 59] that CT can be determined by differentiating the supersymmetric

partition function of the three-dimensional N = 2 SCFT on a squashed S3, which in turn

12In d = 2 it is possible to also calculate the Zamolodchikov metric on the conformal manifold (see for

example section 4.2 in [54]) as well as correlation functions of other chiral and anti-chiral operators following

the 4d approach of [55]. However, these quantities can also be computed exactly using the description of

the IR SCFT as a Z3 orbifold theory [43–45, 56, 57].
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was computed by localization in [60, 61]. The result is given by the concise formula13

CT =
48

π2

∂2F (b)

∂b2

∣∣∣∣
b=1

. (2.28)

Here F (b) = − logZ(b) is the squashed sphere supersymmetric free energy. The quantity

b is the squashing parameter controlling the deviation of the S3 metric from the Einstein

one. The round sphere is obtained for b = 1. For a theory of a single chiral multiplet of

R-charge ∆, one finds the following compact integral expression [59]

Fchiral(b) = −
∫ ∞

0

dx

2x

(
sinh(2(1−∆)ω̂x)

sinh(bx) sinh(x/b)
− 2ω̂(1−∆)

x

)
, (2.29)

where ω̂ ≡ b+b−1

2 . In the case of interest to us, F (b) = 3Fchiral(b), where Fchiral(b) is

evaluated with ∆ = 2/3. This gives [62]

CT =
32

27

(
16− 9

√
3

π

)
≈ 13.0821 . (2.30)

Note that the value of CT does not depend on the value of the marginal coupling τ param-

eterizing the conformal manifold.

The second quantity that can be computed exactly using supersymmetric localization

is the coefficient CJ that appears in the two-point function of canonically normalized con-

served currents at the XYZ point. The XYZ theory has two U(1) flavor symmetries that

act on the Xi with charges (1,−1, 0) and (0, 1,−1) (see (2.20)). The two-point function of

each of the two U(1) canonically-normalized conserved currents takes the form14

〈Jµ(~x)Jν(0)〉 =
CJ

128π2
Pµν

1

~x2
. (2.31)

The coefficient CJ can be computed from the second derivative of the free energy on a

round S3 in the presence of a real mass parameter m:

CJ =
2

π2

d2F

dm2

∣∣∣∣
m=0

. (2.32)

For a chiral multiplet of R-charge ∆ and charge q under the U(1) symmetry associated

with the real mass m, we have

Fchiral(m) = −`(1−∆ + iqm) , (2.33)

where

`(z) ≡ −z log(1− e2πiz) +
i

2

(
πz2 +

1

π
Li2(e2πiz)

)
− iπ

12
. (2.34)

For any of the two U(1) currents mentioned above, we have F = −`(1/3 + im) − `(1/3 −
im)− `(1/3), which gives [48, 63]

CJ =
16

9
− 4√

3π
≈ 1.043 . (2.35)

13We use the same normalization as in [22]. For a free chiral multiplet one has CT = 6, thus CT = 18 for

three free chiral multiplets.
14With this definition, a free massless chiral multiplet has CJ = 1 for the U(1) flavor symmetry under

which it has charge 1.
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3 Results in d = 4 − ε

The 4−ε expansion [46] has been extremely successful in computing observables of strongly

coupled theories in three dimensions. The idea is to compute the physical quantities of

interest in dimension d = 4 − ε, express them as power series in ε, and then use an

extrapolation method in order to evaluate them at ε = 1, which corresponds to the 3d

theory. In this section we use the 4 − ε expansion to compute the scaling dimensions of

the non-protected quadratic operators to order ε4 and the structure constants of the chiral

ring at order ε2. We also provide the Zamolodchikov metric up to order ε2.

3.1 Generalities

In a generic cubic model

W =
1

6
hijkXiXjXk , (3.1)

the beta function for the physical coupling15 has the following general expression

βijk ≡ µ∂h
ijk

∂µ
= −ε

2
hijk + γimh

mjk + γjmh
imk + γkmh

ijm , (3.2)

where γij is the matrix of anomalous dimensions for the chiral superfields Xi. At a fixed

point βijk(h∗) = 0, and the discrete symmetry group G implies that the matrix of anoma-

lous dimensions is proportional to the identity γij(h∗) = γ(h∗)δ
i
j . From (3.2) it immedi-

ately follows that

γ(h∗) =
ε

6
, (3.3)

or equivalently the conformal dimensions of the Xi’s are

∆Xi =
d− 2

2
+
ε

6
=
d− 1

3
. (3.4)

This result is of course compatible with the general expectation for the value of ∆Xi at a

superconformal fixed point (2.3).

It is worthwhile to provide another argument for the existence of a one-dimensional

conformal manifold for our model. The existence of a fixed point imposes ten complex

equations βijk = 0 for the ten complex couplings hijk. Nine of these couplings can be

eliminated by a U(3) field redefinition. In addition, since the anomalous dimension matrix

γij is Hermitian, it is clear from (3.2) that there are only 9 independent conditions to ensure

15We can think of (3.2) as written in a non-holomorphic scheme where the Kähler potential is canonical

K = YiY
i

and not renormalized. This is related to the holomorphic scheme that we use in the rest of

this section by the identifications Xi = Mi
jYj and X

i
= M

i
jY

j
, such that the superpotential W =

1
6
hijkXiXjXk is not renormalized (M i

j can be taken to be the inverse square root of the wave-function

normalization matrix Zij , which is positive and Hermitian). The beta function in (3.2) is then the beta

function of the physical coupling hijkphys = h`mnM i
`M

j
mM

k
n. To see that the beta function takes the

form (3.2), note that the anomalous dimension matrix of the Xi is γij = µ
∂ log(M)ij

∂µ
. Thus, the logarithmic

running of hijkphys is given by the sum between the classical logarithmic running of hijk (the first term in (3.2))

and the running of M i
j (the last three terms in (3.2)).
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that the β functions vanish. Thus in general we expect a one complex parameter family of

solutions of the fixed point equations βijk = 0. This is a variation of the argument of Leigh-

Strassler for the existence of fixed points in 4d N = 1 gauge theories [9]. Notice that in 3d

N = 2 theories the couplings hijk are not marginal as was assumed in [9]. Nevertheless,

as appreciated in [12], the essence of the argument in [9] relies on linear relations between

the beta functions, which indeed exist in our model.

3.2 A line of fixed points

The beta function for the generic cubic model with superpotential given in (3.1) is known to

four loops [64, 65]. The fixed point is determined by solving the algebraic relation in (3.3).

It is convenient to parametrize the coupling constant space with the coordinates16

r2 = 2|h1|2 + |h2|2 , (3.5)

τ =
h2

h1
. (3.6)

The anomalous dimension is then given by

γ(r, τ, τ̄) = f1(τ, τ̄)r2 + f2(τ, τ̄)r4 + f3(τ, τ̄)r6 + f4(τ, τ̄)r8 +O(r10) , (3.7)

where

f1(τ, τ̄) =
1

25π2
, (3.8)

f2(τ, τ̄) = − 1

29π4
, (3.9)

f3(τ, τ̄) =
1

213π6

(
5

4
+ 3ζ(3)

((
τ3 + 2

) (
τ̄3 + 2

)
+ 18τ τ̄

)
(2 + τ τ̄)3

)
, (3.10)

f4(τ, τ̄) = − 1

217π8

[
9

4
+

(
15ζ(3)− 9

2
ζ(4)

) ((
τ3 + 2

) (
τ̄3 + 2

)
+ 18τ τ̄

)
(2 + τ τ̄)3

+ 20ζ(5)

(
(τ τ̄ + 2)4 − 8

(
1− τ3

) (
1− τ̄3

) )
(2 + τ τ̄)4

]
. (3.11)

By equating γ(r, τ, τ̄) = ε/6, we can compute the fixed point couplings up to order ε4:

r2 = a1(τ, τ̄)ε+ a2(τ, τ̄)ε2 + a3(τ, τ̄)ε3 + a4(τ, τ̄)ε4 +O(ε5) , (3.12)

with

a1 =
1

6f1
, a2 = − f2

62f3
1

, a3 =
2f2

2 − f1f3

63f5
1

, a4 = −5f3
2 − 5f1f2f3 + f2

1 f4

64f7
1

. (3.13)

A simple computation shows that the functions fi’s (and consequently ai’s) are invariant

under the duality transformations generated by (2.14), (2.15). Since (τ, τ̄) are arbitrary

parameters, we thus have a one complex-dimensional manifold of fixed points, i.e. our

conformal manifold.
16The overall phase of h1 and h2 can be changed by an R-symmetry transformation, so it is a redundant

coupling and does appear in the β function.
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3.3 Conformal dimensions of quadratic operators

It is possible to use the 4−ε expansion to compute the scaling dimensions of the quadratic

operators in our model as a function of τ . There are 21 real quadratic operators, of which

the six given in (2.12) and their complex conjugates belong to chiral or anti-chiral multiplets

and thus have protected scaling dimensions. The scaling dimensions of the remaining nine

operators of zero R-charge given in equation (2.10) are not protected by supersymmetry

and depend on the marginal coupling τ .

These scaling dimensions can be computed directly from the matrix of anomalous

dimensions for the fundamental fields Xi [66]. Indeed, the beta functions for the couplings

(m2)ijXiX
j

can be computed as

β(m2)ij = µ
d(m2)ij
dµ

= − 2(m2)ij +

[[
(m2)lph

pmn + (m2)mph
lpn + (m2)nph

lmp
] ∂γij
∂hlmn

+ c.c.

]
.

(3.14)

The scaling dimensions of the quadratic operators are the eigenvalues of the 9 × 9 matrix

∆i
j
l
k = (4− ε)δikδlj +

∂β(m2)ij

∂(m2)kl
, (3.15)

where we think of the indices (i, j) as the row indices and (k, l) as the column indices. The

operators in (2.10) directly provide a basis of eigenvectors for the resulting matrix, from

which the anomalous dimensions can be immediately extracted.

Plugging in the couplings hijk as well as the anomalous dimension matrix γij corre-

sponding to the model (2.2), and using the results of the previous subsection, we can then

compute the conformal dimensions of all the unprotected quadratic operators up to order

ε4. The conformal dimension ∆1 of the singlet operator XiX
i

reads

∆1 = 2− 1

3
ε2 +

1

3

[
1

6
+ 2ζ(3)

((
τ3 + 2

) (
τ̄3 + 2

)
+ 18τ τ̄

)
(2 + τ τ̄)3

]
ε3

−1

9

[
7

12
−
(

7ζ(3)− 9

2
ζ(4)

) ((
τ3 + 2

) (
τ̄3 + 2

)
+ 18τ τ̄

)
(2 + τ τ̄)3 (3.16)

+20ζ(5)

(
(τ τ̄ + 2)4 − 8

(
1− τ3

) (
1− τ̄3

) )
(2 + τ τ̄)4

]
ε4 +O(ε5) .

It is pleasing to see that at each order in ε the conformal dimension is invariant under

the duality group and exhibits critical points at the three inequivalent self-dual points, as

predicted from the considerations of the previous section.
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For the quadratic operator O2,0 in (2.10) one finds the conformal dimension

∆2 = 2− 2

2 + τ τ̄
ε+

1

3

τ τ̄ (1− τ τ̄)

(2 + τ τ̄)2 ε2

+
1

9

τ τ̄

(2 + τ τ̄)3

[
(10− τ τ̄)(1− τ τ̄)

2
+ 6ζ(3)

3(1− τ τ̄)2 + (1− τ3)(1− τ̄3)

2 + τ τ̄

]
ε3

+
1

27

τ τ̄

(2 + τ τ̄)4

[
(100− 26τ τ̄ + 7τ2τ̄2)(1− τ τ̄)

4
(3.17)

−3ζ(3)
2(1− τ τ̄)(2 + τ τ̄)2 + (2 + 7τ τ̄)[3(1− τ τ̄)2 + (1− τ3)(1− τ̄3)]

2 + τ τ̄

+
27

2
ζ(4)[3(1− τ τ̄)2 + (1− τ3)(1− τ̄3)]

−20ζ(5)
3τ τ̄(2 + τ τ̄)(1− τ τ̄)2 + 8(1− τ3)(1− τ̄3)

2 + τ τ̄

]
ε4 +O(ε5).

The conformal dimensions of the other doublet operators (2.10) can be obtained from ∆2

above by the following substitutions

∆2 → ∆2′ , τ → τ + 2

τ − 1
, τ̄ → τ̄ + 2

τ̄ − 1
,

∆2 → ∆2′′ , τ → ωτ + 2

ωτ − 1
, τ̄ → ω̄τ̄ + 2

ω̄τ̄ − 1
,

∆2 → ∆2′′′ , τ → ω2τ + 2

ω2τ − 1
, τ̄ → ω̄2τ̄ + 2

ω̄2τ̄ − 1
.

(3.18)

We emphasize that these results are obtained using the 4− ε expansion without using the

duality properties of our model. The fact that the results for these conformal dimensions

are compatible with the duality transformations constitutes a strong consistency check of

our calculations.

When the results for the conformal dimensions in (3.16), (3.17), and (3.18) are re-

stricted to order ε2 we find agreement with the two loops results presented in [48, 63, 67, 68].

Resummation. In order to find meaningful results when ε = 1, we need to employ a

resummation method. For the scaling dimensions, which are known to 4-loops, we have

used the Padé approximation method, which has been shown to be successful in related

examples. We find that the results that match the numerical bootstrap the best are given

by Padé[1,2], which only uses the 3-loop result. We plot these doublet and singlet scaling

dimension in figures 2 and 3, which demonstrate how these operators transform under the

dualities. For the OPE coefficients computed in the next section we only find 2-loop results

and thus do not use any resummation.

3.4 The chiral ring and the Zamolodchikov metric

In this subsection we discuss the structure of the chiral ring of the theory [56]. Chiral

operators are obtained by taking combinations of the form Xi1Xi2 · · ·Xin . However, most

of these combinations are not superconformal primaries due to the equations of motion
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Figure 2. The 3-loop Padé[1,2] resummed 4− ε-expansion values for the singlet. The cross, circle,

and triangle denote values of τ that correspond to the Z2×Z2, cWZ3, and XYZ models, respectively.

that schematically read

D
2
X
i

=
∂W

∂Xi
. (3.19)

Therefore these operators do not belong to the chiral ring. As a consequence, in order to find

the spectrum of chiral operators we can set to zero the descendant combinations ∂W
∂Xi
∼ 0.

At a generic point τ , it is easy to show that the chiral ring consists of finitely many oper-

ators. Indeed, there are three independent conditions involving chiral quadratic operators:

W1 ≡ X2X3 +
τ

2
X2

1 ∼ 0 , W2 ≡ X1X3 +
τ

2
X2

2 ∼ 0 , W3 ≡ X1X2 +
τ

2
X2

3 ∼ 0 . (3.20)

At the cubic level, multiplying these relations with the three chiral fields Xi gives nine

relations that remove all but one of the ten possible chiral combinations. All the quartic

or higher operators are removed as well. We can count the chiral operators more system-

atically by using the generating function

P (t) = Tr tJR , (3.21)

where JR is the generator of the R-symmetry current and the trace is taken over the space

of chiral primaries. Each of the three chiral operators contributes a factor 1
1−t2/3 , while the
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Figure 3. The 3-loop Padé[1,2] resummed 4 − ε-expansion values for the doublets. The cross,

circle, and triangle denote values of τ that correspond to the Z2 × Z2, cWZ3, and XYZ models,

respectively.

chiral ring relations contribute a factor (1 − t4/3)3. All in all, we have

P (t) =

(
1− t4/3

1− t2/3

)3

= 1 + 3 t2/3 + 3 t4/3 + t2 , (3.22)

so in addition to the three chiral fields Xi, we find three quadratic chiral primary operators

QI and one cubic chiral primary operator O. The quadratic and cubic chiral operators are

given by17

Q1 ≡ X2
1 − τ̄ X2X3 +O(ε2) , (3.23)

Q2 ≡ X2
2 − τ̄ X1X3 +O(ε2) , (3.24)

Q3 ≡ X2
3 − τ̄ X1X2 +O(ε2) , (3.25)

O ≡ X3
1 +X3

2 +X3
3 − 3τ̄X1X2X3 +O(ε2) . (3.26)

17These combinations are orthogonal to the chiral ring relations at tree level. We have checked explicitly

that they remain chiral primaries to order ε, but their explicit expressions in terms of the fundamental fields

receive corrections at higher orders in ε. The corrections to QI and O can be chosen to be proportional to

WI and W respectively, thus such corrections will not contribute to the quantities that we compute below.
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In this basis, it is easy to compute the chiral ring structure constants, defined by

Xi(x)Xj(0) = CKij QK(0) + . . . ,

Xi(x)QJ(0) = CiJO(0) + . . . ,
(3.27)

where the ellipses denote terms that go to zero as x → 0. The non-vanishing structure

constants are given by

C1
11 = C2

22 = C3
33 =

2

2 + τ τ̄
,

C3
12 = C2

13 = C1
23 = − τ

2 + τ τ̄
,

C11 = C22 = C33 =
1

3
.

(3.28)

The three-point functions are then obtained by computing the two-point functions of the

operators in (3.23)-(3.26). The discrete symmetries imply that〈
Xi(x)X

j
(0)
〉

= G1(τ, τ̄)
δi
j

|x|2(d−1)/3
,〈

QI(x)QJ(0)
〉

= G2(τ, τ̄)
δI
J

|x|4(d−1)/3
,〈

O(x)O(0)
〉

= G3(τ, τ̄)
1

|x|2(d−1)
.

(3.29)

The functions Gi transform very simply under the duality group generated by (2.13), (2.14).

The only generator acting non-trivially on them is d2(τ) = τ+2ω2

ωτ−1 , which gives

d2 : G1 → G1 ,

G2 →
3

(ω2τ − 1)(ωτ̄ − 1)
G2 , (3.30)

G3 →
3

(ω2τ − 1)(ωτ̄ − 1)
G3 .

It is possible to calculate the two-point functions in (3.29) using perturbation theory

in ε. The details of this calculation to order ε2 are outlined in appendix B. The calculation

of G1(τ, τ̄) is quite standard and we find that the result is independent of τ to this order,

while the computation of G2 and G3 to order ε2 is more complicated and involves the same

Feynman diagrams that were computed in [69] (see section 5.1 in [69]). In order to discuss

normalization and scheme independent quantities it is useful to present the final result as

the following ratios:

G2(τ, τ̄)

G1(τ, τ̄)2
= (2 + τ τ̄) +

2 ζ(3)

3

(
(1− τ τ̄)3 + (1− τ3)(1− τ̄3)

(2 + τ τ̄)2

)
ε2 +O(ε3) ,

G3(τ, τ̄)

G1(τ, τ̄)G2(τ, τ̄)
= 9 + 12 ζ(3)

(
(1− τ τ̄)3 + (1− τ3)(1− τ̄3)

(2 + τ τ̄)3

)
ε2 +O(ε3) .

(3.31)
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3.4.1 The four point functions in the chiral channel

In section 4 we use the numerical conformal bootstrap to study the constraints imposed on

our model by using crossing symmetry and unitarity of the four-point function of 2 chiral

and 2 anti-chiral operators, Xi and X
j
. In anticipation of this analysis, it is useful to study

this four-point function in perturbation theory. To compare to the bootstrap results, it is

useful to define properly normalized operators X̂ and Q̂, i.e. operators with unit two-point

functions. To this end we define

X̂i ≡
Xi√
G1

, Q̂I ≡
QI√
G2

. (3.32)

We then consider the four point functions〈
X̂i X̂j X̂

k
X̂
`
〉
,

〈
X̂i Q̂J X̂

k
Q̂
L
〉
, (3.33)

and expand them in the chiral channel. The dominant contribution in the conformal

block expansion of these four-point functions is controlled by the following contractions of

properly normalized OPE coefficients (we denote complex conjugation by ∗)

(CKij δKMC
∗M
kl )

G2

G2
1

, (3.34)

(CiJC
∗
kL)

G3

G1G2
. (3.35)

The quantities appearing above are well defined, independent of normalization choices and

can therefore be meaningfully compared to the bootstrap results. Using (3.27)–(3.29) we

find for (3.34) (sum over repeated indices implied):

(CKij C
∗K
ij )

G2

G2
1

=
6

(2 + τ τ̄)

G2

G2
1

. (3.36)

Similarly for (3.35) we have

(CiJC
∗
kL)

G3

G1G2
=

1

9

G3

G1G2
δiJδkL . (3.37)

Combining (3.31) and (3.36) and multiplying by 2
4(d−1)

3 to match our conventions in the

bootstrap section, we get

|λ3̄,2 d−1
3
,0|

2 = 2
4(3−ε)

3

[
1 +

2 ζ(3)

3

(
(1− τ τ̄)3 + (1− τ3)(1− τ̄3)

(2 + τ τ̄)3

)
ε2 +O(ε3)

]
. (3.38)

3.4.2 The Zamolodchikov metric

The operator O in (3.23) has quantum numbers ∆ = d − 1, q = 2 and it is the lowest

component of a protected supermultiplet that contains the marginal operator associated to

the exactly marginal coupling τ . The two-point function of the exactly marginal operator

determines the so-called Zamolodchikov metric on the conformal manifold [70]. Supercon-

formal Ward identities in turn relate this metric to the two-point function of the operator
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O itself. It may seem that we have already defined this two-point function in (3.29) and

computed it to order ε2 in (3.31). However there is an important subtlety. To arrive at an

object that transforms as a metric on the conformal manifold we need to work with an op-

erator Oτ , proportional to O, which is normalized such that an infinitesimal transformation

of the superpotential along the conformal manifold yields

δW = Oτδτ . (3.39)

To determine this normalization consider varying the coupling constants hi subject to the

condition

δβ(h1, h2) = 0 . (3.40)

The variation of the superpotential then reads

δW = r

(
1

3(2 + τ τ̄)3/2

(
X3

1 +X3
2 +X3

3 − 3τ̄X1X2X3

)
δτ +O(ε2)

)
, (3.41)

where the order ε2 correction is proportional to the superpotential W and so does not

affect the Zamolodchikov metric to order ε2. We observe that this operator is proportional

to the chiral combination O in (3.26), with an important prefactor that ensures that its

two-point function transforms as a metric. As a consequence, the Zamolodchikov metric

G(τ, τ̄) is given by

G(τ, τ̄) ≡ |x|2(d−1)〈Oτ (x)Oτ̄ (0)〉 =
r2

9(2 + τ τ̄)3
G3(τ, τ̄) . (3.42)

Using (3.30), one can show that G(τ, τ̄) indeed transforms as a metric under a duality

τ ′ = d(τ):

G(τ, τ̄)→
(
∂d

∂τ

)−1(∂d̄
∂τ̄

)−1

G(τ, τ̄) . (3.43)

Using equations (3.31), we get the explicit expression

G(τ, τ̄) =
r2
∗

(2 + τ τ̄)2
G3

1

(
1 + 2 ζ(3)

(
(1− τ τ̄)3 + (1− τ3)(1− τ̄3)

(2 + τ τ̄)3

)
ε2 +O(ε3)

)
, (3.44)

where r2
∗ is the value of r2 at the fixed point given in (3.12) and G1 is defined in (B.5)

and is independent of τ to this order in perturbation theory.18 It is pleasing to see that

the leading order result is just the Fubini-Study metric on CP1, whose volume shrinks to

zero as ε→ 0 as expected. Furthermore, we notice that the ε2 correction does not exhibit

singularities in the τ plane.

18While r2 and G1 are separately scheme dependent, the combination r2G3
1 is in fact scheme indepen-

dent. One way to show this is to notice that each propagator is accompanied by a factor of µ−ε/3 as in

equation (B.4), while the dimensionless coupling constant r2 is accompanied by a factor of µε. Therefore

the right hand side of (3.44) is independent of µ. A more detailed discussion of scheme dependence in the

ε expansion can be found in section 9.3 of [71].
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4 Conformal bootstrap

We now show how to constrain N = 2 theories along the conformal manifold parameterized

by the marginal coupling τ using the conformal bootstrap technique. We will focus on the

4-point function of two chiral operators Xi and two anti-chiral operators X
i
. First we will

compute the crossing equations, and then we will use them to bound the scaling dimensions

and OPE coefficients of some scalar operators in d = 3, and compare to the 4−ε-expansion

results. See also appendix D for a summary of results on the scaling dimensions and OPE

coefficients in our model in 2d.

4.1 Crossing equations

In this section we will compute the crossing equations for various values of τ . As explained

in section 2, for generic values of τ , the theory (2.2) has an order 54 discrete flavor symmetry

group G = (Z3 × Z3) o S3. In this case, we will derive 15 crossing equations. We then

specialize to the cases Im τ = 0 (the boundary of the fundamental domain), τ = 0 (the

XYZ point), and τ = (1−
√

3) (the Z2×Z2 point), in which the symmetry is enhanced by

Z2, S3, and Z2 × Z2, respectively. We will find 12 crossing equations for Im τ = 0, and 9

crossing equations for τ = 0 and τ = (1 −
√

3). We write all these crossing equations for

arbitrary spacetime dimension d.

4.1.1 Symmetry group G (generic point)

For general τ , let us begin by describing the representations of the operators that appear

in the 4-point function. We can decompose the representation of operators that appear in

the OPEs Xi ×X
j

and Xi ×Xj as

3⊗ 3̄ = 1⊕ 2⊕ 2′ ⊕ 2′′ ⊕ 2′′′ ,

3⊗ 3 = 3̄s ⊕ 3̄s ⊕ 3′a ,
(4.1)

where s/a denotes the symmetric/antisymmetric product. Operators in Xi × Xj that

appear in the symmetric/antisymmetric product are restricted by Bose symmetry to have

even/odd spins. Note that two copies of 3̄ appear in the symmetric product of 3⊗3, so we

will denote operators in each copy separately. By taking the OPEs Xi ×Xj and Xi ×X
j

twice, we can now express the 4-point function in the s and t channels as

〈XiX
j
XkX

l〉 =
1

|~x12|2
d−1

3 |~x34|2
d−1

3

∑
∆,`

G∆,`(u, v)
∑

R∈3⊗3̄

TRi
j
k
l|λR,∆,`|2 ,

〈XiXjX
k
X
l〉 =

1

|~x12|2
d−1

3 |~x34|2
d−1

3

×
∑
∆,`

G∆,`(u, v)

[
T3′ ij

kl|λ3′,∆,`|2 +
∑

α,β=1,2

T3̄αβ ij
klλ3̄α,∆,`λ̄3̄β ,∆,`

]
,

(4.2)

where the complex OPE coefficients λR,∆,` are labeled by G irrep R, scaling dimension

∆, and spin `, and the conformal blocks G∆,`(u, v)19 are functions of `, ∆, and conformal

19We use the normalization of the conformal blocks in [72]. Specifically, in the r and η coordinates

introduced in [73], we have G∆,` = r∆P`(η) + . . ., as r → 0 with η kept fixed.
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cross ratios

u ≡ |~x12|2|~x34|2

|~x13|2|~x24|2
, v ≡ |~x14|2|~x23|2

|~x13|2|~x24|2
, (4.3)

while the superconformal blocks G∆,`(u, v), originally derived in [22], are defined in our

conventions [63] as

G∆,` = G∆,` +
2(`+ d− 2)(∆ + `)

(2`+ d− 2)(∆ + `+ 1)
G∆+1,`+1

+
2`(∆− `+ 2− d)

(2`+ d− 2)(∆− `− d+ 3)
G∆+1,`−1

+
∆(∆ + 3− d)(∆− `+ 2− d)(∆ + `)(

∆ + 2− d
2

) (
∆ + 1− d

2

)
(∆− `+ 3− d)(∆ + `+ 1)

G∆+2,` .

(4.4)

The tensor structures TRi
j
k
l are computed in terms of the eigenvectors of the projec-

tors (A.3) as

TRi
j
k
l = PRR1 rsvR,ri

jvR,sk
l , TRij

kl = PRR̄1 rsvR,rijvR̄,s
kl , (4.5)

where PRR1 rs and PRR̄1 rs are projectors from R ⊗ R and R ⊗ R̄ to the singlet, respec-

tively, which can be constructed analogously to (A.2), or simply by inspection of the

bilinears (2.10)—for more details, see appendix A. Note that there are two OPE coeffi-

cients λ3̄α,∆,`, with α = 1, 2, because 3̄ appears twice in 3 ⊗ 3, so there are four possible

tensor structures T3̄αβ i
j
k
l for that irrep, with α = 1, 2 that get multiplied by quadratic

combinations of two OPE coefficients λ3̄α,∆,` and their conjugates.

A very important ingredient in our analysis is the fact that we can relate the marginal

coupling τ to the CFT data. This is achieved as follows. Note that the chiral ring relations

following from (2.2) imply that the linear combinations of OPEs

τ

2
X1 ×X1 +X2 ×X3 ,

τ

2
X2 ×X2 +X3 ×X1 ,

τ

2
X3 ×X3 +X1 ×X2 (4.6)

do not contain scalar chiral operators of dimension ∆ = 2(d − 1)/3. A similar statement

holds for the complex conjugate of (4.6), which should not contain any anti-chiral operators

with this scaling dimension. This information implies that in the decomposition of the

linear combinations of four-point functions

τ

2
〈X1X1X

k
X
l〉+ 〈X2X3X

k
X
l〉 ,

τ

2
〈X2X2X

k
X
l〉+ 〈X3X1X

k
X
l〉 ,

τ

2
〈X3X3X

k
X
l〉+ 〈X1X2X

k
X
l〉 ,

(4.7)

into conformal blocks there should be no contribution from a conformal primary of scaling

dimension 2(d− 1)/3. Using (4.4) as well as the definitions of the tensor structures TRi
j
k
l,

one finds the following relation between the OPE coefficients of scalar operators in the 3̄

representation:

−1

2
τλ3̄1,2

d−1
3
,0 = λ3̄2,2

d−1
3
,0 . (4.8)

This relation encodes the way the CFT data depends on the marginal coupling τ .
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We now equate the two different channels of the 4-point function (4.2) as

〈XiX
j
XkX

l〉 = 〈XkX
j
XiX

l〉 ,

〈XiXjX
k
X
l〉 = 〈Xk

XjXiX
l〉 ,

(4.9)

which yields the crossing equations

0 =
∑
all `

R∈{1,2,2′,2′′,2′′′}

|λR,∆,`|2~VR,∆,` +
∑
odd `

|λ3′,∆,`|2~V3′,∆,`

+
∑

even `

~λ3̄,∆,` ~V3̄,∆,`
~λT3̄,∆,` +

(
|τ |2 + 2

4

)−1

|λ3̄1,2
d−1

3
,0|

2~V3̄1,2
d−1

3
,0(τ) ,

~λ3̄,∆,` =
(

Reλ3̄1,∆,` Imλ3̄1,∆,` Reλ3̄2,∆,` Imλ3̄2,∆,`

)
,

(4.10)

where ~VR,∆,` and ~V3̄,∆,` are 15-dimensional vectors of scalars and 4× 4 matrices,20 respec-

tively, given in appendix C. We have separated out the contribution of the λ3α,2 d−1
3
,0 term,

for which we used the chiral ring relation (4.8) to write the scalar constraint ~V3̄1,2
d−1

3
,0(τ).

To ensure that |λ3̄1,2
d−1

3
,0|

2 is a duality-invariant quantity, we have included the factor

|τ |2 + 2

4
= T3̄11 i

j
j
i +
|τ |2

4
T3̄22 i

j
j
i − τ

2
T3̄21 i

j
j
i − τ̄

2
T3̄12 i

j
j
i , (4.11)

where the tensor structures are defined in (4.5).

The operator spectrum is further constrained due to the N = 2 supersymmetry [22, 23].

Generalizing the results for the XYZ model [63], we find that the following operators

may appear:

1 ,2 ,2′ ,2′′ ,2′′ : ∆ ≥ `+ d− 2 for all ` ,

3̄ : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ,

∆ = d− 2
d− 1

3
for ` = 0 ,

3′ : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for odd ` ,

∆ = 2
d− 1

3
+ ` for odd ` .

(4.12)

4.1.2 Symmetry group G o Z2 (the boundary of the fundamental domain)

We will now specialize to the boundary of the conformal manifold, which has an enhanced

Z2 symmetry. For simplicity, let us focus on the duality frame where Z2 acts as conjugation.

We can now combine Xi and X
j

into a single operator X̃I = {Xi, X
j} where I = 1, . . . , 6,

20We require 4× 4 matrices so that the matrix is real and symmetric, which is required for the numerics.
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where X̃I transforms in the real representation 6 of G o Z2. We can then decompose the

representation of operators that appear in the OPE X̃I × X̃J as

6⊗ 6 = 1Es + 1Oa + 2Oa + 2Es + 2′a
O

+ 2′s
E

+ 4s + 4a + 6s + 6s + 6′a , (4.13)

where s/a denotes the symmetric/antisymmetric product. Operators that appear in the

symmetric/antisymmetric product are restricted by Bose symmetry to even/odd spins. The

notation RE,O denotes two different representations, where E,O denotes that operators in

this representation only appear with even/odd spins. Comparing (4.13) to (4.1), we find

that 2′′ and 2′′′ have combined into 4, the conjugate representations 3 and 3̄ have combined

into 6, and similarly 3′ and 3̄′ have combined into 6′. As in G, two copies of 6 appear in

the symmetric product of 6 ⊗ 6, so we will denote operators in each copy separately. By

taking the OPE X̃I×X̃J twice, we can now express the 4-point function in the s channel as

〈X̃IX̃JX̃KX̃L〉 =
1

|~x12|2
d−1

3 |~x34|2
d−1

3

×
∑
∆,`

G∆,`(u, v)

 ∑
R∈6⊗6
R 6=6

TR,IJKLλ
2
R,∆,`+

∑
α,β=1,2

T6αβ ,IJKLλ6α,∆,`λ6β ,∆,`

 ,
(4.14)

where the OPE coefficients λR,∆,` are now real, and the tensor structures TR,IJKL are

constructed as in (4.5) except using the projectors (A.5) for GoZ2. As in G, there are two

OPE coefficients λ6α,∆,`, with α = 1, 2, because 6 appears twice in 6⊗ 6, so there are four

possible tensor structures T6αβ IJKL for that irrep. For the case ` = 0 and ∆ = 2(d− 1)/3,

we can again use the chiral ring relation to relate these OPE coefficients as

−1

2
τλ61,2

d−1
3
,0 = λ62,2

d−1
3
,0 . (4.15)

We now equate the two different channels of the 4-point function (4.14) as

〈X̃IX̃JX̃KX̃L〉 = 〈X̃KX̃JX̃IX̃L〉 , (4.16)

which yields the crossing equations

0 =
∑

even `
R∈{1E ,2E ,2′E ,4}

λ2
R,∆,`

~VR,∆,` +
∑
odd `

R∈{1O,2O,2′O,4,6′}

λ2
R,∆,`

~VR,∆,`

+

(
|τ |2 + 2

4

)−1

λ2
61,2

d−1
3
,0
~V61,2

d−1
3
,0(τ) +

∑
even `

~λ6,∆,` ~V6,∆,`
~λT6,∆,` ,

~λ6,∆,` =
(
λ61,∆,` λ62,∆,`

)
,

(4.17)

where ~VR,∆,` and ~V3̄,∆,` are 12-dimensional vectors of scalars and 2 × 2 matrices, respec-

tively, which are given explicitly in appendix C. We have separated out the contribution
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of the λ6α,2 d−1
3
,0 term, for which we used the chiral ring relation (4.15) to write the scalar

constraint ~V61,∆,0(τ) and included the τ -dependent factor defined in (4.11).

Just as with the G crossing equations, the operator spectrum is further constrained

due to the N = 2 supersymmetry so that the following operators may appear:

1E,O ,2E,O ,2′E,O ,4 : ∆ ≥ `+ d− 2 for all ` ,

6 : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ,

∆ = d− 2
d− 1

3
for ` = 0 ,

6′ : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for odd ` ,

∆ = 2
d− 1

3
+ ` for odd ` .

(4.18)

4.1.3 Symmetry group G o (Z2 × Z2) (the Z2 × Z2 point)

Let us now further specialize to the point on the boundary of the conformal manifold that

has an enhanced Z2 × Z2 symmetry. For simplicity, we will choose the point τ = 1 −
√

3,

so that one of the Z2’s acts as conjugation and the chiral operator X̃I transforms in the

real representation 61 of Go Z2. We can then decompose the representation of operators

that appear in the OPE X̃I × X̃J as

61 ⊗ 61 = 1Es + 1Oa + 4Es + 4Oa + 4′s
E

+ 4′a
O

+ 61
s + 62

s + 6′a
1
, (4.19)

where s/a denotes the symmetric/antisymmetric product. Operators that appear in the

symmetric/antisymmetric product are restricted by Bose symmetry to even/odd spins. As

with GoZ2, the notation RE,O denotes two different representations, where E,O denotes

that operators in this representation only appear with even/odd spins. Comparing (4.19)

to (4.13), we find that 2 and 2′ have combined into 4′, and now the two 6-dimensional

irreps that appear in the symmetric product belong to different irreps 61 and 62. By taking

the OPE X̃I × X̃J twice, we can now express the 4-point function in the s channel as

〈X̃IX̃JX̃KX̃L〉 =
1

|~x12|2
d−1

3 |~x34|2
d−1

3

∑
∆,`

G∆,`(u, v)
∑

R∈61⊗61

TR,IJKLλ
2
R,∆,` , (4.20)

where the OPE coefficients λR,∆,` are again real, and the tensor structures TR,IJKL are

constructed as in (4.5) except using the projectors for Go (Z2 × Z2).

We now equate the two different channels of the 4-point function (4.20) as

〈X̃IX̃JX̃KX̃L〉 = 〈X̃KX̃JX̃IX̃L〉 , (4.21)

– 27 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

which yields the crossing equations

0 =

[
1 +

√
3

3

]
λ2
62,2 d−1

3
,0
~V62,2 d−1

3
,0

+
∑

even `
R∈{1E ,4E ,4′E ,61,62}

λ2
R,∆,`

~VR,∆,` +
∑
odd `

R∈{1O,4O,4′O,6′}

λ2
6′,∆,`

~V6′,∆,` ,
(4.22)

where ~VR,∆,` are 9-dimensional vectors of scalars, which are given explicitly in appendix C,

and we have included the factor next to λ2
62,2 d−1

3
,0

so that it equals λ2
3̄1,2

d−1
3
,0

in (4.10)

when τ = 1−
√

3 or any other duality related value.

Just as in the previous cases, the operator spectrum is further constrained due to the

N = 2 supersymmetry so that the following operators may appear:

1 ,4 ,4′ : ∆ ≥ `+ d− 2 for all ` ,

61 : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ≥ 2 ,

∆ = d− 2
d− 1

3
for ` = 0 ,

62 : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ,

6′
1

: ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for odd ` ,

∆ = 2
d− 1

3
+ ` for odd ` .

(4.23)

4.1.4 Symmetry group G o S3 (the XYZ point)

Let us now discuss the point on the boundary of the conformal manifold that has an

enhanced S3 symmetry. Note that for the XYZ model, this S3 is just a subgroup of

the full flavor symmetry U(1) × U(1) o S3, but including the full group would require a

numerically unfeasible number of crossing equations, so here we just use an S3 subgroup.

ForN = 2 crossing equations that use just the U(1)×U(1) subgroup see [48]. For simplicity,

we will choose the point τ = 0, so that Z2 ⊂ S3 acts as conjugation and the chiral

operator X̃I transforms in the real representation 61 of G o S3. We can then decompose

the representation of operators that appear in the OPE X̃I × X̃J as

61 ⊗ 61 = 1Es + 1Oa + 2Es + 2Oa + 6Es + 6Oa + 61
s + 62

s + 6′
1
a (4.24)

where s/a denotes the symmetric/antisymmetric product. Operators that appear in the

symmetric/antisymmetric product are restricted by Bose symmetry to even/odd spins. As

with GoZ2, the notation RE,O denotes two different representations, where E,O denotes
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that operators in this representation only appear with even/odd spins. Comparing (4.24)

to (4.13), we find that 2′ and 4 have combined into 6, and now the two 6-dimensional irreps

that appear in the symmetric product belong to different irreps 61 and 62. By taking the

OPE X̃I × X̃J twice, we can now express the 4-point function in the s channel as

〈X̃IX̃JX̃KX̃L〉 =
1

|~x12|2
d−1

3 |~x34|2
d−1

3

∑
∆,`

G∆,`(u, v)
∑

R∈61⊗61

TR,IJKLλ
2
R,∆,` , (4.25)

where the OPE coefficients λR,∆,` are again real, and the tensor structures TR,IJKL are

constructed as in (4.5) except using the projectors for Go S3.

We now equate the two different channels of the 4-point function (4.25) as

〈X̃IX̃JX̃KX̃L〉 = 〈X̃KX̃JX̃IX̃L〉 , (4.26)

which yields the crossing equations

0 = 2λ2
62,2 d−1

3
,0
~V62,2 d−1

3
,0

+
∑

even `
R∈{1E ,2E ,6E ,61,62}

λ2
R,∆,`

~VR,∆,` +
∑
odd `

R∈{1O,2O,6O,6′}

λ2
6′,∆,`

~V6′,∆,` ,
(4.27)

where ~VR,∆,` are 9-dimensional vectors of scalars, which are given explicitly in appendix C,

and we have included the factor of 2 next to λ2
62,2 d−1

3
,0

so that it equals λ2
3̄1,2

d−1
3
,0

in (4.10)

when τ = 0 or any other duality related value.

Just as in the previous cases, the operator spectrum is further constrained due to the

N = 2 supersymmetry so that the following operators may appear:

1 ,2 ,6 : ∆ ≥ `+ d− 2 for all ` ,

61 : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ≥ 2 ,

∆ = d− 2
d− 1

3
for ` = 0 ,

62 : ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for even ` ,

∆ = 2
d− 1

3
+ ` for even ` ,

6′
1

: ∆ ≥
∣∣∣∣2d− 1

3
− (d− 1)

∣∣∣∣+ d− 1 + ` for odd ` ,

∆ = 2
d− 1

3
+ ` for odd ` .

(4.28)

4.2 Numerical bootstrap setup

We now describe how to compute bounds on scaling dimensions and OPE coefficients with

the crossing equations defined above. Recall that for the case of general τ , this parameter

appears explicitly in the crossing equations.
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We can find upper or lower bounds on a given OPE coefficient of an operator O∗ that

belongs to an isolated representation of the superconformal algebra21 of the four point

functions by considering linear functionals ~α satisfying the following conditions:

~α(~VO∗) = s s = 1 for upper bounds, s = −1 for lower bounds ,

~α(~VR,∆,`(τ)) ≥ 0, for all chiral O /∈ {O1,0,0,O∗} with fixed ∆ ,

~α(~VR,∆,`) ≥ 0, for all non-chiral O with ∆ ≥ `+ d− 2 .

(4.29)

If such a functional ~α exists, then this α applied to (4.10) along with the positivity of all

|λO|2 except, possibly, for that of |λO∗ |2 implies that

if s = 1, then |λO∗ |2 ≤ −α(~V1,0,0) ,

if s = −1, then |λO∗ |2 ≥ α(~V1,0,0) .
(4.30)

To obtain the most stringent bounds on |λO∗ |2, one should then minimize the r.h.s. of (4.30)

under the constraints (4.29).

To find upper bounds on the scaling dimensions of non-chiral operators O∗R∗,∆∗,`∗ , we

consider linear functionals ~α satisfying the following conditions:

~α(~V1,0,0) = 1 ,

~α(~VR,∆,`(τ)) ≥ 0, for all chiral O with fixed ∆ ,

~α(~VR,∆,`) ≥ 0, for all non-chiral O 6= O∗ with ∆ ≥ `+ d− 2 ,

~α(~VR∗,∆,`∗) ≥ 0, for all non-chiral O with ∆ ≥ ∆∗R∗,`∗ .

(4.31)

The existence of any such ~α would contradict (4.10), and thereby would allow us to find

an upper bound on the lowest-dimension ∆∗R∗,`∗ of the spin-`∗ superconformal primary in

irrep R∗.

The numerical implementation of the above problems requires two truncations: one

in the number of derivatives used to construct ~α and one in the range of spins ` that

we consider, whose contributions to the conformal blocks are exponentially suppressed for

large spin `. The truncated constraint problem can then be rephrased as a semidefinite

programing problem using the method developed in [74]. We will implement this semi-

definite programming using SDPB [75], for which we use the parameters specified in the

first column of table 1 in the SDPB manual [75], and consider spins up to 25 and derivative

parameter Λ = 19 for the G and GoZ2 cases, and spins up to 35 and derivative parameter

Λ = 27 for the Go Z2 × Z2 and Go S3 cases.

4.3 Numerical results

We now give numerical results computed using the crossing equations derived above, and

compare them to the 4 − ε expansion. For cWZ3, since this model consists of three non-

interacting copies of cWZ, we can compute some of its CFT data analytically and some

using the numerical bootstrap study previously performed in [22].

21For a representation that is not isolated, we can only find upper bound this way.
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4.3.1 cWZ3

We will first show how some CFT data can be computed analytically for this model. For

convenience, we work in the duality frame τ → ∞ with superpotential (2.23), where each

chiral field Xi belongs to a different decoupled cWZ. By inspection of (2.10) and (2.12),

we see that the bilinear operators O2′,0, O2′′,0, O2′′′,0, and O3̄2,0,22 are formed of chiral

and anti-chiral operators from different non-interacting copies of cWZ, so their scaling

dimensions and OPE coefficients can be computed exactly. In (2.23) we gave their scaling

dimensions, which are just twice the value of a single chiral field. By similar reasoning, we

can compute their OPE coefficients in terms of 2-point functions of a single chiral field. In

particular, we can write the 4-point function (4.2) in each channel as

〈XiX
j
XkX

l〉 =
1

|~x12|2
d−1

3 |~x34|2
d−1

3

[
δikδ

jl〈XXXX〉+ 〈XiX
j〉〈XkX

l〉+ 〈XiX
l〉〈XkX

j〉
]

=
1

|~x12|2
d−1

3 |~x34|2
d−1

3

[
δikδ

jl〈XXXX〉+ δji δ
l
k +

(u
v

) d−1
3
δliδ

j
k

]
,

〈XiXjX
k
X
l〉 =

1

|~x12|2
d−1

3 |~x34|2
d−1

3

[
δijδ

kl〈XXXX〉+ 〈XiX
k〉〈XjX

l〉+ 〈XiX
l〉〈XjX

k〉
]

=
1

|~x12|2
d−1

3 |~x34|2
d−1

3

[
δijδ

kl〈XXXX〉+ u
d−1

3 δki δ
l
j +

(u
v

) d−1
3
δliδ

k
j

]
, (4.32)

were 〈XXXX〉 is the unknown 4-point function of each cWZ with itself, and the second

and third terms factorize into the different non-interacting cWZ 2-point functions. We can

now compare (4.32) to (4.2) and expand u, v, and the scalar conformal blocks as

v =

(
1 + r2 − 2rη

1 + r2 + 2rη

)2

, u =

(
4r

1 + r2 + 2rη

)2

, G∆,0 = r∆
[
1 +O(r2)

]
, (4.33)

to extract some OPE coefficients that do not depend on 〈XXXX〉:

|λ3̄2,2
d−1

3
,0|

2 = 2
4(d−1)

3 , |λ2,2 d−1
3
,0|

2 = |λ2′,2 d−1
3
,0|

2 = |λ2′′′,2 d−1
3
,0|

2 =
1

3
2

4(d−1)
3 . (4.34)

For the bilinears O2,0 and O1,0 in (2.10) that are composed of chiral and anti-chiral

operators from the same cWZ, we can use the numerical results that were computed for

that model in [22]. In particular, we will use the scaling dimensions ∆1,0 and ∆2,0, which

are in fact the same because both operators are just linear combinations of a singlet bilinear

for a single cWZ. The scaling dimension of this operator was found in [22] to be

∆1,0 = ∆2,0 = 1.9098(20) . (4.35)

4.3.2 Symmetry group G o (Z2 × Z2) (the Z2 × Z2 point)

Next, we describe numerical bounds for the point on the conformal manifold in d = 3

with Go (Z2×Z2) symmetry, using the crossing equations derived in section 4.1.3. There

22O3̄1,0 is a descendant due to the chiral ring relation.
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are three unprotected scalar scaling dimensions: ∆1,0, ∆4,0, and ∆4′,0. On the right of

figure 4 we show the numerical bounds for these quantities, which form a rectangle. We

conjecture that the Z2 × Z2 model lives at the nontrivial corner of this rectangle, so that

(∆1,0 ,∆4,0,∆4′,0) ≈ (1.898 , 1.259 , 1.727), where in terms of G irreps ∆4,0 = ∆2,0 = ∆2′,0

and ∆4′,0 = ∆2′′,0 = ∆2′′′,0.

Independently of this conjecture, we can also use the Go (Z2×Z2) crossing equations

to compute upper and lower bounds on the chiral bilinear OPE coefficient squared λ2
61,

4
3
,0

.

We find

6.339 ≤ λ2
61,

4
3
,0
≤ 6.997 , (4.36)

where in terms of G irreps λ2
61,

4
3
,0

= |λ31,
4
3
,0|2.

4.3.3 Symmetry group G o S3 (the XYZ point)

Next, we describe numerical bounds for the XYZ model in d = 3 that were computed using

the GoS3 crossing equations derived in section 4.1.4. Recall that the full flavor symmetry of

the XYZ model is U(1)×U(1)oS3, so we are just using a fraction of the symmetry. From the

GoS3 perspective, the only effect of the U(1)×U(1) symmetry is to fix ∆2,0 = d−2, because

this operator is the superconformal primary of the U(1)×U(1) conserved current multiplets.

There are just two unprotected scalar scaling dimensions then: ∆1,0 and ∆6,0. On the left

of figure 4 we show the numerical bounds for these quantities, which form a rectangle.

We conjecture that the XYZ model lives at the nontrivial corner of this rectangle, so that

(∆1,0 ,∆6,0) ≈ (1.6388, 1.6805), where in terms of G irreps ∆6,0 = ∆2′,0 = ∆2′′,0 = ∆2′′,0.

We can compare these results to those of [48], which studied 3d N = 2 theories with

U(1)×O(N) flavor symmetry. For the case N = 2, this describes the XYZ model, although

it still only uses a fraction of the symmetry, as it neglects the S3 permutation symmetry.

That study found an upper bound ∆1,0 ≤ 1.70, which is weaker than our bounds.

Independently of whether the XYZ model saturates the bounds in figure 4, we can

also use the G o S3 crossing equations to compute upper and lower bounds on the chiral

bilinear OPE coefficient squared λ2
61,

3
4
,0

. We find

6.743 ≤ λ2
61,

4
3
,0
≤ 8.533 , (4.37)

where in terms of G irreps λ2
61,

4
3
,0

= |λ31,
4
3
,0|2.

4.3.4 Symmetry group G o Z2 (the boundary of the fundamental domain)

We now describe the numerical bounds for points on the boundary of the fundamental

domain in d = 3, which has Go Z2 flavor symmetry, using the crossing equations derived

in section 4.1.2. For convenience, we choose the duality frame where Im τ = 0, so our plots

will be functions of real τ . In order to view all three bounding curves of the conformal

manifold in a single plot, we will use the range 1 −
√

3 ≤ τ ≤ 1 +
√

3, which as shown on

the l.h.s. of figure 1 involves the fundamental domain F defined on the r.h.s. of figure 1,

as well as two adjacent domains for 1 −
√

3 ≤ τ ≤ 0 and 1 ≤ τ ≤ 1 +
√

3. When we map

– 32 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

(1.6388, 1.6805)

1.2 1.4 1.6 1.8 2.0
Δ1,0

1.2

1.4

1.6

1.8

2.0
Δ6,0

Figure 4. Left: bounds on the unprotected scaling dimensions ∆6,0 and ∆1,0 for the XYZ model

in d = 3, computed using G o S3 flavor symmetry crossing equations. Right: bounds on the

unprotected scaling dimensions ∆1,0, ∆4,0, and ∆4′,0 for the Z2 × Z2 model in d = 3, computed

using Go (Z2 × Z2) flavor symmetry crossing equations. In terms of the two-dimensional irreps of

G, we have ∆6,0 = ∆2′,0 = ∆2′′,0 = ∆2′′,0, ∆4,0 = ∆2,0 = ∆2′,0, and ∆4′,0 = ∆2′′,0 = ∆2′′′,0. In

both plots the orange denotes the allowed region, and we conjecture that the theory lives at the

corner. These bounds were computed with Λ = 27.

τ ∈ F O2,0 O2′,0 O2′′,0 O2′′′,0

1−
√

3 ≤ τ ≤ 0 O2,0 O2′′′,0 O2′′,0 O2′,0

1 ≤ τ ≤ 1 +
√

3 O2′′,0 O2′,0 O2,0 O2′′′,0

Table 1. Relation of doublets in 1−
√

3 ≤ τ ≤ 0 and 1 ≤ τ ≤ 1+
√

3 to doublets in the fundamental

domain F used in this paper.

these fundamental domains to F, some of the doublets are permuted by the duality group

S4, as we show in table 1.

In figure 5 we show upper bounds on scaling dimensions of the singlet and doublets as

a function of real τ . The different colors correspond to the singlet and different doublets,

where ∆2′′,0 = ∆2′′′,0 due to the enhanced Z2 symmetry. The cross, circle, and triangle

denote the results from the previous sections for the enhanced symmetry points τ = 1 ±√
3, 1, 0 for the Z2×Z2, cWZ3, and XYZ models respectively. Note that the results ∆2,0 = 1

at τ = 0 and ∆2,0 = ∆2′′,0 = ∆2′′,0 = 4
3 at τ = 1 are analytical, while the rest are

numerical upper bounds. The dotted lines show the 3-loop Padé[1,2] resummation of

the 4 − ε-expansion results in (3.16), (3.17), and (3.18). These 4 − ε-expansion results

for the doublets are very close the bootstrap upper bounds for most of the plot, so we

conjecture that at infinite numerical precision the CFT saturates the upper bounds. The

singlet bounds appear to not be as well converged, as they differ significantly from the
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▲

Bootstrap

ϵ-Expansion

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
τ

1.2

1.4

1.6

1.8

2.0
ΔR,0

Δ1,0

Δ2,0

Δ2',0

Δ2'',0=Δ2''',0

⨯ ℤ2×ℤ2

● cWZ3

▲ XYZ

Figure 5. Upper bounds on the unprotected scaling dimensions of the scalar singlet and doublets

for real 1−
√

3 ≤ τ ≤ 1 +
√

3, computed using the GoZ2 flavor symmetry crossing equations. The

cross, circle, and triangle denote the results from the previous sections for the enhanced symmetry

points τ = 1±
√

3, 1, 0 for the Z2 ×Z2, cWZ3, and XYZ models respectively. (For the XYZ model,

the top and bottom triangles correspond to the doublets while the middle one corresponds to the

singlet. See also table 2 in the Discussion section.) The dotted lines show the 3-loop resummed

4− ε-expansion results. These bounds were computed with Λ = 19.

perturbative and exact results throughout the manifold. The bootstrap results appear to

be less converged near the τ = 0 XYZ point. For instance, the bootstrap upper bound

gives ∆2,0 ≤ 1.14, which is weaker than the analytic value ∆2,0 = 1.

On the left of figure 6 we show upper and lower bounds on the chiral bilinear OPE

coefficient squared |λ3̄1,
3
4
,0|2 as a function of real τ . Again, the cross, circle, and triangle

denote the results from the previous sections for the enhanced symmetry points τ = 1 ±√
3, 1, 0 for the Z2 × Z2, cWZ3, and XYZ models respectively. Note that only the result

|λ3̄1,
3
4
,0|2 = 28/3 at τ = 1 is analytical, while the rest are numerical upper and lower bounds.

The dotted lines show the 2-loop 4 − ε-expansion result in (3.38). As with the scaling

dimension plots, the 4 − ε-expansion results are close to the bootstrap results everywhere

except near the τ = 0 XYZ point.

As a further check on the accuracy of the bootstrap bounds, on the right of figure 6 we

compare the upper bounds on CT as a function of real τ versus the exact τ -independent

value computed using supersymmetric localization in (2.30), where CT is computed in

terms of CFT data in our conventions as

CT =
128

3
|λ1,2,2|2 . (4.38)

For all τ the upper bound is close to saturating the exact value, but the match is more

precise away from the τ = 0 XYZ point.

4.3.5 Symmetry group G (generic point)

We now describe the numerical bounds for general points on the conformal manifold in

d = 3, which has G flavor symmetry, using the crossing equations derived in section 4.1.2.

– 34 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

⨯

⨯

⨯

⨯

⨯

●

●

▲

▲

▲

cWZ3

XYZ

ℤ2×ℤ2

Bootstrap

ϵ-expansion
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τ
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0.0010
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Figure 6. Left: upper and lower bounds on the chiral bilinear OPE coefficient squared λ2
61,

4
3 ,0

for

real 1 −
√

3 ≤ τ ≤ 1 +
√

3. The cross, circle, and triangle denote the results from the previous

sections for the enhanced symmetry points τ = 1±
√

3, 1, 0 for the Z2×Z2, cWZ3, and XYZ models

respectively. The dotted lines show the 2-loop 4− ε-expansion results. Right: upper bounds on CT
for real 1 −

√
3 ≤ τ ≤ 1 +

√
3 compared to the τ -independent localization value in (2.30). Both

plots were computed using the Go Z2 flavor symmetry crossing equations with Λ = 19.

Without loss of generality we restrict τ to the fundamental domain F defined in figure 1.

In figures 7, 8, and 9 we show upper bounds on the doublet and singlet scaling dimensions

along with the 3-loop Padé[1,2] resummation of the 4−ε-expansion results in (3.16), (3.17),

and (3.18). As was the case with the boundary of the fundamental domain, the 4 − ε-
expansion results are very close to the numerical upper bounds for most of the doublets

plots except near the XYZ model at τ = 0, while the agreement for the singlet plots is

somewhat less precise. In figure 10 we show upper bounds for chiral bilinear OPE coefficient

squared |λ3̄1,
3
4
,0|2 along with the 2-loop 4 − ε-expansion results in (3.38), and again find

similar values for each away from the τ = 0 point.

5 Discussion

In this work, we have uncovered the structure of a relatively simple example of a 3d N = 2

conformal manifold using duality, perturbative tools, as well as the numerical implemen-

tation of the conformal bootstrap. In particular, we find that the 3-loop 4 − ε-expansion

results for the scaling dimensions of scalar bilinears as a function of the complex confor-

mal manifold parameter τ match the upper bounds from the bootstrap to high precision

everywhere on the manifold away from the XYZ point. For a quantitative comparison,

in table 2 we summarize these results at the three points on the manifold with enhanced

symmetry (XYZ, cWZ3, and Z2 × Z2) for the operators whose scaling dimensions are not

already fixed by symmetry. See also figures 7, 8, and 9. We have also computed the OPE

coefficient of the bilinear chiral operator to 2-loops in the 4 − ε-expansion. Comparing it

to our bootstrap results, we again find a good match away from the XYZ point, just as in

the case of the scaling dimensions — see figure 6.
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Figure 7. Left: upper bounds on the doublet scaling dimensions ∆2 and ∆2′ for all τ in the

fundamental domain F defined in figure 1, computed using the G flavor symmetry crossing equations

with Λ = 19. Right: resummed 3-loop 4− ε-expansion values for these same quantities. In all plots

the cross, circle, and triangle denote the enhanced symmetry points τ = 1±
√

3, 1, 0 for the Z2×Z2,

cWZ3, and XYZ models respectively.

In the future, it would be interesting to see if this match becomes more precise as

we push the 4 − ε expansion and bootstrap to higher precision. In particular, it would

be interesting to know if there is a fundamental reason why the match is worse near the

XYZ point, perhaps having to do with the existence of the continuous global symmetry at

that point.

In section 3.4, we derived the Zamolodchikov metric up to 2-loops in the 4−ε-expansion.

This quantity cannot be compared to the bootstrap analysis we performed here, because no

operators in the same multiplet as the marginal operator used to define the Zamolodchikov

metric appear in any OPE channel of the four-point function we study. To circumvent this

problem, one would have to perform a bootstrap analysis of more correlators. For instance,

if one were to analyze a system of four-point functions of the chiral/anti-chiral operators of

dimension 2/3 (namely Xi and X
i
) that we study here as well as of the chiral/anti-chiral

operators of dimension 4/3, then the superconformal primary of the multiplet containing

the marginal operator would appear in the OPE of the dimension 2/3 and 4/3 chiral op-

erators. In order to extract the Zamolodchikov metric from these correlation functions, it
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Figure 8. Left: upper bounds on the doublet scaling dimensions ∆2′′ and ∆2′′′ for all τ in the

fundamental domain F defined in figure 1, computed using the G flavor symmetry crossing equations

with Λ = 19. Right: resummed 3-loop 4− ε expansion values for these same quantities. In all plots

the cross, circle, and triangle denote the enhanced symmetry points τ = 1±
√

3, 1, 0 for the Z2×Z2,

cWZ3, and XYZ models respectively.
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Figure 9. Left: upper bounds on the singlet scaling dimension ∆1 for all τ in the fundamental

domain F defined in figure 1, computed using the G flavor symmetry crossing equations with Λ = 19.

Right: resummed 3-loop 4− ε expansion values for this same quantity. In all plots the cross, circle,

and triangle denote the enhanced symmetry points τ = 1 ±
√

3, 1, 0 for the Z2 × Z2, cWZ3, and

XYZ models respectively.
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Figure 10. Left: upper bounds on the chiral bilinear OPE coefficient squared λ2
61,

4
3 ,0

for all τ

in the fundamental domain F defined in figure 1, computed using the G flavor symmetry crossing

equations with Λ = 19. Right: 2-loop 4−ε-expansion values for this quantity. In all plots the cross,

circle, and triangle denote the enhanced symmetry points τ = 1±
√

3, 1, 0 for the Z2 × Z2, cWZ3,

and XYZ models respectively.

∆1 ∆2 ∆2′ ∆2′′ ∆2′′′

XYZ from Bootstrap 1.639 1 ∗ 1.681 1.681 1.681

XYZ from 4− ε-expansion 1.869 1 ∗ 1.661 1.661 1.661

cWZ3 from Bootstrap 1.910 4/3 ∗ 1.910 4/3 ∗ 4/3 ∗

cWZ3 from 4− ε-expansion 1.911 4/3 ∗ 1.911 4/3 ∗ 4/3 ∗

Z2 × Z2 from Bootstrap 1.898 1.259 1.259 1.727 1.727

Z2 × Z2 from 4− ε-expansion 1.894 1.253 1.253 1.748 1.748

Table 2. Summary of results for the doublet and singlet scaling dimensions that are not fixed by

symmetry in 3d for the XYZ, cWZ3, and Z2 × Z2 theories at τ = 0, 1, (1 −
√

3)ω2, respectively,

from the numerical bootstrap and the resummed 3-loop 4 − ε-expansion. The results marked with

a ∗ are exact.

would be useful to generalize the so called tt∗ equations to 3d theories with four super-

charges, which would allows us to relate the OPE coefficient of the marginal operator to

the Zamolodchikov curvature invariants. Such a relation is currently understood in 2d [76]

and 4d theories with eight supercharges [69, 77, 78].

In the future it would be interesting to generalize our conformal manifold study to

other setups, for example to 3d N = 2 theories with N > 3 chiral superfields and a general

cubic superpotential. A simple calculation suggests that such a theory has a conformal

manifold of complex dimension N(N −1)(N −2)/6. It would be fascinating if the methods

used in this paper could be applied to this more general class of theories.

When our model is taken at face value in four space-time dimensions the couplings h1,2

are marginally irrelevant and thus the conformal manifold trivializes to a weakly coupled

point in field theory space. However it should be noted that the superpotential in (1.2)

looks superficially similar to the one on the N = 1 conformal manifold of 4dN = 4 SYM [9].

(See also [79] for a useful summary.) Perhaps this similarity combined with our results can
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be used as leverage towards understanding this 4d conformal manifold in more detail. We

should also emphasize that we managed to perform the numerical conformal bootstrap

as a function of the marginal coupling τ . One could hope that a similar analysis can

be performed along the conformal manifold parameterizing the N = 1-preserving exactly

marginal deformations of 4d N = 4 SYM, thus extending the results in [49, 50].

Lastly, let us mention that, as discussed in [80] (see also [81]), certain 3d N = 2 QFTs

can be realized as M5-branes wrapping hyperbolic 3-manifolds with a partial topological

twist. Therefore there is a natural map between hyperbolic manifolds, and Chern-Simons

theory on them, and many N = 2 QFTs. It is known that the XYZ model can be

realized in this context. However, it is established that the metric on hyperbolic 3-manifolds

does not admit smooth deformations, which is a property known as Mostow rigidity [82]

(see also [51]). This may naively suggest a tension with the existence of a conformal

manifold stemming from the XYZ SCFT. However there is no theorem that forbids other,

i.e. non-metric, deformations of the twisted M5-brane theory to be compatible with N = 2

supersymmetry. It would be most interesting to identify a deformation that realizes the

complex marginal parameter τ in our model and to understand the meaning of this marginal

deformation from the point of view of the Chern-Simons theory on the hyperbolic manifold.
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χR(ga) C1 C9 C ′1 C̄ ′1 C6 C ′6 C̄ ′6 C ′′6 C ′9 C̄ ′9

1 1 1 1 1 1 1 1 1 1 1

1′ 1 −1 1 1 1 1 1 1 −1 −1

2 2 0 2 2 −1 −1 −1 2 0 0

2′ 2 0 2 2 2 −1 −1 −1 0 0

2′′ 2 0 2 2 −1 −1 2 −1 0 0

2′′′ 2 0 2 2 −1 2 −1 −1 0 0

3 3 1 3ω2 3ω 0 0 0 0 ω2 ω

3̄ 3 1 3ω 3ω2 0 0 0 0 ω ω2

3′ 3 −1 3ω 3ω2 0 0 0 0 −ω −ω2

3̄′ 3 −1 3ω2 3ω 0 0 0 0 −ω2 −ω

Table 3. Character table for G = (Z3 ×Z3)o S3. The subscripts of the conjugacy classes indicate

their size, and ω = e2πi/3.

A Details of flavor groups

In this appendix we collect some useful facts about the discrete flavor symmetry group

G = (Z3×Z3)oS3 introduced in section 2.1, as well as the flavor groups GoZ2, Go(Z2×Z2),

and Go S3 that describe the points on the manifold with enhanced symmetry.

Let us begin with the group G. The conjugacy classes can be written in terms of the

generators (2.4) as

C1 = {I} ,
C9 = {g1, g1g2, g2g1, g1g2g3, g1g2g

2
3, g1g

2
3g1g3g1, g2g3g1, (g3g1)3, g2g1g3(g3g1)4} ,

C ′1 = {(g3g1)4} ,
C̄ ′1 = {(g3g1)2} ,
C6 = {g2, g

2
2, g2(g3g1)2, g2

2(g3g1)2, g2(g3g1)4, g2
2(g3g1)4} ,

C ′6 = {g2
2g3, g2g

2
3, g

2
2g3(g3g1)2, g2g1g3g1, g

2
2g3(g3g1)4, g2g1(g3g1)3} ,

C̄ ′6 = {g2g3, g
2
2g

2
3, g2g3(g3g1)2, g1g2g3g1, g2g3(g3g1)4, g1g2(g3g1)3} ,

C ′′6 = {g3, g
2
3, g3(g3g1)2, g1g3g1, g3(g3g1)4, g1(g3g1)3} ,

C ′9 = {g1g3, g2g1g
2
3, g

2
1g3g1, g2g1g3(g3g1)2, g1(g3g1)4, g1g2(g3g1)4,

g2g1(g3g1)4, g1g2g3(g3g1)4, g2
2(g3g1)3} ,

C̄ ′9 = {g1g
2
3, g2g1g3, g1(g3g1)2, g1g2(g3g1)2, g2g1(g3g1)2, g1g2g3(g3g1)2,

g2
2g3g1, g1g3(g3g1)4, g2(g3g1)3} .

(A.1)

From these we determine the character table 3.

In the tensor products 3 ⊗ 3, 3̄ ⊗ 3̄, and 3 ⊗ 3̄, the projector operators onto irrep R

are given by

PRi
j
k
l =
|R|
|G|

∑
a,b

χR(ga ⊗ gb)gaij ⊗ gbkl ,

PR
i
j
k
l =
|R|
|G|

∑
a,b

χR(ḡa ⊗ ḡb)ḡaij ⊗ ḡbkl ,

PRi
jk
l =
|R|
|G|

∑
a,b

χR(ga ⊗ ḡb)gaij ⊗ ḡbkl ,

(A.2)

– 40 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

χR(ga) C1 C9 C ′9 C6 C ′6 C2 C ′′′9 C18 C ′18 C12 C ′′18

1E 1 1 1 1 1 1 1 1 1 1 1

1O 1 −1 −1 1 1 1 1 −1 −1 1 1

1′ 1 −1 1 1 1 1 −1 −1 1 1 −1

1′′ 1 1 −1 1 1 1 −1 1 −1 1 −1

2O 2 0 −2 2 −1 2 0 0 1 −1 0

2E 2 0 2 2 −1 2 0 0 −1 −1 0

2′O 2 −2 0 −1 2 2 0 1 0 −1 0

2′E 2 2 0 −1 2 2 0 −1 0 −1 0

4 4 0 0 −2 −2 4 0 0 0 1 0

6 6 0 0 0 0 −3 2 0 0 0 −1

6′ 6 0 0 0 0 −3 −2 0 0 0 1

Table 4. Character table for Go Z2. The subscripts of the conjugacy classes indicate their size.

where a = 1, . . . , |G|, to compute the eigenvectors with unit eigenvalues

PRi
j
k
lvRrjl = vR,rik , PR

i
j
k
lvRr

jl = vR,r
ik , PRi

jk
lvRrj

l = vR,ri
k , (A.3)

where r = 1, . . . , |R|. For the irreps other than the 3′, these eigenvectors can be identified

with the operators in (2.10) and (2.12).

Let us now discuss the order 108 group GoZ2. For simplicity, let us focus on the duality

frame where Z2 acts as conjugation. We can now combine Xi and X
j

into a single operator

X̃I = {Xi, X
j} where I = 1, . . . , 6, where X̃I transforms in the real representation 6 of

GoZ2. In this representation, the elements h ∈ GoZ2 can be written as 4×4 matrices as

h ∈ Go Z2 :

(
g 0

0 g

)
,

(
g 0

0 ḡ

)
, (A.4)

where g ∈ G. The character table for GoZ2 is given in table 4. We can compute projectors

onto a given irrep R as

PR,IJKL =
|R|

|Go Z2|
∑
a,b

χR(ha ⊗ hb)haIJ ⊗ hbKL , (A.5)

where here a = 1, . . . , |GoZ2|, and then compute the eigenvectors with unit eigenvalues as

PR,IJKLvRrJL = vR,rIK , (A.6)

where r = 1, . . . , |R|.
The order 216 group Go (Z2 × Z2) and the order 324 group Go S3 can be described

using a very similar formalism. For simplicity, we will choose the duality frames for each

group with τ = 1 −
√

3 and τ = 0, respectively. As with G o Z2, the chiral primary

XI transform in a 6-dimensional irrep 61, where the superscript refers to the fact that

several 6 irreps appear for these groups. In this representation, the elements of G o Z2

and Go S3 can be written as 4× 4 matrices as in (A.4), except where g ∈ G ∪ {u1u2u
−1
1 }

and g ∈ G∪{u2}, respectively, where u2 and u1 are defined in (2.13). The character tables

for G o S3 and G o (Z2 × Z2) are given in tables 5 and 6. The projectors can then be

constructed as in (A.5) and (A.6).
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χR(ga) C1 C9 C27 C6 C18 C ′6 C2 C ′27 C ′18 C ′′18 C54 C ′′6 C36 C ′′′6 C ′54 C ′′′18 C ′′′′18

1E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1′ 1 −1 −1 1 1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1

1′′ 1 −1 1 1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1 −1

1O 1 1 −1 1 1 1 1 −1 1 1 −1 1 1 1 −1 1 1

2E 2 0 −2 2 −1 2 2 0 0 0 1 2 −1 2 0 0 0

2O 2 0 2 2 −1 2 2 0 0 0 −1 2 −1 2 0 0 0

2′′ 2 −2 0 −1 2 2 2 0 1 −2 0 −1 −1 −1 0 1 1

2′′′ 2 2 0 −1 2 2 2 0 −1 2 0 −1 −1 −1 0 −1 −1

4 4 0 0 −2 −2 4 4 0 0 0 0 −2 1 −2 0 0 0

6E 6 0 0 0 0 −3 6 −2 0 0 0 0 0 0 1 0 0

6O 6 0 0 0 0 −3 6 2 0 0 0 0 0 0 −1 0 0

6′1 6 −2 0 A 0 0 −3 0 D 1 0 C 0 B 0 F E

6′2 6 −2 0 C 0 0 −3 0 F 1 0 B 0 A 0 E D

6′3 6 −2 0 B 0 0 −3 0 E 1 0 A 0 C 0 D F

61 6 2 0 A 0 0 −3 0 −D −1 0 C 0 B 0 −F −E
62 6 2 0 C 0 0 −3 0 −F −1 0 B 0 A 0 −E −D
63 6 2 0 B 0 0 −3 0 −E −1 0 A 0 C 0 −D −F

Table 5. Character table for GoS3. The subscripts of the conjugacy classes indicate their size, and

A = −ω 2
3 −2ω

4
3 −2ω

5
3 −ω 7

3 , B = −ω 2
3 +ω

4
3 +ω

5
3 −ω 7

3 , C = 2ω
2
3 +ω

4
3 +ω

5
3 +2ω

7
3 , D = −ω 2

3 −ω 7
3 ,

E = ω
2
3 + ω

4
3 + ω

5
3 + ω

7
3 , F = −ω 4

3 − ω 5
3 , where ω = e2πi/3.

χR(ga) C1 C18 C ′18 C9 C12 C2 C ′′18 C36 C ′36 C ′′′18 C ′12 C ′′′′18 C ′′′′′18

1E 1 1 1 1 1 1 1 1 1 1 1 1 1

1O 1 −1 −1 1 1 1 1 −1 −1 1 1 1 1

1′ 1 −1 1 1 1 1 −1 −1 1 1 1 −1 −1

1′′ 1 1 −1 1 1 1 −1 1 −1 1 1 −1 −1

2 2 0 0 −2 2 2 0 0 0 −2 2 0 0

4O 4 −2 0 0 1 4 0 1 0 0 −2 0 0

4E 4 2 0 0 1 4 0 −1 0 0 −2 0 0

4′O 4 0 −2 0 −2 4 0 0 1 0 1 0 0

4′E 4 0 2 0 −2 4 0 0 −1 0 1 0 0

61 6 0 0 2 0 −3 0 0 0 −1 0
√

3 −
√

3

62 6 0 0 2 0 −3 0 0 0 −1 0 −
√

3
√

3

6′1 6 0 0 −2 0 −3 −2 0 0 1 0 1 1

6′2 6 0 0 −2 0 −3 2 0 0 1 0 −1 −1

Table 6. Character table for Go (Z2 × Z2). The subscripts of the conjugacy classes indicate their

size.

B Perturbative calculations

In this appendix we present details for the calculation of the chiral two-point functions

defined in subsection 3.4. We perform the computation in d = 4 − ε in the minimal

subtraction scheme. The Feynman rules can be easily derived from the Lagrangian

L = −∂µXi
∂µXi −

1

2
χ̄iγ

µ∂µχi −W iW i −
1

2
χi(PLWij + PRW ij)χj , (B.1)
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where the χi’s are the (four component) Majorana spinors in the supermultiplet of the

fundamental chiral superfield Xi,
23 the left/right chiral projectors are given by PL/R ≡

1
2(1± γ5), and

W i ≡ ∂W

∂Xi
, W ij ≡ ∂2W

∂Xi∂Xj
. (B.2)

We then have the usual cubic Yukawa couplings proportional to hijk and a quartic scalar

vertex proportional to hijph̄pk`.

Computation of G1(τ, τ̄ ). We begin by discussing the two point functions of the fun-

damental chiral fields of the model Xi. The computation is standard and can be found for

example in [83], so we only sketch it here. The Feynman diagrams are given by24

= + + + . . . , (B.3)

where we are only showing diagrams to one loop for simplicity. After computing all the

diagrams to two loops, using the appropriate counterterms to remove the divergences, and

replacing the coupling constant with its value at the fixed point, we obtain

〈Xi(x)X
j
(0)〉 = G1(τ, τ̄)

δi
j

|x|2−2ε/3
µ−ε/3 , (B.4)

where G1(τ, τ̄) is given by

G1(τ, τ̄) =
1

4π2−ε/3Γ(1 + ε/3)

(
1− 1

3
ε+

1

63
(5π2 − 6)ε2 + . . .

)
. (B.5)

We notice that (B.4) exhibits the correct behavior for a scalar field of dimension ∆ = 1−ε/3.

The presence of an explicit factor of µ in (B.4) reflects the scheme dependence of G1.

However, as explained in section 3.4, G1 only appears in scheme-independent combinations

in our final results.

Computation of G2(τ, τ̄ ). The expansion in Feynman diagrams for the quadratic chiral

operators has the following form:

〈XiXj(x)X
k
X
`
(0)〉 = + (B.6)

+ +

+ + . . . ,

23For notational simplicity, we denote both the chiral superfield and its bottom component as Xi.
24We used JaxoDraw [84, 85] to draw the Feynman diagrams in this paper. Solid lines denote scalars and

dashed lines denote fermions.
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where the ellipses denote higher order diagrams and we omitted all the combinatorial

factors that multiply the various diagrams. The first diagram on the first line is just the

sum of all the diagrams that do not connect the upper with the lower propagator, so in

position space they just give G1(τ, τ̄)2 (δi
kδj

`+δi
`δj

k) |x|−2∆X . Furthermore, the rightmost

diagrams on the first and second lines both vanish for the chiral operators QI = PI
ij XiXj

defined in (3.23), since both diagrams are proportional to

PI
ij h̄ijp h

pmn = 0 . (B.7)

Indeed, it is precisely these diagrams that give the descendant combinations WI defined

in (3.20) the conformal dimension ∆W = ∆X + 1 implied by (3.19). Lastly, the sum of the

remaining two diagrams (with the appropriate combinatorial factors in front) is finite, and

has been explicitly calculated in [69]. Putting the various ingredients together, we obtain

the results in (3.31).

Computation of G3(τ, τ̄ ). The computation of the two-point function of the cubic

chiral primary operator proceeds exactly in the same way as before, since there are no

additional Feynman diagrams at this order — the contributing diagrams are identical

to those in (B.6), with one additional propagator connecting the left and right vertices,

reflecting that the composite operator is now cubic in the fields. As a consequence, the

answer can be immediately derived after some simple combinatorics, and leads to the result

presented in (3.31).

C Explicit crossing equations

In this appendix we list the explicit expression used in the crossing equations for the

four point function of four chiral operators in N = 2 theories with flavor symmetry G =

(Z3 × Z3) o S3, as well as Go Z2, Go (Z2 × Z2), and Go S3.

In addition to the superconformal block G∆,` defined in (4.4), it will be useful to define

G̃∆,` by taking the expression for G∆,` and replacing G∆′,`′ → (−1)`
′
G∆′,`′ .

For G, we have

~V1,∆,` =



G+,∆,`

0

0

0

G−,∆,`
G̃+,∆,`

1
2 G̃+,∆,`

−1
2 G̃+,∆,`

0

0

−G̃−,∆,`
−1

2 G̃−,∆,`
1
2 G̃−,∆,`

0

0



, ~V2,∆,` =



−G+,∆,`

0

0

G−,∆,`
0

0
1
2 G̃+,∆,`

1
2 G̃+,∆,`

−G̃+,∆,`

−G̃+,∆,`

0

−1
2 G̃−,∆,`
−1

2 G̃−,∆,`
G̃−,∆,`
G̃−,∆,`



, ~V2′,∆,` =



−G+,∆,`

0

G−,∆,`
0

0

0
1
2 G̃+,∆,`

1
2 G̃+,∆,`

2G̃+,∆,`

0

0

−1
2 G̃−,∆,`
−1

2 G̃−,∆,`
−2G̃−,∆,`

0



, (C.1)
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~V2′′,∆,` =



−1
2G+,∆,`

G−,∆,`
0

0

0

G̃+,∆,`

−1
4 G̃+,∆,`

1
4 G̃+,∆,`

0

0

−G̃−,∆,`
1
4 G̃−,∆,`
−1

4 G̃−,∆,`
0

0



, ~V2′′′,∆,` =



−G+,∆,`

−2G−,∆,`
−G−,∆,`
−G−,∆,`
2G−,∆,`

0
1
2 G̃+,∆,`

1
2 G̃+,∆,`

−G̃+,∆,`

G̃+,∆,`

0

−1
2 G̃−,∆,`
−1

2 G̃−,∆,`
G̃−,∆,`
−G̃−,∆,`



, ~V3′,∆,` =



0

0

0

0

0

0

0

F+,∆,`

0

0

0

0

F−,∆,`

0

0



, (C.2)

~V3̄,2 d−1
3
,0 =



0

0

0

0

0

−F+,∆,`

−1
4 |τ |

2F+,∆,`

0

ReτF+,∆,`

ImτF+,∆,`

−F−,∆,`
−1

4 |τ |
2F−,∆,`

0

ReτF−,∆,`

ImτF−,∆,`



, ~V3̄,∆,` =



04

04

04

04

04

−F 11
+,∆,`

−F 22
+,∆,`

04

−F 12
+,∆,`

−F 21
+,∆,`

−F 11
−,∆,`

−F 22
−,∆,`
04

−F 12
−,∆,`

−F 21
−,∆,`



, (C.3)

F 11
±,∆,` =


F±,∆,` 0 0 0

0 F±,∆,` 0 0

0 0 0 0

0 0 0 0

 , F 12
±,∆,` =


0 0 F±,∆,` 0

0 0 0 F±,∆,`

F±,∆,` 0 0 0

0 F±,∆,` 0 0

 , (C.4)

F 22
±,∆,` =


0 0 0 0

0 0 0 0

0 0 F±,∆,` 0

0 0 0 F±,∆,`

 , F 21
±,∆,` =

1√
3


0 0 0 F±,∆,`

0 0 −F±,∆,` 0

0 −F±,∆,` 0 0

F±,∆,` 0 0 0

 ,

– 45 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

where we define

F∓,∆,`(u, v) = v
d−1

3 G∆,`(u, v)∓ u
d−1

3 G∆,`(v, u) ,

F∓,∆,`(u, v) = v
d−1

3 G∆,`(u, v)∓ u
d−1

3 G∆,`(v, u) ,

F̃∓,∆,`(u, v) = v
d−1

3 G̃∆,`(u, v)∓ u
d−1

3 G̃∆,`(v, u) .

(C.5)

For Go Z2, we have

~V1E,O,∆,` =



G+,∆,`

0

0

G−,∆,`
G̃+,∆,`

1
2 G̃+,∆,`

−1
2 G̃+,∆,`

0

−G̃−,∆,`
−1

2 G̃−,∆,`
1
2 G̃−,∆,`

0



, ~V4,∆,` =



−2G+,∆,`

−2G−,∆,`
−G−,∆,`
2G−,∆,`

0

G̃+,∆,`

G̃+,∆,`

−2G̃+,∆,`

0

−G̃−,∆,`
−G̃−,∆,`
2G̃−,∆,`



, ~V2E,O,∆,` =



−G+,∆,`

0

G−,∆,`
0

0
1
2 G̃+,∆,`

1
2 G̃+,∆,`

2G̃+,∆,`

0

−1
2 G̃−,∆,`
−1

2 G̃−,∆,`
−2G̃−,∆,`



, (C.6)

~V2′E,O,∆,` =



−1
2G+,∆,`

G−,∆,`
0

0

G̃+,∆,`

−1
4 G̃+,∆,`

1
4 G̃+,∆,`

0

−G̃−,∆,`
1
4 G̃−,∆,`
−1

4 G̃−,∆,`
0



, ~V6′,∆,` =



0

0

0

0

0

0

F+,∆,`

0

0

0

F−,∆,`

0



, (C.7)

~V6,2 d−1
3
,0 =



0

0

0

0

−F+,∆,`

−1
4τ

2F+,∆,`

0

τF+,∆,`

−F−,∆,`
−1

4τ
2F−,∆,`

0

τF−,∆,`



, ~V6,∆,` =



02

02

02

02

−F 11
+,∆,`

−F 22
+,∆,`

02

−F 12
+,∆,`

−F 11
−,∆,`

−F 22
−,∆,`
02

−F 12
−,∆,`



, (C.8)
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where

F 11
±,∆,` =

(
F±,∆,` 0

0 0

)
, F 12

±,∆,` =

(
0 F±,∆,`

F±,∆,` 0

)
, F 22

±,∆,` =

(
0 0

0 F±,∆,`

)
. (C.9)

For Go (Z2 × Z2) we have

~V1E,O,∆,` =



G+,∆,`

0

G−,∆,`
−3+

√
3

24 G̃+,∆,`

−3+
√

3
24 G̃+,∆,`

1
2 G̃+,∆,`

3+
√

3
24 G̃−,∆,`

3−
√

3
24 G̃−,∆,`
−1

2 G̃−,∆,`


, ~V4E,O,∆,` =



−2G+,∆,`

−G−,∆,`
2G−,∆,`

−3+2
√

3
12 G̃+,∆,`

−3+2
√

3
12 G̃+,∆,`

−G̃+,∆,`

3+2
√

3
12 G̃−,∆,`

3−2
√

3
12 G̃−,∆,`
G̃−,∆,`


,

~V4′E,O,∆,` =



−2G+,∆,`

G−,∆,`
0

√
3

12 G̃+,∆,`

−
√

3
12 G̃+,∆,`

−G̃+,∆,`

−
√

3
12 G̃−,∆,`√
3

12 G̃−,∆,`
G̃−,∆,`


, (C.10)

~V6′1,∆,` =



0

0

0

0

0

−2
9(9 + 5

√
3)F+,∆,`

0

0

−2
9(9 + 5

√
3)F−,∆,`


, ~V61,∆,` =



0

0

0

0
2
9(9 + 5

√
3)F+,∆,`

0

0
2
9(9 + 5

√
3)F−,∆,`

0


, (C.11)

~V62,∆,` =



0

0

0
2
9(9 + 5

√
3)F+,∆,`

0

0
2
9(9 + 5

√
3)F−,∆,`

0

0


. (C.12)
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For Go S3 we have

~V1E,O,∆,` =



G+,∆,`

0

G−,∆,`
G̃+,∆,`

1
2 G̃+,∆,`

−1
2 G̃+,∆,`

−G̃−,∆,`
−1

2 G̃−,∆,`
1
2 G̃−,∆,`


, ~V6E,O,∆,` =



−3G+,∆,`

−2G−,∆,`
2G−,∆,`

0
3
2 G̃+,∆,`

3
2 G̃+,∆,`

0

−3
2 G̃−,∆,`
−3

2 G̃−,∆,`


, ~V2E,O,∆,` =



−1
2G+,∆,`

G−,∆,`
0

G̃+,∆,`

−1
4 G̃+,∆,`

1
4 G̃+,∆,`

−G̃−,∆,`
1
4 G̃−,∆,`
−1

4 G̃−,∆,`


, (C.13)

~V6′1,∆,` =



0

0

0

0

0

F+,∆,`

0

0

F−,∆,`


, ~V61,∆,` =



0

0

0

0

−F+,∆,`

0

0

−F−,∆,`
0


, ~V62,∆,` =



0

0

0

−F+,∆,`

0

0

−F−,∆,`
0

0


. (C.14)

D Exact results in d = 2

In d = 2, the family of Landau-Ginzburg CFTs with superpotential (1.2) is equivalent to

a T 2/Z3 free orbifold CFT [86, 87], and so can be solved exactly [88]. In this appendix

we summarize the results for the same CFT data that we have studied in d = 3, for more

details see [43, 45].

The action for the orbifold theory is

S =

∫
d2z (Gµν +Bµν) ∂φµ∂̄φν + fermions , (D.1)

where z, z̄ are holomorphic spacetime coordinates and φµ(z, z̄) with µ, ν = 1, 2 are the

target space coordinates on a torus T 2 with sides 2πR, angle 2π/3, metric

ds2 =(dx1 + ωdx2)(dx1 + ω2dx2) ,

Gµν =

(
1 −1

2

−1
2 1

)
, Gµν =

(
4
3

2
3

2
3

4
3

)
,

(D.2)

and B-field background

Bµν = b
2

R2

(
0 1

−1 0

)
. (D.3)

The real parameters R and b parameterize the conformal manifold, and can be related to

the complex parameter τ via the relation(
4(−1 + τ3)

τ(8 + τ3)

)3

= J(y) , y ≡ b+ i

√
3

4
R2 , (D.4)
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Figure 11. Exact chiral bilinear OPE coefficient squared λ2
3̄, 23 ,0

(D.5) for real 1−
√

3 ≤ τ ≤ 1+
√

3

(Left), as well as for the fundamental domain F defined in figure 1 (Right). The cross and circle

denote the enhanced symmetry points τ = 1±
√

3, 1 for the Z2×Z2 and cWZ3 models, respectively.

Note that λ2
3̄, 23 ,0

diverges at the decompactification limit τ → 0.

where J is the Klein invariant modular elliptic function, and the 12 roots of the polynomial

in τ are permuted by the duality subgroup A4 ⊂ S4. Note that unlike d > 2, the XYZ

theory in d = 2 is free since τ = 0 corresponds to the decompactification limit R→∞.

The OPE coefficient of the chiral primary with scaling dimension 2
3 in our conventions25

is then written as

|λ3̄, 2
3
,0|

2 =
|τ |2 + 2

22/3

∣∣∣∣∣∣
√

3

2

Γ
(

2
3

)2
Γ
(

1
3

) R ∑
v1,v2∈Z

exp

[
−
√

3πR2

2

(
1− i

4√
3R2

b

)
|(v1 + ωv2)|2

]∣∣∣∣∣∣
2

,

(D.5)

where R and b can be written in terms of τ using (D.4). In figure 11 we plot |λ3̄, 2
3
,0|2

along the boundary of the manifold for real 1−
√

3 ≤ τ ≤ 1 +
√

3, as well as for the entire

fundamental domain F defined in figure 1.

The chiral scaling dimension of the singlet and doublets in the chiral-antichiral OPE

can be written as

h =
1

2
Gµν

[
pµ
R

+
1

2
(Gµρ +Bµρ)v

ρR

] [
pν
R

+
1

2
(Gνσ +Bνσ)vσR

]
,

h̄ =
1

2
Gµν

[
pµ
R
− 1

2
(Gµρ −Bµρ)vρR

] [
pν
R
− 1

2
(Gνσ −Bνσ)vσR

]
,

(D.6)

where the momentum pµ and winding number vµ are integers that must satisfy selec-

tion rules

P (R, b) =p1 − p2 mod 3 ,

V (R, b) =v1 + v2 mod 3 ,
(D.7)

25These relate to the definition in [45] by a factor of |τ |
2+2

22/3 .
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Figure 12. Exact scalar singlet and doublets scaling dimensions (D.6) for real 1−
√

3 ≤ τ ≤ 1+
√

3.

The cross and circle denote the enhanced symmetry points τ = 1±
√

3, 1 for the Z2×Z2 and cWZ3

models, respectively. The points K1 and K2 correspond to the kinks observed for this theory in [45].

Note that some of the doublets diverge in the decompactification limit τ → 0.

and P , V are defined mod 3 and generically depend on the moduli R and b. For instance,

the singlet operator has P (R, b) = V (R, b) = 0, while for the various doublets P (R, b) and

V (R, b) are nontrivial functions of R and b. For a given representation, there are many

values of pµ, vµ that satisfy the selection rules and h = h̄. In practice, we scan over the

possible values and extract the lowest possible scaling dimension. In figure 12 we plot these

scaling dimensions along the boundary of the manifold for real 1−
√

3 ≤ τ ≤ 1 +
√

3. The

points K1 = (−.310, 1.25) and K2 = (−.160, 1) for (τ,∆1) correspond to the kinks that

were observed in the numerical bootstrap plot in [45] of lowest singlet Virasoro primary

scaling dimension. As discussed in [45], K2 corresponds to a rational CFT with infinite

higher spin currents, while K1 has no enhanced symmetry. Here we observe that these

kinks occur when the singlet scaling dimension coincides with one of the doublets. In

figure 13 we plot the singlet and doublets scaling dimensions for the entire fundamental

domain F. We observe that these exact results in d = 2 are in harmony with the general

expectations based on dualities discussed in section 2.2.2.

Lastly, we give the formula for the Zamolodchikov metric, which was computed in [57]

to be

G(τ, τ̄) =
1

4

1

(Imy)2

∣∣∣∣∂y∂τ
∣∣∣∣2 , (D.8)

where y is defined implicitly in (D.4). In terms of y, this metric is just the standard

Weil-Peterson metric on T 2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 50 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
1
8
)
0
6
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re τ

Im
τ

Δ2

⨯

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re τ

Im
τ

Δ2'

⨯

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re τ

Im
τ

Δ2''

⨯

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re τ

Im
τ

Δ2'''

⨯

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re τ

Im
τ

Δ1

⨯
ΔR

0.5

1.0

1.5

2.0

Figure 13. Exact scalar singlet and doublets scaling dimensions (D.6) in the fundamental domain

F in figure 1 for d = 2. The cross and circle denote the Z2 × Z2 and cWZ3 models, respectively.
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