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1 Introduction

The Standard Model (SM) appears to represent a very good effective field theory (EFT)

for energies at least .TeV. Still, it has several well known theoretical and phenomeno-

logical shortcomings. Many of these can be addressed with minimal extensions of the

SM by heavy fermionic and/or scalar gauge multiplets (GMs). However, the Higgs mass

parameter µ2(mZ) ≈ −(88 GeV)2, appearing in the SM potential µ2H†H + λ(H†H)2, is

sensitive to such heavy new physics; GMs couple (at the very least) at loop level to the

SM Higgs, thereby inducing corrections to the Higgs mass and potentially introducing a

naturalness problem.

The subject of naturalness in the modern literature is rife with various (and often

conflicting) definitions. Let us therefore, at the outset, state the definition used in this

paper: a parameter in a quantum field theory is “natural” if its measured value at low scale

is (sufficiently) insensitive to details of the physics at high scale. Plainly, then, to examine

naturalness of the Higgs mass parameter we require: (1) a description of the low scale

physics; (2) a description of the high scale physics; (3) a map which relates them; and (4)

a measure which quantifies sensitivity of µ2(mZ) to the high scale physics.
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In this paper we confront the question, at what mass does a heavy GM introduce

a physical Higgs naturalness problem? Vector-like fermionic and scalar GMs of various

charges are studied. We advocate a renormalisation group (RG) approach to naturalness.

The description of the low (high) scale physics is provided by the MS Lagrangian parameters

of the SM (SM+GM) EFT defined at the scale mZ (Λh), and the map which relates

them is the set of RG equations (RGEs). We employ a sensitivity measure which can be

interpreted as a Bayesian model comparison. Several Bayesian approaches to naturalness

have previously been considered in the literature [1–13]. Inspired by the approach of ref. [9],

we propose a particular model comparison which captures the “naturalness price” paid for

promoting the Higgs mass parameter from a purely phenomenological input parameter at

low scale to a high scale input parameter of the model. We show that this sensitivity

measure then reduces in a well-motivated limit to a Barbieri-Giudice-like [14, 15] fine-

tuning measure. Quantifying and bounding this sensitivity results in naturalness bounds

on the masses of the various GMs.

There exist many phenomenologically motivated extensions to the SM which involve

just a single GM. Such models can address a wide variety of shortcomings of the SM

including neutrino mass [16–22], dark matter [23, 24], baryogenesis [25] and the strong CP

problem [26–29]. The naturalness bounds we derive can be applied to these models and

many others besides. Our results can also be used to provide a qualitative, conservative

bound even in extended models. Moreover, the framework we present is completely general

and could in principle be applied to any model.

The paper is organised as follows. In section 2 we describe an intuitive and physical

concept of naturalness built upon the RGEs, and the sensitivity measure as a Bayesian

model comparison. In section 3 we describe how this concept is applied to the SM+GM

EFTs. Our main result is a list of naturalness bounds presented in section 4. These results

are discussed in section 5, and we conclude in section 6.

2 Physical Naturalness

In this section we describe a physical way to understand the Higgs naturalness problem,

especially pertinent in the context of bottom-up extensions of the SM. To frame the dis-

cussion, let us appeal to an illuminating toy model.

2.1 Toy model

Consider a perturbative EFT consisting of the SM plus a heavy particle of mass M (whose

mass is obtained independently of electroweak symmetry breaking). The µ2 RGE valid at

a renormalisation scale µR > M takes the form

d

d log µR
µ2(µR) = C1(µR)µ2(µR) + C2(µR)M2(µR) , (2.1)

where C1(µR) ' 6yt(µR)/(4π)2, with yt the top quark Yukawa coupling. The quantity

C2(µR) might be comprised of SM and/or beyond-SM couplings. The RGEs allow µ2 (and

other low scale parameters) to be extrapolated to a high scale Λh, at most up to the scale at

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
9

which the EFT is no longer valid. At Λh, these renormalised parameters can be interpreted

as “input parameters” which might be derived from even higher scale physics. The input

parameters are, by construction, connected with the low energy parameters via the RGEs.

If the low energy parameters are very sensitive to these input parameters, then this signifies

a naturalness problem.

Let us now, under this paradigm, try to understand when a heavy particle introduces a

Higgs naturalness problem. One can fully solve eq. (2.1) in the limit where C1, C2, and M2

have no scale dependence. Including a possible threshold correction, µ2
+(M) = µ2

−(M) −
CTM

2, when the SM EFT parameters (−) are matched onto the full EFT parameters (+)

at the threshold M , and in the limit C1 log(Λh/mZ)� 1,

µ2(mZ) ' µ2(Λh)−Θ(Λh −M)

[
C2M

2 log

(
Λh
M

)
− CTM2

]
, (2.2)

where Θ is the step function. It is now easy to see when a naturalness problem arises. If

either of C2M
2 or CTM

2 is � µ2(mZ), then the input parameter µ2(Λh) must be finely

tuned against a very large contribution in order to realise the observed Higgs mass. A

small change in µ2(Λh) ruins this cancellation, and thus the Higgs mass is unnatural, i.e.

it is sensitive to details of the high scale physics. Note that the C2M
2 piece captures

a steep µ2(µR) RG trajectory, whereby only a very particular input µ2(Λh) will lead to

the observed low scale µ2(mZ); a small change in this value leads to significant over- or

under-shooting.

In this picture, the Higgs naturalness problem is cast in terms of a potential sensitivity

between measurable parameters, connected by fully calculable (in a perturbative theory)

RG trajectories and matching conditions. The picture shares aspects with other discus-

sions which have appeared in the literature, e.g. refs. [30–39]. In particular, the large

cancellation between the unmeasurable bare mass and the cutoff regulator contribution

is considered an unphysical artifact of the regularisation and renormalisation procedure

for the EFT. The naturalness bounds we will derive within this picture ostensibly most

resemble those in ref. [33], however they differ in a few key respects which we highlight

here. First, we include the full effect of RGE running and matching, rather than simply

bounding the finite loop corrections to µ2. Second, since the parameters which appear in

the RGEs and matching conditions are treated equally in our framework, the sensitivity

arising from all parameters (and not just the gauge terms) are automatically included.

Third, the appearance of apparently natural “throats,” or miraculous cancellations among

these corrections, are argued to be generically erased by the RG evolution and matching

conditions. Last, we include (for the first time as far as we are aware) the leading three-loop

correction for vector-like fermions. The inclusion of these effects leads, in most cases, to

weaker naturalness bounds on the masses of heavy GMs than those obtained in ref. [33].

2.2 Sensitivity measure

To actually quantify the sensitivity to high scale physics can seem somewhat arbitrary

and subjective. There are many approaches in the literature. It is important to appre-

ciate that assumptions about the unknown high scale physics necessarily enter into all of
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these approaches. However these assumptions are seldom explicitly stated, and the fine-

tuning or sensitivity measures they motivate are often only written down intuitively. These

shortcomings are overcome in the Bayesian approach to naturalness which we utilise here.

In this approach, assumptions about the high scale physics can be explicitly and clearly

stated, appearing as a complete set of prior densities for the high scale parameters. The

requirement that our result be insensitive to units or parameter rescalings defines a set of

agnostic priors, and the resulting naturalness bounds turn out to be rather insensitive to

departures from these priors (this will be discussed in more detail in section 5). Further,

instead of being written down directly, the sensitivity measure is rigorously derived from an

underlying framework, having a well-defined interpretation as a Bayesian model compari-

son. The measure also reduces (in the cases we consider) to a Barbieri-Giudice-like [14, 15]

fine-tuning measure, which can be easily understood intuitively. We provide below a short

description; more details can be found in appendix A.

Assuming a flat prior belief in the high scale input parameters I = (I1, . . . , In), and a

perfectly measured set of m ≤ n independent observables O = (O1, . . . ,Om), the Bayesian

evidence B for a model M is a function of the unconstrained input parameters I ′ =

(Im+1, . . . , In):

B(M; I ′) ∝ 1√
|JJT |

∣∣∣∣Oex
I′

, (2.3)

where J is the m × n matrix defined by Jij = ∂Oi/∂Ij [9]. Let us take, for model M,

I1 = log µ2(Λh) and O1 = log µ2(mZ). The logarithms here ensure that our result is

independent with respect to units or parameter rescalings (absolute values are implied for

the argument of any log and dimensionful parameters can be normalised by any unit). Our

Higgs mass sensitivity measure arises from a particular Bayesian model comparison: we

compare to a model M0 in which we instead take I1 = O1 = log µ2(mZ), i.e. the Higgs

mass parameter is considered as an input parameter at scale mZ . The sensitivity measure

can then be written as a function of the unconstrained parameters,

∆(M; I ′) =
B(M0; I ′)
B(M; I ′)

. (2.4)

This measure captures the “naturalness price” paid for promoting the Higgs mass parame-

ter to a high scale input parameter of the model as opposed to a purely phenomenological

input parameter at low scale. In our context, a large value of ∆ essentially tells us that,

given a flat prior density in log µ2(Λh), the observed value µ2(mZ) is unlikely [specifically

with respect to a flat probability density in log µ2(mZ)], i.e. µ2(mZ) is sensitive to the

realised input parameters. In the special case that the low scale observables, except for

possibly µ2(mZ), are approximately insensitive to the unconstrained inputs, B(M0; I ′)
becomes independent of I ′ and eq. (2.4) reduces to

∆(M; I ′) '

√√√√(∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+
∑

j≥m+1

(
∂ log µ2(mZ)

∂Ij

)2
∣∣∣∣∣∣Oex
I′

. (2.5)
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In the absence of unconstrained inputs (n = m) the summation disappears and the equality

is exact. This is clearly reminiscent of the Barbieri-Giudice fine-tuning measure. A value

of ∆ = 10 can now be interpreted as the onset of strong Bayesian evidence (for M0 over

M) on the Jeffreys scale [40], or a 10% fine-tuning from the Barbieri-Giudice perspective.

Notice here that we have a sensitivity measure which depends on unconstrained inputs.

It might be that we want to “project out” some of these nuisance parameters. In this paper

we will minimise over them, which picks out a conservative best case naturalness scenario

in the model. Our SM+GM modelsM are defined by MS inputs at the high scale Λh, with

the renormalised mass parameter Mk(Λh) ⊂ I ′ [and k = 1 (2) in the fermionic (scalar)

case]. We minimise over all unconstrained parameters apart from Mk(Λh) to obtain a

sensitivity measure which depends only on M and Λh:

∆(M,Λh) = min
I′\{Mk(Λh)}

[
∆(M; I ′)

]
. (2.6)

In practice we minimise over eq. (2.5), which is now valid under the looser criterion that

the low scale observables, except for possibly µ2(mZ), are approximately insensitive to the

unconstrained inputs in the vicinity of the minimum.

This all may sound rather abstract. Let us now check that, in the relevant cases,

the sensitivity measure eq. (2.6) captures the sensitivity we expect in our toy model when

C2M
2, CTM

2 � µ2(mZ).

2.3 Fermion-like case

In the minimal fermionic SM+GM there are no new dimensionless parameters; C2 is fully

constrained by experiment so that Oi =
{

log µ2(mZ), logC1, logC2

}
and Ij =

{
log µ2(Λh),

logC1, logC2, logM
}

. It is easy to show directly from eq. (2.4) that, even allowing for

possible C1,2 correlation ∂ logC1/∂ logC2 6= 0,

∆(M,Λh) =

√(
∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+

(
∂ log µ2(mZ)

∂ logM

)2

. (2.7)

This is just a Barbieri-Giudice-like fine-tuning measure comparing percentage changes

in the low scale Higgs mass parameter to those in the input parameters. In the limit

C1 log(Λh/mZ)� 1 and taking Λh > M , we see that ∆(Λh) is made up of two pieces:∣∣∣∣∂ log µ2(mZ)

∂ log µ2(Λh)

∣∣∣∣ =

∣∣∣∣1 +
C2M

2

µ2(mZ)
log

(
Λh
M

)
− CTM

2

µ2(mZ)

∣∣∣∣ ,
k

∣∣∣∣∂ log µ2(mZ)

∂ logMk

∣∣∣∣ =

∣∣∣∣ C2M
2

µ2(mZ)

[
2 log

(
Λh
M

)
− 1

]
− 2

CTM
2

µ2(mZ)

∣∣∣∣ . (2.8)

The “1” piece is the SM contribution, the log(Λh/M) pieces reflect sensitivity to the RG

trajectory (with slope C2M
2), the CTM

2 piece is due to the finite threshold correction,

and the log-independent C2M
2 piece arises because a variation in logM results in a shift

in the matching scale, which reintroduces a small amount of RG evolution. Clearly ∆ � 1

if C2M
2 or CTM

2 is � µ2(mZ), as expected. This even holds in the limit where the high

scale approaches the heavy particle mass, Λh →M+.
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In the fermionic SM+GM EFT at two-loop order with one-loop matching, we have

C2 ∼
g4

(4π)4
, CT = 0, (2.9)

where g is a placeholder for a gauge coupling(s). It is interesting to note that in the limit

Λh →M+, eq. (2.7) just becomes

∆(M+) =

√
1 +

(
C2(M)M2

µ2(mZ)

)2

. (2.10)

If we bound this sensitivity measure by ∆max, this is almost equivalent to simply bounding

the contribution to the µ2(µR) RGE in eq. (2.1) at the scale µR = M , i.e. C2(M)M2 .
∆maxµ

2(mZ). This is not an uncommon practice as a zeroth-order naturalness bound for M .

There is one case we wish to comment on here: the special case where C2(M) happens

to vanish, somewhat reminiscent of the Veltman condition [41]. In this case there is plainly

no naturalness bound on M from the ∆(M+) measure we have written above, no matter the

size of M . So it appears that there is a fine-tuning which is not captured by our framework

in this limit. Is this indeed the case? One can show that extending this toy model to

include RG evolution of C2 is not enough to reintroduce the naturalness bound (we will see

this in our numerical analysis). Instead, it turns out that this apparent “Veltman throat”

is only a limitation of the order to which we are working. In the fermionic SM+GM EFT

with two-loop matching, CT becomes a non-zero function of the gauge couplings. In general

CT (M) 6= 0 when C2(M) = 0, and thus a sensitivity proportional to M2 and powers of

gauge couplings is recaptured at this special value of M . In any case, we do not attribute

much physical significance to this special case; in the full model, even if C2(M) = 0, RG

effects reinstate C2(µR) 6= 0 at µR > M , and the sensitivity of µ2(mZ) to M2 is rapidly

recaptured in the realistic case with Λh > M .

2.4 Scalar-like case

Let us first consider the SM plus scalar GM case with only one portal quartic

λH1(H†H)(Φ†Φ) and one self quartic λΦ(Φ†Φ)(Φ†Φ). This occurs whenever the scalar

is an SU(2) singlet. At two-loop with one-loop matching, we have

C2 = CSM2 + 2Q3
λH1

(4π)2
+ . . . , CT = Q3

λH1

(4π)2
, (2.11)

where CSM2 ∼ g4/(4π)4, and (Q1, Q2, Q3) are the (U(1)Y , SU(2), SU(3)) charges of the GM.

Assuming for simplicity no RG evolution of these parameters, we have Oi = {log µ2(mZ),

logC1, logCSM2 } and Ij =
{

log µ2(Λh), logC1, logCSM2 , log λH1, log λΦ, logM2
}

. The sen-

sitivity measure, assuming C1 and CSM2 are insensitive to changes in λH1 and λΦ, is

given by

∆(M,Λh) = min
λH1

√(∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+

(
∂ log µ2(mZ)

∂ logM2

)2

+

(
∂ log µ2(mZ)

∂ log λH1

)2
∣∣∣∣∣∣
λH1

 ,
(2.12)
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where we have ignored the subdominant ∂/∂ log λΦ term for clarity. Before minimisa-

tion, the contribution of the first two terms under the square root are exactly those in

eq. (2.8). Note that the C2M
2 contributions are removed if λH1 takes the fortuitous value

−(4π)2CSM2 /(2Q3), however the CTM
2 contributions remain. Conversely, λH1 = 0 re-

moves the threshold correction contributions, leaving non-vanishing C2M
2 contributions.

Thus it seems that, even with the extra freedom granted by λH1, one cannot remove the

naturalness problem. Indeed, the minimisation over λH1 can be performed analytically

in this toy model. The result is rather lengthy, and we do not reproduce it here. It is

anyway not terribly illuminating, since this toy model is too strong of an oversimplification

to reflect the full scalar SM+GM case when Λh � M ; pure gauge contributions in the

λH1(µR) RGE which destabilise any fortuitous cancellation for C2(µR) = 0 must be taken

into account. Nevertheless, the toy model result can serve as an argument for the existence

of a finite naturalness bound even in the limit Λh →M+, where we obtain

∆(M+) =

√√√√ 1

12

[
10 + 4

CSM2 M2

µ2(mZ)
+

(
CSM2 M2

µ2(mZ)

)2
]
, (2.13)

if C1 log(Λh/mZ) � 1. Again, clearly ∆ � 1 when CSM2 M2 � µ2(mZ), as expected. If

we bound this sensitivity measure by ∆(M+) < ∆max, this is approximately equivalent to

CSM2 (M)M2/
√

12 . ∆maxµ
2(mZ).

The scalar SU(2) doublet or triplet SM+GM EFT case with two portal quartic cou-

plings is more delicate. At two-loop with one-loop matching we have

C2 = CSM2 + 2Q3Q2
λH1

(4π)2
− 24Q3

λ2
H2

(4π)4
+ . . . , CT = Q3Q2

λH1

(4π)2
, (2.14)

where λH1,2 will be defined in section 3.2. There is now enough freedom for a minimisation

analogous to eq. (2.12) to select λH1,2 such that C2 = 0 and CT = 0 simultaneously,

removing the sensitivity of µ2(mZ) to M2. Still, in the realistic case including RG effects

beyond our toy model, C2 6= 0 and CT 6= 0 will be reinstated at µR > M , and ∆(Λh) with

Λh > M will sensibly capture the µ2(mZ) sensitivity to M2. A question remains as to

whether ∆(M+) acts sensibly in this scenario. Is it possible to choose λH1,2(M) such that

C2(M) = 0 and CT (M) = 0 and the relevant terms ∝ M2 in eq. (2.8) vanish? Indeed,

it is possible. However, once RG effects are included, this is not sufficient to minimise

∆(M+). In particular, dCT /d log µR will generally be non-zero, leading to an extra term

in the ∂/∂ logM2 sensitivity measure:

lim
Λh→M+

∣∣∣∣∂ log µ2(mZ)

∂ logM2

∣∣∣∣ =
1

2

∣∣∣∣∣ M2

µ2(mZ)

(
C2(M) + 2CT (M) +

dCT
d log µR

∣∣∣∣
µR=M

)∣∣∣∣∣ . (2.15)

The extra term can be thought of as arising from a shift in the matching scale. If λH1(M) =

0 is chosen so that CT (M) = 0 in order to minimise the ∂/∂ log µ2(Λh) sensitivity, the full

sensitivity measure is no longer minimised for C2(M) = 0. Instead, one would like to set

[C2(M) + dCT /d log µR|µR=M ] = 0. However, dCT /d log µR|µR=M is itself a function of

λH1,2 (and gauge couplings), thus it is not guaranteed that this is possible. Indeed, in

– 7 –
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the cases we explore, it is not; remarkably, dCT /d log µR|µR=M ⊃ +24Q3λ
2
H2/(4π)4, which

cancels the negative contribution in eq. (2.14) and leaves [C2(M) + dCT /d log µR|µR=M ]

positive for any value of λH2(M) when λH1(M) = 0.1 Our numerical study captures this,

and we always recover a sensible value for ∆(M+).

In any case, the possibility of a miraculous cancellation is clearly not the generic case,

and such cancellations are anyway quickly violated in the realistic scenario with RG effects

and Λh > M . Nevertheless we find it interesting that, in this framework (and even in the

limit Λh → M+ limit), there is a certain amount of µ2(mZ) sensitivity which cannot be

made to go away by a judicious choice of quartic couplings.

Much of the discussion here has only been of technical interest since we have chosen

to project out our unknowns by minimising the sensitivity measure over them. The reason

for discussing possible regions of cancellation in such detail is to highlight the fact that,

with this sensitivity measure, there appears to be no place in parameter space to “hide”.

Where it appears that there might be somewhere to hide, we have argued that apparent

“throats” disappear at higher loop orders, or that sensitivity is always captured by some

subcomponent of the sensitivity measure. It is important to establish this fact, since

any violation would suggest that the sensitivity measure is incomplete, and until one can

establish that the sensitivity measure is always capturing the fine-tuning in these most

simple of cases, then why would one trust it on more complicated models?

2.5 Naturalness bounds

Naturalness bounds can be derived simply by bounding the sensitivity measure eq. (2.6). In

figure 1 we show the ∆(Λh) = 10 contours for Λh = M+, or ΛPl ∼ 1019 GeV in our fermion-

like toy model eq. (2.7). Points in parameter space below these lines can be considered

natural, and points above increasingly unnatural.

Figure 1 can be used to estimate naturalness bounds on the masses of fermionic

particles. Consider for example a heavy fermion with a top-like coupling strength such

that C2 = 6y2
t /(4π)2; taking y2

t = y2
t (mZ) ≈ 0.96 and reading across one finds a nat-

uralness bound M .TeV. For a right-handed neutrino involved in a Type I see-saw,

C2 = 4y2
ν/(4π)2 with y2

ν ' Mmν/(174 GeV)2; taking mν = 0.05 eV results in a natu-

ralness bound M . 107 GeV [42, 43].2 The reason that this naturalness bound is so large

is simply because C2 is so small. Indeed, in the limit C2 → 0 there is no naturalness bound

on M . In models with gauge singlets, C2 → 0 can correspond to a technically natural

limit [44, 45] associated with decoupling of the particle from the SM fields. It makes sense

1The reader might wonder if this is just a convenient happenstance. It is possible. However, we note

that extending to three-loop RGEs with two-loop matching, this objection becomes moot. At higher loop

matching the threshold correction will generally become a function of both λH1 and λH2. The ∂/∂ log µ2(Λh)

sensitivity is minimised for CT (M) = 0. However, ∂/∂ log λH1,2(Λh) terms also appear in the full sensitivity

measure. The simultaneous vanishing of these terms is in general only guaranteed if λH1(M) = λH2(M) = 0.

Plainly this restriction is too severe to absorb sensitivity arising elsewhere.
2This is not quite the correct thing to do, since the observable at low scale is mν and not C2 [which

was assumed to derive eq. (2.8)]. Rest assured that using the appropriate sensitivity measure derived from

eq. (2.4) only marginally changes this picture.
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Figure 1. ∆(M,Λh) = 10 contours for Λh = M+ (solid), or ΛPl ∼ 1019 GeV (dashed). Also shown

as gray dotted lines are approximate C2 contours for some benchmark heavy particles. The results

for negative values of C2 are very similar.

that there is no Higgs naturalness bound on the mass of such a particle, given that in this

limit the heavy particle can no longer “talk” to the Higgs at all.

The focus of this paper will be Higgs naturalness within the EFT of the SM plus

a heavy GM. For fermionic GMs with SU(3), SU(2), or U(1)Y charge Q3, Q2, or Q1,

the leading pure gauge contributions to C2 are −2Q2
1g

4
1/(4π)4, −1

2Q2(Q2
2 − 1)g4

2/(4π)4,

and +48(N2
C − 1)g4

3y
2
t /(4π)6, respectively. Taking g2

1 ≈ 0.13, g2
2 ≈ 0.43, and g2

3 ≈ 1.48,

these correspond to rough naturalness bounds of (perhaps surprisingly to some) tens to

hundreds of TeV, as sketched in figure 1. The size of the mass bounds is just a reflection

of the smallness of g4/(4π)4. The main purpose of this paper is to derive these bounds

more rigorously; we perform a full two-loop analysis to examine the effects of adding

various (vector-like) fermionic and scalar GMs to the SM. The above naturalness bound

approximations turn out to be quite good for the fermionic GMs, but they significantly

deviate for scalar gauge multiplets, since these always couple directly to the Higgs via

a quartic term(s). As already indicated, sensitivity to the RG evolved quartics must be

properly taken into account.

2.6 Comment on the Planck-weak hierarchy

Before leaving this section, we want to comment on how the Planck-weak hierarchy fits

into in this picture. From eqs. (2.2) and (2.5), one can see that ∆ ' 1 in the pure SM

limit, i.e. there is no enhanced sensitivity when the Higgs mass is promoted to a high

scale input parameter. This should come as no surprise, since the only explicit scale in

the SM is µ2 itself: the value µ2(Λh) is multiplicatively related to the value µ2(mZ) and

remains electroweak scale up to high scales.3 Indeed, the effective Higgs potential remains

consistent (albeit metastable) even up to the very highest scale to which the SM can

3For the SM at two-loop we find µ2(ΛPl) ' −(94 GeV)2 and ∆(ΛPl) ' 1 to one part in 106.
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be valid: ΛPl ∼ 1019 GeV. Now, it could be that gravity introduces large and physical

corrections to µ2(µR) [or some related parameter(s)] at or below this scale. However,

without a complete theory of quantum gravity, we cannot calculate these corrections.4

This picture therefore claims that the SM with inputs at ΛPl is natural, in the sense that

the low-energy observable µ2(mZ) is not extremely sensitive to the input µ2(ΛPl). In such

a case, one could sensibly ask: why is µ2(ΛPl)� Λ2
Pl? We do not address this problem. By

construction our sensitivity measure remains agnostic to this input value by assuming a flat

prior in log µ2(ΛPl). Of course, as we have argued, the presence of a heavy gauge multiplet

can introduce a calculable and physical naturalness problem irrespective of the situation

with gravity, and this is the problem that we study. In such models a flat prior belief in

log µ2(Λh) devolves to a low scale posterior belief which favours µ2(mZ) & C2M
2. It could

be that gravity behaves in a similar way, but we cannot yet perform the calculation.

3 Method

The main purpose of this paper is to derive and present naturalness bounds on the masses

of GMs within SM+GM EFTs valid up to scale Λh. In section 2 we motivated a general

procedure for determining these bounds: take the low energy observables at mZ , evolve

them under the RGEs to the scale Λh, then evaluate and bound the sensitivity measure

eq. (2.4). Presently we detail our method. We use sets of two-loop RGEs generated using

a modified version of PyR@TE [47].

The low scale observables are taken as the logarithms of SM MS Lagrangian parame-

ters at scale mZ : exp(Oi) = {µ2(mZ), λ(mZ), g1(mZ), g2(mZ), g3(mZ), yt(mZ), yb(mZ),

yτ (mZ)} = {−(88 GeV)2, 0.13, 0.36, 0.66, 1.22, 0.96, 0.017, 0.010}. For simplicity we ig-

nore the Higgs and the top quark thresholds. The high scale input parameters are taken

as the logarithms of the minimal set of SM+GM MS Lagrangian parameters at scale Λh

(to be explicitly listed in the following subsections); by minimal we mean that terms in

the SM+GM Lagrangian which can be set to zero in a technically natural way are not

included. The observables are numerically evolved under the two-loop SM RGEs up to the

threshold of the GM, µR = M , where we perform one-loop matching onto the parameters of

the SM+GM EFT. The mass parameter for the GM is also a renormalised MS parameter,

which we set equal to M at the scale µR = M .5 New parameters are introduced in the

case of a scalar GM; these are left as free parameters which are numerically minimised over

when evaluating the sensitivity measure. The two-loop SM+GM RGEs are used to evolve

all parameters up to the high scale Λh. The approximation to the full sensitivity mea-

sure, eq. (2.5), is then evaluated numerically by varying the appropriate input parameters

around their values at Λh, evolving all parameters back down to the scale mZ , matching

the SM+GM EFT onto the SM EFT at the matching scale µR given by M(µR) = µR, and

measuring the change in the Higgs mass parameter.

4There exist extensions of Einstein gravity in which corrections to µ2 are both calculable and naturally

small (see e.g. [46]), although such theories generally also have problems with unitarity.
5The bounds we present are therefore bounds on the parameter M (i.e. the MS mass of the GM at the

scale M), not the pole mass.
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2) corrections
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Figure 2. Corrections to µ2 from a heavy vector-like fermion.

3.1 Vector-like fermion

The minimal SM+GM Lagrangian for a vector-like fermion is that of the SM plus

∆L = ψ̄Dνγνψ −Mψ̄ψ. (3.1)

The high scale input parameters of this model are those of the SM plus the renormalised

parameter M(Λh), i.e. Ij = {µ2(Λh), λ(Λh), g1(Λh), g2(Λh), g3(Λh), yt(Λh), yb(Λh), yτ (Λh),

M(Λh)}. The one-loop matching conditions are trivial,

µ2
+(µR) = µ2

−(µR) , λ+(µR) = λ−(µR) , (3.2)

where the + (−) subscript denotes the SM+GM (SM) EFT parameter.

The µ2(µR) RGE takes the form of eq. (2.1) with C2(µR) a function of SM parameters.

Recall that it is primarily the C2(µR) term which leads to a potential naturalness problem,

as argued in section 2.1 for constant C2. In the vector-like fermionic SM+GM EFT it takes

the form

C2 = −2Q3Q2Q
2
1

g4
1

(4π)4
− 1

2
Q3Q2(Q2

2 − 1)
g4

2

(4π)4
+ 96Q2(N2

c − 1)c(rψ)
g4

3y
2
t

(4π)6
, (3.3)

where c(rψ) = 1
2 (3) for Q3 = 3 (8), and dependence on scale µR is implied. Representative

diagrams leading to these terms are shown in figure 2. Note that we have added by hand

the leading three-loop SU(3) correction, arising from three diagrams [see figure 2b], since

otherwise the two-loop RGEs do not capture any SU(3) correction beyond multiplicity

factors.6 This correction turns out to be competitive with the two-loop pure gauge cor-

rections at scales µR . 105 GeV due to the relatively large couplings g3 and yt below this

scale. It is also opposite in sign, thus potentially delaying the growth of µ2(µR) (and the

corresponding naturalness problem) if it happens to approximately cancel with the other

gauge contributions.

6This three-loop correction was calculated with the aid of Matad [48].
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There are no unconstrained high scale dimensionless inputs to minimise over, so the

sensitivity measure eq. (2.5) is just

∆(M,Λh) =

√(
∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+

(
∂ log µ2(mZ)

∂ logM(Λh)

)2

. (3.4)

Results are obtained by numerically evaluating ∆(M,Λh) at points of interest in

(M,Λh) space.

3.2 Complex scalar

The minimal SM+GM Lagrangian for a complex scalar is that of the SM plus

∆L = DνΦ†DνΦ−
(
M2Φ†Φ +

∑
λΦiΦ

†ΦΦ†Φ +
∑

λHjH
†HΦ†Φ

)
, (3.5)

where H is the SM Higgs field, and the sums are over all possible contractions. Explicitly,

we take the following convenient contractions for the portal quartics

∆L ⊃ λH1H
†H Tr(Φ†Φ) + λH2

(
2 Tr(H†ΦΦ†H)−H†H Tr(Φ†Φ)

)
, (3.6)

where the second term is relevant only for Q2 ≥ 2. The high scale input parameters of

the model are those of the SM plus the extra self and portal quartics and renormalised

mass parameter, i.e. Ij = {µ2(Λh), λ(Λh), g1(Λh), g2(Λh), g3(Λh), yt(Λh), yb(Λh), yτ (Λh),

λΦ1(Λh), . . . , λH1(Λh), . . . ,M2(Λh)}. The one-loop matching conditions are

µ2
+(µR) = µ2

−(µR)−Q3Q2
λH1(µR)

(4π)2
M2(µR)

[
1− log

(
M2(µR)

µ2
R

)]
, (3.7)

λ+(µR) = λ−(µR)− Q3Q2

2

λ2
H1(µR)

(4π)2
log

(
M2(µR)

µ2
R

)
, (3.8)

where the + (−) subscript denotes the SM+GM (SM) EFT parameter and we have ne-

glected terms suppressed by powers of v2/M2. We will always work in the limit where

Φ does not obtain a vacuum expectation value. This is a well-motivated simplification,

since for masses at the naturalness bounds we will obtain (typically M >TeV), experi-

mental agreement with the canonical Higgs mechanism for electroweak symmetry breaking

generically constrains any scalar GM to observe this limit, and of course a coloured scalar

multiplet must exactly satisfy it. Evidently the µ2 term receives a threshold correction

when matching is performed at the scale µR = M(µR).

The µ2(µR) RGE in the SM+GM EFT with a complex scalar takes the form of eq. (2.1)

with C2(µR) a function of both the SM parameters and the extra quartics,

C2 = + 2Q3Q2
λH1

(4π)2
− 4Q3Q2

λ2
H1

(4π)4

+ 5Q3Q2Q
2
1

g4
1

(4π)4
+

5

4
Q3Q2(Q2

2 − 1)
g4

2

(4π)4

+ 16Q3Q2Q
2
1

g2
1λH1

(4π)4
+ 4Q3Q2(Q2

2 − 1)
g2

2λH1

(4π)4

− 24Q3
λ2
H2

(4π)4
+ 64Q2

g2
3λH1

(4π)4
, (3.9)
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Figure 3. Corrections to µ2 from a heavy scalar, and related corrections to λHi.

where the final line λ2
H2 (g2

3λH1) term appears only if Q2 = 2, 3 (Q3 = 3), and dependence

on scale µR is implied.7 Representative diagrams which lead to these terms are shown in

figure 3a. Recall that the naturalness problem can be ameliorated in the limit C2 → 0.

Indeed, it could be the case that at some scale the λHi conspire to give C2(µR) = 0.

However, this will not be stable under RG evolution; the portal quartics receive gauge

corrections via the diagrams shown in figure 3b:

dλH1

d log µR
⊃ 3Q2

1

g4
1

(4π)2
+ 3c2(rΦ)

g4
2

(4π)2
− 32

y2
t g

4
3

(4π)4
, (3.10)

dλH2

d log µR
⊃ 3n2Q1

g2
1g

2
2

(4π)2
. (3.11)

Here, n2 = 1 (2) and the quadratic Casimir c2(rΦ) = 3/4 (2) for Q2 = 2 (3); and the term

proportional to g3 applies to the case Q3 = 3. Note that there exist corrections with

odd power in Q1; this means that (unlike the fermion case) RG evolution will depend on

the sign of the hypercharge, however we do not observe any noticeable consequences from

this effect. Also, in this case, we see that the two-loop scalar RGEs do capture an SU(3)

correction ∼ g4
3y

2
t , through a two-loop correction to the portal quartics. Thus we do not

add by hand the three-loop g4
3y

2
t term to the µ2 RGE in our scalar SM+GM analysis.

The portal and self quartics are unknown and unconstrained high scale input param-

eters which must be projected out to obtain a sensitivity measure which is a function of

(M,Λh). Our measure eq. (2.6) requires them to take on such values which minimise the

Bayes factor, i.e. such values which give a conservative “best case scenario” for Higgs mass

sensitivity in the given model. In eq. (2.5), we wrote down an approximation to the full sen-

sitivity measure eq. (2.4), which is valid when the low scale dimensionless SM observables

are approximately insensitive to the unconstrained inputs in the vicinity of the minimum.

7We encountered difficulties with PyR@TE when generating the two-loop scalar octet RGEs. Thus,

regrettably, they are left out of this study.
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In that case we can evaluate the sensitivity measure eq. (2.5),

∆(M,Λh) = min
λHi



√√√√√√√√
(
∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+

(
∂ log µ2(mZ)

∂ logM2(Λh)

)2

+
∑(

∂ log µ2(mZ)

∂ log λHi(Λh)

)2

+
∑(

∂ log µ2(mZ)

∂ log λΦj(Λh)

)2

∣∣∣∣∣∣∣∣∣∣λΦj(M)=0

λHi


, (3.12)

where λΦj(M) = 0 is minimally consistent with our assumption that Φ attains no vac-

uum expectation value.8 We will now make an argument for why we indeed expect this

approximation to be valid in the scalar SM+GM.

Intuitively, since C2M
2 is the primary quantity which leads to a naturalness problem,

to zeroth approximation we expect the minimum to occur where the average value of C2(µR)

over the RG evolution is zero. Consider the case with only one portal coupling λH1. Then

from eq. (3.9) our expectation requires λH1(µR) to take on values O(g4/(4π)2) (in order to

cancel the pure gauge contribution), and for C2(µR) to swap sign along its RG evolution.

Indeed, we observe this to be the case in our numerical study, as we will demonstrate

in section 5. Now, λH1 enters the one-loop dimensionless SM parameter RGEs only for

the Higgs self-quartic λ, as ∼ λ2
H1/(4π)2. Therefore its contribution to the evolution of

λ (and all dimensionless SM parameters) is very small at the minimum, and we can say

that ∂λ(mZ)/∂λH1(Λh) ' 0. As for the new quartic couplings λΦj , they do not directly

enter any of the dimensionless SM parameter two-loop RGEs, therefore their effect is also

very small. Extending to the case with two portal quartics, eq. (3.9) clearly implies that

a contour in (λH1, λH2) space will satisfy C2(µR) = 0, so our argument for O(g4/(4π)2)

quartics no longer holds. However the ∂/∂ log λHi(Λh) terms in the sensitivity measure

eq. (3.12) are proportional to λHi(Λh), so that the minimum will always prefer smaller

values for these quartics. The dimensionless SM observables will then be insensitive to

variations around λHi(Λh) for the reasons already argued.

4 Results

The naturalness bounds for various vector-like fermionic and scalar GMs, derived according

to the method detailed in section 3, are presented in tables 1 and 2 for Λh = {M+,ΛPl}
and ∆(Λh) = {10, 100, 1000}. Contour plots in (M,∆) and (M,Λh) parameter space are

also provided in figures 4–7. These constitute the main result of this paper, and we hope

that they will serve as a useful reference of naturalness benchmarks for phenomenological

model builders.

Before we discuss them in more detail, let us briefly reiterate their meaning. The scale

Λh corresponds to the input scale of MS parameters in the SM+GM EFT. The quantity

8The full sensitivity measure eq. (3.12) should also involve a minimisation over the λΦj . However, we

found that, after demanding λΦj(M) ≥ 0 to ensure no non-trivial vacuum expectation value, the minimum

always occurred for λΦj(M) ' 0. Thus in practice, to improve speed and numerical stability, we set

λΦj(M) = 0 when evaluating the sensitivity measure and note that even varying this up to . 0.5 made

little difference to our results. We also note that the λΦj always evolve to positive values due to pure gauge

contributions to their RGEs at one-loop, and therefore the potential does not become trivially unstable.
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Λh = M+ Λh = 1019 GeV

SU(3) SU(2)L U(1)Y ∆ = 10 ∆ = 100 ∆ = 1000 ∆ = 10 ∆ = 100 ∆ = 1000

1 1 ± 1
6 1400 4300 13000 130 420 1300

± 1
3 690 2200 6800 64 210 670

± 2
3 350 1100 3400 32 110 340

±1 230 730 2300 22 72 230

±2 120 370 1200 13 43 140

±3 80 250 790 - - -

2 0 70 230 740 11 35 110

± 1
2 69 220 720 10 34 110

±1 65 210 670 9.7 32 100

±2 54 170 550 - - -

3 0 35 110 370 6.0 20 64

±1 34 110 350 6.1 20 65

±2 31 100 330 - - -

3 1 0 54 190 700 17 56 190

± 1
3 54 200 710 17 60 210

± 2
3 56 210 750 21 77 300

±1 59 220 830 72 140 340

±2 110 800 1600 - - -

2 0 180 350 850 13 37 110

±1 110 250 660 9.0 28 84

±2 57 150 440 - - -

3 0 29 86 260 - - -

±1 27 82 250 - - -

±2 24 72 220 - - -

8 1 0 20 74 270 7.3 25 86

±1 21 77 280 - - -

±2 23 91 360 - - -

2 0 17 67 270 - - -

±1 18 72 310 - - -

±2 21 110 780 - - -

3 0 63 110 270 - - -

±1 50 98 240 - - -

±2 32 72 190 - - -

Table 1. Naturalness bounds on the mass M (in TeV and to 2 significant figures) of various

vector-like fermionic gauge multiplets for Λh = {M+, 1019 GeV} and ∆(Λh) = {10, 100, 1000}. The

dashes indicate that a Landau pole arises below 1019 GeV along the ∆(Λh) = 10 contour.

∆(Λh), defined in eq. (2.6), is a sensitivity measure for the Higgs mass parameter which

can be interpreted as a Bayesian evidence on the Jeffreys scale or (more loosely) to a

percentage fine-tuning in the Barbieri-Giudice sense. A stringent naturalness constraint is

then ∆(ΛPl) < 10, which (loosely) ensures < 10% sensitivity for µ2(mZ) ' −(88 GeV)2

when the MS parameters are defined at ΛPl. If a phenomenological model can satisfy this

constraint then we would say it does not induce a Higgs naturalness problem. The bounds
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Λh = M+ Λh = 1019 GeV

SU(3) SU(2)L U(1)Y ∆ = 10 ∆ = 100 ∆ = 1000 ∆ = 10 ∆ = 100 ∆ = 1000

1 1 ± 1
6 1300 4100 13000 29 96 310

± 1
3 670 2000 6400 14 47 150

± 2
3 340 1000 3200 6.8 23 75

±1 230 690 2200 4.4 15 48

±2 120 350 1100 2.0 6.5 21

±3 77 240 740 - - -

2 0 67 210 680 2.3 7.7 25

± 1
2 65 210 660 2.1 7.2 24

±1 62 190 620 1.8 6.0 20

±2 52 160 510 1.1 3.6 12

3 0 33 100 340 1.1 3.6 12

±1 32 100 330 0.95 3.2 10

±2 30 94 300 0.45 1.7 6.7

3 1 0 220 820 2900 12 40 130

± 1
3 290 1200 5400 12 38 110

± 2
3 330 880 2500 4.2 14 45

±1 160 470 1400 2.5 8.4 27

±2 71 210 660 0.99 3.2 10

2 ±0 40 130 400 1.3 4.3 14

±1 37 120 370 0.99 3.3 11

±2 31 96 300 - - -

3 ±0 20 62 200 - - -

±1 19 60 190 - - -

±2 18 55 180 - - -

Table 2. Naturalness bounds on the mass M (in TeV and to 2 significant figures) of various scalar

gauge multiplets for Λh = {M+, 1019 GeV} and ∆(Λh) = {10, 100, 1000}. The dashes indicate that

a Landau pole arises below 1019 GeV along the ∆(Λh) = 10 contour.

weaken in the limit Λh → M+. Still, rather remarkably, they remain finite in this limit,

as we argued in section 2. The ∆(M+) < 10 bound can therefore be interpreted as a

conservative naturalness constraint on M . It is also of interest if ∆(ΛPl) is not applicable,

e.g. if new physics arises at a scale above M which markedly affects the µ2(µR) evolution,

or if the EFT hits a Landau pole below ΛPl.

5 Discussion

Some aspects of our results can be understood by scaling relations. At fixed Λh, the bounds

in tables 1 and 2 scale approximately as
√

∆/CSM2 , as one would expect from eq. (2.8)

for the simple example discussed in section 2. Where they are violated (particularly for

the ∆(Λh) bounds) it is due to some cancellation between contributions: the contributions

arising from SU(3) charge are opposite in sign to those from SU(2) and U(1)Y charge. The

contour plots in figures 4–7 make these cancellations more obvious, and we will discuss

them shortly. Comparing bounds evaluated at disparate Λh is more involved. Indeed, this
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Figure 4. Λh = {M+,ΛPl} contours {solid, dashed} in the vector-like fermionic SM+GM EFT.

The “throat” features are an artifact of the loop level to which we are working [see section 2.3].

is why we have gone to the trouble of a two-loop RGE analysis! Still, some qualitative

observations will be made presently.

For the fermionic GMs in table 1, the rough scaling relation ∼
√

1/
√

5 log(ΛPl/M)

between bounds evaluated at ∆(M+) and ∆(ΛPl), as expected from eq. (2.8), is broken

by the RG evolution of C2. We observe that the naturalness bounds at ΛPl are more

stringent than this relation would suggest for ψ(1, 1, Q1), and less stringent for ψ(1, Q2, 0)

and ψ(Q3, 1, 0). This is simply because g4
1(µR) (and therefore C2) grows at higher energy,

whereas the opposite is true for g4
2(µR) and g4

3(µR)y2
t (µR). This effect can be observed

in figure 8, where we show the example RG evolution of µ2(µR) for gauge multiplets of

increasing mass. The naturalness problem which broadly arises from a sensitivity to the

high scale input µ2(Λh) is self-evident for large masses.
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Figure 5. Λh = {M+,ΛPl} contours {solid, dashed} in the scalar SM+GM EFT.

For the scalar GMs in table 2, there is no obvious scaling relation between naturalness

bounds at different scales. One observation is that, although the ∆(M+) bounds are simi-

lar9 to those found in the fermionic GM case, the ∆(ΛPl) bounds are much more stringent.

This is because the sole one-loop term in the µ2 RGE involves the portal quartic λH1, which

is itself renormalised by pure gauge RG terms at one-loop. Thus the scaling relation is ex-

pected to more closely resemble ∼ 1/ log(ΛPl/M) [rather than ∼
√

1/ log(ΛPl/M)]. What

actually happens is unfortunately quite opaque, since it is hidden by various complexities:

a coupled set of RGEs; a non-trivial sensitivity measure eq. (3.12); and a minimisation

procedure over the λHi. Let us attempt to convey some intuition for what happens by

considering the example of a two Higgs doublet model, i.e. the SM+Φ(1, 2, 1/2). To this

end it is useful to define a reduced sensitivity measure

∆red(M,Λh) =

∣∣∣∣∂ log µ2(mZ)

∂ log µ2(Λh)

∣∣∣∣ , (5.1)

which is a subcomponent of the full measure eq. (3.12). This reduced measure vanishes

in the limit µ2(Λh) → 0. As we already argued in section 3.2, it is always possible to

choose the λHi such that C2 swaps sign over its RG evolution and µ2(Λh) = 0. Thus one

9The larger relative difference between the bounds for coloured states may be partly accounted for by

the three-loop g4
3y

2
t term which is not captured in our pure two-loop scalar analysis.
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Figure 6. ∆(Λh) = 10 contours in the vector-like fermionic SM+GM EFT. If a line ends it is

because the system hits a Landau pole.

expects a contour in λHi space along which ∆red(M,Λh) vanishes [49]. In figure 9 we plot

∆red(M,Λh) as a function of (λH1(M), λH2(M)) for Λh = ΛPl and M = 1 TeV, where

such a contour is readily observed. Obviously this contour constitutes a fine-tuning in the

λHi, and we would hope that our full sensitivity measure captures this tuning and restores

a finite naturalness bound. Indeed, it does; also shown in figure 9 is the full sensitivity

measure as a function of (λH1(M), λH2(M)), with a unique minimum of ∆(ΛPl) ' 2.7

nearby the µ2(Λh) = 0 contour. In the lower panel of figure 9 we also show the running

of µ2(µR) and C2(µR)M2(µR) at this minimum (and for other example masses). It is seen

that C2 does switch sign, as expected.
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Figure 7. ∆(Λh) = 10 contours in the scalar SM+GM EFT. If a line ends it is because the system

hits a Landau pole.
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Figure 8. Example running of µ2(µR) in the SM+GM EFT for a heavy lepton doublet ψ(1, 2,−1/2)

and a heavy down-type quark ψ(3, 1,−1/3) with M = 3, 5, 10, 20, 30 TeV. The dashed line is the

SM-only case.

We will now briefly comment on some features in the (M,∆) and (M,Λh) contour plots

of figures 4–7. In figure 4 there is a sharp “Veltman throat” in the ∆(M+) contours for

coloured fermions. This occurs when the three-loop colour contribution cancels with the

electroweak contributions such that C2(M) = 0. It was already noted in section 2.3 that
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Figure 9. Sensitivity measure and RG evolution in the SM+Φ(1, 2, 1/2) (i.e. the 2HDM). Upper

panel: the not-yet-minimised sensitivity measure for M = 1 TeV as a function of (λH1(M), λH2(M))

for: (left) ∆red(ΛPl) of eq. (5.1), and (right) ∆(ΛPl) of eq. (3.12). The dashed line shows the

µ2(ΛPl) = 0 contour and the star denotes the global minimum. Lower panel: RG evolution of

µ2(µR) and C2(µR)M2(µR) for M = 1, 3, 5, 10 TeV evaluated at the (λH1, λH2) points which min-

imise ∆(ΛPl).

this is only an artifact of the loop level to which we are working. The ∆(ΛPl) contour for

the ψ(3, 1, 1) GM demonstrates how this feature is effectively removed when Λh > M . In

figure 5 the qualitative form of the contours in the Φ(3, 1, Q1) scalar case is seen to change

as Q1 is increased from 0 to 2. This is due to a transition in dominance between colour

and hypercharge effects, which are opposite in sign.

In figure 6 a cusp feature is observed when Λh is just above M . This can be un-

derstood from the toy model eq. (2.8): it is the point where 2 log(Λh/M) ' 1 and the

∂/∂ logM2 sensitivity measure is minimised. Also, the “turn-around” features in the

ψ(3, 1, Q1), ψ(8, 1, Q1), and ψ(8, 2, Q1) plots can again be understood as a balance be-

tween the colour and electroweak contributions. In figure 7 a number of cusp features are

observed, mostly occurring at Λh ∼ 20M . These features all have the same origin: they

occur for solutions where µ2(Λh) ≈ 0. For example, in the Φ(1, 2, 1/2) case at Λh = ΛPl

we saw that the λHi took on values such that µ2(ΛPl) < 0 (see figure 9). It turns out that,

for Λh . 20M , the sensitivity measure is minimised for values such that µ2(Λh) > 0. At

the transition point the reduced sensitivity measure eq. (5.1) vanishes, and hence the full

sensitivity measure is somewhat reduced. Note that in the cases where Φ is coloured the

transition occurs later due to the competing contributions between gauge contributions.
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Before concluding we would like to make a few comments about the applicability of

these bounds in the context of extended models. Firstly, one might contend that our bounds

(especially the ∆(ΛPl) bounds), which are only derived in the context of minimal SM+GM

extensions, are not applicable in a realistic model with additional high scale states. This is

true in a quantitative sense: the bounds are sure to change. Nonetheless, this does not im-

ply that they are not qualitatively useful. It would take very special physics to ameliorate

these bounds by a significant amount. For example, one could try to introduce new states

with particular properties at Λh ∼ M such that loop contributions approximately cancel

at this scale [38]. In the absence of a symmetry which introduces the appropriate corre-

lations between parameters at this scale, and a symmetry which ensures the cancellation

remains satisfied under RG evolution, naturalness bounds similar to those we have derived

will be quickly reintroduced at Λh > M . Actually, such symmetry requirements are just

those provided by supersymmetric theories, and herein lies the connection between our RG

description and the usual naturalness arguments in the context of supersymmetry. In any

case, the framework we have outlined in appendix A is fully generalisable to perturbative

models with more states. Naturalness of the low scale Higgs mass parameter can be quan-

tified by the Bayesian sensitivity measure eq. (A.7), as long as one is prepared to calculate

and solve RGEs at least at two-loop order with one-loop matching between intermediate

physical scales.

Secondly, in deriving our sensitivity measure we have made the assumption of flat

priors on the logarithms of MS input parameters at scale Λh. This particular set of priors

is determined by demanding insensitivity to units or parameter rescalings, and makes

logical sense in a bottom-up approach where one would like to remain maximally agnostic

to the higher scale UV theory. However, it is true that if one were to derive these priors as

posteriors arising from a flat set of priors in the UV theory, they would almost certainly

not be flat. Furthermore, one would generally expect correlations between the parameters.

Hence one might expect that our results are only broadly applicable if those derived priors

are approximately flat.10

Nevertheless, it is still possible to argue that the naturalness bounds derived here are

not expected to significantly change even if the priors are peaked. Consider for example

altering the log µ2(Λh) prior such that it is locally scaled by a factor κ within some window;

i.e. the prior is instead flat in a function f(log µ2) with ∂f(log µ2)/∂ log µ2 = κ (1) within

(outside of) the window. In such a case the sensitivity measure, e.g. eq. (3.12), is of the

same form except with ∂ log µ2(Λh) replaced by ∂f(log µ2(Λh)). Now, consider the case

where the prior is locally increased (κ > 1) within a window centered on the realised value

of log µ2(Λh). Then the contribution of the |∂ log µ2(mZ)/∂ log µ2(Λh)| term to the sensi-

tivity measure will be scaled down by a factor 1/κ. However, the contribution from the

other terms does not change. Generally, as can be understood from our toy examples (see

eq. (2.8)), the contribution from other terms (and at very least the |∂ log µ2(mZ)/∂ logM |
term) is of similar order. Thus, in this case, one does not expect the bound to significantly

10In particular, some might argue that this is unlikely for log µ2(Λh) in the presence of gravity, but then

some might choose to remain agnostic.
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change unless the the prior in logM (and other parameters) is also locally peaked. This

is not surprising, since we have increased the probability of a specific initial high scale

boundary value for µ2(Λh), but we have not altered the prior on the slope, which is con-

trolled by the size of M and other parameters entering the RGEs. Thus if the bound is

to be significantly affected by a set of peaked priors at high scale, they need to be sharply

peaked at very particular values in more than one parameter. Unless one has a plausible

explanation for such priors then this has only shifted the naturalness issue.

6 Conclusion

The aim of this paper was to confront the question, at what mass does a heavy gauge

multiplet introduce a physical Higgs naturalness problem? In section 2 we described a

physical way to understand the Higgs naturalness problem which might be introduced

when perturbative heavy new physics is added to the SM. The description is of particular

interest in bottom-up extensions of the SM. The premise is essentially as follows. In any

perturbative EFT, the low scale Higgs mass parameter µ2(mZ) ' −(88 GeV)2 can be

connected by renormalisation group equations to MS “input” parameters defined at some

high scale Λh. If µ2(mZ) is especially sensitive to these input parameters, then this signifies

a Higgs naturalness problem. In particular, this can occur if a heavy particle of mass M is

added to the SM.

In order to sensibly quantify this potential problem, we derived a sensitivity measure

using Bayesian probabilistic arguments. The measure can be interpreted as a Bayesian

model comparison [see eq. (2.4)] which captures the “naturalness price” paid for promot-

ing the Higgs mass parameter to a high scale input parameter of the model as opposed to a

purely phenomenological input parameter at low scale. It is fully generalisable to any per-

turbative QFT, with the details provided in appendix A. The measure reduces in a certain

(relevant) limit to an intuitively motivated Barbieri-Giudice-like fine-tuning measure [see

eq. (2.5)]. The resulting sensitivity measure is generally a function of unknown high scale

inputs. We conservatively projected these out by minimising over them, thereby obtaining

the sensitivity measure eq. (2.6), which is a function of Λh and the mass M of a heavy

new particle.

This sensitivity measure was used to set naturalness bounds on the masses of var-

ious gauge multiplets, using a full two-loop RGE analysis with one-loop matching. An

interesting outcome is that, once RG effects are taken into account and finite threshold

corrections are captured, a naturalness bound on M remains even in the limit Λh →M+.

The resulting bounds are presented in tables 1 and 2, and as contours in figures 4–7. They

form the main result of this paper, and we hope they are of interest to model builders. For

Λh = ΛPl we find “10% fine-tuning” bounds of M < O(1–10) TeV on the masses of various

gauge multiplets, with the bounds on fermionic gauge multiplets significantly weaker than

for scalars. In the limit Λh → M+ the bounds weaken to M < O(10–100) TeV; these can

be considered as conservative naturalness bounds, of interest if new physics is expected to

substantially alter the RG evolution of µ2(µR) above the scale M . We also found that the

bounds on coloured multiplets are no more severe than on electroweak multiplets, since

they correct the Higgs mass directly at three-loop order.
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A Sensitivity measure as a Bayesian model comparison

In this appendix we show how a Barbieri-Giudice-like fine-tuning measure for µ2(mZ) arises

in a certain limit of our Bayesian model comparison. Similar connections have been made

in earlier works, e.g. refs. [5, 9].

Bayesian probability allows one to assign a degree of belief to some hypothesis, in

our case a particle physics model. The model M consists of a set of input parameters I
and a rule for connecting these to a set of observables O. Let us assume that there are

n fundamental input parameters I = {I1, . . . , In} and m ≤ n independent observables

O = {O1, . . . ,Om}. The rule is just a map R : I → O from input space to observable

space with (I1, . . . , In) 7→ R(I1, . . . , In) = (O1, . . . ,Om). In this paper the models consist

of the SM plus a new gauge multiplet of mass M , with inputs as the logarithms of MS

parameters of the full Lagrangian defined at scale Λh, observables as the logarithms of MS

SM Lagrangian parameters at scale mZ , and R given by the RGEs. The logarithms are

taken to avoid dependence on units or rescalings of the Lagrangian.11

The Bayesian evidence B for M is the probability that the observables O attain their

experimentally observed values Oex, assuming M is true:

B(M) := p(O = Oex|M) =

∫
p(O = Oex|I) p(I) dI , (A.1)

where p(O = Oex|I) is also called the likelihood function L(I), and p(I) is the prior density

for the model parameters. The prior density represents the degree of belief in the values of

the input parameters before any observations are made. In the absence of any knowledge

about the complete UV theory, we should assume priors which are maximally agnostic.

This corresponds to a flat prior in the n-dimensional input space I. The mapping R can

be used to express some point in input space (I1, . . . , In) in terms of a new set of coordinates

(O, I ′) ≡ (O1, . . . ,Om, Im+1, . . . , In) simply by I 7→ R′(I) ≡ (R(I), I ′). We assume that

this is a one-to-one mapping (indeed, it is for RGEs in the perturbative regime). If we

assume perfectly measured observables, then eq. (A.1) becomes

B(M) ∝
∫
δ(O −Oex) p ◦ R′−1(O, I ′)

∣∣∣∣∣∣∣


∂O1
∂I1 · · ·

∂O1
∂Im

...
. . .

...
∂Om
∂I1 · · ·

∂Om
∂Im


∣∣∣∣∣∣∣
−1

dO1 · · · dOmdIm+1 · · · dIn ,

(A.2)

11Absolute values inside the logarithms are implied. The signs of the parameters can be considered as

separate inputs. Explicitly including them with a flat prior probability mass function does not change the

final result, and we ignore them henceforth for clarity.
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where the likelihood has become a delta function multiplied by a constant term, and

| ( · ) | ≡ |det[( · )]| is the determinant of the Jacobian associated with the coordinate

transformation. Performing the integration over the observables,

B(M) ∝
∫
p′(I ′)

∣∣∣∣∣∣∣


∂O1
∂I1 · · ·

∂O1
∂Im

...
. . .

...
∂Om
∂I1 · · ·

∂Om
∂Im


∣∣∣∣∣∣∣
−1

dIm+1 · · · dIn

∣∣∣∣∣∣∣∣
O=Oex

, (A.3)

where p′(I ′) ≡ p ◦ R−1(Oex, I ′). The requirement O = Oex has carved out an experi-

mentally allowed (n−m) dimensional submanifold within the original n dimensional input

space. We know that, since the original prior was flat in n dimensions, the prior on

the submanifold must be flat with respect to the induced volume element (as opposed to

the volume element dIm+1 · · · dIn). We can rescale the existing volume element to write,

equivalently,

B(M) ∝
∫
p′(I ′)

∣∣∣∣∣∣∣


∂O1
∂I1 · · ·

∂O1
∂Im

...
. . .

...
∂Om
∂I1 · · ·

∂Om
∂Im


∣∣∣∣∣∣∣
−1

√√√√√√√
∣∣∣∣∣∣∣∣


∂I1
∂Im+1

· · · ∂I1
∂In

...
. . .

...
∂In

∂Im+1
· · · ∂In

∂In


T 

∂I1
∂Im+1

· · · ∂I1
∂In

...
. . .

...
∂In

∂Im+1
· · · ∂In

∂In


∣∣∣∣∣∣∣∣
dΣ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
O=Oex

, (A.4)

where the quantity under the square root is the determinant of the induced metric, dΣ is

the induced volume element, and the prior p′(I ′) is constant with respect to this volume

element. This reduces to12

B(M) ∝
∫

p′(I ′)√
|JJT |

dΣ

∣∣∣∣∣
O=Oex

, (A.5)

where J is the m× n matrix defined by Jij = ∂Oi/∂Ij [9]. Additionally, by taking a delta

function prior on I ′ we can evaluate (and compare) Bayesian evidence for the model M
with unconstrained input parameters (Im+1, . . . , In) taking on specific values:

B(M; I ′) ∝ 1√
|JJT |

∣∣∣∣∣Oex
I′

. (A.6)

Let us now put this in the context of minimal extensions of the SM by a gauge multiplet

of mass M . We take I1 = log µ2(Λh) and O1 = log µ2(mZ). The remaining inputs and

observables are logarithms of the MS Lagrangian parameters. The Bayesian evidence

12To show this requires the use of: Sylvester’s identity det(Im+AB) = det(In+BA) for m×n and n×m
matrices A and B; and the matrix identity (A|B)(A|B)T = AAT +BBT for A and B matrices with equal

number of rows.
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eq. (A.6) is not enough by itself; it can only be interpreted with respect to some reference

model. We will, after all, be interested in the sensitivity of µ2(mZ) to the input parameters,

and we have not so far treated the µ2 parameter in any special way. The reference model

we choose to compare to is the model M0 in which the Higgs mass parameter is instead

taken as a “phenomenological” input parameter at scale mZ , i.e. I1 = O1 = log µ2(mZ).

In M0 we have that J11 = 1 and J1j = 0 for j > 1. The Bayes factor between these two

models is then

K(M; I ′) :=
B(M0; I ′)
B(M; I ′)

∣∣∣∣Oex
I′

. (A.7)

Since the dimensionful parameter µ2(µR) does not enter the (mass independent) RGEs

of the remaining dimensionless observables, we have that Ji1 = ∂Oi/∂I1 = 0 for i >

1. Additionally, in the special case that the dimensionless observables are approximately

insensitive to the unconstrained inputs, i.e. Jij ' 0 for i > 1 and j ≥ m + 1, eq. (A.6)

becomes

B(M; I ′) ∝

∣∣∣∣∣∣∣


∂O2
∂I2 · · ·

∂O2
∂Im

...
. . .

...
∂Om
∂I2 · · ·

∂Om
∂Im


∣∣∣∣∣∣∣
−1

√(
∂ log µ2(mZ)

∂I1

)2
+

∑
j≥m+1

(
∂ log µ2(mZ)

∂Ij

)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Oex
I′

. (A.8)

We can see that a Barbieri-Giudice-like fine-tuning measure has appeared in the denomina-

tor. In this case the quantity B(M0; I ′) becomes independent of I ′, and the Bayes factor

eq. (A.7) is

K(M; I ′) =

√√√√(∂ log µ2(mZ)

∂ log µ2(Λh)

)2

+
∑

j≥m+1

(
∂ log µ2(mZ)

∂Ij

)2
∣∣∣∣∣∣Oex
I′

. (A.9)

This is reminiscent of the Barbieri-Giudice fine-tuning measure. We observe the inter-

esting emergence of additional terms quantifying Higgs mass sensitivity only to the un-

constrained parameters of the model. Conceptually, K is a comparison between a flat

prior in log µ2(mZ) and the RG devolved (to mZ) flat prior in log µ2(Λh), in the vicinity

µ2(mZ) ' −(88 GeV)2. A Bayes factor of K > 10 corresponds to the onset of strong

evidence (on the Jeffreys scale) for M0 over M.

Lastly, note that the Bayes factor K is still a function of the unknown parameters I ′.
In order to write down a sensitivity measure for the model M as a function of a subset of

these unknown parameters (e.g. the gauge multiplet mass M), we might want some way

of projecting out the nuisance unknowns. One way is to integrate over some region of I ′,
i.e. evaluate eq. (A.5). However, in this paper we instead choose the following conservative

projection:

∆(M) = min
I′

{
K(M; I ′)

}
. (A.10)
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This identifies the best case scenario for Higgs mass naturalness in M by finding the point

in I ′ with the lowest Bayes factor.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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