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1 Introduction

After the discovery of a Higgs boson [1, 2] at the Large Hadron Collider (LHC), it is crucial

to study its properties in order to determine whether it is indeed the particle predicted

by the Standard Model (SM) or not. Besides its couplings to fermions and gauge bosons,

which are so far compatible with the SM expectations, it is of great interest to determine

the Higgs boson self-couplings, which will allow to shed light on the scalar potential, and

therefore the electroweak symmetry breaking mechanism.

The Higgs boson trilinear and quartic self-couplings λ3 and λ4 can be studied in hadron

colliders via double and triple Higgs production, respectively (see ref. [3] for an alternative

method based on single Higgs production). The SM expectations for these processes,

corresponding to λ3 = λ4 = m2
H/(2v

2), being v ' 246 GeV the Higgs vacuum expectation

value and mH its mass, are very low. For a collider energy of 14 TeV, the leading order

(LO) predictions for the double and triple Higgs production cross sections are of O(20 fb)

and O(0.05 fb). As a consequence, in a SM-like scenario, a determination of the trilinear

coupling will be very challenging at the LHC, while the measurement of the quartic coupling

via triple Higgs boson production will be at best relegated to a future collider [4, 5]. Of

course, the situation can be largely modified in the presence of new physics scenarios for

the Higgs sector.

As it also happens for single and double Higgs production, the triple-Higgs final state

is mainly produced in the SM via gluon fusion, mediated by a heavy quark (mainly top)

loop. For this production mechanism, the corresponding cross section is only known at LO

in perturbation theory. However, the QCD corrections are expected to be large, as it also

happens for the other gluon initiated loop-induced processes mentioned above. Unfortu-

nately, their computation is very difficult. For instance, the next-to-leading order (NLO)

corrections for double Higgs production (a simpler process with one particle less in the final

state) were not known until very recently [6]. In the absence of a full NLO calculation, and

in order to provide an estimate of the size of the perturbative corrections, approximate NLO

predictions were obtained in ref. [7], where only the exact real corrections were included.
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In this paper, we present the first calculation of the QCD perturbative corrections

for triple Higgs production within the Higgs effective field theory (HEFT). Within this

framework, which formally corresponds to the large top quark mass limit of the SM, the

Higgs bosons couple directly to gluons via an effective Lagrangian. This approach has been

successfully used to compute the QCD corrections for single and double Higgs production.

Motivated by this, we apply it to compute the NLO corrections and the next-to-next-to-

leading order (NNLO) soft and virtual contributions for the total cross section and the

triple Higgs system invariant mass distribution.

This work is organized as follows: in section 2 we present the virtual corrections up

to NNLO, and later in section 3, after combining with the corresponding real corrections,

we present the NLO and NNLO partonic cross sections, the latter within the soft-virtual

approximation. In section 4 we present the numerical results for the LHC and future col-

liders, and compare our predictions with the other NLO approximation available. Finally,

in section 5 we present our conclusions.

2 Virtual corrections up to NNLO

In this section we present the one and two-loop corrections to the triple-Higgs boson pro-

duction cross section in hadronic collisions via gluon fusion. As was stated before, we

work within the HEFT were the Higgs bosons couple directly to gluons via the effective

Lagrangian

Leff = −1

4
GaµνG

µν
a

(
CH

H

v
− CHH

H2

2v2
+ CHHH

H3

3v3
+ . . .

)
, (2.1)

and where the matching coefficients can be expanded in powers of the strong coupling αS as

CX = −αS

3π

∑
n≥0

C
(n)
X

(αS

π

)n
. (2.2)

The three coefficients needed for our calculation are known up to fourth order in their

perturbative expansion [8–14].

For the generation of the relevant Feynman diagrams we employed qgraf [15], while

the manipulation of the resulting amplitudes was performed with in-house routines written

for Mathematica. Finally, we reduced the result into master integrals using the algorithm

Fire [16]. The infrared divergent results were handled using dimensional regularization

with D = 4− 2ε dimensions.

The virtual corrections to the partonic cross section can be written in terms of the

squared matrix element as

σ̂v =
1

2s

1

3!2282(1− ε)2

∫
|M|2dPS3 ≡

∫
dσ̂v dPS3 (2.3)

where we include the flux factor, the average over initial state colors and helicities, and the

factor 1/3! arising from the identical particles in the final state. Here dPS3 represents the

three particle phase space. Expanding in powers of the strong coupling, we have

dσ̂v =
(αS

2π

)2
[
dσ̂(0) +

αS

2π
dσ̂(1) +

(αS

2π

)2
dσ̂(2) +O(α3

S)

]
. (2.4)
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Exploiting the well known one and two-loop infrared behaviour of QCD ampli-

tudes [17–19], we can write the renormalized NLO and NNLO virtual corrections as

dσ̂(1) = 2 Re
[
I(1)
g

]
dσ̂(0) + dσ̂

(1)
fin , (2.5)

dσ̂(2) =

(∣∣∣I(1)
g

∣∣∣2 + 2Re

[(
I(1)
g

)2
]

+ 2Re
[
I(2)
g

])
dσ̂(0)+ 2 Re

[
I(1)
g

]
dσ̂

(1)
fin + dσ̂

(2)
fin ,

where I(1) and I(2) represent the one and two-loop insertion operators defined, for instance,

in ref. [17].

The D dimensional LO cross section can be written as

dσ̂(0) = FDLO|C3H
LO |2(1− ε), with FDLO =

s

1728v6(1− ε)2
, (2.6)

and where the coefficient C3H
LO is defined as

C3H
LO = 2 +

6λ4v
2

s345 −m2
H

+

(
36λ2

3v
4

s345 −m2
H

− 6λ3v
2

)(
1

s35 −m2
H

+
1

s45 −m2
H

+
1

s34 −m2
H

)
.

(2.7)

Here sij...k = (pi + pj + · · ·+ pk)
2. For simplicity, we have set ΓH = 0 (the numerical effect

due to the Higgs width is negligible), in which case the C3H
LO coefficient is a real number.

The one and two-loop infrared-regulated parts can be organized in the following way:

dσ̂
(1)
fin = FDLO

{
|C3H

LO |2F (1) + Re(C3H
LO)R(1)

3H +O(ε3)
}
, (2.8)

dσ̂
(2)
fin = FDLO

{
|C3H

LO |2F (2) + Re(C3H
LO)

(
R(2)

3H + S(2)
3H + T (2)

3H

)
+ V(2)

3H +O(ε)
}
.

The contributions labelled F arise from diagrams with only one HEFT operator insertion.

The ones in R originate from the interference between amplitudes with two HEFT operator

insertions and amplitudes with only one insertion. On the other hand, contributions in

T arise from the interference between diagrams with three operator insertions and the

LO, and the ones in V come from the square of amplitudes with two insertions. Finally,

contributions to S have their origin on the difference between the NNLO QCD corrections

to the effective vertices Hgg, HHgg and HHHgg. In figure 1 we show illustrative examples

of the different Feynman diagrams involved in the calculation of the virtual corrections. As

already mentioned, since we adopted the Higgs zero-width approximation, both C3H
LO and

C2H
LO are real numbers. Beyond that limit, there is also a numerically negligible contribution

proportional to Im(C2H
LO)Im(C3H

LO), which we will ignore.

We start by presenting the one-loop corrections. For simplicity, we set µR = µF = Q

throughout the rest of the work, being Q the invariant mass of the triple-Higgs system.

We find that

F (1) = 11 + ε

(
7

6
ζ2(2Nf − 33) + 12ζ3 − 17

)
+ ε2

(
7

6
ζ2(33− 2Nf ) +

1

9
ζ3(2Nf − 141) + 18ζ4 − 12

)
,

R(1)
3H = C2H

LO(s34) r(1)(s, t15, t25,m
2
H , s34) + C2H

LO(s35) r(1)(s, t14, t24,m
2
H , s35)

+ C2H
LO(s45) r(1)(s, t13, t23,m

2
H , s45) , (2.9)
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O(αS)

O(α2
S)

O(α3
S)

Figure 1. Examples of the different Feynman diagrams contributing to the triple Higgs production

virtual corrections at the different perturbative orders.

where Nf represents the number of light partons, ζn stands for the Riemann zeta function,

and

r(1)(s, t, u,m2
1,m

2
2) =

4

3
+

2ε

3s

[
m2

1m
2
2

(
1

t
+

1

u

)
− (s+m2

1 +m2
2)

]
(2.10)

with tij = (pi − pj)2, and where we have defined

C2H
LO(s) =

6v2λ3

s−m2
H

− 1 . (2.11)

Notice that, given that these contributions enter in the two-loop result multiplied by a

double pole, we need their expansion up to O(ε2).

We start now with the NNLO results. For the coefficient F we find

F (2) =

(
8Nf

3
+

19

2

)
log

(
s

m2
t

)
+Nf

(
217ζ2

12
− 17ζ3

6
− 3239

108

)
(2.12)

−
11ζ2N

2
f

18
− 249ζ2

2
− 253ζ3

4
+

45ζ4

8
+

8971

36
,

where mt stands for the top quark mass. The function R3H can be written at this order as

R(2)
3H = C2H

LO(s34) r(2)(s, t15, t25,m
2
H , s34) + C2H

LO(s35) r(2)(s, t14, t24,m
2
H , s35)

+ C2H
LO(s45) r(2)(s, t13, t23,m

2
H , s45) , (2.13)

– 4 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
7

where

r(2)(s, t, u,m2
1,m

2
2) (2.14)

= −2

(
1 +

m4
1 +m4

2

s2

){
log

(
−m

2
1

t

)
log

(
1− m2

1

t

)
+ log

(
−m

2
2

t

)
log

(
1− m2

2

t

)
+ log

(
−m

2
1

u

)
log

(
1− m2

1

u

)
+ log

(
−m

2
2

u

)
log

(
1− m2

2

u

)
− 1

2
log2

(u
t

)
+ Li2

(
1− m2

1m
2
2

tu

)
+ Li2

(
m2

1

t

)
+ Li2

(
m2

2

t

)
+ Li2

(
m2

1

u

)
+ Li2

(
m2

2

u

)}

+
4π2

3s2

(
m4

1 +m4
2

)
− 1

9
(33− 2Nf ) log

(
tu

s2

)
+

2

27

(
−10Nf+18π2+471

)
+

2

s

(
m2

1+m2
2

)
.

For S(2)
3H we have

S(2)
3H = 16

[
(C

(2)
3H − C

(2)
H )− 3λ3v

2(C
(2)
2H − C

(2)
H )

(
1

s34 −m2
H

+
1

s35 −m2
H

+
1

s45 −m2
H

)]
,

(2.15)

where the NNLO corrections to the effective vertices between Higgs bosons and gluons

imply [8–14]

C
(2)
2H − C

(2)
H =

2

3

(
C

(2)
3H − C

(2)
H

)
= 35/24 + 2Nf/3 . (2.16)

For the function T (2)
3H we write

T (2)
3H = H(3, 4) +H(3, 5) +H(4, 5) , (2.17)

where we have defined

H(A,B) =
1

9s2t1At2B

{
s2
(
s2
AB + 2t1At2B

)
− 2st2At1BsAB + (t2At1B − t1At2B) 2 + 8sm6

H

+m4
H

(
−2s (sAB+3 (t2A+t1B)+t1A+t2B)+(t1A−t2A−t1B+t2B) 2+2s2

)
+ 2m2

H

(
− 2s2sAB + s (sAB (t2A + t1B) + 2t2At1B + t1At2A + t1Bt2B)

− (t1A − t2A − t1B + t2B) (t1At2B − t2At1B)
)}

+ (1↔ 2) , (2.18)

where the last term indicates that the momenta p1 and p2 have to be exchanged. Finally,

the function V(2)
3H can be expressed as

V(2)
3H = F (3 + 4, 5, 3 + 4, 5) + F (3 + 5, 4, 3 + 5, 4) + F (4 + 5, 3, 4 + 5, 3)

+ 2 [F (3 + 4, 5, 3 + 5, 4) + F (3 + 4, 5, 4 + 5, 3) + F (3 + 5, 4, 4 + 5, 3)] , (2.19)

with the following definitions,

F (A,B,C,D) = C2H
LO(m2

A)C2H
LO(m2

C)[G(A,C) +G(A,D) +G(B,C) +G(B,D)] (2.20)
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and

G(A,C)

=
1

18s2t1At1C

{(
s (t1A + sAC) +m2

A

(
−m2

C + t1C − 2s
)

+m2
C (t2A − s)− t2At1C

)
2

+ 2s
(
m2
A−t1A

)((
m2
C−t2C−s

) (
2m2

A−t1A−sAC+2m2
C−t1C

)
−t1C

(
−m2

A+t2A+s
))

+
(
m2
A − t1A

)
2
(
−m2

C + t2C + s
)

2 − 2st1A
(
m2
C − t1C

) (
−m2

C + t2C + s
)}

. (2.21)

Here the Lorentz invariants are defined as

tiX = (pi − pX)2 , sXY = (pX + pY )2 , m2
X = p2

X , (2.22)

with pi+j = pi + pj .

With the above results we complete the presentation of the NNLO virtual corrections

for the triple Higgs boson production cross section. It is worth to mention that some of the

expressions obtained can be directly related to their analogous in double Higgs production.

This is of course the case of the F contributions, which arise directly from the gluon form

factor, and take exactly the same value for both processes. Less trivially, the functions r(1)

and r(2) defined in eqs. (2.10) and (2.14) are equal to the coefficients R(1) and R(2) defined

in eqs. (11) and (15) of ref. [25], provided that the limit m1 = m2 = mH is taken in the

former.

3 NLO and NNLOSV partonic cross sections

We present here the partonic cross section σ̂ at NLO and NNLO, obtained by combining

the results from the previous section with the corresponding real corrections (computed

within the soft approximation for the NNLO case). We recall that the inclusive hadronic

cross section can be obtained from the partonic result as

dσ

dQ2
=
∑
i,j

∫ 1

0
dx1dx2fi/h1(x1)fj/h2(x2)

∫ 1

0
dx δ

(
x− Q2

x1x2sH

)
dσ̂ij
dQ2

, (3.1)

where
√
sH represents the collider center-of-mass energy. The parton densities are denoted

by fi/h(x) and the subscripts i, j label the type of massless partons. For simplicity, the

dependence on the factorization and renormalization scales is always understood.

The partonic cross section σ̂ can be expanded in powers of the strong coupling αS. Up

to NNLO, we have

Q2dσ̂ij
dQ2

= σ̂LO

{
η

(0)
ij +

(αS

2π

)
η

(1)
ij +

(αS

2π

)2
η

(2)
ij +O(α3

S)

}
, (3.2)

where the LO cross section in the HEFT takes the form

σ̂LO =

∫
dPS3

(αS

2π

)2
FLO

∣∣C3H
LO

∣∣2 with FLO =
Q2

1728v6
, (3.3)

and where C3H
LO is defined in eq. (2.7).

– 6 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
7

At LO only the gluon initiated subprocess contributes, and therefore we have

η
(0)
ij = δ(1− x)δigδjg , (3.4)

where x = Q2/s, being
√
s the partonic center-of-mass energy.

For the calculation of the NLO results, we exploited the relation that can be established

between some contributions to the triple-Higgs boson cross section and the single-Higgs

boson one, as was already discussed for the double-Higgs case in ref. [20]. We find the

following results,

η(1)
gg =

(
11 + 12ζ2 +R(1)

3H

Re
(
C3H

LO

)∣∣C3H
LO

∣∣2
)
δ(1− x) + 24D1(x)

− 24x(−x+ x2 + 2) ln(1− x)− 12(x2 + 1− x)2

1− x
ln(x)− 11(1− x)3, (3.5)

η(1)
qg = −4

3

(
1 + (1− x)2

)
ln

x

(1− x)2
− 2 + 4x− 2

3
x2, (3.6)

η
(1)
qq̄ =

64

27
(1− x)3, (3.7)

where the plus distributions Di(x) are defined as usual,

Di(x) =

[
lni(1− x)

(1− x)

]
+

, (3.8)

and the coefficient R(1)
3H is defined in eq. (2.9). Since we are dealing in this section with

finite quantities, the ε = 0 limit can be taken for this coefficient.

The results above complete the NLO calculation within the HEFT which, to the best

of our knowledge, has not been presented before. For the NNLOSV cross section, we make

use of the universal formula derived in ref. [21]. The soft and virtual contributions are those

proportional to the delta function δ(1−x) and the plus distributions Di(x), which in Mellin

space correspond to constants and threshold enhanced logarithms. These contributions

only appear in the gluon initiated partonic channel, and they can be expressed as

η
(2)
gg(SV) = δ(1− x)

[
11

18
ζ2N

2
f +

(
−99ζ2

4
+

37ζ3

6
− 82

27

)
Nf +

517ζ2

2
− 407ζ3

4
− 81ζ4

8
+

607

9

+ 12ζ2
dσ̂

(1)
fin

dσ̂(0)
+
dσ̂

(2)
fin

dσ̂(0)

]
+D0(x)

[(
56

9
− 8ζ2

)
Nf + 132ζ2 + 702ζ3 −

404

3

]

+D1(x)

[
−

40Nf

3
−360ζ2+268+24

dσ̂
(1)
fin

dσ̂(0)

]
+D2(x)(8Nf−132)+288D3(x), (3.9)

where the finite reminders of the one and two-loop virtual corrections dσ̂fin are defined

in eq. (2.8).
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As it was already observed in refs. [21, 22], the SV approximation yields better results

when defined in Mellin space. To this end, we need to compute the following N -moments,

fi/h,N =

∫ 1

0
dxxN−1 fi/h(x) , (3.10)

η
(2)
gg(SV),N =

∫ 1

0
dxxN−1 η

(2)
gg(SV)(x) , (3.11)

η̃
(2)
gg(SV),N = η

(2)
gg(SV),N

∣∣∣
lnk N, const.

, (3.12)

where we additionally take the large-N limit on the resulting expression for the Mellin

transform η
(2)
gg(SV),N , retaining only the logarithmically enhanced and constant terms. Its

explicit expression can be easily derived from the results in ref. [21]. Finally, the NNLO

contribution to the physical cross section in the SV approximation can be obtained by

Mellin inversion,

Q2dσ
(2)
gg

dQ2
= σ̂LO

(αS

2π

)2
∫ CMP+i∞

CMP−i∞

dN

2πi

(
Q2

sH

)−N+1

fg/h1,N fg/h2,N η̃
(2)
gg(SV),N , (3.13)

where the constant CMP defining the contour of integration is on the right of all the

singularities of the integrand, as defined in the Minimal Prescription in ref. [23].

4 Phenomenological results

We present in this section our numerical predictions for the LHC and future hadron col-

liders. The NNLO corrections are computed within the soft-virtual (SV) approximation,

which has proven to be an excellent estimation to the full HEFT result for other gluon-

initiated processes, like single and double Higgs boson production [24, 25]. In particular,

for the triple Higgs production cross section, we find that at NLO the SV approximation

differs from the full HEFT result by less than 2.5%.

In order to partially retain the dependence on the top quark mass, we normalize the

QCD corrections computed in the HEFT with the exact LO result, differentially in the triple

Higgs system invariant mass. The full (loop-induced) LO cross section was computed using

MadGraph5 aMC@NLO [26, 27].

For the numerical implementation we set the values mH =125 GeV and mt=173.2 GeV

for the Higgs boson and top quark masses. We use the MMHT2014 sets [28] for the

parton flux and strong coupling, at the corresponding order for the LO, NLO and NNLO

predictions. For the renormalization and factorization scales we use two different central

scale choices, µR = µF = µ0 with µ0 = Q and µ0 = Q/2. As usual, the theoretical

uncertainty arising from the missing higher orders is estimated by varying these scales

independently in the range [µ0/2; 2µ0], with the constraint 0.5 < µR/µF < 2.

In figure 2 we show the triple Higgs system invariant mass distribution for a collider

energy of 14 TeV, for the two central scale choices. As can be seen in the lower panel, for

both choices the NLO corrections turn out to be large, with almost flat K-factors which

approximately take the values 1.8 and 1.6 for µ0 = Q and µ0 = Q/2, respectively. The

– 8 –
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Figure 2. Triple Higgs invariant mass distribution for Ecm = 14 TeV at LO (black), NLO (blue)

and NNLOSV (red), for the central scales Q (left) and Q/2 (right). The lower panel shows the ratio

with respect to the LO, together with the scale uncertainty.

relative scale uncertainty is reduced at NLO, but still remains rather large, ∼ 33% for both

scales. It is worth to notice that the scale variation at LO fails to anticipate the size of the

higher order corrections, as it occurs for single and double Higgs production as well.

The NNLO corrections are still very sizeable, specially for µ0 = Q, where they represent

an increase of about 28% with respect to the NLO. Corrections are more moderate for

µ0 = Q/2, increasing the NLO result by about 13%, and with a large overlap between the

corresponding uncertainty bands. The K-factors have a mild dependence on the invariant

mass of the system, showing a small increase towards larger values of Q. For both scale

choices, the total scale uncertainty is substantially reduced at NNLO, being of about 15%

and 12% for µ0 = Q and µ0 = Q/2, respectively. It is worth pointing out that at NNLO

both scale choices give fully compatible results, with a difference between the central values

smaller than 4%.

In figure 3 we show the triple Higgs production cross section at the different accuracy

levels as a function of the collider energy. Also, we present in table 1 the total cross section

for Ecm = 13, 14, and 100 TeV. We can observe that both NLO and NNLO corrections are

very sizeable in the whole range under study, taking lower values for higher energies. Once

again, the overlap between the NLO and NNLO predictions is larger for µ0 = Q/2.

From the results in figure 3, we can also observe that the scale uncertainty is substan-

tially reduced once the NNLO corrections are included, independently from the collider

energy under consideration. Specifically, at 13 TeV and for µ0 = Q/2 the total uncertainty

goes from 59% to 33% and 12% when going from LO to NLO and NNLO. The analogue

uncertainties at 100 TeV are 37%, 26% and 14%, where we can also observe this reduction.

Similar results are obtained with µ0 = Q.

For completeness, we show in figure 4 the dependence of the NNLO total cross section

on the value of the Higgs self-couplings. We do not intend to perform a full analysis
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Figure 3. Total cross section for the triple Higgs production as a function of the collider energy

at LO (black), NLO (blue) and NNLOSV (red), for the central scales Q (left) and Q/2 (right). The

lower panel shows the ratio with respect to the LO, together with the scale uncertainty.

µ0 = Q 13 TeV 14 TeV 100 TeV

LO 0.0377+31%
−23% 0.0462+31%

−22% 3.29+20%
−15%

NLO 0.0683+18%
−15% 0.0836+18%

−15% 5.13+13%
−11%

NNLOSV 0.0880+7.4%
−7.4% 0.107+7.4%

−7.4% 6.17+7.2%
−7.0%

µ0 = Q/2 13 TeV 14 TeV 100 TeV

LO 0.0495+35%
−24% 0.0605+34%

−24% 3.88+21%
−16%

NLO 0.0808+18%
−15% 0.0986+18%

−15% 5.78+14%
−12%

NNLOSV 0.0914+5.7%
−6.3% 0.111+5.6%

−6.4% 6.20+7.2%
−7.2%

Table 1. Triple Higgs boson production cross section (in fb) for different collider energies and at

the different accuracy levels. The uncertainties correspond to the scale variation.

for non-SM scenarios, but just to illustrate the sensitivity of this observable to λ3 and

λ4 arround their SM expectations (in particular, in the range λ/λSM ∈ [0; 2]), which is of

course relevant for a future measurement. The results correspond to a center of mass energy

of 100 TeV, and the scale choice µR = µF = Q/2. We can observe that, unfortunately, the

dependence on λ4 is rather small, and that the situation slightly improves for λ3 > λSM,

while the sensitivity is even lower for λ3 < λSM. It is worth to mention that the dependence

of the ratio between the NNLO and LO cross sections on the value of the self-couplings is

quite small, finding almost flat K-factors in the whole range under analysis.

Finally, we want to evaluate the applicability of the HEFT for the computation of

the QCD corrections for triple Higgs production. Formally corresponding to the large top

quark mass limit, this approximation completely fails to reproduce the known LO result.
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Figure 4. Dependence of the total NNLO cross section on the Higgs self-couplings λ3 (left) and

λ4 (right), in units of the λi = λSM prediction.

However, it should be more reliable for the computation of the radiative corrections, once

the exact LO is used to normalize the latter. In fact, for the double Higgs production cross

section (where the main contribution comes from the region in which the invariant mass of

the di-Higgs final state is larger than the threshold 2mt) it has been shown that the NLO

HEFT prediction overestimates the full NLO result by a 14% and 24% for Ecm = 14 and

100 TeV [6, 29] (and with deviations of the same order for the shape of the invariant mass

distribution).

Of course, for triple Higgs production the exact NLO result is not available. However,

in order to estimate the level of accuracy of the HEFT we can rely on the approximate

NLO results presented in ref. [7], where the exact real corrections were included via a

reweighting technique. This approximation, for instance, improves the HEFT result for

double Higgs production, overestimating the 14 and 100 TeV total cross sections by only

4% and 6% respectively.

Using the same setup of ref. [7] (in particular the same PDF sets and strong coupling),

we find that the NLO HEFT result overestimates their approximate NLO prediction by

about 7% and 9% for Ecm = 14 and 100 TeV respectively. This relatively small deviation,

combined with the good level of accuracy shown by the approximation of ref. [7] for the

di-Higgs production cross section, indicates that, within its expected limitations, the (Born-

normalized) HEFT can be used to gauge the size of the QCD higher order corrections for

triple Higgs boson production. At NLO, we estimate the uncertainty of the HEFT approach

to be of O(20%).

5 Conclusions

In this paper we have computed, for the first time, the QCD corrections for triple Higgs pro-

duction via gluon fusion predicted by the HEFT. Within this approach, we have obtained

the NLO cross section, and the soft and virtual contributions of the NNLO result.

We have evaluated the numerical impact of the QCD corrections for the LHC and

future hadron colliders, both on the total production cross section and on the final state

invariant mass distribution. Corrections were found to be large, with an increase with
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respect to the LO of O(100%). The scale uncertainty was substantially reduced, specially

when including the NNLO contributions. We also observed a better convergence of the

perturbative series for the central scale choice µ0 = Q/2, over µ0 = Q.

While we cannot expect the HEFT to work as accurately as for single Higgs production,

we find that it reproduces the approximate NLO results of ref. [7], which include the exact

real corrections, to better than a 10%. Based on that, and on the level of accuracy of the

results of ref. [7] for the double Higgs production cross section, we can roughly estimate the

uncertainty of the HEFT prediction to be of O(20%) for triple Higgs production at NLO.
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