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Abstract: Under the assumption that a UV theory does not display superluminal behav-

ior, we ask what constraints on superluminality are satisfied in the effective field theory

(EFT). We study two examples of effective theories: quantum electrodynamics (QED)

coupled to gravity after the electron is integrated out, and the flat-space galileon. The

first is realized in nature, the second is more speculative, but they both exhibit apparent

superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to

find backgrounds for which the superluminal signal advance can be made larger than the

putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such

backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quan-

tum corrections must become important at distance scales of order the Vainshtein radius

of the background configuration, much larger than the naive EFT strong coupling distance

scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale

quantum effects that are expected to resolve the black hole information problem. Finally, a

byproduct of our analysis is a calculation of how perturbative quantum effects alter charged

Reissner-Nordstrom black holes.
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1 Introduction and summary

It is expected that a reasonable physical theory should pass a few baseline “consistency”

tests. One often invoked criteria is freedom from superluminalities; no signal should travel

with a velocity exceeding the speed of light. Nevertheless, there exist interesting effective

field theories (EFTs), including some which we know to be realized in nature, which display

apparent superluminal behavior. No true consistency condition should rule out a theory

realized in nature, so if freedom from superluminalities is indeed such a condition, the effect

must be spurious, i.e. outside the regime of validity of the theory. The goal of this paper

is to gain a better understanding of when, or whether, superluminality can be acceptable

in the context of an EFT.

Though often touted as a failure of “consistency,” or as “acausality,” one should keep

in mind that superluminality does not necessarily imply closed time-like curves (time ma-

chines) [1–4], and even closed time-like curves do not necessarily imply inconsistency [5].

Nevertheless, we may still proceed under the conservative assumption that a fundamen-

tal UV theory should not allow superluminal signaling, an assumption nature has not yet

shown us a violation of, and ask what this implies for the effective theory. In this paper,

this topic is studied in the context of two specific EFTs, one realized in nature and the

other speculative.

Our example realized in nature will be quantum electrodynamics (QED) coupled to

gravity. The UV1 action is a minimally coupled Dirac fermion2

SQED =

∫
d4x
√
−g

[
M2
p

2
R− 1

4e2
F 2
µν + ψ̄

(
i /D −me

)
ψ

]
, (1.1)

where me is the mass of the fermion. Integrating out the fermion generates an EFT for a

photon which is non-minimally coupled to gravity:

S =

∫
d4x
√
−g

[
M2
p

2
R− 1

4e2
F 2
µν +

1

4π2

1

360m2
e

RµνρσF
µνF ρσ + . . .

]
. (1.2)

The higher derivative operators are suppressed by the electron mass me, corresponding to

the strong coupling distance scale ∼ m−1
e .

These derivative couplings can alter photon (and graviton) propagation on non-trivial

backgrounds. In a seminal paper, Drummond and Hathrell [6] demonstrated that in the

EFT (1.2) photons can propagate on black hole (BH) backgrounds with a speed3 cs > 1.

The setup is shown in figure 1. Consider a photon traveling in the angular direction at an

1UV here means valid up to the Planck scale, not truly UV, but we know this must be UV completed

in some way, since it’s realized in nature.
2Of course, precision tests confirm to high accuracy the {Aµ, ψ} sector of the theory and the classic tests

of GR confirm the Einstein-Hilbert term, but little is known about possible non-minimal couplings between

{Aµ, ψ} and gµν and other higher order interactions. We assume these are negligible in the UV action.
3Used in the context of photon propagation, “superluminal” is perhaps not the best word. “Super-

luminal” here means the photon travels faster than some hypothetical massless test particle which is

coupled minimally to the theory, or equivalently, that the photon travels outside the light-cone of the

background metric.
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Figure 1. Sketch of the Drummond-Hathrell problem [6]. A photon passes a distance L from a

Schwarzschild BH of radius rs. If the polarization is pointing radially outwards, as indicated by the

red lines, the EFT (1.2) gives a superluminal speed.

impact parameter L from a Schwarzschild BH with Schwarzschild radius rs. The photon’s

polarization is pointing radially. From the EFT (1.2), the photon’s speed cs = 1 + δcs can

be estimated to be of order

δcs ∼
R̄µνρσ
m2
e

≈ e2

m2
e

rs
L3

. (1.3)

Only for these kinematics do we get cs > 1. When the polarization vector points az-

imuthally the speed is subluminal cs < 1 and radially propagating photons have cs = 1

regardless of polarization.

This effect is a bit of a longstanding oddity. The expectation is that full QED (1.1)

should not allow for superluminal propagation [7], so why is it displayed in the effective

theory? There have been many studies of the problem from an array of angles, coming to

a variety of conclusions (see e.g. [8–14]4).

One possible resolution was already pointed out in the original paper [6]: this unex-

pected effect is tiny. Specifically, as the photon traverses its entire path across the black

hole, the effect generates a cumulative distance advance of order5

∆d ≈ δcs × L ≈ m−1
e

(
e2

me

rs
L2

)
� m−1

e , (1.4)

i.e. a length parametrically smaller than the cutoff distance of the theory (the inverse

electron mass m−1
e ) for any valid choices of e, rs and L. Because this small distance

advance is below the resolving power of the EFT, the superluminality cannot be said

to be a “real” effect, at least in this particular setup. This is an indication that the

apparent superluminality is simply an artifact of the approximations made when using the

effective theory.

4Prominent in the literature is the work of Shore, a former student of Drummond, who, with Daniels,

extended the calculation to Reissner-Nordstrom [15] and Kerr [16] and, with Hollowood and collaborators,

studied the nature of QED photon trajectories with an emphasis on carefully studying the fate of the effect

in the full UV theory [17–26].
5For example, taking a Standard Model electron and solar mass black hole, the distance advance is at

least as small as ∆d . 10−31m, much smaller than the cutoff m−1
e ∼ 10−13m and not so far from the Planck

length lp ∼ 10−34m.
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If the superluminality is an artifact of the EFT expansion, it must be cured in the full

theory.6 One way this can happen is as follows: the velocities we are implicitly talking

about in the effective field theory are group velocities, vg = dω
dk (which happen to be same

as the phase velocities vp = ω
k for the massless theories we are talking about since the

dispersion relations are, to lowest order, linear ω ∝ k). However, the speed at which actual

information carrying signals can be sent is instead given by the front velocity which tracks

the movement of the sharp boundary between regions of zero and non-zero signal [30–

32]. A perfect description of this discontinuous surface is inaccessible to the perturbative

EFT,7 since it cannot resolve spatial distances smaller than its strong coupling distance

scale. If the accumulated distance advance along any particle path on any background

calculated using any EFT notion of velocity is smaller than the resolution of the EFT, we

may attribute any discrepancy between the EFT velocity and some expected front velocity

in the full theory to the inherent fuzziness of the EFT, and there is no cause for concern.

Thus the question is the following: does ∆d� m−1
e persist for all possible backgrounds

and setups? Clearly, there are two possibilities:

1. There exists no setup describable within the QED EFT which generates a macro-

scopic distance advance, ∆d� m−1
e .

2. If we work hard enough, we can construct a setup in the QED EFT which generates

a macroscopic distance advance, ∆d� m−1
e .

If the first scenario were true, then our naive expectations about the EFT would be met:

the full UV theory can be free of superluminalities and the effective description can be

used and trusted all the way to distances ∼ m−1
e without worrying about the spurious

superluminality. If the second scenario were true, then we would have a background with

some scale Λ−1 � m−1
e over which we would have superluminality. In this case, under

the assumption that the full UV theory is (sub)luminal, strong quantum effects or extra

degrees of freedom must come in at the background-dependent scale Λ, sooner than the

naive cutoff me, in order to cure the superluminality.

In either case, when studying an EFT with an unknown UV completion, the low-energy

superluminality never acts as a “consistency test” to rule out the effective theory. Instead,

it simply tells us when strong coupling or UV degrees of freedom must enter if the full

theory is to be (sub)luminal.

We expect that the first scenario must be true for the QED effective theory. Since the

UV theory is known, we know that quantum effects and extra degrees of freedom should

not become important until the distance ∼ m−1
e . Thus it should be impossible to find a

background or setup with ∆d� m−1
e .

In what follows, we find strong evidence for the first scenario: it is extremely difficult

to generate ∆d > m−1
e in QED. Though we will not be able to analyze every possible

scenario, and are therefore unable to elevate our results to the level of a theorem, we will

6EFTs also protect themselves against other apparent pathologies, such as ghosts arising from higher

derivative operators in the EFT [27–29].
7Dispersion relations relate the front velocity to IR quantities, but their use in curved space is subtle [18].
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build setups which go to great lengths to try to magnify the superluminal effect, yet still

fall short of accomplishing ∆d > m−1
e . Specifically, we attempt to build up the distance

advance by passing the photon through an enormous number of black hole pairs. The black

holes are taken to be be nearly extremal Reissner-Nordstrom (RN), so that the only forces

which destabilize the pairs of BHs are those generated from loops.

The construction provides a rich demonstration of the conspiracies which must occur

in order to prevent the generation of macroscopic distance advances. There are many

competing scales to balance and effects to account for, and only when they are all included

do we find that macroscopic superluminality in QED is avoided. The thought experiments

give an idea of how extreme and contrived any scenario generating ∆d > m−1
e would likely

need to be.

Our other example of a superluminal EFT, the more speculative one, is that of

the galileon, a single scalar π(x) whose defining property is a global shift symmetry

π(x) → π(x) + b + cµx
µ with constant b, cµ [33]. Galileons have been widely studied

as a particularly interesting class of EFTs. For example, they capture much of the in-

teresting phenomenology of IR modified gravity theories including the Dvali-Gabadadze-

Porrati (DGP) [34, 35] braneworld model, the de Rham-Gabadadze-Tolley (dRGT) theory

of massive General Relativity (GR) [36] (see [32, 37, 38] for reviews) and other brane-world

setups [39–42]. They also possess many interesting properties in their own right, such as

Vainshtein screening [43, 44] and strong non-renormalization theorems [35, 45].

The galileons come in many different forms and generalizations (e.g. [39–42, 46–48]),

but the simplest example is the cubic galileon

L = −1

2
(∂π)2 − 1

Λ3
(�π)(∂π)2 +

1

Mp
πTµµ , (1.5)

where Λ is the strong coupling scale of the EFT. We have coupled it with gravitational

strength to a matter source8 which is the trace of the matter stress tensor. This is the

coupling that occurs in most IR modified gravity applications of the galileon.

In the presence of a static point mass Tµµ(x) ∼ Mδ3(~x), a non-trivial spherically

symmetric field profile π̄(r) develops. This creates a potential, V ∼ 1
Mp
π̄(r), felt by matter.

Far from the source, the quadratic kinetic term of (1.5) dominates over the cubic term and

we have π̄(r) ∼ M
Mp

1
r , resulting in a gravitational strength fifth force V ∼ M

M2
p

1
r .

If this force persisted at all distance scales, the model would be ruled out phenomeno-

logically. However, the galileon has a highly efficient screening mechanism, known as the

Vainshtein mechanism [43] (see [44] for a review), active in regions sufficiently close to

the source. There is a distance scale rV ≡ Λ−1 (M/Mp)
1/3 the “Vainshtein radius” of

the source, where the cubic interaction in (1.5) becomes as important as the quadratic

kinetic term and the field profile changes significantly. At distances much smaller than the

Vainshtein radius, the cubic term dominates and we have π̄(r) ∼
(
r
rV

)3/2
M
Mp

1
r , greatly

suppressing the potential V ∼ M
M2
p

1
r

(
r
rV

)3/2
, see figure 2. This effect is crucial for the

compatibility of galileon, DGP and dRGT theories with solar system test of gravity.9

8The matter coupling might not appear to be invariant under the galileon symmetry, but it is in the

– 5 –
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Figure 2. Sketch of the Vainshtein mechanism for the cubic galileon (1.5) around the Sun. Far

from a source, the cubic galileon generates a potential of Newtonian strength V ∼ VN ∼ rs/r.

Below the non-linear distance scale rV ∼ Λ−1(M/Mp)
1/3 screening becomes effective and the fifth

force is suppressed by a factor of (r/rV )3/2.

Figure 3. Sketch of superluminality induced by the Sun for the cubic galileon. Radially moving

perturbations travel with a position dependent speed of sound, indicated by the blue curve. The

horizontal axis represents cs = 1. For the purely cubic galileon, cs ≥ 1 when r . rV , though cs → 1

at large r.

The same non-linearities responsible for screening also generate superluminal sound

speeds for perturbations about the π̄(r) background [33, 50]. This effect is quite generic to

generalizations of the galileons [51–56] and seems to be a generic feature of theories pos-

sessing Vainshtein screening (there are exceptions, however [57, 58]). Specifically, radially

propagating perturbations around the background π̄(x) acquire a speed cs > 1 at distances

r & rV . Expanding the cubic interaction (1.5) about the background allows us to read off

the approximate expression for the sound speed cs = 1 + δcs,

δcs ∼
∂2π̄(r)

Λ3
≈
(rV
r

)3
. (1.6)

The sign of δcs turns out to be positive and (1.6) represents an O(1) effect near rV , with cs
settling back to unity as r →∞, see figure 3. (By including higher order galileon operators

it is possible to turn cs subluminal at distances close to the source so that significant

superluminality only exists at r ∼ rV [33].) All other perturbations, i.e. those in the

angular directions, propagate subluminally.

limit that the matter is non-dynamical.
9Consider galileons in the Solar System. In models where the size of the IR modification is chosen to

account for the present accelerated expansion, one typically has Λ−1 ∼ O(103km) ∼ O(10−11pc), meaning

that the Sun’s Vainshtein radius is r�V ∼ O(200pc). Since the Solar System’s radius is ∼ O(10−4pc), any

local galileon potential is suppressed by a factor of at least ∼ 10−9 relative to to the usual Newtonian result,

making all effects minuscule, but still possibly detectible with precise enough measurements [49].

– 6 –
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This superluminality has caused much worry, and is thought to imply similar super-

luminalities within the full DGP [59] and dRGT [60] theories.10 In contrast to QED,

the galileon superluminality generates macroscopic distance advances, as compared to the

galileon strong coupling distance scale Λ−1. Sending a galileon signal from near the Vain-

shtein radius to infinity, the distance advance is of order [61]

∆d ≈
∫ ∞
∼rV

dr δcs ≈
∫ ∞
∼rV

dr
(rV
r

)3
≈ rV ≈ Λ−1 (M/Mp)

1/3 , (1.7)

which is parametrically larger than the scale Λ−1 for any large source.11 Therefore, while

the two scenarios have many superficial similarities, they are qualitatively different in an

important way: galileons and QED generate distance advances which are parametrically

larger and smaller than the naive cutoffs of the EFTs in the two cases, respectively.

For the galileons, and to the extent that they captures infrared modifications of gravity,

this would indicate that if it is possible to fix the galileon superluminality, the cure will be

of a qualitatively different type than the prescription for QED. Non-perturbative effects

will have to become important at very large distance scales of order the Vainshtein radius,

much larger than the naive strong coupling distance scale Λ−1. The Vainshtein solutions

behave in many ways like black holes in general relativity, with the Vainshtein radius

playing the role of the Schwarzschild radius. From the black hole information paradox,

firewall paradox, etc., there are many reasons to believe that quantum effects near the black

hole horizon should become important, causing the local effective field theory expectations

to fail, despite the fact that curvatures are much smaller than the naive Planck scale

cutoff [62–65]. The same may be true of the galileons, and there are indications that

this is the case [66, 67], meaning they could potentially serve as a toy model [68] of the

firewall paradox [65].

Finally, in a theory with gravity, there are strictly speaking no local observables, and it

might be objected that local superluminality of the type we have been implicitly discussing

is not a sharp observable from which we can draw sharp conclusions. However, all of the

above can be phrased in terms of asymptotic observables, i.e. cumulative time advances

measured by sending a signal in from infinity in an asymptotically flat solution and watching

for when it comes out at the other side of infinity. We will thus consider only scenarios

which can in principle be viewed as this kind of asymptotic scattering experiment, and

hence represent sharp observables even in the presence of gravity.

Conventions. Our metric and curvature conventions are those of Carroll [69] (equiv-

alently, Misner, Thorne and Wheeler [70]): we work in mostly plus signature, ηµν =

(−,+,+,+) and use the curvature conventions

Γλµν =
1

2
gλσ [∂µgνσ + ∂νgσµ − ∂σgµν ] ,

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ , Rσν = Rρσρν , (1.8)

10It has not been directly shown within the full massive theories, however, that there is superluminality

within the naive regime of validity of the full massive theories. In addition, there are indications that

enforcing certain cosmological boundary conditions may eliminate superluminality outright [57, 58].
11For the Sun, we would find ∆d ∼ 200pc whereas Λ−1 ∼ 10−11pc.
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so that [∇µ,∇ν ]V ρ = RρσµνV
σ . We symmetrize and anti-symmetrize indices with weight

one, i.e.

T(µν) =
1

2
[Tµν + Tνµ] , T[µν] =

1

2
[Tµν − Tνµ] . (1.9)

Greek indices run over all of spacetime µ ∈ {0, 1, 2, 3} and Latin indices run over space

i ∈ {1, 2, 3} (we work in d = 4 throughout). The Planck mass conventions are M2
p ≡

1/l2p ≡ (8πGN )−1. The Schwarzschild radius for a black hole of mass M is rs = M
4πM2

p
. The

distance scale associated to the charge of a charged black hole is defined to be rq = Q

π
√

8Mp
,

so that extremal Reissner-Nordstrom black holes satisfy rq = rs. The Vainshtein radius for

a source of mass M is rV = Λ−1 (M/Mp)
1/3. Often we will rewrite the electron mass me

in favor of the length scale re ≡ m−1
e , which is (roughly) the cutoff of the EFT.

2 The QED effective theory

We start with a short review of the QED EFT and discuss its expected regimes of validity.

The EFT is constructed by integrating out the electron from the QED action,

exp iSeff [gµν , Aµ] ≡
∫
Dψ̄Dψ exp iSQED

[
gµν , Aµ, ψ̄, ψ

]
. (2.1)

Integrating out the electron is a particularly clean procedure in QED since the UV action is

strictly quadratic in fermion fields, so the entire contribution of electrons to the low energy

effective action can be written as a single one-loop functional determinant,

Seff =

∫
d4x
√
−g

[
M2
p

2
R− 1

4e2
F 2
µν

]
− iTr ln

(
i /D −me

)
. (2.2)

The effective action is local, expressible as a power series in ∂. The precise signs of the

various coefficients in the effective action are important for our analysis. Hence, as a check,

we re-derived the effective action using two methods: matching amplitudes and directly

expanding the functional determinant (using the technique outlined in appendix A of [45]).

We find full agreement with the original Drummond-Hathrell result, after accounting for

their conventions.12

The effective action contains a finite number of divergent terms, while the remaining

terms are finite and unambiguous. Up to order ∂4, the finite parts of the effective action are

Seff =

∫
d4x
√
−g

(
M2

p

2
R− 1

4e2
F 2
µν

)

+

∫
d4x
√
−g 1

m2
e

(aRFµνF
µν + bRµνF

µσF νσ + cRµνστF
µνF στ + d∇µFµν∇σF σν)

+

∫
d4x
√
−g 1

m4
e

(
yFµνFστF

µσF ντ + z(FµνF
µν)2

) ]
+O(∂6), (2.3)

12In the literature there appears to be some unstated disagreement about the signs in the effective action.

For instance, the effective action in [15] has the same signs as the Drummond-Hathrell result [6] and thus

claims to be in agreement with their results. However, [15] uses the opposite signature but the same

curvature conventions as [6] and therefore should have different signs on the ∼ RFF terms in Seff . Other

references leave these important conventions unstated entirely. We use the same curvature conventions and

opposite metric signature as Drummond-Hathrell.

– 8 –
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Figure 4. The QED box diagram generates the two O(F 4) EFT operators in (2.3). Throughout

the paper, photons are represented by blue, wavy lines.

Figure 5. Triangle diagrams generate the three ∼ RFF operators in (2.3). Throughout the paper,

gravitons will be represented by red, curly lines.

where the O(1) coefficients are13

a

b

c

d

y

z


=

1

180

1

(4π)2



5

−26

2

24

14

−5


. (2.4)

The two ∼ F 4 operators arise from the matching shown in figure 4. The ∼ RF 2 operators

arise from the matching in figure 5.

The divergences appear for the operators14

m4
e

√
−g, m2

e

√
−gR,

√
−gF 2

µν ,
√
−gR2,

√
−gR2

µν , (2.5)

where the coefficients shown reflect the natural scale. In (2.3) we chose counterterms so as

to set to zero the coefficient of
√
−g; this is the usual cosmological constant fine tuning. The

divergences in
√
−gR,

√
−gF 2

µν are absorbed into the definitions of Mp and e, which are

now renormalized quantities. The coefficients of the R2 operators should also be absorbed

into renormalized coefficients. We have not written these operators in the action (2.3)

because they play no role in the effects we are interested in as long as its coefficient, cR2
µν

,

obeys cR2
µν
.
(
eMp

me

)2
. The natural size for cR2

µν
is O(1) and we will assume throughout

13In an abuse of notation, we will refer to every numerical EFT coefficient in (2.4) as being O(1) through-

out the paper, despite the fact that they are numerically O(10−4) or O(10−5).
14The

√
−gR2

µνρσ operator also appears, but we can remove it via the Gauss-Bonnet total derivative. It’s

needed, however, as a counterterm in dimensional regularization.
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that
eMp

me
> 1, so no fine tuning is required, given the latter assumption. The condition

eMp

me
> 1 is (one version of) the Weak Gravity Conjecture (WGC) [71]. We will come back

later to connections between our work and the WGC.

In principle, the full effective action contains all possible information about low en-

ergy fields. For QED, everything we’d ever want to know about processes only involving

gravity and light is in Seff [gµν , Aµ]. In practice, we necessarily make an approximation

by truncating the action: we keep only a few low-dimension operators in Seff and throw

everything else away. It is therefore clear that the truncated EFT cannot be used to study

processes at all possible energies. Keeping, for instance, (FµνF
µν)2/m4

e while neglecting

(FµνF
µν)3/m6

e is only a good approximation to the extent that Fµν/m
2
e � 1, with similar

criteria holding for the curvature terms. Thus, the range of validity of the truncated QED

EFT is restricted to regimes in which energies are smaller than me, distances are larger

than m−1
e and curvatures and field strengths much smaller than m2

e. Everything else is

below the resolving power of the effective theory. Therefore, given a superluminal cs > 1

effect in QED which is unable to generate a distance advance larger than m−1
e , we cannot

exclude the possibility that it is a simple artifact of our approximations.

3 The Drummond-Hathrell problem

The effective theory (2.3), viewed as a classical theory, admits superluminal propagation

around non-trivial backgrounds. This is known as the Drummond-Hathrell problem. In this

section we review the original Drummond-Hathrell problem and re-derive the appropriate

geometric optics equations for describing the propagation of light in the effective theory.

Note that (2.3) is not a classical theory; it incorporates electron loops but graviton and

photon loops have not yet been included. It is not even the one-loop 1PI effective action of

the theory (1.1), because there are one-loop diagrams with internal gravitons and photons

which have not been included. These diagrams become important in some regimes, and

we will discuss their effects later on.

In a theory including gravity defined with flat space asymptotics, it is generally asymp-

totically defined quantities such as the S-matrix which are the cleanest observables to define.

Thus we will ask about superluminality which can in principle be observed asymptotically.

We will stick to backgrounds which are asymtotically flat, and ask about asymptotic ob-

servables such as the distance advance by which a superluminal photon overtakes a familiar,

minimally coupled photon as the two race out to ∞ across the asymptotically flat space.

3.1 Black hole setup

We will start with a slight variation of the Drummond-Hathrell setup: we use two equal

sized black holes, instead of one, so that the photon can pass directly between the pair

without curving.15 The black holes are separated by a distance much larger than their

Schwarzschild radii so that the spacetime is approximately described by the sum of the

metric perturbations from each of the black holes. We treat the positions of the black

15This is the scenario used in appendix A of [72] to discuss Shapiro time delay.
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Figure 6. A modified Drummond-Hathrelll setup. The photon passes directly between two black

holes a distance 2L apart.

holes as constant. Even though the black holes will attract, the associated time scale is

much longer than the time it takes the photon to pass between the pair, so the static

approximation is a adequate for our purpose. See figure 6.

We use isotropic coordinates xµ = (t,X, Y, Z) and place the two black holes at ~X± =

(0, 0,±L), with L � rs. Because the black holes are separated by a distance much larger

than either of their Schwarzschild radii, the metric in the region between the back holes

may be approximated as the sum of the linearized metrics of the two black holes,

ds2 = −
(

1− rs
R+
− rs
R−

)
dt2 +

(
1 +

rs
R+

+
rs
R−

)
d ~X2 , (3.1)

where R2
± = (Xi−Xi

±)(Xj −Xj
±)δij . Our photon travels in the X direction along the line

Z = Y = 0, and hence its motion is only sensitive to the following non-trivial Riemann

curvature components along this path:

RtXXt RtY Y t RtZZt RXY Y X RXZZX RY ZZY
rs(L2−2X2)

(L2+X2)5/2
rs

(L2+X2)3/2

rs(X2−2L2)

(L2+X2)5/2

rs(X2−2L2)

(L2+X2)5/2
rs

(L2+X2)3/2

rs(L2−2X2)

(L2+X2)5/2

. (3.2)

3.2 Geometric optics analysis

Given this background, we may now perform a geometric optics or characteristic analysis to

determine the photon trajectories [13, 70, 73]. Physically, geometric optics is the regime of

wave propagation in which the wave’s phase varies much more rapidly than the amplitude,

and its characteristic wavelength is much smaller than the typical background curvature

scale. Since we are studying photon propagation in the context of the QED EFT, we have

the additional restriction that the characteristic wavelength of the wave be much larger

than m−1
e . Since the typical length scale associated to the Riemann curvature is O(rs), we

are thus working within the wide window between m−1
e and ∼ 1/

√
Rµνρσ.

To perform the geometric optics approximation, we take a background solution of (2.3),

{gµν , Āµ}, and introduce a vector potential fluctuation δAµ which is then expanded as a

product of a slowly varying amplitude and a rapidly varying phase,

δAµ = (aµ + εbµ + . . .) exp

(
iϑ(x)

ε

)
, (3.3)

where ε is a small, formal constant introduced to keep track of orders in the expansion.

We then derive the equation of motion from the effective action (2.3), evaluate on gµν and

– 11 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
4

Aµ = Āµ + δAµ and start expanding, keeping only the terms first order in δA and lowest

non-trivial order in ε, all the while working perturbatively in the effective field theory

expansion ∂
me

.

The full photon equation of motion is

∇νFνµ = 4e2m−2
e

(
a∇ν(RFνµ) + b∇ν(R[ν|α|F

α
µ]) + c∇ν(RνµρσF

ρσ)− d∇µ(∇[µ∇|σ|F σν])
)

+ 8e2m−4
e

(
y∇ν(FστFν

σFµ
τ + z∇ν(F 2Fνµ))

)
, (3.4)

and we work in Lorenz gauge

∇µδAµ = 0 . (3.5)

Both the gauge condition and equation of motion are expanded in powers of ε. In addition,

because we truncated the effective action, we are working perturbatively in m−1
e . Therefore,

on the right hand side of (3.4) we may use the zero-th order in m−1
e uncorrected black hole

solution. For Schwarzschild black holes, only the c term in (3.4) contributes since all other

terms are proportional to F̄µν , Rµν or R, all of which are vanishing on the zero-th order

solution. The dispersion relation arises at O(ε−2), stemming from terms in (3.4) with two

derivatives acting on δA.

Defining kµ ≡ ∇µϑ, the leading O(ε−1) part of the gauge condition reads

kµaµ = 0 , (3.6)

which can be used to simplify the O(ε−2) part of the equation of motion (3.4) to the form

kνkν = 8ce2m−2
e Rµρνσk

µkνfρfσ , (3.7)

after writing aµ = afµ with fµ a unit vector, gµνfµfν = 1.

The photon propagation is more naturally phrased in terms of an optical metric g̃µν
defined by

g̃µν ≡ gµν − 8ce2m−2
e Rµρ

ν
σf

ρfσ , g̃µν ≈ gµν + 8ce2m−2
e Rµρνσf

ρfσ . (3.8)

Photons are null with respect to this effective metric, g̃µνkµkν = 0, and follow the geodesics

of g̃µν , not the background metric.16 The tangent vector along the photon worldline, dxµ

dλ ,

is thus proportional to k̃µ, defined by

k̃µ ≡ g̃µνkν , (3.9)

not kµ (as was emphasized recently in [74]).

16This is easily proven by defining k̃µ = g̃µνkν = g̃µν∇νϑ and taking a covariant derivative (with respect

to g̃µν) of the null condition: 0 = 1
2
∇̃α (g̃µνkµkν) = k̃ν∇̃νkα implying k̃ν∇̃ν k̃µ = 0 which is the standard

geodesic equation (we used ∇̃[µkν] = 0 as kν is the gradient of a scalar).
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Figure 7. Sketch of the photon traveling into the page. The red line represents the photon

polarization vector which makes an angle θ with the Z = 0 plane. Photon propagation is maximally

timelike if θ = 0, π and maximally spacelike if θ = ±π/2 (3.11).

The interesting question is therefore whether k̃µ is spacelike, timelike or null with

respect to the background metric gµν , as this is the measure of how different photon

propagation in full QED is from naive expectations. At lowest non-trivial order in m−1
e ,

this test reads

gµν k̃
µk̃ν ≈ −8ce2m−2

e Rµρνσk
µfρkνfσ . (3.10)

For our setup in figure 1, we take the photon’s polarization vector to make an angle θ

with respect to the positive Y axis, see figure 7, and find:

gµν k̃
µk̃ν ≈ − 24ce2L2rs cos 2θ

m2
e (L2 +X2)5/2

, (3.11)

where we used (3.2) and took kµ ≈ (1, 1, 0, 0) + O(rs/
√
L2 +X2) on the r.h.s. of (3.10).

Since c > 0 (2.4), we see that if the polarization vector lies in the plane of the black hole

pair, θ = ±π/2, then the propagation is maximally spacelike and superluminal, while if

the polarization vector is perpendicular to this plane, θ = 0, π, then the propagation is

maximally timelike and subluminal.

In order to analyze the effect on the photon’s path in greater detail, we can pertur-

batively solve for the altered photon geodesic.17 The solution for xµ(λ) is conveniently

expressed as an expansion about x̄µ(λ), the geodesic whose tangent vector is k̄µ. To lowest

non-trivial order,

x̄µ(λ) ≈
(
λ+ 2rs ln

[
λ/L+

√
1 + λ2/L2

]
, λ , 0 , 0

)
, (3.12)

17The easiest way to do this in practice is to solve for kµ first, translate the result into k̃µ = g̃µνgνσk
σ

and then integrate to find xµ(λ). It is straightforward to demonstrate that this is equivalent to solving

k̃ν∇̃ν k̃µ = 0 directly. To solve for kµ, we take a covariant derivative of (3.7) with respect to gµν to derive

a modified geodesic equation: kν∇νkα = ∇α
(
4ce2m−2

e Rµρνσk
µkνfρfσ

)
. Then, kµ is expanded about a

null geodesic of the background metric, kµ = k̄µ + δkµ where k̄µ satisfies k̄ν∇ν k̄µ = 0, and we solve for

δkµ perturbatively.
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where we took λ = 0 to correspond to a photon at the origin. Writing xµ(λ) = x̄µ(λ) +

δxµ(λ), we find

δxµ(λ) ≈
(

0 , −4ce2rsλ(3L2+2λ2)

m2
eL

2(L2+λ2)3/2 cos 2θ , 0 , 0
)
, (3.13)

to first order in c and lowest order in rs. In (3.13), we’ve switched to a non-affine parameter

in order to simplify the expression and keep δx0(λ) = 0 for all λ, θ making the comparison

between xµ(λ) and x̄µ(λ) more straightforward.

By calculating δxµ(λ) we are effectively comparing the flight of a non-minimally cou-

pled photon to the flight of a minimally coupled “test” photon on the same background

in order to understand how much the QED photon’s propagation differs from that of a

“normal” photon. We denote the non-minimally coupled photon by γQED and the mini-

mally coupled photon by γmin with the former’s motion dictated by (2.3), while the latter’s

motion would be described by only a Maxwell term. We will often refer to γmin, but if one

would rather avoid referring to degrees of freedom not explicitly included in the theory, the

entire analysis can be rephrased as a comparison between the strictly luminal QED photon

(θ = π/4) and the other possible polarizations of γQED.

This comparison between photons on the same background avoids the complications

which would arise if we were to, for example, compare the QED photon’s trajectory in a

black hole background to the trajectory of a null path in Minkowski space. Difficulties

even arise in attempting to contrast the trajectory of a minimally coupled photon, γmin, in

Schwarzschild to a flat space photon as the logarithmic Shapiro time delay term in x̄µ (3.12)

causes the Schwarzschild photon to fall behind its flat space counterpart by a diverging

amount ∝ rs lnλ. See [75, 76] for discussions of related topics. By comparing trajectories

in the same background, we sidestep such issues.

From (3.13), we can immediately compare the paths of the different photons. If γQED

and γmin were to race from directly between the black holes out to infinity, the asymptotic

difference between the two paths is

∆X ≈ lim
λ→∞

δx1(λ) = −m−1
e

(
8ce2rs
meL2

)
cos 2θ . (3.14)

Thus, a maximally subluminal QED photon would lose to γmin by a distance m−1
e

(
8ce2rs
meL2

)
which in turn would lose to the maximally superluminal QED photon by the same amount,

in agreement with our estimate (1.4). See figure 8.

This distance, for the values L & rs, L� m−1
e , e ∼ O(1), is � me

−1, well outside the

regime of validity of the EFT.

4 Building up QED superluminality

In this section we attempt to build up the QED superluminality with the goal of achieving

∆X > m−1
e . We start by discussing two simple attempts which can quickly be shown to

fail. Afterwards, we introduce the main amplifying scenario considered in this paper: a

ladder of approximately extremal Reissner-Nordstrom (RN) black holes.
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Figure 8. Exaggerated sketch of the race between a maximally superluminal photon, γQED with

θ = ±π/2, and a minimally coupled photon, γmin. The QED photon wins by ∆X ≈ m−1
e

(
8ce2rs
meL2

)
.

4.1 Simple attempts: large Nf , small rs and photon orbits

Examining the expression for the QED distance advance, ∆X ≈ m−1
e

(
8ce2rs
meL2

)
, a few

methods of amplification immediately come to mind. Start by noting that the advance is

bounded by taking the L→ rs limit of ∆X:

∆X ≤ m−1
e

(
8ce2

mers

)
, (4.1)

corresponding to skipping the photon off of the BH horizon. We are interested in making(
8ce2

mers

)
� 1 and the two basic strategies are to either make the numerator large or the

denominator small.

The numerator can be made large by considering a new version of the problem where

we work with Nf flavors of electrons, instead of just one. In this case, the distance advance

formula is changed to

∆X ≈ m−1
e

(
8cNfe

2rs
meL2

)
(4.2)

and the prescription is to take Nfe
2 � 1. However, this limit cannot be taken while

retaining perturbative control of the theory. The quantity Nfe
2 is the ’t Hooft coupling

(with Nf the number of flavors, rather than the rank of the gauge group) and the one-

loop vacuum polarization correction to the photon propagator is ∝ Nfe
2. Large ’t Hooft

coupling means non-perturbative photon dynamics which implies that we can’t trust the

approximations we have made in deriving and truncating the effective action.

The denominator of (4.1) can be made small by studying tiny black holes, those for

which rsme � 1. However, such minuscule black holes are well outside of the validity of

the EFT. Heuristically, they are objects of size much smaller than the cutoff of the EFT,

rs � m−1
e , and hence are not describable. More quantitatively, the bound (4.1) comes from

shooting the photons quite close to the horizon of the black hole where the curvature is of

order Rµνρσ ∼ 1/r2
s , meaning that Rµνρσ/m

2
e ∼ 1/(mers)

2 � 1 and hence our truncation

of the EFT (2.3) is invalid for this setup, as we’ve dropped terms which are higher order

in Rµνρσ/m
2
e that are in no way suppressed relative to the terms we’ve kept.

Finally, there is no obvious restriction on building up an integrated macroscopic dis-

tance advance by choosing the photon to orbit a large black hole for many cycles. However,
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Figure 9. Racing γmin and γQED down a ladder of black holes.

this setup does not permit us to send signals between asymptotic observers any faster than

if there were no black hole at all, so it is not the type of sharp asymptotic observable we

are interested in.

4.2 A ladder of black holes: large NBH

A more fruitful direction to push is the limit of many black holes. We consider building

a ladder of NBH black holes, arranged in pairs with each pair constituting a rung of the

ladder, and racing γQED against γmin down the middle of the ladder, see figure 9.

If we could construct a ladder of arbitrary length, we could clearly make the distance

advance as large as we wish. We cannot, however, as the multi-black hole solution is not

generally static since the black holes mutually attract. Initially placing the black holes at

vertical separation 2L, the photon race until the separation becomes O(rs), at which point

the black holes start to merge and the ladder collapses.

Analytic control of the race is lost when the ladder coalesces, so we should attempt to

prolong the lifespan of the setup. One way to accomplish this is to use identical extremal

Reissner-Nordstrom black holes. Famously, the sum of many stationary, extremal RN black

holes is also an exact, stationary solution to pure Einstein-Maxwell theory [77–79], because

the electromagnetic repulsion perfectly balances the gravitational attraction. Our ladder

is thus perfectly stable in such a theory.

However, since we are working with full QED, not just Einstein-Maxwell, these

Majumdar-Papapetrou spacetimes are only approximate solutions and the additional op-

erators in the EFT (2.3) introduce new effects. Further, they are only classical solutions

of Einstein-Maxwell theory: graviton and photon loops must also be accounted for. We

analyze the new effects in the following sections and determine whether they destabilize

the ladder quickly enough to avoid macroscopic superluminality.

5 Black hole ladder analysis

Here we study the ladder of approximately extremal Reissner-Nordstrom black holes. First,

we recall the exact black hole solutions of pure Einstein-Maxwell theory and their relevant

properties. Next, we discuss how to calculate the perturbative corrections to these so-

lutions, due to the electron-induced operators in the EFT (2.3). Effects of photon and

graviton loops are then discussed separately, as their treatment is slightly more subtle.

Finally, we bound the distance advance acquired by γQED in this idealized scenario.
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5.1 Einstein-Maxwell background

The pure Einstein-Maxwell action is:

SEM =

∫
d4x
√
−g

[
M2
p

2
R− 1

4e2
F 2
µν

]
−M

∫
dτ +

Q

e

∫
dxµAµ , (5.1)

where we’ve explicitly included the source terms for a single black hole of mass M and

charge Q (τ parametrizes the worldline of the charged source). The background equations

of motion from (5.1) read

M2
pGµν =

1

e2

[
Fµ

αFνα −
1

4
gµνF

2

]
, ∇νFµν = 0 , (5.2)

and are satisfied by the Reissner-Nordstrom solution

ds2 = −∆(r)dt2 + ∆(r)−1dr2 + r2dΩ2
2

∆(r) = 1− rs
r

+
r2
q

4r2
, F tr =

eMp√
2

rq
r2

rs ≡
M

4πM2
p

, rq ≡
Q

π
√

8Mp

, (5.3)

with all other components of Fµν vanishing or related to (5.3) by symmetries. The extremal

black hole arises in the limit rq → rs, at which point ∆(r) factorizes: ∆(r) =
(
1− rs

2r

)2
.

In isotropic coordinates, xµ = (t,X, Y, Z) with X2 +Y 2 +Z2 = (r−rs/2)2, (5.3) can be

generalized to the exact Einstein-Maxwell solution containing NBH equal mass, extremal

black holes at locations ~Xi [79]:

ds2 = −U−2dt2 + U2d ~X2 , A0 = eMp

√
2U−1 , U ≡ 1 +

NBH∑
i=1

rs

2| ~X − ~Xi|
. (5.4)

5.2 Quantum corrections

Since we are not working with pure Einstein-Maxwell, but rather the EFT (2.3), the con-

figurations of the previous sections are only approximate solutions. There are multiple

ways of calculating how the new EFT operators in (2.3) affect the configuration. We find

it most transparent to phrase the calculation in terms of Feynman diagrams for perturba-

tively solving the equations of motion [80]. The leading corrections to the single extremal

RN solution are calculated and then multiple copies are superimposed to find the ap-

proximate multi-black hole metric. Forces between nearby black holes are then calculated

using the geodesic equation and the resulting dynamics are calculated in the Newtonian

approximation.

Each of these steps involves approximations, but the errors are expected to be small

in each case:

• Black hole solutions cannot generically be added together to form new solutions, due

to the non-linearity of GR. However, as long as the separation between black holes

is much larger than their respective horizon sizes, the composite metric should serve

as a good approximation. Our setup falls within this regime.
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• Placing the black holes at some initial separation, we find the Newtonian potential

between a single pair of perturbed black holes and calculate how quickly they come

within a distance ∼ rs of each other. This estimate serves as an upper bound for the

lifetime of the entire ladder, which is all we’ll need. Using a Newtonian description

is only valid for weak gravitational forces and velocities much smaller than c. Our

setup falls within this regime (as we’ll verify).

• In practice, we’ve calculated contributions to 〈hµν〉 using time-ordered Feynman rules.

Strictly speaking, these “in-out” matrix elements are only equivalent to expectation

values if the system is in equilibrium. In order to calculate true expectation values

and capture non-equilibrium effects such as Hawking radiation (see [81] for a recent

such study), one would instead need to use the full Schwinger-Keldysh or “in-in”

formalism [82, 83]. However, because the black holes are nearly extremal, their

evaporation rate is minuscule and we expect such effects to be negligible.

• Photon and graviton loops generate subtle corrections to the metric, which are not

immediately interpretable as unambiguous corrections to the Newtonian potential.

They require a more careful treatment, as is discussed in section 5.2.4.

5.2.1 Feynman diagram estimation: RN black holes

Finding black hole solutions via diagrams has a long history. Duff pioneered the subject,

both reproducing the usual, classical Schwarzschild solution [84] and finding the leading

quantum corrections to the metric [85] from graviton loops (though, this latter subject

turns out to be surprisingly subtle, see section 5.2.4). Though diagrams can be used to

find the exact perturbative corrections with all numerical coefficients determined, the pri-

mary utility of Feynman diagrams for the present purpose is their efficiency in estimating,

comparing and organizing competing corrections to hµν and Aµ.

Consider building up the generic RN solution via Feynman diagrams. The schematic

form of the Einstein-Maxwell action, with source terms included,

L ∼ l−2
p hn(∂h)2 +

1

e2
hn(∂A)2 + rsl

−2
p hδ3(r) +

rql
−1
p

e
Aδ3(r) , (5.5)

is sufficient for our purposes. We found it convenient to write all quantities in terms of

length scales, lp = M−1
p , rs ∼ Ml2p and rq ∼ Qlp. The derivation of the Feynman rules is

standard and we’ll only need their schematic form:

• All diagrams are drawn as sources feeding into 〈hµν〉 or 〈Aµ〉 from right to left.

• is a graviton line, appearing with a factor ∼ l2p.

• is a photon line, appearing with a factor ∼ e2.

• Any line whose right end is bare has a source attached to that end.

• If has a source attached, it gets another factor of ∼ rsl−2
p .
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Figure 10. Some examples of Feynman diagrams for the Reissner-Nordstrom metric solution.

Diagrams (a) and (b) are the leading GR correction and charge contribution. Diagrams (c) and (d)

are complicated diagrams whose sizes are easily estimated.

• If has a source attached, it gets another factor of ∼ rql−1
p e−1.

• is an Einstein-Hilbert vertex, appearing with a factor ∼ l−2
p .

• is a Maxwell vertex, appearing with a factor ∼ e−2.

• Overall dimensions are fixed by inserting factors of r.

We will refer to any line whose right end is bare as “external.” These rules allow for fast

and easy estimations of the various contributions to the solution.

For instance, the linear solution for the metric corresponds to a single graviton line:

. The estimation of this diagram is simple. Every graviton line comes with a

factor of ∼ l2p and since the right end of the single line is bare, there’s also a single factor

of the source ∼ rsl
−2
p . Feynman rules and dimensional analysis quickly yield the estimate

of the standard Newtonian potential,

〈hµν〉 = ≈ 1

r
× l2p × rsl−2

p =
rs
r
. (5.6)

We similarly estimate that the linearized photon solution is

〈Aµ〉 = ≈ 1

r

erq
lp

. (5.7)

The first GR correction and the leading contribution of charge to the metric arise from

cubic vertices, as shown in figure 10 (a) and (b). Both are easily estimated and are found

to be of the correct form, as can be seen by comparing to the full solution (5.3). It’s also

easy to estimate the sizes of more complicated diagrams, see figure 10 (c) and (d).

This diagrammatic language greatly helps to organize the calculation. In the limiting

case of finding the classical, extremal RN solution via Feynman diagrams, the organization

is fairly trivial: there’s only one scale rs entering the metric solution and a diagram with

n external legs and arbitrarily many vertices gives a contribution of size ∼ (rs/r)
n to

〈hµν〉. However, when we consider both classical and quantum diagrams built using the
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full EFT (2.3) several more scales and factors appear (e, me and lp) and diagrams become

an invaluable organizational tool.

Finally, note that important physics is clearly expressed through these estimates: di-

agrams tell us the scale at which physics qualitatively changes due to non-linearities and

the breakdown of perturbation theory. For instance, the linear Schwarzschild BH solution

is 〈hµν〉 ∼ rs/r while the non-linear corrections are all of size ∼ (rs/r)
n. These GR correc-

tions are therefore small for r & rs and important for r . rs, at which point perturbation

theory breaks down and we need to find the full non-linear solution for the metric (5.3). A

similar analysis for generic RN black holes demonstrates that non-linearities are important

at the whichever scale is largest among rs, rq. rs � rq corresponds to horizon formation,

rs � rq corresponds to a naked singularity and rs ∼ rq is a special neighborhood contain-

ing the extremal black hole. Generically, physics changes qualitatively when non-linearities

become important and Feynman diagrams provide a quick way of determining where these

interesting non-linear scales lie.

5.2.2 Tree diagrams for 〈hµν〉

Now we estimate the sizes of the various metric corrections coming from the new EFT

operators in (2.3). Since the background forces cancel for the approximately extremal

RN black holes we are considering, these electron induced corrections provide the leading

gravitational forces which destabilize the ladder setup. Summing up tree diagrams is

equivalent to taking the equations of motion derived from (2.3) and solving perturbatively.

As we’ll see, this alone is not sufficient and misses important contributions to the solution.

The schematic Lagrangian now reads:

L ∼ l−2
p hn(∂h)2− 1

4e2
hn(∂A)2+r2

eh
n∂2h(∂A)2+r4

eh
n(∂A)4−rsl−2

p hδ3(r)+
rql
−1
p

e
Aδ3(r) ,

(5.8)

where we introduced the length scale re ≡ m−1
e . The third term in (5.8) corresponds to

all of the ∼ m−2
e RFF operators, the fourth corresponds to the ∼ m−4

e F 4 operators and

we neglected the d operator ∼ m−2
e (∂F )2 as it’s redundant and only ends up providing

subleading corrections. A single new Feynman rule is sufficient for estimating the sizes of

the new diagrams:

• is an electron induced vertex.

• If has two photon lines attached, it corresponds to the third term in (5.8) and

appears with a factor ∼ r2
e .

• If has four photon lines attached, it corresponds to the fourth term in (5.8) and

appears with a factor ∼ r4
e .

The simplest EFT corrections to the metric are shown in figure 11. Easy estimates

demonstrate that a diagram utilizing both an insertion of the Maxwell term and an ∼
m−4
e F 4 operator and a diagram using only a single ∼ m−4

e F 4 insertion are of the same
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Figure 11. The simplest tree-level EFT corrections to the metric.

order. The former corresponds to finding the correction to Aµ from the ∼ F 4/m4
e operators

and feeding the result into the Einstein-Maxwell Tµν to find how it affects the metric. This

correction is just as important as the ∼ F 4/m4
e operators’ direct contribution to the metric

(the lower diagram in figure 11). Comparing the two diagrams in figure 11, one finds that

the (a) dominates for r . rs

(
ere
lp

)
and (b) dominates for r & rs

(
ere
lp

)
. The form of the

gravitational force law changes depending on how separated the black holes are.

The factor ere/lp = eMp/me arises often in the calculation and is exactly the quan-

tity that the Weak Gravity Conjecture states should be larger than unity in any theory

which can be UV completed into a consistent theory including quantum gravity [71]. The

Standard Model electron satisfies this bound easily, ere/lp ∼ 1022, and (unless specified

otherwise) we proceed assuming that our theory also satisfies this bound, as we wish to

stay as close to real world QED as possible.

Finally, we can double check that our calculation is within the validity of the EFT.

The existence of electrons shouldn’t produce drastic changes to the background solutions,

otherwise we are not in the regime where the EFT is valid. This means that all diagrams

using EFT vertices should be small compared to the background solution in the regime

of interest, r & rs. Equivalently, this implies that any new non-linear scales induced by

the new EFT operators should be smaller than ∼ rs, so that GR’s non-linearities always

become important first.

These properties do not hold for all black holes: there is a minimal size black hole

below which the EFT description breaks down. In order to see this, consider evaluating

the two diagrams in figure 11 just outside the horizon, r ∼ rs where the linear solution

and all Einstein-Maxwell corrections are starting to become O(1). If electrons aren’t very

important, then both diagrams should be � O(1) in this regime. Figures 11 (a) and (b)

satisfy this condition only if rs � ere (ere/lp) and rs � lp (ere/lp), respectively, and the

first constraint is strongest, due to the WGC assumption.

More stringent bounds come from considering different diagrams. It turns out that

the strongest constraints come from the diagram with a single insertion of an operator

∼ r4n
e h(∂A)2(n+1) with n→∞. The diagram gives

〈hµν〉 ∼
(
ere
lp

)n+1 (re
r

)n−1 (rs
r

)2(n+1)
(
lp
r

)2

(5.9)
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and 〈hµν〉 � O(1) at r ∼ rs iff rs & re
(
ere
lp

)
. If the bound is violated, an infinite tower of

operators generate important corrections to the solution. Again, this analysis is equivalent

to identifying the distance scale at which EFT non-linearities become important and then

demanding that this scale be smaller than rs.

The bound rs & re

(
ere
lp

)
is nothing but the statement that our EFT description is

only valid for field strengths obeying F 2/m2
e � 1. The strongest field strengths we probe

are of order

Fµν
∣∣
r=rs

∼ ∂A
∣∣
r=rs

∼ e

rslp
, (5.10)

which is smaller than m2
e only if18 rs & re

(
ere
lp

)
, which is the condition we found through

diagrams. Physically, we expect rampant e+, e− Schwinger pair production when this

condition is violated,19 in agreement with the scale found in the detailed pair production

analysis of [86].

The rough estimates given above are fully realized in the precise results of the actual

calculation [87]. A similar analysis for the vector potential solution is straightforward and

yields the same conclusions. After finding the leading perturbative corrections, we can

simply read off the electron corrections to h00 to find the gravitational potential induced

by electrons, and similarly for the zero component of the vector potential.

5.2.3 〈hµν〉 from photon and graviton loops

The tree diagrams of the previous section miss an important effect: the contribution of

graviton and photon loops. Not only should these be included for consistency, they also

generate the dominant corrections at long distances and qualitatively change the dynam-

ics. These corrections would be missed entirely if one simply tried to find the metric via

perturbatively solving the EFT equations of motion derived from (2.3). Instead, they are

captured by the 1PI effective action, discussed later. The use of Feynman diagrams makes

it particularly clear that these corrections need to be included and quickly singles out the

regime where they dominate.

Physically, it’s entirely reasonable that loops of photons and gravitons should compete

with the effects of the new EFT operators and that they should dominate at long distances.

Recall that the generated EFT operators all arose via electron loops, as in figure 5, and

hence the tree diagrams considered in the previous section correspond to loop diagrams in

the full theory. They represent quantum effects. Since photon and graviton loops represent

the quantum corrections from massless particles, their effects should be very long ranged,

dominating the corrections far from the source, while electron loop effects dominate at

shorter distances.

18Funny numerology occurs when this bound is evaluated for the Standard Model. In terms of the BH

mass (MBH) and solar masses (M�), a few fundamental numbers (e, Mp and me) combine to yield the

condition MBH & 105M�, as pointed out in [86], roughly corresponding to the lower mass range of real

world supermassive black holes.
19For a generic RN BH, a similar analysis gives the condition r2

s � rerq
(
ere
lp

)
.
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Figure 12. Typical loop corrections to the metric from gravitons and photons. Here, and in

following figures, we leave the necessary ghost diagrams implicit.

Typical loops needed for the calculation are shown in figure 12. The full calculation

of graviton and photon loops is fairly painful, due to the plethora of indices [88–90]. For-

tunately, our Feynman rules for approximating diagrams faithfully reproduce the size of

these corrections to the metric, first calculated by Duff [85]. Very closely related (but not

entirely equivalent) ideas were later stated in modern EFT language by Donoghue20 [95].

The estimate for the correction follows from figure 12: δhµν ∼ rs
r

(
lp
r

)2
. Comparing

these loop corrections to the tree diagrams of the previous section, figure 11 (a) and (b),

we find that light loops dominate the metric corrections at distances r & rs
(
ere
lp

)2
.

5.2.4 Subtleties of gauge loops

Unfortunately, turning these gauge loop diagrams into a potential is not so straightforward

a process. We can’t simply find δh00 and take this to be the potential because the 1PI

action for GR is gauge dependent, which makes the correction δhµν ambiguous.

Starting from the GR action with a point source,

S =

∫
d4x
√
−g

M2
p

2
R−M

∫
dτ , (5.11)

we can calculate the 1PI action Γ[ḡµν ] via the background field method (BFM) [96] by

expanding the Einstein-Hilbert action about gµν = ḡµν + δgµν and integrating over all 1PI

graphs where only δgµν propagates in loops,

exp iΓ[ḡ] =

∫
1PI
Dδgµν exp iS[ḡµν + δgµν ] . (5.12)

Actually performing the calculation (5.12) requires gauge fixing for δgµν and we can

ensure that Γ[ḡµν ] is built from diffeomorphism invariant operators by making a clever

choice of gauge fixing functional [88], for instance Gµ = ∇̄νδgνµ− 1
2∇̄µδg

ν
ν . A gauge fixing

term Lgf = − 1
2ξGµG

µ is then added to the action (along with the associated ghost terms)

where ξ is an arbitrary parameter. Performing the necessary integrals, the one-loop 1PI

action contains the following non-analytic operators [97]

Γ[ḡµν ] ⊃
∫

d4x
√
−ḡ
(
c1R̄ log(−�/µ2)R̄+ c2R̄

µν log(−�/µ2)R̄µν + c3R̄
µνρσ log(−�/µ2)R̄µνρσ

)
− c4

M

M2
p

∫
dτ log(−�/µ2)R̄− c5

M

M2
p

∫
dτ log(−�/µ2)R̄µν

dxµ

dτ

dxν

dτ
, (5.13)

20Many, many authors have calculated the correction using a variety of methods. See, for instance, [91–

93] and [94] for a review. Not all results agree in their precise numerical coefficients, but all find the same

order of magnitude as figure 12.
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with some calculable coefficients ci. The three new operators in the first line correspond

to the vacuum polarization diagrams in figure 12, along with similar diagrams with more

external legs. The new operators in the final line come from diagrams using insertions of

vertices from the point source term.

Using (5.13), we can calculate 〈δhµν〉 in a precise manner: expand ḡµν about flat space,

add a new gauge fixing term to make the propagator invertible and compute tree diagrams

using the terms in the second line of (5.13) as the source terms. This is essentially the

method used by Duff [85], though the matter corrections c3, c4 were neglected there.

The problem, then, is that many of the ci’s in (5.13) depend on the choice of the gauge

fixing parameter ξ used to fix the background fluctuation in (5.12). The ξ dependence

of the ci’s then feeds into the metric, which also ends up being ξ-dependent. While the

ξ-dependence cancels out of the one-loop, BFM result for Γ[ḡµν ] in Yang-Mills theories,

the analogue statement is not true in GR, a property ascribed to the non-renormalizable

nature of GR in [98]. The background gauge fixing is logically distinct from the gauge fixing

required when using Γ[ḡµν ] to find 〈δhµν〉 and represents a true ambiguity. For instance,

the value of the Ricci scalar induced via the one-loop corrections in (5.13) depend on ξ, but

not on the parameter used in gauge fixing Γ[ḡµν ] to compute the necessary tree diagrams.

This is a general property of the effective action for theories with gauge fields; see, for

instance, [99–102]. The field profiles which extremize the 1PI effective action are generically

gauge dependent, since the form of the 1PI action is itself gauge dependent. Instead of

finding the metric, one must use Γ[ḡµν ] to calculate physical quantities such as S-matrix

elements [103, 104] or modified geodesic equations [97] which account for the non-minimal

matter coupling in (5.13), each of which yield ξ-independent predictions.

Despite these subtleties in turning the diagrams of figure 12 into precise potentials, the

figures and power counting rules constitute a good mnemonic for the calculation: the cor-

rection of the potential due to massless loops is δV ∼ rs
r

(
lp
r

)2
[11, 92, 95, 97, 103, 104].

Therefore, we continue to use the diagrams of figure 12 as a representation of the ef-

fect. The exact one-loop potential is calculated in appendix C by combining the results

of [103, 105, 106].

5.2.5 Combining all effects

Combining the results of the previous two sections, along with the results of the vector

potential estimates, we find that the calculation breaks up into three regions where different

effects dominate, see figure 13.

If we were to place another, identical black hole in the spacetime, we’d find that

the form of the force law depends on the separation: there are three distinct behaviors,

depending on which region of figure 13 we place the second black hole. However, no

matter where we place the second black hole, it is found that the corrections generate

an attraction between the black holes. Not all of the individual diagrams in figure 13

generate an attractive perturbative correction, but when all corrections are summed up

with their precise signs and coefficients, everything works out such that attraction persists

at all scales.
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Figure 13. Dominant metric and vector potential corrections at different distances from the black

hole. We indicate whether each diagram corresponds to an attractive or repulsive force between

this black hole and a second, identical one, which we imagine is placed in the indicated region.

The electron induced effects can be accurately captured as perturbative corrections to

the metric and field strength tensor; there are no subtle gauge issues here. Writing the full

solution for the metric and vector potential as gµν = ḡµν +δgµν and Fµν = F̄µν +δFµν with

ḡµν , F̄µν the classical, extremal RN solution of (5.3), it is found [87] that electrons induce

the corrections:

δgtt = (c− 2a)

(
ere
lp

)2 (rs
r

)2
(
lp
r

)2

+
(y + 2z)

10

(
ere
lp

)4 (rs
r

)4
(
lp
r

)2

δgrr = (8a+ 3b+ 4c)

(
ere
lp

)2 (rs
r

)2
(
lp
r

)2

+
(y + 2z)

10

(
ere
lp

)4 (rs
r

)4
(
lp
r

)2

δF tr =
e

rlp

[
4
√

2c

(
ere
lp

)2 (rs
r

)2
(
lp
r

)2

− 2
√

2 (y + 2z)

(
ere
lp

)4 (rs
r

)3
(
lp
r

)2
]

(5.14)

and all other perturbations are vanishing or trivially related to the above.

Again, the result (5.14) only represents the dominant long distance corrections to the

metric due to electrons; many subleading terms are neglected. For instance, for every

diagram used in building the above, we could attach n more external graviton lines to

create a related diagram which is down by a factor of ∼ (rs/r)
n, relative to the original.

These are all negligible for the interests of this paper, but are necessary for understanding

the near horizon region, calculating how the fermion field affects the Hawking temperature,

etc. Re-summing these subleading terms requires solving the fully non-linear EOM, while

still working only to leading order in EFT coefficients (2.4). This is done in [87].

Massless loops dominate for r & rs

(
ere
lp

)2
and writing their representation as a con-

tribution to δgµν and δFµν is misleading due to the gauge loop subtleties covered in sec-

tion 5.2.4. The precise one-loop potential generated by massless loops is calculated in

appendix C, using the work of [103, 105, 106], and is found to be of the expected, attrac-

tive δV ∼ rs
r

(
lp
r

)2
form.
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Figure 14. Dominant metric and vector potential corrections at different distances from the black

hole when massless loops are neglected. By ignoring massless loops, qualitatively wrong dynamics

are found.

Before we analyze the dynamics of the black hole ladder, we wish to quickly emphasize

the importance of including gauge loops. Had they been neglected, we’d find qualitatively

wrong physics. Including only the effects of electrons in the analysis, the sketch of the

system would be changed from figure 13 to figure 14. The result is a hilltop potential

which generates an attraction between extremal RN black holes separated by distances

r . rs

(
ere
lp

)2
and a repulsion for those separated by r & rs

(
ere
lp

)2
. This is the behavior

one would find by only perturbatively solving the equations of motion arising from (2.3).

5.3 Tunnel dynamics and distance advance

From the perturbative corrections (5.14), we can calculate the forces which act on the

tunnel and ask whether it collapses before we are able to up a distance advance which

parametrically violates the macroscopic superluminality bound, ∆X & m−1
e . We find that

no such violation is possible: our setup only approaches this bound from below and always

remains a parametric distance away from saturation. Precisely, we find ∆X . e ×m−1
e .

We ignore Hawking radiation and assume that the black holes retain a fixed charge-to-mass

ratio throughout the process.

5.3.1 Tunnel dynamics

Consider the dynamics of a single pair of black holes. The entire tunnel would coalesce

at least as quickly as this pair would, hence as a conservative estimate we need only look

at the dynamics of this single pair. A particle of charge q and mass m traveling in some

charged spacetime obeys the geodesic equation sourced by the Lorentz force law,

dxν

dτ
∇ν

dxµ

dτ
=

q

em
Fµν

dxν

dτ
. (5.15)
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We model the motion of the far separated black holes via the above relation. In the

Newtonian limit, the spatial components of the above reduce to their familiar form,

d2xi

dt2
=

1

2
∂ih00 +

q

em
F i0 , (5.16)

where gµν = ηµν + hµν .

We model the two black holes by two coupled Newtonian equations, each of the

form (5.16). The two body problem can be reduced to an effective one-body problem

for the separation between the black holes, in the usual way. Letting r = |~x1 − ~x2| be the

separation between the pair, the relation for the BH’s becomes,

d2r

dt2
= ∂ih00 +

√
2

eMp
F i0 . (5.17)

Since all background forces cancel (see appendix A), the leading force terms in (5.17) arise

from the perturbative corrections found in the previous section (5.14) and those due to

massless loops, as calculated in appendix C. The problem is therefore efficiently recast in

terms of a conserved energy and effective (dimensionless) potential,

E =
1

2
ṙ2 + Veff(r) , (5.18)

where Veff(r) descends from (5.14). We might also worry about subleading velocity depen-

dent forces, but these can be neglected, as is justified in appendix A.

From the explicit form of the corrections discussed in the previous section, it can be

determined that the effective potential Veff(r) has two distinct types of behavior, depending

on the value of r:

Veff(r) =


−C1

(rs
r

)( lp
r

)2

, rs

(
ere
lp

)2

. r

−C2

(
ere
lp

)4 (rs
r

)3
(
lp
r

)2

, rs . r . rs

(
ere
lp

)2
. (5.19)

There are only two distinct types of behavior above, despite the three different regimes

presented in figure 13, because the electromagnetic corrections dominate the potential for

all r . rs (ere/lp)
2. That is, at long distances, r & rs

(
ere
lp

)2
, massless loops generate

the leading forces, while the ∼ F 4/m4 EFT operators generate the dominate forces at

shorter scales. The Ci’s are linear combinations of the O(1) coefficients which describe the

effects of either electron (2.4) or gauge loops. Their precise values are not needed. Instead,

it’s only important we know they are positive so that the black hole pair is attracted at

all distances.

It’s easy to check that the dynamics stay non-relativistic throughout the collapse,

justifying the use of (5.18). From (5.19), magnitude of potential is bounded by

|Vmax| .
(
ere
lp

)4( lp
rs

)2

(5.20)
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for r & rs. We previously found that the radius of the extremal black holes must sat-

isfy rs � re

(
ere
lp

)
to fall within the validity of the EFT description. Plugging this fact

into (5.20) we find that the potential is bound by |Vmax| � e2 � 1, and hence the velocities

which obey v2 ∼ V are also much smaller than unity, as we wanted to show. The pair’s

dynamics can then be tracked using Newtonian dynamics until the separation becomes

r ∼ O(rs), at which point the perturbative treatment breaks down.

5.3.2 Distance advance

We now estimate the total distance advance acquired by γQED as it passes through each

region. Start by placing the pairs at rest with r →∞ and track the net distance advance

gained by the photon.

If the black holes were all Schwarzschild, the velocity of the maximally superluminal

photon would be similar to what we found in the Drummond-Hathrell section, schemati-

cally:

cs ≈ 1 + C4
e2Rµνρσ
m2
e

. (5.21)

In (5.21), C4 is a positive, O(1) number directly proportional to the EFT coefficient c

which also takes into account the geometry of the tunnel and Rµνρσ represents the typical

curvature felt by the photon when placed between a black hole pair.

The expression (5.21) only comes from considering the ∼ RFF/m2
e terms in the EFT.

When there are non-trivial electromagnetic sources, as in the present case, the ∼ F 4/m4
e

terms can also affect propagation, generically [15, 107]. These operators decrease cs and

generate physically relevant effects for pulsar physics21 of O (10%), see section 4 of the

review [108] and references therein. However, in our current, highly symmetric scenario

where the photon is sent directly between the black hole pair, the effects from each ∼
F 2n/m4n−4

e operator vanishes due to symmetry, as shown in appendix B. In many ways,

the scenario we are considering is ideal for enhancing the superluminality, since these

operators serve only to decrease cs in more generic setups.

In (5.8), the leading contribution to Rµνρσ is of the form Rµνρσ ∼ rs
D3 where D is

the distance between the photon and the nearest black hole pair. Therefore, δcs is well-

approximated by

δcs ≈ C4e
2 r

2
ers
r3

, (5.22)

with r the black hole separation appearing in (5.19). Replacing D by r is a conservative

estimate which approximates the setup by assuming that there’s always a black hole directly

on either side of the photon. For an appropriate choice of C4 ∼ O(1), which accounts for

both the EFT coefficient c and the geometry of the tunnel, (5.22) serves as an upper bound

on the velocity boost gained by the photon.

We now calculate the distance advanced gained by the maximally superluminal QED

photon, relative to a minimally coupled photon, as it passes through the two regions de-

scribed by (5.19):

21We thank Sam Gralla for bringing this fact to our attention.
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• In the outer region, r & rs
(
ere
lp

)2
, the distance advance gained is:

∆X ≈
∫ tf

ti

dt δcs ≈
∫ ∞
rs
(
ere
lp

)2
dr

dt

dr
δcs ≈

∫ ∞
rs
(
ere
lp

)2
dr

δcs√
−Veff

≈
∫ ∞
rs
(
ere
lp

)2
dr

C4e
2 r

2
ers
r3√

C1

(
rs
r

) ( lp
r

)2
≈ C4√

C1
em−1

e . (5.23)

Here, and below, we drop O(1) numerical prefactors. The distance advance acquired

is parametrically smaller than the cutoff of the EFT by a factor of the gauge coupling,

∆X ∼ e×m−1
e .

• The calculation is similar for the inner region, rs . r . rs
(
ere
lp

)2
:

∆X ≈
∫ rs

(
ere
lp

)2

rs

dr
C4e

2 r
2
ers
r3√

C2

(
ere
lp

)4 (
rs
r

)3 ( lp
r

)2
≈ C4√

C2
em−1

e . (5.24)

Again, the distance advance is again parametrically smaller than the cutoff, ∆X ∼
e×m−1

e .

Therefore, the total distance advance is parametrically smaller than the cutoff of the EFT.

The QED EFT appears to conspire in such a way that macroscopic superluminality

is avoided. For instance, the transition between the two force laws behaviors occurs at

exactly the scale it must to keep the distance advance parametrically suppressed. Had

massless loops dominated down to, say, a distance scale ∼ rs
(
ere
lp

)
instead of ∼ rs

(
ere
lp

)2
,

the distance advance gained by the photon in the outer region would have been ∆X ∼
e
(
ere
lp

)1/2
m−1
e which can be consistently taken much larger than m−1

e . For example,

e
(
ere
lp

)1/2
∼ 1012 in the Standard Model.

5.3.3 Variations

The above analysis can be refined and extended to variations of this scenario, but the

conclusion remains the same: at worst, ∆X ≈ e×m−1
e .

Some examples:

• A simple extension is to start with the two sides of the black hole close together and

give both sides an initial outwards velocity. However, this would extend the lifetime

of the ladder (and hence, the overall distance advance) by a factor of two, at most.

• Instead of starting with the ladders infinitely far from each other, one could instead

begin at finite separation. Though this shortens the overall lifetime of the latter, it

also leads to a increase in the amount of time the ladder spends at relatively close

separation where the superluminal effect is largest. However results are again the

same to within a factor of O(2).

– 29 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
4

• One could attempt to prolong the ladder lifetime by setting the sides of the ladder in

orbit around each other. Though calculations are quite difficult in this setup, we do

not expect such a configuration to perform any better than the non-rotating ladder

for the simple reason that at some points in the cycle the configuration causes cs > 1

but at others cs < 1 and all effects should get washed out.

• Instead of considering just two columns of black holes, one could surround the pho-

ton’s path by symmetric configurations with even more lines, thereby increasing the

gravitational field of the system and potentially the size of δcs (5.21). For exam-

ple, three or four lines of Schwarzschild black holes could be used to build setups

which are triangular or square in cross section, respectively. However, in both sce-

narios the Drummond-Hathrell effect cancels completely for photons with arbitrary

polarization, sent down the path of symmetry: cs = 1, at leading order. This pattern

continues when even more lines are added and is another reason why the ladder seems

to be the ideal setup for studying the effect.

An interesting possibility which deserves more detailed comment arises by overcharging

the black holes. That is, in pure Einstein-Maxwell the black hole charge is bounded so that

the inequality rq ≤ rs is satisfied. Otherwise, there’s a naked singularity. However, in full

QED where there are also fermionic fields, the bound is altered so that the black hole can

carry slightly more charge22[87, 109] (see [110], also):

rq . rs +

(
ere
lp

)4 l2p
225π2rs

−
(
ere
lp

)2 3l2p
225π2rs

. (5.25)

This is expected to be a generic property of theories which obey the WGC [71, 111]: black

holes should allow for a maximum charge to mass ratio, max(rq/rs), which is slightly larger

than unity and, further, smaller black holes should be able to carry proportionally more

charge, d
drs

max(rq/rs) < 0. Such properties prevent the existence of unnatural, exactly

stable remnants whose stability doesn’t follow from any symmetry principle [111].

By overcharging the black holes we can set up a hilltop type potential for the black

holes which is attractive at short distances and then repulsive at large separation where the

small ∼ 1/r2 force due to overcharging begins to dominate. However, an analysis entirely

analogous to that of the previous section demonstrates that we cannot use this effect to

our advantage. The ladder either collapses too quickly, as before, or gets blown apart too

fast, depending on the initial setup.

For instance, assuming ere/lp � 1, extremal black holes in QED obey

rq ≈ rs

(
1 +

1

225π2

(
ere
lp

)4( lp
rs

)2
)
. (5.26)

22This expression assumes the WGC, ere/lp � 1. If the WGC is violated, then the ∼ R2 terms we’ve

neglected in the action instead provide the leading corrections to this bound [87].
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The repulsive potential generated from overcharging dominates at all distances and is

given by

V ∼ rs
r

(
ere
lp

)4( lp
rs

)2

. (5.27)

Releasing the ladder from an initial separation of O(rs), it’s found that we generate an

asymptotic distance advance ∆X ∼ lp � m−1
e . There is no parametric win in any of these

scenarios.

5.3.4 Weak gravity conjecture

One might wonder whether WGC-violating theories can achieve ∆d > m−1
e . It appears not

to be the case. Assuming that ere/lp � 1 and that the extremality bound for black holes

still allows for rq = rs (only true for certain coefficients on the ∼ R2 terms in the action),

then graviton/photon loops generate the dominant large-distance corrections to the force

law, V ∼ rs
r

l2p
r2 . Releasing the black holes from infinity, the distance advance is

∆d ∼
∫ ∞
rs

dr
δcs

−
√
V
∼
∫ ∞
rs

dr

e2

m2
e

rs
r3√

rs
r

l2p
r2

∼
(
ere
lp

)2

lp � lp � re . (5.28)

While the force law is depressed in certain regions relative to that in WGC-obeying theories,

the superluminal boost δcs ∼
(
ere
lp

)2 ( l2prs
r3

)
is also diminished. The WGC violating scenario

is actually better behaved.

5.3.5 Polarization rotation

A final effect which fights against the generation of macroscopic distance advances in generic

setup is the fact that in full QED photon polarizations rotate due to the different veloci-

ties for different polarization states in anisotropic backgrounds. While there may be some

discrete polarization eigen-directions which travel with fixed polarization, a photon ini-

tially placed in a generic state will rotate into other ones as it propagates. This has been

known for the case of electromagnetic backgrounds for some time [107], but is also true in

gravitational backgrounds. The rotation tends to wash out any superluminal effects.

We now sketch how the effect arises, exploring it in more detail in [87]. It is found

by pushing the geometric optics analysis to the next order, O(ε−1). The O(ε−2) geometric

optics relation determined the dynamics of the wave vector through modifications of the

geodesic equation. In pure Einstein-Maxwell, we’d have found kν∇νkµ = 0, but when

electrons are included the relation is changed to kν∇νkµ = Fµ for some source term (see

Footnote 17). This was rephrased as a true geodesic equation along an effective metric

in Footnote 16. Similarly, in the absence of electrons, the O(ε−1) relation would read

kν∇νfµ = 0, where fµ is the unit vector proportional to the polarization aµ, meaning

that polarization is covariantly constant along the photon’s trajectory. When electrons are

included in the theory, we instead find

kν∇νfµ = Πµ
νSν . (5.29)
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Figure 15. An exaggerated cartoon of polarization rotation for a photon traveling between a

black hole ladder. The polarization vector is indicated by the red lines with the segments drawn

shorter, thicker and more highly angled as the vectors point further and further into the page. The

polarization angle starts near θ = π/2, corresponding a superluminal photon. This polarization is

unstable and slowly rotates back down towards θ = 0.

In (5.29) Πµ
ν = δνµ − fνfµ is the projection tensor constructed from fµ and Sν is a source

term depending on background curvatures, field strengths and properties of the wave whose

form is given in [87].

Outside of a single black hole, only radially polarized photons travel superluminally.

We find that the effects represented in (5.29) make this polarization unstable, while the

azimuthal, subluminal polarization state is stable. That is, a photon which is initially

polarized in a nearly (but not exactly) radial direction far from the black hole will have

its polarization vector rotated further and further into the azimuthal direction as it nears

the black hole. In contrast, a nearly azimuthally polarized photon becomes even further

azimuthally polarized as it approaches the black hole. The gravitational field breaks the

symmetry between the two polarization states and induces a preferred direction for the

vector. To our knowledge, the effect of the Dirac field on the polarization of a propagating

photon due to gravitational fields has not been studied before.

The rotation is minuscule, but it could certainly become relevant in thought experi-

ments like the black hole ladder of figure 9. Here, if the QED photon started with a nearly

maximally superluminal polarization vector, θ0 = π/2 − δ with δ > 0, then as it passes

through the first black hole pair, the angle would be slightly rotated down to some θ1 < θ0.

The difference between the two angles would be tiny, but it sets the initial condition for

θ as γQED passes through the next pair, after which the polarization angle will be again

rotated down to some θ2 < θ1. This process continues and γQED gets smaller and smaller

superluminal kicks as the travel continues, with the velocity turning subluminal at some

point. This is sketched in figure 15.

For emphasis, this rotation is not being generated by the existence of free charged

particles. It is an effect which persists in vacuum and is the result of having “virtual”

electrons and positrons which exist because of the Dirac field.

6 Galileon superluminality

We now turn to the superluminality which arises in the simplest galileon model (1.5). First

the background is derived, then the geometric optics analysis is carried out and, finally,

we race a galileon perturbation against a photon, showing that the superluminality is of a

qualitatively different magnitude. Gravity is ignored in this section.
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6.1 Background solution

Consider the cubic galileon coupled to a point mass (1.5),

L = −1

2
(∂π)2 − 1

Λ3
(�π)(∂π)2 +

1

Mp
πTµµ , Tµ

µ = −Mδ3(r) . (6.1)

The galileon equations of motion are particularly simple as they admit a first integral [33]:

0 =
δL
δπ

=
1

r2

d

dr

(
r2π′

)
+

4

Λ3r2

d

dr

(
rπ′
)

+ Tµµ/Mp , (6.2)

where π′ = dπ
dr . Solving, one finds two distinct behaviors for π(r), depending on whether r

is much larger or smaller than the Vainshtein radius of the source rV = Λ−1 (M/Mp)
1/3:

π(r) ≈


− 1

lp

rs
r

r � rV

1√
4π

1

lp

rs
r

(
r

rV

)3/2

r � rV

. (6.3)

6.2 Geometric optics analysis

Now we apply geometric optics to the propagation of perturbations about the background

solution. We let π = π̄ + δπ with δπ(x) = (a+ εb+ . . .) exp iϑ(x)/ε and expand the

equation of motion to first order in δπ. The background equation of motion is

�π − 2

Λ3

(
∂µ∂νπ∂µ∂νπ − (�π)2

)
= −T

µ
µ

Mp
, (6.4)

and the O(δπ) piece is

�δπ =
4

Λ3
(∂µ∂ν π̄∂µ∂νδπ −�π̄�δπ) . (6.5)

Therefore, the leading term in the geometric optics EOM is

g̃µνkµkν = 0 , g̃µν = ηµν +
4

Λ3
�π̄ηµν − 4

Λ3
∂µ∂ν π̄ . (6.6)

Following the same steps as the previous section, we can study the galileon trajectory

by finding the geodesics of the optical metric g̃µν . Working at distances r & rV and

parameterizing the geodesic such that X = X0 & rV at λ = 0, we find

xµ(λ) ≈
(
λ , X0 + λ+

r3
V λ(λ+2X0)

2πX2
0 (λ+X0)2 , 0 , 0

)
. (6.7)

6.3 Racing δπ against a photon

We can now compare the galileon geodesic to that of a test photon which also travels from

X0 to infinity. The photon’s geodesics are manifestly unaffected by the galileon field, since
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the ∼ πTµµ coupling vanishes for the Maxwell term.23 Racing from X0 ∼ O(rV ) out to

infinity, it’s found from (6.7) that the galileon perturbation beats the photon by a distance

∆X = lim
λ→∞

x1(λ) =
rV
2π

(
rV
X0

)2

, (6.8)

which is O(rV )� Λ−1, as previously estimated (1.7) (see [61], also).

7 Conclusions

We have studied the Drummond-Hathrell superluminality present in the low energy ef-

fective field theory obtained by integrating the electron out of QED coupled to gravity.

This effective field theory has a cutoff at a distance scale corresponding to the Compton

wavelength of the electron, m−1
e . If the full QED theory does not allow for superluminal-

ity, and no strong coupling effects, new particles or other non-perturbative effects come in

before m−1
e , then any distance advance ∆X generated by a superluminal photon along any

trajectory in any background of the effective theory must not be resolvable in the EFT, so

we must have ∆X . m−1
e . We have tested this assertion by attempting to contrive various

backgrounds to amplify the superluminal effects, and indeed in all the cases we try the

distance advance is smaller than m−1
e .

The main scenario we consider is building distance advances via a ladder of approx-

imately extremal, Reissner-Nordstrom black holes. In order to account for all relevant

effects, we not only needed to find the perturbative corrections to the RN solution to the

higher-derivative, electron-induced operators in the QED EFT, but also needed to consider

the subtle effects of graviton and photon loops. In the end, the distance advance we were

capable of generating was parametrically bounded by ∆X . e × m−1
e with e the QED

gauge coupling.

We then compared this to the analogous story for the galileons. Unlike the QED

case, we do not know of a local weakly coupled UV completion for the galileon (and there

exist argument against any such completion [50]). All we have is the low energy effective

theory, which comes with a strong coupling distance scale Λ−1. The superluminal distance

advances in the galileon case can easily be made much larger than Λ−1, and are typically

as large as the Vainshtein radius, rV , associated with the background. It should, however,

be noted that it proves very difficult to generate distance advances parametrically larger

than rV .

If the underlying UV theory for the galileons is indeed subluminal, then the UV com-

pletion must proceed in a qualitatively different way than it does in the QED case. It

cannot be simply be a new weakly coupled particle coming in at the scale Λ. In order to

cure the superluminality, there must instead be strong coupling effects or strong quantum

effects coming in at the background-dependent scale rV .

23Other massless species also end up traveling along their Minkowski geodesics because the ∼ πTµµ
coupling results in an effective optical metric g̃µν which is conformally flat, but the argument is especially

simple for photons.
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This kind of situation is also thought to occur in GR. In GR, the Schwarzschild radius

is the scale at which non-linearities become important, and plays the role of the Vainshtein

radius of the galileon theories. The black hole information paradox, along with the as-

sumptions of unitarity and the equivalence principle, tell us that strict locality must break

down at the scale of the horizon, so that the information may escape from the black hole.

Quantum gravity effects, which are completely invisible from the point of view of the low

energy local effective field theory, must come in at the scale of the horizon and mediate

these non-localities [112].

A similar picture could hold true for the galileons, consistent with the findings of [67],

and with the classicalization ideas of [66]. If so, then the true physics of galileon-like theories

is highly non-perturbative in the quantum sense (not just classically non-linear), at all scales

within the Vainshtein regime, which includes essentially all scales of phenomenological

interest. This of course does not mean it’s ruled out, only that it is difficult to calculate

anything with it.

Alternatively, one can impose boundary conditions on the theory so that only back-

grounds which do not possess large scale superluminality are available, e.g. [58]. In this

way, the above conclusions can be avoided, without sacrificing UV subluminality. However,

we should also keep in mind that it is also logically possible to simply withdraw the demand

that the UV theory be subluminal, in which case the above does not have to apply, and

the superluminality of the low energy galileons is physical.
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A Velocity dependent forces

In this appendix, we estimate the sizes of various velocity dependent effects and verify that

they are negligible.

First, we explore the stability of the multi-extremal RN solution (5.4) by adding a new

extremal black hole to the spacetime and calculating the forces acting upon it. If the new

black hole is placed at rest relative to the other black holes, then the system is perfectly

stable, but if it’s in motion, forces are generated.

Placing the new black hole far from the others, we can analyze its motion with the

modified geodesic equation appropriate for a particle with charge Q and mass M :

dxν

dτ
∇ν

dxµ

dτ
=

Q

eM
Fµν

dxν

dτ
. (A.1)
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The spacetime has a timelike Killing vector K = ∂t, implying that the following is con-

served:

C ≡ −Kµ

(
dxµ

dτ
+

Q

eM
Aµ
)
. (A.2)

Evaluating the spatial components of the modified geodesic equation (A.1) at dXi

dτ = 0

and using (A.2) and −1 = gµν
dxµ

dτ
dxν

dτ yields the acceleration for the initially stationary

probe particle:

d2Xi

dτ2
= −1

2

(
1−
√

2MpQ

M

)
∂i
(
U−2

)
. (A.3)

This is vanishing only if the new BH is extremal and carries the same sign charge as the

original BHs: Q = M√
2Mp

.

Next, we can calculate the forces which act on the new, extremal BH if it were moving

with some velocity dXi

dτ 6= 0. If the instantaneous velocity is v2 = δij
dXi

dτ
dXj

dτ , the spatial

geodesic equations read (to first order in v2):

d2Xi

dτ2
=
v2

2
U−2∂iU . (A.4)

Recalling that U = 1 +
∑

i
rs

2| ~X− ~Xi|
(5.4), it’s found that (A.4) correspond to a small

attraction between the probe particle and the original BHs. The origin of this attraction is

clear: when the new BH is stationary, the gravitational attraction generated by its energy

is perfectly tuned to cancel off the electromagnetic repulsion due to the BH’s charge.

Therefore, when in motion, the BH carries some additional kinetic energy, leading to a

slightly increased gravitational (and therefore overall) attraction.

For our interests, (A.4) is important because it justifies the neglect of such velocity-

dependent forces in our analysis of the black hole ladder in section 5. At any given moment,

the velocity of a black hole in the ladder is of order the potential generated from electron-

induced EFT corrections to the gravitational and electromagnetic background, v2 ∼ VEFT,

schematically. The velocity-dependent force is thus of size Fv.d. ∼ v2 rs
r2 ∼ rs

r2VEFT, while

the EFT forces are of size FEFT ∼ ∂rVEFT ∼ 1
rVEFT. The velocity dependent force is

therefore suppressed relative to the EFT forces by a factor of rs/r and are thus dominated

in our regime of interest.

Next, we can also consider radiation reaction forces. We will show they they are

also negligible, meaning that the black holes don’t radiate significantly as they accelerate

towards one another. The Abraham-Lorentz law corresponds to a force FAL ∼ Q2ȧ where

a is the acceleration of the charged object. As Ma ∼ 1
r

√
VEFT, we have

ȧ ∼ 1

M

d

dt

(
1

r

√
VEFT

)
∼ v

Mr2

√
VEFT ∼

1

Mr2
VEFT , (A.5)

and hence the size of this effect is

FAL ∼
Q2

Mr

1

r
VEFT ∼

Q2

Mr
FEFT . (A.6)

For extremal objects, Q2

Mr ∼
rs
r and hence the radiation reaction force is, again, smaller

than the leading forces by a factor of rs/r � 1 and is negligible.
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B Effects of F 2n/m4n−4
e operators on cs

In this appendix we demonstrate that none of the F 2n/m4n−4
e operators in the EFT affect

cs in our very specific setup.

The EOM for photon fluctuations is of the form ∇νδF νµ = ∇ν δLeff
δFνµ

and if we work

in Lorenz gauge for the fluctuation (implying aµk
µ = 0 (3.6)), then the geometric optics

dispersion relation follows from k2 ∝ aµ∇νδF νµ = aµ∇ν δLeff
δFνµ

, where only the O(ε−2)

parts24 of aµ∇νδF ν and aµ∇ν δLeff
δFνµ

are kept.

Consider the terms in Leff of the form ∼ F 2n/m4n−4
e . From the explicit ex-

pressions for the Euler-Heisenberg action [113], each term can be put in to the form

∼ (FµνF
µν)i(FµνF̃

µν)j where, by parity conservation, j is even. Because FF̃ ∼ E · B
and B = 0 along the photon’s path (by the symmetry of the problem), terms with j ≥ 4

have no effect on the dispersion relation, as their contribution is proportional to a power

of FF̃ . The j = 2 case needs to be treated separately since it can yield a nontrivial term:

aµ∇ν
δLeff

δFνµ
∼ (FF )i

(
aµkνF̃

µν
)2

, (B.1)

where we’ve dropped other vanishing contributions ∝ FF̃ . On the line Z = Y = 0, the

only non-vanishing components of Fµν is F tX = −FXt, and hence the only non-vanishing

component of F̃µν is F̃ Y Z = −F̃ZY . Therefore, aµkνF̃
µν vanishes for the trajectory we are

interested in, since kµ ∼ (1, 1, 0, 0), to the order needed for this calculation.

The remaining ∼ (FF )i terms yield contributions of the form aµ∇ν δLeff
δFνµ

∼
aµ∇ν

[
(FF )i−1Fµν

]
. These generate two different types of expressions which are either

proportional to aµkνa
[µkν] or aµkνF

µν . The first expression either vanishes by the gauge

condition or is ∝ k2 which represents a higher order effect (quadratic in EFT coefficients).

The second combination, aµkνF
µν , vanishes along the photon’s path, due to the fact that

aµ points in the Y − Z plane,25 while only F tX = −FXt is non-zero along the trajectory.

Therefore, none of the ∼ F 2n/m4n−4
e operators affect cs for this very tuned scenario,

as claimed.

C One-loop potential from massless fields

In this appendix, we use the results of [103, 105, 106] to calculate the one-loop correction

to the potential due to massless graviton and photon loops.

First, [105, 106] calculated the one-loop, O(Q2/M2
p ) contribution to the non-relativistic

potential in scalar QED (where Q is the charge of φ) due to mixed photon-graviton scat-

tering diagrams. For equal charges and masses, the result is a repulsive potential:

VO(Q2/M2
p ) =

5e2Q2

48M2
pπ

3r3
, (C.1)

24See section 6.2 for the review of geometric optics and the definition of ε.
25More precisely, to zeroth order in EFT coefficients, which is all we need for this calculation, the gauge

condition only determines aµ up to an equivalence class: aµ ∼ aµ+kµ. All elements in the class lead to the

same result for aµkνF
µν , due to the antisymmetry of Fµν , and it’s possible to work with a representative

element, aµ, which lies in the Y -Z plane.
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where we took the equal mass, equal charge limit of the O(~) part of eq. (41) in [106], or

eq. (58) in [105], and translated conventions. We use the symbol V for the dimensionful

potential to differentiate it from the dimensionless potential V used in the body of the

paper, as in (5.18) and following expressions.

Next, [103] found the one-loop correction to the non-relativistic potential between two

masses. This was calculated in the context of pure GR where the following O(M2/M4
p )

attractive correction between two equal-mass particles was found

VGR
O(m2/M4

p ) = − 41M2

640M4
pπ

3r3
, (C.2)

in our conventions, from their eq. (44).

However, because (C.2) was obtained in GR, it’s not immediately applicable to the

scenario considered in this paper. We also need to include the O(M2/M4
p ) contribution

from photon loops. Fortunately, this is a simple fix: one only needs to change the vacuum

polarization diagram so that both gravitons and photons (along with their associated

ghosts) run the loop, figures 6(a) and 6(b) in [103].

Vacuum polarization diagrams involving massless loops generate non-analytic terms in

the 1PI effective action of the form26 (5.13)

Γ[ḡµν ] ⊃
∫

d4x
√
−ḡ
(
c1R̄ log(−�/µ2)R̄+ c2R̄

µν log(−�/µ2)R̄µν
)
. (C.3)

The contribution of these operators to the potential (C.2) is:

VR log�R = (c1 + c2)
M2

M4
pπr

3
, (C.4)

and [103] used the ’t Hooft-Veltman [88], pure GR result(
cGR

1

cGR
2

)
=

1

(4π)2

(
− 1

120

− 7
20

)
, (C.5)

as calculated in Feynman gauge, which provided the following contribution to (C.2)

VGR
R log�R =

−43

1920

M2

M4
pπ

3r3
, (C.6)

see eq. (43) of [103].

When photons are included, they also contribute an amount cγi to the ci’s, with the

total result ci = cGR
i +cγi . Calculating the necessary vacuum polarization diagrams, we find(

cγ1
cγ2

)
=

1

(4π)2

(
1
30

− 1
10

)
, (C.7)

26Strictly speaking, we’d need to also have a ∼ R̄µνρσ log(−�/µ2)R̄µνρσ, but at O(h2
µν), sufficient for the

present calculation, the three O(R2) operators are degenerate and the form (C.3) is adequate.
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(in agreement with [90]) which generates the extra, attractive potential

VγR log�R = − 131

1920

M2

M4
pπ

3r3
. (C.8)

Adding (C.1), (C.2) and (C.8) together and taking the extremal limit eQ = M
Mp

√
2
,

the total one-loop contribution to the potential due to graviton and photon loops is found

to be

VGR+γ
total = − 23

1920

M2

M4
pπ

3r3
, (C.9)

which is attractive and of the claimed form (5.19) (when turned into a dimensionless

potential via V ∼ V/M).
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