
J
H
E
P
0
2
(
2
0
1
7
)
0
7
4

Published for SISSA by Springer

Received: July 29, 2016

Revised: January 12, 2017

Accepted: February 5, 2017

Published: February 14, 2017

Linearity of holographic entanglement entropy

Ahmed Almheiri,a Xi Dongb and Brian Swinglea

aStanford Institute for Theoretical Physics, Department of Physics,

Stanford University, Stanford, CA 94305, U.S.A.
bSchool of Natural Sciences, Institute for Advanced Study,

Princeton, NJ 08540, U.S.A.

E-mail: almheiri@stanford.edu, xidong@ias.edu, bswingle@stanford.edu

Abstract: We consider the question of whether the leading contribution to the entan-

glement entropy in holographic CFTs is truly given by the expectation value of a linear

operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by

computing the entanglement entropy, via the replica trick, in states dual to superpositions

of macroscopically distinct geometries and find it consistent with evaluating the expecta-

tion value of the area operator within such states. However, we find that this fails once

the number of semi-classical states in the superposition grows exponentially in the central

charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface

on which to evaluate the area operator depends on the density matrix of the entire CFT.
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1 Introduction

Entropy is not a linear operator while area is, yet in gravity these two quantities are

usually equated.

This was first observed in the context of black hole thermodynamics where it was

shown that the entropy of a black hole is given by the expectation value of the area

operator evaluated on its event horizon [1]. This operator is a nonlinear functional of

the canonical variables of quantum gravity (the metric and conjugate momentum) and is

understood to be a linear operator which maps states to states. Given that this entropy is

a coarse-grained thermodynamic quantity, it seems plausible that it can be represented by

a linear operator very much in the same way that the entropy of a gas can be represented

by its energy. One should probably expect this property in systems with a thermodynamic

limit and which are known to thermalize.

A more paradoxical relationship between entropy and area arises in the context of the

AdS/CFT correspondence. This correspondence is a duality between string theories living

in d+ 1-dimensional asymptotically Anti de Sitter (AdS) space and certain d-dimensional

conformal field theories (CFTs) which can be thought of as living on the boundary of

AdS [2]. One way in which these two descriptions are connected is via the identification

of the central charge of the CFT with the ratio of the AdS length to the Planck length to

some positive power, c ∼ (LAdS/lP )#. This duality provides a nonperturbative definition

of a certain class of theories of quantum gravity in asymptotically AdS spacetimes in terms

of a certain class of CFTs.

An outcome of this duality is that the strong coupling and c→∞ limit of the CFT is

described on the AdS (bulk) side by classical gravity with a gravitational constant GN ∼
1/c#, demonstrating the strong/weak dual nature of AdS/CFT. It is in this limit that a

remarkably simple, albeit confusing, formula for the entanglement entropy of any region

of the CFT was proposed [3]. It was suggested that, in static situations, the entanglement

entropy of a subregion R of the CFT is given by the area of the minimal area bulk surface

X anchored to the boundary of R, ∂X = ∂R, and homologous to R, denoted by X
h∼ R,

SR =
A(Xmin)

4G

∣∣∣X h∼R

∂X=∂R
. (1.1)

We shall refer to this henceforth as the RT formula. This formula was proven in [4] under

certain reasonable assumptions including the extension of the replica symmetry into the

dominant bulk solution. It was also extended to the time dependent case in [5] where the

minimal surface generalizes to a spacelike extremal surface. Another proposal for the time

dependent case was presented in [6]; their prescription was to find the minimum area X

on every possible spatial slice containing the interval R, and then to pick out from this set

the one with maximal area. Our focus here will be mostly on the static case.

In the same way that the Bekenstein-Hawking entropy receives corrections from entan-

glement of quantum fields across the horizon [1, 7], the entanglement entropy of a region of

the CFT also gets corrected [8]. This analogy was spelled out more generally in [9] which

discusses further corrections to the entanglement entropy. However, all these corrections
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are subleading in c, and are manifestly not given by the expectation value of linear opera-

tors. At leading order in c there will also be higher derivative corrections involving various

curvature invariants which are linear operators like the area. Our focus in this paper is

solely on the linear nature of the leading area term of the entanglement entropy, and so

will center the discussion mainly on the RT formula.

In contrast to the notion of entropy in black hole thermodynamics, formula 1.1 equates

the expectation value of the area operator with a truly microscopic measure of information.

This microscopic measure, or entanglement entropy, is given by

SR(|ψ〉) = −trRρR ln ρR = 〈ψ| (− ln ρR) |ψ〉, (1.2)

where − ln ρR is an operator on R alone, and returns the correct entropy only for the

specific state |ψ〉. One can try to extend this definition to apply to a basis of states |ψi〉
and construct the following entropy operator,

ŜR = −
∑
i

Pi ln (TrR̄|ψi〉〈ψi|)Pi. (1.3)

This operator would produce the correct result for any element of the chosen basis. How-

ever, it will it general fail to do so for linear combinations. Take for example the two-qubit

Hilbert space spanned by the product states |ij〉, with i, j ∈ {0, 1}. The entropy operator

for a single qubit should have zero expectation value for any state in this basis. Since

this statement is also true for any other product basis, we conclude (erroneously) that the

entropy operator is zero.

The confusing aspect of the RT formula is that it seems makes the replacement

(− ln ρR)→ Â(Xmin)

4G

∣∣∣X h∼R

∂X=∂R
, (1.4)

thus, identifying the area operator with the modular Hamiltonian [10, 11]. Just as − ln ρR
was state dependent, the surface on which the area operator is evaluated, Xmin, depends on

the dual geometry and consequently on the state. One might then be tempted to generalize

the RT proposal to

SR(|ψ〉) = 〈ψ|Â|ψ〉, (1.5)

Â ≡
∑
i

A(Xi
min)

4G
Pi, (1.6)

where the projection operators, Pi, project onto subspaces of states with the same classical

geometry, and Xi
min is the extremal surface in that geometry. We also removed the operator

symbol from the area term due to the presence of the projection operators. Moreover, this

construction assumes that we are working at leading order in the 1/c expansion. To this

accuracy, different semi-classical states are orthogonal and this operator is block diagonal

in this basis allowing for no off-diagonal terms between states of different geometries.
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However, as we will argue below, a minimal area operator can be constructed as a

gauge invariant linear operator in the Hilbert space. Thus, it is sufficient to generalize RT

by simply writing the area operator as

Â ≡ Â(Xmin)

4G
(1.7)

where now Xmin will be operator valued and will specify the location of the minimal area

surface in any geometry. We will investigate how we expect the off-diagonal elements of

this operator to behave.

The goal of this paper is to study the applicability of this interpretation of RT beyond

semi-classical states. Since the question in focus is about linearity, we investigate what both

sides of equation (1.5) produce for states dual to macroscopic superpositions of distinct

bulk geometries. We are thus considering an ‘extended RT proposal’ which asserts that

the entanglement entropy of a subregion in the CFT is still given by the expectation value

of the area operator within states dual to superpositions of geometric states. This extended

RT proposal does not follow trivially from the RT formula (or its derivations) for a single

geometry; we will nevertheless provide evidence in favor of the extended RT proposal within

certain limits. Since it is crucial to compare the calculation on both sides of the duality,

we will focus on the context of AdS3/CFT2, relying heavily on computational techniques

of holographic 1+1 CFTs. Our main probe will be the entanglement entropy of a single

interval on the cylinder. What we will find is that the entropy behaves like a linear operator

within a large class of subspaces of semi-classical states of dimension less than eO(c).

Is this result general? We argue yes. By analogy with thermodynamics, where changes

in entropy are related to fluxes of energy (a manifest observable), our proposal is that

a thermodynamic or large N limit is sufficient to have entropies which behave as the

approximate expectation value of a linear operator. Our result that entropies average in

two dimensional holographic CFTs supports this proposal. We also exhibit an information

theoretic setting where entropy behaves as the expectation of a linear operator. The key

idea is that in an appropriate thermodynamic limit the entropy can be determined by

performing a measurement which only weakly disturbs the state. Finally, we discuss a

number of related issues including the non-linearity of the Renyi entropy, the precise limits

of linearity, and the role of strong coupling.

A similar proposal has been sketched by [12]; we discuss in more detail the relationship

between their proposal and our work in the discussion.

2 The area operator of the Ryu-Takayanagi proposal

In this section, we define the quantities that appear on the right hand side of equation (1.5)

in some more detail. Firstly, this formula was checked in 1 + 1 holographic CFTs for

many states dual to semi-classical geometries,1 i.e. small quantum fluctuations on a fixed

1We do not exclude states with non-classical bulk regions provided those bulk regions are not probed by

the Ryu-Takayanagi surface associated with any boundary region. These states might be characterized as

having an extremal surface barrier [13] shielding the non-classical regions.
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gravitational background, where the notion of area is unambiguously well defined. The

natural interpretation of these states is as coherent states constructed from the metric

and conjugate momenta and are highly peaked about some classical solution of Einstein’s

equations. The fluctuations about the classical solution are suppressed by a power of ~
which is controlled by some negative power of the central charge, c.

2.1 A gauge invariant area operator

The area operator Â(Xmin) is an operator in quantum gravity and needs to be defined in a

gauge invariant way [14]. This is usually ensured by defining the operator with respect to

something fixed under gauge transformations [15]. In the specific case of AdS, pure gauge

diffeomorphisms are those that keep the boundary conditions of AdS fixed [16, 17]. Thus,

Â(Xmin) needs to be completely specified by boundary data to be gauge invariant. In

particular, the curve Xmin needs to be localized in a gauge invariant way, i.e. determinable

purely from some boundary data.

The bulk interpretation of the area operator 1.7 on a state can be achieved with

the following prescription. Starting with a |ψ〉 of the entire CFT, one can, in principle,

construct the background geometry with something like the HKLL formalism [18–20] as

expectation values of geometric bulk fields. We can then consider all co-dimension 2 surfaces

on this geometry that are anchored on the boundary of R and homologous to it and find

the specific one that extremizes the area. If there are multiple such surfaces we simply take

the one with smallest area. This locates Xmin in a gauge invariant way. Since the area

operator is then evaluated on this surface, it is also gauge invariant.

2.2 The boundary support of the area operator

The next thing to determine is the support of Â(Xmin) in the CFT. In the bulk, this

operator lies on the edge of the entanglement wedge of the region R. The entanglement

wedge is defined as the domain of dependence of a spacelike surface bounded by R and

Xmin [21]. The part of the bulk this process carves out is the entanglement wedge. That all

operators within the entanglement wedge have representations only on R has been argued

for in [22], and proven recently in [23]. We will take this point of view for the rest of this

paper. One might worry about Â(Xmin) acting on the edge of the entanglement wedge

and whether that really should be considered as part of the wedge. This can be dealt with

by defining Â(Xmin) in a limit sense; follow the same prescription for a slightly smaller

interval, that area operator is guaranteed to lie within the entanglement wedge of R [13],

and then take the limit as the intervals become the same size.

2.3 The linearity of the area operator

A commonly raised question about the minimal area operator of the RT proposal is whether

it is state dependent in the same way as the entanglement entropy. We argue that while

it is certainly state dependent with regards to picking a different surface for each state it

nevertheless is still a linear operator. This is a mild form of state dependence, otherwise

known as background dependence [24], unlike what is found with the entanglement entropy.
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We described in the introduction, around equation (1.6), how the minimal area opera-

tor can be constructed to leading order in the 1/c expansion by using projection operators

that project onto subspaces with the same background geometry. This operator is by con-

struction a linear operator and is block diagonal in a semi-classical basis. Thus, it contains

no off-diagonal terms between states of different background geometry.

Here we want to present a different definition of the minimal area operator which allows

for the presence of off-diagonal terms. We make no statement about the uniqueness of this

construction but believe that all definitions will behave more or less in the same way. In

particular, they should all agree with 1.6 in the infinite c limit.

First, let us write the area operator that is evaluated on some surface X̂. We will

shortly specify more carefully how X̂ is defined. The area is

Â(ĝ, X̂) =

∫
dŷ
√
ĝ(ŷ). (2.1)

The measure dŷ should be understood as determining the domain of the integral as localized

on the surface X̂. In order for this quantity to be well defined, we need to specify X̂ in a

gauge invariant way. This can be achieved by pinning down its location relationally in terms

of proper distances to some boundary points b via an operator relation dĝ
[
y, b; θ̂(b)

]
= f̂(b);

the metric dependence comes in from the definition of the proper distance between ŷ and

b. The operator θ̂(b) specifies along which geodesic to travel into the bulk and the operator

f̂(b) determines the amount of proper distance required to reach the surface. Together,

they determine the shape and location of the bulk surface and will be determined shortly

by the minimization condition. Inverting this relation gives

ŷ(b) = d−1
ĝ

[
f̂(b), b, θ̂(b)

]
. (2.2)

This process is only consistent if ŷ is an operator since it depends on the metric field

operator, f̂ , and θ̂. Plugging this back into 2.1 we obtain

Â(ĝ, f̂ , θ̂) =

∫
db J ĝ

f̂(b),θ̂(b)

√
−ĝ
(
d−1
ĝ

[
f̂(b), b, θ̂(b)

])
, (2.3)

where J ĝ
f̂(b),θ̂(b)

is a Jacobian factor which depends on ĝ, f̂ , and θ̂. Thus, we can think of

the area operator as a function of the background metric ĝ and of f̂ and θ̂ which specify

the surface. To get the minimal area operator we simply require that it is minimal with

respect to f̂ and θ̂,

δf̂ Â(ĝ, f̂ , θ̂) = 0 (2.4)

δθ̂Â(ĝ, f̂ , θ̂) = 0 (2.5)

as an operator equation. The next step would be to solve for f̂ and θ̂ in terms of ĝ and

plug it back into 2.3. This procedure would ultimately produce a minimal area operator

as a function purely of the metric.

To be clear, the construction above is formal and, for example, involves non-polynomial

functions of the metric. Although it is beyond the scope of our work, it is possible that
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there is a fully non-perturbative definition of the bulk quantum gravity in which case the

formal manipulations above might yield a non-perturbatively defined linear area operator.

Alternatively, we may work perturbatively around semi-classical solutions in which case the

above formal manipulations can be used to define an operator order-by-order in perturba-

tion theory. Such a perturbative construction is sufficient for most of our statements and

amounts to working with a space of states defined on top of the quantum state describing

the classical solution. In the context of AdS/CFT, an intriguing possibility is that there

exists a CFT operator defined on the whole Hilbert space which approximately reduces to

the perturbatively defined area operator around any given saddle.

2.4 The area operator on superpositions — A prediction

Having shown that the RT area operator computes a physical gauge invariant quantity in

the bulk, it is plausible to assume that it is given by a linear operator when acting on any

subspace spanned by semi-classical states. The goal of this subsection is to understand the

structure of the off-diagonal components of the area operator within such a subspace.

The correct way to think of the area term appearing on the right hand side of RT is

as the saddle point evaluation of the expectation value of the area operator,〈
Â (ĝ)

〉
≈ A(gs), (2.6)

where gs is the dominant saddle point of the partition function. Note that this is an O(c0)

number; here we are evaluating the expectation value of the area operator without the

factor of 1/GN . One way to see this is via the generating function of moments of A,

Z(J) =

∫
Dg eJA(g)e−cS(g). (2.7)

Because A involves no explicit c dependence, the dominant saddle point of Z[J ] approaches

the dominant saddle point of Z[0] for any fixed J as c → ∞. This implies that the

fluctuations of A go to zero,〈[
Â (ĝ)

]2〉− 〈Â (ĝ)
〉2 ≈ 0 as GN ∼ 1/c→ 0. (2.8)

Thus, semi-classical states that can be prepared using the path integral become eigenstates

of the area operator in the infinite c limit.2 The rest of this section will investigate the

nature of the suppression of the off-diagonal elements of the area operator.

States with energy O(c0). Consider first the subspace of states of energy O(c0). All

of these states are dual to pure AdS with a very diffuse gas of particles or possibly black

holes whose mass does not scale with c. Einstein’s equations predict that the deformation

2The same result can be obtained by taking c →∞ with J/c fixed, differentiating with respect to J/c,

and then taking J/c→ 0. If we differentiate but do not set J/c→ 0, then we are computing the flucutation

of the area operator around a different saddle point. These two ways of computing the flucutation around

the original saddle point will agree provided the limits c→∞ and J → 0 commute.

– 7 –
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of this stress energy away from pure AdS will be suppressed by 1/c. To see this, consider

the linearized form of Einstein’s equations

�µν
αβhµν = GNTαβ , (2.9)

where hµν is a perturbation of the metric, Tαβ is the stress energy of matter in AdS, and

� is some differential operator. The background spacetime is determined by the sourceless

Einstein equations. The deformation of the area of a surface away from the background

value is controlled by h as

δA ∼
∫

Σ
(. . . )µν hµν (2.10)

∼ GN
∫

Σ
(. . . )µν

∫
Kαβ
µν Tαβ (2.11)

where K is the Green’s function solving 2.9.

To estimate the cross terms, we first promote equations (2.9)–(2.11) to operator equa-

tions. Then the area operator will have the form

Â =

∫
Σ

√
−g +GN

∫
Σ

(. . . )µν
∫
Kαβ
µν T̂αβ , (2.12)

and we can directly compute its matrix elements. These will be

〈i|Â|j〉 = δij

∫
Σ

√
−g +GN

∫
Σ

(. . . )µν
∫
Kαβ
µν 〈i|T̂αβ |j〉. (2.13)

Since the matrix elements of the stress tensor is O(c0) within this subspace, we conclude

that the off-diagonal elements in this subspace is suppressed by GN ∼ 1/c. Notice also

that the eigenvalues degenerate in this limit.

If we consider an arbitrary state within this low energy subspace, one might worry that

the small off-diagonal terms could potentially add up and compete with the diagonal terms.

However, due to the sparseness condition on the CFT, the dimension of this subspace is not

large enough to ever make the off-diagonal terms matter; the number of states of energy

O(c0) is � O(c) and so the off-diagonal contribution will always be O(c−1). Thus we

conclude that the area of the minimal surface for any state in this subspace is same to

leading order in c.

States with energy scaling with c. At energies scaling with the central charge, it is

characteristic of holographic theories to have a fairly dense spectrum possibly admitting a

statistical description. Here we have in mind using the eigenstate thermalization hypothesis

(ETH) [25, 26] to conjecture a form for the area operator at high energies. ETH states

that the expectation value of a suitably coarse operator in an energy eigenstate is given

by its microcanonical average. This statement is supposed to hold for states with a finite

energy density, meaning

lim
c→∞

E − Eg
c

> 0 (2.14)
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where Eg is the ground state energy. Since the notion of geometry is expected to be an

emergent coarse phenomenon of holographic theories, one would expect that the spectrum

of the operator which probes this geometry to be dictated by ETH. Assuming ETH, the

form of the area operator in an energy eigenstate basis at high energies will be

Âαβ = A(Eαβ)δαβ + e−S(Eαβ)/2f(Eαβ)Rαβ (2.15)

where Eαβ =
Eα+Eβ

2 and A, f are smooth functions of the average energy. Rαβ is an erratic

function of α and β with zero mean and unit average magnitude. S(Eαβ) is the logarithm

of the number of states between Eα and Eβ .

To get a sense of the structure of energy eigenstates, we follow Hawking and Page [27]

and consider a system composed of thermal gas and black holes in more than three dimen-

sions. Let us focus on a microcanonical ensemble of states centered around an energy E

with width of order c0. The dominant state within this ensemble can be determined by

comparing the number of states, or the entropy, of the possible configurations with energy

∼ E. In comparing a thermal gas of light particles in AdS and a black hole, one finds four

possible phases. Below some energy E0 all black holes evaporate and the dominant state

is a thermal gas. Above a higher energy E2 all configurations of gas collapse to form a

black hole. Between these two energies there exists stable configurations of either a gas or

a small black hole, but which configuration dominates depends on the energy. Across some

energy E1 within this window the dominance of the two configurations switches from gas

to black hole as the energy is increased. The restriction to greater than three dimensions

arises because there are no small black holes in AdS3, but in more complicated examples

coming from string theory the phase structure can be much richer and can include small

“enigmatic” black holes [28, 29].

However, we must be cautious in applying ETH reasoning to microcanonical phases

with both gas and black hole states because the energies involved scale like ca with a < 1

so these states do not lie within the traditional regime of validity of ETH. Very large

black holes, with energy scaling like c, always have E > E2 and hence reside in a regime

where the only stable solutions are black holes. For such energies it is plausible that all

microstates “look the same” geometrically and have small off diagonal matrix elements for

the area operator in accord with ETH. Assuming also that the area operator is a coarse

operator then the off-diagonal matrix elements of the area operator can be neglected until

we consider an exponentially large superposition of microstates.

For states of intermediate energy we cannot make as strong a statement. We would

expect matrix elements of the area operator between different energy eigenstates to be at

least of order O(c−1), so that one can still superpose a small number of microstates while

neglecting off diagonal matrix elements. It is not even clear if the microstates are geometric

at intermediate energies, say between E0 and E2. It is possible that ETH could still apply

with a different notion of energy density, i.e. keeping E−E0
ca > 0 as c→∞.

It might also be possible to construct sets of wave packets, each consisting of many

microstates, such that the corresponding states are approximately stationary (on shorter

than exponential times) and are approximately geometrical, being either approximately a
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black hole or approximately a thermal gas. Within sets of such approximate black hole

states, say, we might again suspect that the matrix elements of the area operator are

exponentially small.

Summary and prediction. We have presented plausible reasons for thinking that the

area operator behaves as a coarse operator and should have suppressed off-diagonal compo-

nents. We discussed how the area operator maintains the same result for any state within

a low energy subspace of energy O(c0). At higher energies something different happens.

Consider the expectation value of the area operator in an arbitrary state

|ψ〉 =

M∑
α

cα|Eα〉 (2.16)

within a small shell of high energy way above the Hawking Page transition. Using the ETH

form of the area operator 2.15 this is

〈ψ|Â|ψ〉 = A(E) + e−S(E)/2f(E)

M∑
αβ

c∗αRαβcβ (2.17)

where we have assumed that the functions A, S, and f are more or less constant within

the considered energy window. Recall that the matrix Rαβ oscillates wildly as a function

of its indices. Thus, for an arbitrary state with random cα’s the sum above will be highly

suppressed. In fact, even if we pick all the cα’s to be equal, it would still not contribute.

The only way to deviate from the microcanonical average is by carefully choosing the

coefficients to correlate with the fluctuations in Rαβ . Even with this fine tuning, this sum

can at most be M1/2,3 In order to deviate by an order one amount from the microcanonical

average, the state must consist of a finely tuned superposition involving eS(E) states.

The result of this subsection is that as long as we don’t consider finely tuned states of

eO(c) terms then the expectation value of the area operator will simply be the average of

the area in each branch of the wavefunction. Therefore, we can combine this with the RT

proposal and make a prediction for the behavior of entropy within such a superposition.

In particular we predict that

lim
c→∞

SR

(∑
i αi|ψi〉

)
−
∑

i |αi|2SR
(
|ψi〉

)
c

= 0 (2.18)

for a superposition of semiclassical states |ψi〉. We will confirm this prediction in the

following sections to come.

3 How to compute entanglement entropy in 1 + 1 CFTs

Let us review how entanglement entropy of subregions is computed in 1+1 CFTs. We

describe the procedure for arbitrary subregions in general states and discuss the simplifi-

3cαRαβcβ is just the largest eigenvalue of matrix R. If R is a random M ×M Hermitian matrix with

all matrix elements independent and normally distributed, then the maximum eigenvalue is known to be of

order M1/2 [30, 31]. In our case, M ∼ eS(E) so the largest eigenvalue is of order eS(E)/2.
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cations which occur in holographic CFTs. We will explicitly perform the calculation for a

single interval in a primary state. This will mostly be a summary of [32, 33].

3.1 Entanglement entropy and the replica trick

The entanglement entropy, also called the von Neumann entropy, of a subsystem R of a

quantum system is given by

SR = −trρR ln ρR, (3.1)

where ρR is the density matrix of R obtained by tracing over the rest of the system,

ρR = trR̄|ψ〉〈ψ|. This quantity is usually technically difficult to compute in a quantum

field theory due to the logarithm, but can be simplified by using the so-called ‘replica trick’

to re-express it as

SR = lim
n→1

1

1− n
ln [trρnR] ≡ lim

n→1
SRn , (3.2)

where SRn is called the nth Renyi entropy of R. Since the trace of any density matrix is

one and all its eigenvalues are positive definite, one can show that the Renyi entropies are

absolutely convergent and analytic for all Re[n] > 1.4 This justifies the continuation of n

and allows one to represent the entropy as

SR = lim
n→1

SRn = − lim
n→1+

∂ntrρnR. (3.3)

Thus, the problem of finding the entropy has been reduced to computing the trace of

the nth power of the density matrix as an analytic function of n. This latter task can be

implemented by evaluating the partition function of the theory on the replicated manifold

Cn with the different sheets identified across the interval R [32]. With the appropriate

normalization this is

trρnR =
Zn
Zn1

, (3.4)

where Z1 is the partition function of the CFT in question. When computing the entropy

in an arbitrary state |ψ〉, Z1 is given by 〈ψ|ψ〉. Zn is the ‘replicated’ partition function

obtained by gluing n copies of the original CFT along the region R. Note that the replicated

density matrix satisfies the condition that trρnR → 1 as n→ 1.

It turns out there is a further simplification for computing this quantity. Let us consider

the case where R is a subregion composed of N disjoint intervals. By considering the

expectation value of the stress tensor within the replicated partition function [32], one can

show that that Zn can be written as the 2N -point function of so-called twist operators,

trρnR =
Zn
Zn1

= 〈ψ⊗n|
N∏
i

σn(ui, ūi)σ−n(vi, v̄i)|ψ⊗n〉, (3.5)

4This statement is true for any quantum system of finite total Hilbert space dimension, for example, a

quantum field theory in a finite box with a lattice regulator. New singularities can appear when the number

of degrees of freedom goes to infinity.

– 11 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
4

where this expectation value is evaluated in the orbifold theory on Cn and |ψ⊗n〉 =⊗n
i=1 |ψ〉. The coordinates ui and vi are the endpoints of the intervals. In this theory,

the twist operators behave as primary operators of dimensions

htwist = h̄twist =
c

12

(
n− 1

n

)
(3.6)

and vanishing spin.

3.2 A single interval example

Now we specialize to computing the entanglement entropy of a single interval on the cylinder

in an excited state. We will consider an arbitrary primary state prepared in the usual way

using the state-operator correspondence,

|O〉 ≡ lim
x,x̄→0

O(x, x̄)|0〉, (3.7)

where O is an arbitrary primary operator of dimensions h, h̄. The conjugate of this state

is defined as

〈O| ≡ lim
x,x̄→∞

x2hx̄2h̄〈0|O†(x, x̄), (3.8)

which ensures the state is normalized to one. The trace of the replicated density matrix

on an interval R in this state is

trρnR = 〈O⊗n |σn(z, z̄)σ−n(1, 1)|O⊗n〉 (3.9)

= 〈0⊗n| O† ⊗ . . .⊗O†︸ ︷︷ ︸
n

σn(z, z̄)σ−n(1, 1)O ⊗ . . .⊗O︸ ︷︷ ︸
n

|0⊗n〉. (3.10)

The location of z and z̄ will be restricted to the unit circle on the x-plane; this chooses

a preferred, and natural, time slicing of the CFT on the cylinder. The locations of these

operators is presented in figure 1.

This is a four point function of primary operators in the orbifold theory on Cn. We

can use the techniques of conformal blocks to compute this expression. By performing an

operator product expansion (OPE) in the t-channel of the two tensor product operators

together and the two twist operators together we get

〈0|(O†)nσn(z, z̄)σ−n(1, 1) (O)n |0〉 =
∑
p

CO
nOn

p Cσnσnp FOnOnσnσn (p|1− z) F̄OnOnσnσn (p|1− z̄) ,

(3.11)

where the sum p is over all the primary operators of the theory. Conformal invariance fixes

the contribution from all the descendent operators, which are implicitly resummed to give

the functions F and F̄ . These functions are known as ‘conformal blocks’ and are functions

of the dimensions of all the operators appearing in the four point function and the internal

primary operator.
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Figure 1. The configuration of operators in the four-point function expression of the replicated

density matrix. The blue line represents the subregion R of the CFT. The twist operators are

restricted to the unit circle representing a single spatial slice of the cylinder.

We see that the entanglement entropy depends on the details of the theory through

the values of the OPE coefficients Cijk . In holographic theories, those with large central

charge and a sparse spectrum of light operators, such a four point function is dominated

by the identity block contribution. The OPE coefficient of this contribution is simply

1, giving a universal result for holographic theories. We should note, however, that this

dominance of the identity block fails for states composed of many, O(c), light operators

as first observed in [34] in the context of supersymmetric CFTs.5 In this case the OPE

coefficients between light operators and the highly composite operator will be proportional

to the number of light operators in the composite and will scale as some positive power of

c; one can think of this as simply the expectation value of the light operator in the state

created by the composite. These non-identity contributions can then potentially compete

with the identity block. We will assume in this paper that we are working with states for

which the identity block dominates.

Let us specialize to the case where O is a heavy operator of no spin, i.e. h = h̄ ∼ c.

In the bulk, this dimension translates to the total mass of the spacetime, up to a factor

of the AdS radius. As discussed in section 2.4, for large enough operator dimension the

dominant configuration in the bulk is a black hole [27]. Since the state is pure, this is more

precisely a black hole microstate. The exterior of this black hole is described to a very

good approximation by the standard BTZ geometry.

For n greater than one, 3.11 is a four point function of heavy operators. The form

of the identity block in this case is actually not known in closed form, but a perturbative

expansion in 1−z can be performed [36]. However, a nonperturbative result can be obtained

in the limit as n→ 1 [37]. Because the dimension of the twist operators is proportional to

n−1, the four point function in this limit becomes that of two heavy and two light operators

〈0|O†σ1+ε(z, z̄)σ−(1+ε)(1, 1)O|0〉 = F (0|1− z) F̄ (0|1− z̄) , (3.12)

5See also [33, 35]. We thank the authors of [34] for bringing this to our attention.
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Figure 2. Two different possible channels for computing the OPE between the two twist operators.

The identity block contribution depends sensitively on the chosen channel. The identity block in the

channel taken in the right diagram is more dominant than that of the left, and well approximates

the four-point function. Dominance switches across l = π.

where we took n = 1 + ε, and restricted to the identity block term. Remember that the

blocks are functions of the dimensions of the O’s and the twist operators. As discussed

in [36, 37], this can be obtained in closed form by solving a differential equation with

nontrivial monodromy. The leading term in ε contribution to this four point function is

〈0|O†σ1+ε(z, z̄)σ−(1+ε)(1, 1)O|0〉 =

[
|z|1−α|1− zα|2

α2

]−c(n2−n)/3

(3.13)

where α =
√

1− 24hi/c. Using eq. (3.3) gives the entanglement entropy

S =
c

3
ln

[
β

πεUV
sinh

(
lπ

β

)]
(3.14)

where β ≡ 2π/
√

24h/c− 1, l is the size of the interval, and εUV is the UV cut-off. For

l < π, this is precisely the answer one would get for the entanglement entropy of an interval

in the thermal state given by temperature β. This is a manifestation of the fact that the

geometry outside this BTZ microstate is almost identical to that in the BTZ geometry.

Naively continuing this expression to l > π actually gives the wrong result for the

entropy in that regime. In fact, since the state we considered is a rotationally symmetric

pure state we should expect the entropy to be symmetric under l↔ 2π− l. Since the state

it pure, the entropy should start to decrease once the interval encompasses more than half

of the system. This is not the case for 3.14.

The resolution of this issue was discussed by [33] where they point out that the identity

block contribution in 3.13 is not analytic. In particular it is not invariant under l→ l+2π.

Due to this monodromy, the result is sensitive to how σn(z, z̄) is wound around the origin

where On is located. Since there is more than one way to get to any point on the unit

circle, there can be many different identity block ‘channels’. [33] notes, however, that since
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Figure 3. The replicated density matrix is represented after uniformization as a 2n point function

of O and O† on the unit circle. The dark circles represent O insertions while the hollow circles

represent O† insertions.

the exact four point function is analytic, the dominant identity block channel must be

equivalent to any subdominant identity block channel plus contributions from other non-

identity blocks. Thus, the four point function is well approximated by the dominant identity

block contribution across all channels. In this case, this is the channel which involves no

winding around the origin and is taken along an arc of angle less than π. This is shown in

figure 2. With this understanding the Renyi entropy and, thus, the von-Neumann entropy

are both symmetric under l↔ 2π − l.
There is actually a clearer way to see that 3.11 is manifestly symmetric under l↔ 2π−l.

Consider performing a uniformizing coordinate transformation,

w =

[(
z − 1

z − eil

)
eil
]1/n

, (3.15)

that removes the twist operators and puts all the operators on a single complex plane.

Under this transformation the coordinates map to

z → 0 : w → e
i2πk
n (3.16)

z →∞ : w → e
i2πk
n

+ il
n (3.17)

for k an integer ∈ [0, n). k labels which branch an operator came from. In this coordinate

system the four-point function becomes, up to a proportionality constant that depends on

l and is symmetric under l↔ 2π − l, the following

〈0|O(1)O†(ei
l
n )O(ei

2π
n )O†(ei

2π+l
n ) . . .O(ei

2π(n−1)
n )O†(ei

2π(n−1)+l
n )|0〉. (3.18)

This is a 2n point function of O’s located at ei
2πk
n and O†’s placed in between at ei

2πk+l
n .

This is shown in figure 3. This representation makes it clear that the result will be sym-

metric under l↔ 2π − l. When l < π the dominant contribution will be from the identity
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Figure 4. The dominant identity block OPE channel for computing the replicated density matrix.

The blue circles indicates how the OPE expansion is taken. The locations of O† (the hollow circles)

move as l is changed. We see that the operator pairing switches at l = π.

block taken in the channel O(ei
2πk
n )→ O†(ei

2πk+l
n ). And When the case of l > π, the dom-

inant contribution comes from the O(ei
2π(k+1)

n )→ O†(ei
2πk+l
n ) channel. These two different

channels are represented in figure 4.

To conclude, the entanglement entropy of an interval in a heavy state of zero spin is

given by

S =
c

3
ln

[
β

πε
sinh

(
lπ

β

)]
, l < π (3.19)

=
c

3
ln

[
β

πε
sinh

(
(2π − l)π

β

)]
, l > π. (3.20)

As noted in [33], this result can be obtained from the bulk using the RT prescription

but without imposing the homology constraint. It is not actually clear what imposing

this constraint would mean given that the interior of a black hole microstate is not really

well understood.

And finally, one can also extract the answer for a light state, h/c → 0 as c → ∞, by

simply continuing h/c→ 0. In this limit β → 2πi giving

S =
c

3
ln

[
2

ε
sin

(
l

2

)]
(3.21)

which works for all l.

4 Entanglement entropy for superpositions of semi-classical states

We present in this section the computation of entanglement entropy for states dual to

macroscopic superpositions of semi-classical geometries. We focus mainly on two classes

of such states: superpositions of pure one-sided states considered in section 3.2 and super-

positions of thermofield doubles of different temperatures. This will mostly be a summary

and the explicit details will be left to appendix A.
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4.1 Superpositions of one-sided AdS spacetimes

Let us begin by considering superpositions of pure one-sided states constructed from the

orthogonal basis {
Oi|0〉

}
, (4.1)

where Oi are primary operators. States with low dimension correspond to perturbations

of pure AdS, while those of high dimension correspond to black hole microstates.

We want to compute the entanglement entropy of an interval in states of the form

|Ψ〉 =

M∑
i=1

αiOi(0, 0)|0〉 ≡ Ψ|0〉, (4.2)

where Oi are orthogonal primary operators. Following the techniques of section 3, we can

compute the entanglement entropy of an interval using the replica trick. Just as before,

we need to compute the replicated density matrix of the interval. This is given by

trρn = 〈0|(Ψ†(∞))nσn(1, 1)σn(z, z̄)(Ψ(0, 0))n|0〉 (4.3)

= 〈0|

(∑
i

α∗i (Oi(0))†
)n

σn(z, z̄)σ−n(1, 1)

(∑
i

αiOi(0)

)n
|0〉 (4.4)

=
n∑

a1,...,aM=0
b1,...,bM=0

αa11 . . . αaMM α∗b11 . . . α∗bMM

× 〈0|(O†1)b1 . . . (O†M )bMσn(z, z̄)σ−n(1, 1)Oa11 . . .OaMM |0〉 (4.5)

where

Oa11 . . .OaMM ≡
a1︷ ︸︸ ︷

O1 ⊗ . . .⊗O1⊗ · · · ⊗
aM︷ ︸︸ ︷

OM ⊗ . . .⊗OM +

(
n!

a1! . . . aM !
− 1

)
permutations

(4.6)

with the condition that
∑M

i=1 ai =
∑M

i=1 bi = n. These are orbifold symmetric primary

operators belonging to the orbifold CFT on Cn.

The replicated density matrix 4.5 is thus a sum of four point functions of heavy oper-

ators for n > 1. We are interested in computing this quantity for a holographic theory, so

we assume the all the four point functions are well approximated by their identity block

contribution. Restricting to the identity block in the t-channel offers an immediate simpli-

fication of the above expression. Since the identity block can only appear in the expansion

of two non-orthogonal operators of the same dimension, only terms with ai = bi contribute.

Thus, 4.5 reduces to

trρn =

n∑
a1,...,aM=0

|α1|2a1 . . . |αM |2aM 〈0|O†a11 . . .O†aMM σn(z, z̄)σ−n(1, 1)Oa11 . . .OaMM |0〉.

(4.7)
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This expression is also symmetric under l ↔ 2π − l for the very same reasons 3.10 is as

explained in figure 4. Let us see how this works explicitly. Let us call the terms where any

ai = n the ‘diagonal’ terms and everything else the ‘off-diagonal’ terms.

It is clear that the diagonal terms have the exact form as 3.10, and so this symmetry

follows by the same reasoning. There is an interesting twist for the off-diagonal terms.

The different operator orderings in 4.6 for the operator and its complex conjugate pair up

in just the right way as l is changed. For simplicity, let us focus on the n = 2 case for a

superposition of only two primary states. The off-diagonal term of the n = 2 replicated

density matrix is given by

trρ2
OD ∝ 〈0|

(
O†1 ⊗O

†
2 +O†2 ⊗O

†
1

)
σ2(z, z̄)σ−2(1, 1)

(
O1 ⊗O2 +O2 ⊗O1

)
|0〉 (4.8)

∝ 〈0|O†1 ⊗O
†
2σ2σ−2O1 ⊗O2|0〉+ 〈0|O†2 ⊗O

†
1σ2σ−2O2 ⊗O1|0〉

+ 〈0|O†1 ⊗O
†
2σ2σ−2O2 ⊗O1|0〉+ 〈0|O†2 ⊗O

†
1σ2σ−2O1 ⊗O2|0〉. (4.9)

Notice the difference in the operator orderings in the last equation. After uniformizing,

we find that the channel which expands O†1 with O1 and O†2 with O2 in the first two

terms expands O†1 with O2 and O†2 with O1 in the latter two, and vice versa. Thus, the

identity block exists in either the first pair of terms or the second and not together. We

are forced to apply the same channel for all the terms since that choice is inherited from

picking a channel of the orbifold symmetric operators in the four point function before

breaking it up into its components. It turns out that the identity block from the first pair

of terms dominates for l < π and from the second pair for l > π. This exchange ensures

the result has the required symmetry. The same line of reasoning applies for arbitrary n

and superposition.

To finally compute the entropy, we need to evaluate the four point functions appearing

in 4.7, and then preform the sum over the ai’s. As discussed previously, these four point

functions are not known in closed form for n > 1, except as a perturbative expansion in l.

We evaluate this expression with the following series of manipulations:

1. Consider first the different quantity

trρnm ≡
m∑

a1,...,aM=0

|α1|2a1 . . . |αM |2aM 〈0|O†a11 . . .O†aMM σn(z, z̄)σ−n(1, 1)Oa11 . . .OaMM |0〉.

(4.10)

This differs from 4.7 in the upper limit of the ai sums. It is clear that limm→n trρnm =

trρn.

2. Take the limit of n approaching 1, holding m fixed, where we know the explicit forms

of the four point functions appearing in the sum.

3. It turns out that even after plugging in these forms, it is still not easy to perform the

sum over a. We get around this by first performing an expansion in l and then do

the a sum term by term.
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4. Then take the limit as m→ n and act with limn→1 ∂n to obtain the entropy.

5. Finally, resum the series in l.

We believe this procedure gives the correct entanglement entropy based on the following

two strong pieces of evidence. One, it reproduces the result from the perturbative expansion

of the identity block in the size of the interval. Two, it maintains the requirement that

limn→1 trρn = 1. The details of the calculation are presented in appendix A.

The result we find is that the identity block contribution to the entanglement entropy

in the superposition 4.2 is exactly

S =
M∑
i=1

|αi|2Si (4.11)

where Si is the entanglement entropy of an interval in the state Oi|0〉. This will be a good

approximation to the entropy as long as the identity block contribution to the replicated

density matrix remains dominant. However, as M is increased the number of non-identity

block contributions proliferates faster than the identity block terms; there are M2n terms of

the former and Mn of the latter. The magnitude of the individual terms from the identity

block is larger than a typical non-identity block term by a factor of e#nc. Thus, we expect

that the identity block approximation fails once M ∼ eO(c).

4.2 Superpositions of eternal black holes

Next, let us consider superpositions of thermofield double states of different temperature.

These are states defined on a product Hilbert space of two CFTs each living on S × R,

and are dual to macroscopic superpositions of eternal black holes of different masses. Such

states are given by

|Ψ〉 =
M∑
i=1

αi|βi〉, (4.12)

where

|βi〉 =
1√
Z(βi)

∑
E

e−βiE/2|E〉L|E〉R (4.13)

and Z(β) = e
π2c
3β is the partition function of the theory. This state corresponds to a bulk

superposition of eternal black holes of different mass Mi = π2c/3β2
i .

Say we want to compute the entanglement entropy of the right CFT. For a single

TFD this computes the Bekenstein-Hawking entropy of the dual black hole. To obtain the

entropy in the superposition, we first compute the reduced density matrix of the right CFT

and find

ρR = TrL|Ψ〉〈Ψ| =
M∑
i=1

|α|2ρi +

M∑
i 6=j=1

2 Re (α∗iαj)
√
ρiρj , (4.14)
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where ρi = e−βiE/Z(βi). Immediately, the entanglement entropy is computed by

SR = −TrρR ln ρR (4.15)

= −
∫
dED(E)ρR ln ρR (4.16)

= −
∫
dED(E)

 M∑
i=1

|αi|2ρi +

M∑
i 6=j=1

2 Re (α∗iαj)
√
ρiρj

 ln ρR (4.17)

where D(E) is the density of states, which for a holographic CFT on a cylinder scales

as e
2π
√
cE
3 for large E. This expression can be evaluated term by term via saddle point.

Focusing on a term in the first sum of the above expression, we find that the saddle point

evaluates to ∫
dED(E)ρi ln ρR ∼ ln ρR|E→π2c/3β2

i
. (4.18)

It can be easily checked that ρR → |αi|2ρi as E → π2c/3β2
i ; ρi is always picked out as the

dominant term in the logarithm. Thus, the contribution of these terms to the entropy is

given by

−
M∑
i=1

|αi|2
∫
dED(E)ρi ln ρR ∼ −

M∑
i=1

|αi|2ρi ln |αi|2ρi (4.19)

∼
M∑
i=1

|αi|2S(ρi)−
M∑
i=1

|αi|2 ln |αi|2. (4.20)

The first term is simply the average of the entropies of the different branches of the wave-

function, while the second is a classical Shannon entropy known also as the entropy of

mixing [38].

The second sum in 4.17 can also be evaluated via saddle point, and we find∫
dED(E)

√
ρiρj ln ρR ∼ e

− 4π2c
3

(
1

8βi
+ 1

8βj
− 1

2(βi+βj)

)
ln ρR|E→2π2c/3(βi+βj)2 (4.21)

which is exponentially suppressed in c unless βi = βj . This result essentially follows from

the near orthogonality of the thermofield double states of different temperature; their

overlap is suppressed by the same exponential factor.

Putting these results together, we find that the entanglement entropy of the right

CFT is

SR =

M∑
i=1

|αi|2Si −
M∑
i=1

|αi|2 ln |αi|2. (4.22)

Thus, the entropy averages up to the entropy of mixing term. The entropy of mixing can be

at most lnM , so as long as M is much less than eO(c), the entropy of mixing term may be

neglected and the entropy averages. Once M is of order eO(c), the entropy of mixing term

can in principle compete with the average term; additionally, many of the approximations

made in reaching 4.22 become unreliable when M ∼ eO(c). So we do not expect and have

no evidence that the entropy averages in this regime.
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5 Linearity vs. homology

We showed in the previous section that, to leading order in c, the entanglement entropy

of an interval in states dual to macroscopic superpositions of a small number of distinct

classical geometries is given by the average of the entropy in each branch of the wavefunc-

tion, thus confirming the prediction 2.18. This is consistent with the statement that the

entropy is approximately represented as the expectation value of a linear operator. This

linear operator must have small off-diagonal matrix elements between semi-classical states,

consistent with the structure of the area operator. As before, all statements are valid for

superpositions of much fewer than eO(c) semi-classical states.

Moreover, we identified a new correction to the RT formula, the entropy of mixing,

which we expect to appear when the density matrices of the CFT subregion, and its

complement, in the different branches are distinguishable. In the regime where the leading

contribution to RT is the average of the areas of the different branches of the wavefunction,

this mixing term is subleading as compared to the area term.

It seems thus far that the leading contribution of the RT proposal is given by the

expectation value of a linear operator, namely the area operator. However, in this sec-

tion we identify another nonlinearity associated with the area contribution which arises

when considering eO(c) states but which manifests in different way. In contrast to the fail-

ure of nonlinearity discussed in the previous section, this contribution we will be able to

compute exactly.

5.1 A failure of linearity: homology

In order to see this nonlinearity, we restrict the RT formula to the area term which is always

the leading order in c contribution in any semi-classical state. For simplicity we continue

to work in the context of 1+1 holographic CFTs. Then, the prescription for computing

the entanglement entropy of an interval I in the state |Ψ〉 is

S
(
I, |Ψ〉

)
= 〈Ψ|ÂI |Ψ〉. (5.1)

We saw in the previous section that when dealing with single sided pure states the

entanglement entropy truly behaved like the expectation value of ÂI within subspaces of

semi-classical states spanned by
{
Oi|0〉

}
,6 and of dimension much less than eO(c). These are

pure states of one CFT on one connected manifold, specifically S1. One can ask whether

this same operator continues to work for mixed states of this CFT, or more specifically,

for pure states of two copies of the same CFT. We will focus on the latter case of a CFT

living on S1
L∪S1

R, which we label as left, L, and right, R. The question now is whether ÂI
applied to, say, the right CFT correctly computes the entanglement entropy of an interval

on states composed of the basis elements
{
OLi |0〉L⊗ORj |0〉R

}
. If the leading contribution

of RT is truly represented by a linear operator then this must be the case.

6Recall, we only showed this for primary states where the identity block dominates. We assume it

continues to hold for descendant states. However, we cannot rule out the possibility of states for which the

identity block does not dominate, but we expect these to be rare at high energies.

– 21 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
4

It is clear that it would do so for any single element of this basis, and also for any

superposition that produces a pure density matrix for both CFTs. To see the failure

of linearity, we need to consider a highly entangled state between the two CFTs. The

most convenient such state to consider is the thermofield double which contains order c

entanglement between the two CFTs. We choose one where the inverse temperature β is

small enough such that the dominant configuration is an eternal black hole. Using the

operator ÂI , the entropy of an interval on the right CFT is

S(I, |β〉) = 〈β|ÂI |β〉 (5.2)

=
∑
E

e−βE

Z(β)
〈E|ÂI |E〉. (5.3)

The first equality is simply the application of the RT formula. The second comes from the

fact that ÂI is an operator purely on the right CFT as is suggested from the entanglement

wedge reconstruction proposal discussed above in section 2.2. Equation 5.3 says that the

entropy in the thermal state is simply the thermal average of the entropy in the eigenstates.

We can evaluate this sum via saddle point methods while keeping in mind that the area

operator is a coarse operator and will not shift the saddle point to leading order in c as

discussed in section 2.4. We find that

S(I, |β〉) ≈ 〈Es|ÂI |Es〉, (5.4)

≈ S(I, |Es〉) (5.5)

where Es = π2c/3β2 is the average energy of the canonical ensemble at temperature β.

Thus, we have found that the entanglement entropy in the thermal state can be approxi-

mated by that of the pure state at the average energy of that ensemble. The state |Es〉 is a

pure black hole of the right CFT whose exterior geometry agrees with that of the thermal

state to leading order in c.

This result is immediately problematic; consider the situation where we are computing

the entropy of the entire CFT, or I = 2π. This implies

S(2π, |β〉) ≈ S(2π, |Es〉) = 0 (5.6)

which is obviously wrong! This should compute the entanglement between the two CFTs

in the thermal state which is proportional to c, reproducing the holographic result of

computing the area of the eternal black hole. This issue is very reminiscent of the earlier

objection using qubits discussed in the introduction; the entanglement entropy operator

which computes the entropy of the entire CFT is the zero operator when constructed in

a basis of pure states. Note also that this is different from the problem of cross terms in

the area operator adding up and changing the answer when there are too many states in

the superposition. The reason for this distinction is that the thermal density matrix is

diagonal and thus the cross terms 〈E′|Â|E〉 do not appear. We will discuss this issue and

its relation to the CFT calculation more carefully in the next section.

Surprisingly, however, the formula does not fail for all interval sizes. Let us consider the

bulk prescriptions for computing the entropy as a function of the size of the interval for the
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Figure 5. Minimal area surfaces which compute the entanglement entropy of various intervals of

the boundary CFT. Entropy of intervals smaller than π are the same for both a pure and eternal

block hole, and are given by green and blue curves. The two cases begin to differ once the interval

is larger than π, as those are given by different bulk surfaces as shown by the red and magenta

curves. We note that the difference for intervals that cover almost the entire boundary is exactly

the black hole entropy.

thermal state and the pure state. Starting with a small interval, we find that formula 5.5

gives the correct answer to leading order in c up until I = π. The discrepancy begins as

soon as I > π and gets worse as we make the interval larger. As noted, while 5.5 falls down

to zero, as it must, the thermal answer saturates at the thermal entropy 2π2c/3β.

The holographic reason for this discrepancy is clear, and is presented pictorially in fig-

ure 5. From the bulk perspective, the difference stems from the differing bulk prescriptions

for picking out the minimal area extremal surface in the single sided black hole geometry

versus the two sided eternal black hole. Recall that these geometries agree in the exterior

of the black hole. As shown in figure 5, the extremal surface that computes the entropy for

small intervals is the same for both cases up until I = π. Beyond this point, the extremal

surface for the single sided case jumps across to the other side of the black hole, while it

remains on the same side for the thermal case. Even though the surface on the other side

has smaller area than the surface on the same side, the homology constraint forces the

surface of thermal case to stay on the same side. As previously discussed in section 3.2

and [33], it is not clear what it means to impose the homology constraint in the pure case

as there might not be a geometric interior to these black holes [39, 40]. Nevertheless, the

CFT result requires the jump to the other side. This can be interpreted loosely as not

imposing the homology constraint in the pure case.

We conclude that there is not a single entropy operator ÂI which gives the correct

entropy for pure and highly mixed states for all intervals I. From a bulk perspective, the

nonlinearity was introduced by the requirement of imposing the homology constraint in one

case but not in the other. One can thus think of the homology prescription as specifying

the set of surfaces X̂ that we are allowed to extremize the area operator over. Thus, the

homology constraint precludes the entropy from being the expectation value of a single

linear operator defined on only one CFT.

We note that homology being the source of nonlinearity of entanglement entropy is

very reminiscent of the recently discussed ‘wormhole’ operator that measures whether two

– 23 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
4

separate AdS bulk spacetimes are connected via an Einstein-Rosen bridge. This is clearly

a nonlinear property of a state since the thermofield double, while dual to a wormhole, is

a superposition7 of states with manifestly no geometric connection [42].8

5.2 The source of the homology constraint in the CFT

From the bulk perspective, the discrepancy found in the previous section was due to impos-

ing the homology constraint. The considered thermal state is a two-sided superposition of

eO(c) states; the number of states is actually infinite, but the relevant terms which dominate

the canonical ensemble are those with energy roughly the average energy at the considered

temperature and number around eO(c). Therefore, we see that linearity fails once we have

a large number of terms in the superposition. However, in contrast to the previous issue

of non-identity block contributions becoming important, we will see that the homology

constraint can be explained via exchange of identity block channel dominance.

Let us compare the entanglement entropy computation of two states with the same

bulk dual, at least from one side. First, consider an approximate form of the thermofield

double. The TFD state

|TFD〉 =
1√
Z(β)

∑
E

e
−βE

2 |E〉L|E〉R (5.7)

can be approximated by terms within an energy shell of width O(c0) around the average

energy, Es = π2c/3β2. This defines a microcanonical ensemble. Let us assume β is small

enough to be above the Hawking-Page transition, thus each term in this state is dual to

a large black hole in AdS. We can then estimate the number of terms in the considered

energy shell to be given by the Cardy formula, e
2π
√
cEs
3 = e2π2c/3β . This approximate

state is

|T̃FD〉 =
1

Z(β)

e2π
√
cEs/3∑

i=1

e
−βEs

2 |Ei〉L|Ei〉R (5.8)

= e
−π

2c
3β

e2π
2c/3β∑
i=1

OLi ⊗ORi |0〉L|0〉R (5.9)

where we take the OL,Ri to be primary operators of dimension roughly Es. The restriction to

primary operators is a further approximation, since the number of descendant states in the

considered energy shell is an order one fraction of the total number of states. However, this

approximate state is expected to be accurate when studying coarse-grained observables,

namely those that satisfy ETH. As we will momentarily show, this state reproduces the

RT result of the entanglement entropy of an interval in a state dual to an eternal black

hole.

7This connection between superpositions and topology change has also been recently investigated in [41]

in the context of LLM geometries.
8This conclusion has been argued against in [43] which posits the necessity of ‘superselection information’

that determines whether the TFD is dual to a wormhole or a pair of disconnected black holes.
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We will actually first consider a truncated version of 5.9 to any M terms,

|Mixed〉 =
1√
M

M∑
i=1

OLi ⊗ORi |0〉L|0〉R. (5.10)

The specific choice will not matter since all of these operators have roughly the same di-

mension. The state we want to compare this to is a pure state on the right CFT constructed

from the right operators appearing in 5.10. This is

|Pure〉 =
1√
M

M∑
i=1

ORi |0〉R. (5.11)

The bulk dual of this state is a pure black hole, or a microstate, whose exterior geometry

is given by that of BTZ. Recall in our discussion below equation (2.17), such a state is

not atypical enough from the perspective of coarse observables. Both states 5.10 and 5.11

describe the same right exterior geometry.

Let us compute the entanglement entropy of an interval in these states. Their replicated

density matrices are

trρnPure = M−n
n∑

a1,...,aM=0

R〈0|O†a11 . . .O†aMM σn(eil, e−il)σ−n(1, 1)Oa11 . . .OaMM |0〉R (5.12)

trρnMixed = M−n
n∑

a1,...,aM=0
b1,...,bM=0

R〈0|O†b11 . . .O†bMM σn(eil, e−il)σ−n(1, 1)Oa11 . . .OaMM |0〉R

× L〈0|O†b11 . . .O†bMM Oa11 . . .OaMM |0〉L

= M−n
n∑

a1,...,aM=0

R〈0|O†a11 . . .O†aMM σn(eil, e−il)σ−n(1, 1)Oa11 . . .OaMM |0〉R, (5.13)

where

Oa11 . . .OaMM ≡
a1︷ ︸︸ ︷

O1 ⊗ . . .⊗O1⊗ · · · ⊗
aM︷ ︸︸ ︷

OM ⊗ . . .⊗OM +

(
n!

a1! . . . aM !
− 1

)
permutations,

(5.14)

and the contraction symbol between the operators indicates pairing of the same permuta-

tion. This is the only difference between the two replicated density matrices. Also, the

pure replicated density matrix obtains the presented form only after restricting to terms

with identity block contributions.

Let us compare the contributions to the entropy term by term, starting with the ai = n

terms. These are equal in both cases and produce the result

l < π Channel : SPure
ai=n = SMixed

ai=n = lnM +
c

3
ln

[
β

πε
sinh

(
lπ

β

)]
(5.15)

l > π Channel : SPure
ai=n = SMixed

ai=n = lnM +
c

3
ln

[
β

πε
sinh

(
(2π − l)π

β

)]
. (5.16)
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Just as in figure 4, the l < π channel corresponds to uniformizing and expanding the

operators on ei
2πk
n and ei

(2π+l)k
n together, and the l > π channel corresponds to expanding

the operators on ei
2πk
n and ei

(2π−l)k
n together.

Things are a bit trickier for the ai 6= n terms. Let us do this channel by channel. Due

to how the operators are arranged after uniformizing, the l < π channel will only involve

expansions of the form O†i → Oi for both states, and will definitely have an identity

block contribution. On the other hand, the states differ in their contribution in the l > π

channel. Since the permutations in the mixed case are matched, this channel will involve at

least one expansion of the form O†i → Oj with i 6= j, and will not receive an identity block

contribution; orthogonal operators cannot fuse into the identity and its descendants. As for

the pure case, the sum over permutations ensures there will always be a combination such

that the l > π channel expands O†i → Oi, and so will have an identity block contribution.

Using the techniques of appendix A, we find these contributions to be

l < π Channel : SPure
ai 6=n = SMixed

ai 6=n = − lnM (5.17)

l > π Channel : SPure
ai 6=n = − lnM, SMixed

ai 6=n = 0 (5.18)

Combining the contributions from both channels we get

SPure = Min

(
c

3
ln

[
β

πε
sinh

(
lπ

β

)]
;
c

3
ln

[
β

πε
sinh

(
(2π − l)π

β

)] )
(5.19)

SMixed = Min

(
c

3
ln

[
β

πε
sinh

(
lπ

β

)]
; lnM +

c

3
ln

[
β

πε
sinh

(
(2π − l)π

β

)] )
. (5.20)

The minimizing prescription comes from the rule that the correct identity block approxi-

mation to the replicated density matrix is the one which dominates over all other identity

block contributions across all channels.

Notice that both of these entropies have a discontinuous first derivative at some value

of l. From the bulk perspective, this corresponds to a transition between different RT

surfaces. The transition for the pure case occurs at l = π, ensuring that the entropy goes

to zero as the interval encompasses the entire CFT. The homology constraint is manifestly

not imposed, as there is no way to continuously deform the RT surface through the black

hole. For the mixed state, the discontinuity occurs at some l > π set by the mixing term

lnM . Choosing M = e2π2c/3β , SMixed reproduces the entropy of an interval in the thermal

state. The transition found here is exactly the bulk RT transition from a single surface into

two disconnected surfaces in the eternal black hole geometry. We see that for l = 2π, we

get the area of the horizon result consistent with the homology constraint. This behavior

is displayed pictorially in figure 6.

Let us consider intermediate values of lnM . For lnM � c, the transition occurs at

almost l ∼ π for the mixed case, and so there is almost no difference between the two

states. It then seems that the homology constraint is not imposed.9 An interesting case

9In this case, one can perhaps continue to assume that the homology constraint was imposed but that

the circumference of the ‘wormhole’ was too small, � O(c) in Planck units, to cause a significant shift in

the jump of the RT surface.
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Figure 6. The behavior of the RT surfaces as a function of M . When lnM � O(c) then we

see that the transition occurs at l = π, just as in the pure state. For lnM = 2π2c
3β attaining its

maximum value, the RT surface transition occurs just as in the thermal state. The lnM piece

computes the area the of the horizon. For the intermediate regime, where lnM = 2π2c
3β′ for β′ > β,

then the transition occurs somewhere in between. lnM , in this case, does not compute the area of

any surface in the exterior geometry.

to consider is when lnM = 2π2c/3β′, with β′ > β and does not depend on c. In this case,

there will be an appreciable distinction between the two states. After the transition, the

mixed state entropy will be

SMixed =
2π2c

3β′
+
c

3
ln

[
β

πε
sinh

(
(2π − l)π

β

)]
(5.21)

The second piece of this expression describes the usual RT surface anchored on the com-

plement of the interval. For β′ = β, the first term is the horizon area of the black hole.

However, for β′ > β, this contribution is smaller than the area, and there is no closed bulk

minimal surface outside the black hole that can reproduce it. Naively, this would say that

there there is no bulk prescription for such a state, and this ‘thermal’ piece needs to be

added in by hand. Moreover, it would seem that the homology constraint is not satisfied.

Incidentally, we know of two sided states which behave very much like |Mixed〉 for

β′ > β. These are the Shenker-Stanford wormholes constructed in [44, 45]. By acting

on the TFD with a series of anti-time-ordered shockwaves, they produce a state dual to

an elongated wormhole. If the shock waves are sent in symmetrically from the two sides,

then the original eternal black hole bifurcate horizon migrates into the wormhole. This

region inside the wormhole is known as the causal shadow of the two boundaries. The

sizes of the black hole event horizons, those seen by the CFTs, are not representative of

the entanglement between them; they only measure how much energy was sent into the

wormhole. The bifurcate horizon continues to be the extremal surface and its area correctly

measures the entanglement between the CFTs. This is expected since sending in the shock

waves amounts to acting on HL ⊗HR with a factorizable unitary which does not modify

the entanglement entropy.

We could also have considered states which behave like asymmetric wormholes, by

considering an asymmetric entangled state with the dimensions of the left and right oper-
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Figure 7. The spatial geometry that passes through the bifurcate horizon of an elongated worm-

hole. 2π2c/3β′ represents the entanglement entropy between the two CFTs. This surface is hidden

behind both the left and right horizons, and will not be visible in any RT prescription restricted to

the exterior of them.

ators differing by O(c). Note, the maximum number of terms in such a state will be given

by the density of states of the side with smaller dimension. From the bulk perspective,

the two exterior horizons have different sizes, and again the entanglement is given by the

original bifurcate horizon. figure 7 shows what a spatial slice in this geometry looks like.

In the situation where the number of terms saturates the density of states of one side, the

entanglement entropy will be the horizon area of that same side. In the Shenker-Stanford

construction, this is a state produced by sending in shockwaves from a single side.

In both of these cases, the constant piece in the entropy, 2π2c/3β′, plays the role of

the area of the original horizon and will not be visible from any of the exteriors. We should

stress that the comparison between the state |Mixed〉 and the Shenker-Stanford wormholes

is merely an analogy; the state could instead be dual to a bulk with no geometric description

behind the horizons.10 Perhaps, one can get to the Shenker-Stanford states by acting on

|Mixed〉 with a factorizable unitary on the two sides. One can view this large degree of

entanglement between the two CFTs as being large enough to possibly describe a geometric

connection between the two sides [46]. This is a re-emphasis of the statement that not any

entanglement is enough to have a geometry, but a specific kind of one [39, 40].

6 Entropy operators more generally

The preceding discussion established that, for 1+1 CFTs dual to three dimensional Einstein

gravity, the entanglement entropy of an interval in subspaces of dimension much less than

eO(c) could be interpreted as the expectation value of a linear operator acting within that

subspace. The approximate linearity of the entropy was established under the assumption

of Virasoro identity block dominance. But, as we now discuss, approximate linearity is

expected to hold much more generally. It should certainly hold for Einstein gravity in any

dimension. In fact, a version of it should hold in any large N theory with many local

degrees of freedom.

10We thank Susskind for pointing out that the boost symmetry of the state |Mixed〉 makes an interpre-

tation of this state as a long wormhole subtle. The long wormholes of Shenker and Stanford do not have

such a symmetry.
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In the large N limit certain quantum variables become non-fluctuating and a preferred

set of “classical” states is selected. Moreover, the entropy of a subsystem R of a state |ψ〉
typically becomes large: if N denotes the extensive parameter, then

lim
N→∞

SR(|ψ〉)
N

= sR(|ψ〉) > 0, (6.1)

in terms of the entropy density sR. In this sense, the main point of large N is that it

defines a small parameter, 1/N , such that the leading contribution to the entropy can be

interpreted, within some bounds, as a linear operator.

To illustrate the broad ideas, consider the following general setup. Given a bi-partite

system AB, we can choose a set of states D = {|ψ1〉, . . . , |ψK〉} and a set of projective

measurements on A, MA = {P1, . . . , PK}, and on B, MB = {Q1, . . . , QK} such that

Pi|ψj〉 = Qi|ψj〉 = δij |ψj〉. (6.2)

That is, the projectors Pi and Qi serve to distinguish the states in D on both A and B.

The largest K can be (if we demand perfect distinguishability) is the smaller of the two

Hilbert space dimensions of A and B. The equivalent statement in the holographic set-

up is that states of different entropy can be distinguished using the area operator, i.e. if

Â =
∑
AA|A〉〈A| is a spectral decomposition of the area operator, then we may take the

projectors P = |A〉〈A|.
What (6.2) says is that the states in D are perfectly distinguished by the measurements

in MA and MB. Furthermore, the measurements are non-destructive or gentle in the

sense that the final state after the measurement is the same as the initial state. More

importantly, even if the set of states of interest only satisfy (6.2) approximately, it can still

be true that the large N part of the entropy is correctly reproduced by a linear operator. In

the holographic setup, these statements are a reflection of the fact that the area operator

becomes non-fluctuating at large c. Given this data, as well as the list of entropies SA = SB
of the |ψi〉 ∈ D, we can form the operators

ŜA =
∑
i∈D

SA(|ψi〉)Pi (6.3)

and

ŜB =
∑
i∈D

SB(|ψi〉)Qi. (6.4)

It follows immediately from (6.2) that

tr(|ψi〉〈ψi|ŜA,B) = SA,B(|ψi〉). (6.5)

Now suppose we take take a superposition of states in D, e.g.

|ψ〉 = α|ψ1〉+ β|ψ2〉. (6.6)

Upon tracing out region B, the state on subsystem A is

ψA = trB(α2|ψ1〉〈ψ1|+ αβ|ψ1〉〈ψ2|+ αβ|ψ2〉〈ψ1|+ β2|ψ2〉〈ψ2|). (6.7)
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To simplify the form of ψA we use the existence of the projective measurements MB.

Without changing the value of the trace, we may insert a resolution of the identity on B

which contains the projectors Q1 and Q2. Since tr(Q1|ψ2〉〈ψ1|) = tr(Q2|ψ2〉〈ψ1|) = 0, it

follows that

ψA = α2ψA2 + β2ψA1. (6.8)

Hence superpositions on the full system reduce to mixtures on a subsystem. This statement

is also approximately true given an appropriate approximate form of (6.2).

Consider now a general mixture, σA =
∑

i piψAi. Computing tr(ŜAσA) gives

tr(ŜAσA) =
∑
i

piSA(|ψi〉). (6.9)

On the other hand, the entropy of σA is

S(σ) = −tr(σA log σA). (6.10)

Inserting a resolution of the identity on A that includes the Pi, we can write σ =
∑

i piψAi =∑
i piPiψAiPi; using (6.2) the entropy formula collapses to a single sum

S(σ) = −
∑
i

tr(piψAi log(piψAi)) =
∑
i

piSA(|ψi〉)−
∑
i

pi log pi. (6.11)

Provided the second term, called the entropy of mixing and seen earlier in 4.22, is small,

the entropy is approximately the average of the entropies of the individual terms.

We will now demonstrate the above logic using three concrete models. Besides il-

lustrating the general discussion, these models will allow us to elucidate the physics of

approximate distinguishability.

6.1 N copies of a qubit

As a first toy example, consider states of N qubits of the form

ρ = ψN (6.12)

with

ψ =
1 + ~r · ~σ

2
(6.13)

where ~σ = (σx, σy, σz) are Pauli matrices. Such states arise as follows: consider a bipartite

system AB where each of A and B consist of N qubits. We restrict attention to states of

AB of the form |ψ〉N where |ψ〉 is an arbitrary pure state of two qubits. Upon tracing out

B the resulting state on A is of the form ρ = ψN .

We will construct a linear operator Ŝ independent of ψ with the property that

tr(ŜψN ) ≈ NS(ψ) (6.14)

as N → ∞. For notational simplicity we will also drop the subsystem index. The idea is

that with many copies of the state ρ we can measure r = |~r| without knowing the eigenvalue
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basis of ρ and without substantially disturbing the state. In essence, the states ψN and

ψ′N are approximately distinguishable for any fixed ψ 6= ψ′ in the large N limit.

Think of the N qubits as spin-1/2 operators and introduce the total spin

Jα =
∑
i

σαi
2

(6.15)

where σαi is the α = x, y, z Pauli matrix of qubit i. It is straightforward to calculate

tr(ψNJα) =
Nrα

2
(6.16)

and

tr(ψNJαJα) =
N

4
+
N(N − 1)rαrα

4
. (6.17)

The last line suggests that measuring J2 =
∑

α J
αJα effectively measures r. Indeed, if

the eigenvalues of J2 are j(j + 1) then at large N the approximate relation j = Nr
2 holds.

Furthermore, the distribution of j is tightly peaked in the state ψN so that j is effectively

a semi-classical variable (this can be seen by computing the variance of | ~J |2/N2).

Let Pj denote the projector onto the eigenspace with J2 = j(j + 1) and let

H(x) = −x log x− (1− x) log(1− x) (6.18)

be the Shannon entropy of the probability distribution {x, 1 − x}. Then the operator Ŝ

may be taken to be

Ŝ =
∑
j

NH

(
1 + 2j/N

2

)
Pj (6.19)

where in essence we measure J2 and then return the entropy that would arise for that value

of r = 2j/N . One easily checks that to leading order in large N we have

tr(ŜψN ) = NS(ψ). (6.20)

We can also show that the measurement of Ŝ hardly disturbs the state. Indeed, suppose

we measure Ŝ with relative precision ε. Then the question of disturbance amounts to

computing

1− δε = tr(P|Ŝ−〈Ŝ〉|<ε〈Ŝ〉ψ
N ). (6.21)

The distribution of j in state ψN is tightly peaked and Gaussian,

p(j) ≈ e−
(j−〈j〉)2

2Nσ2

√
2πNσ2

, (6.22)

where the variance per qubit σ2 depends on r but is order one. Converting from j to S

(eigenvalue of Ŝ) is accomplished by expanding H((1 + 2j/N)/2) near j = Nr/2. Writing

j = Nr/2 + Ny we find S − 〈Ŝ〉 = NyH ′ = (j − Nr/2)H ′, so deviations of the entropy

correspond to deviations of j up to a factor of H ′. Using the distribution for j and the

linear change of variables from j to S yields

δε ∼ exp(−Nkε2) (6.23)
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for some r-dependent constant k. For any fixed ε the disturbance caused by the measure-

ment rapidly goes to zero as N →∞.

The fact that ψN is mostly supported on a projector P|Ŝ−〈Ŝ〉|<ε〈Ŝ〉 which is independent

of the direction of ~r and hence the basis which diagonalizes ψ has significance. It means

that there is a “universal compression algorithm” [47–50] depending on the spectrum of

ψ but not the eigenbasis of ψ which compresses ψN into NS(ψ) qubits. In other words,

the same compression procedure works for all ψ of the form ψ = uψ0u
† with u ∈ SU(2).

Explicitly, the algorithm instructs us to make a coarse measure of j, after which the state

is approximately contained in one of the j eigenspaces of dimension of order eNS(ψ). Fur-

thermore, the probability to obtain a result for j corresponding to a significantly larger

than expected dimension is very small. For our purposes, these observations amount to

the statement that one doesn’t need need to know the basis to measure the entropy.

Hence for this class of states with N taken large there is a linear operator Ŝ which

is independent of the state, semi-classical, and whose expectation value gives the entropy.

Furthermore, the linear span of states of the form |ψ〉NAB is the totally symmetric subspace

of dimension N + 1 (recall that each |ψ〉AB is a two qubit state). Hence we obtain a

polynomially large in N number of states for which an entropy operator exists.

6.2 Thermal states

The previous subsection dealt with N copies of a state and showed that in the large N

limit an entropy operator existed. However, the copies were strictly non-interacting with

each other; in other words, if we view ψN as the thermal state of a Hamiltonian, then that

Hamiltonian would have no interactions between the qubits. Thus it is useful to give a

more general example. There is again a large N limit, a thermodynamic limit, but the

“copies” are no longer non-interacting.

Consider the thermal state of a local Hamiltonian on N qubits in the limit N → ∞.

The state is

ρ(T ) =
e−H/T

Z(T )
(6.24)

where Z(T ) is the partition function. This state describes one half of the thermofield

double, and can also be viewed as modeling the coarse grained state of an old black hole.

Constructing an entropy operator for this set of states (indexed by temperature) thus

improves on the N qubit model described above and shows that the strict independence of

the N copies is not required.

Let S(E,∆E) denote the microcanonical entropy, the logarithm of the number of

energy eigenstates with energy between E −∆E and E + ∆E, and let PE,∆E denote the

projector onto energy eigenstates with energy between E −∆E and E + ∆E. Denote by

bins a set of such energy windows which completely cover the spectrum of H. Finally,

define the entropy operator to be

Ŝ =
∑
bins

S(E,∆E)PE,∆E . (6.25)
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Then we calculate

tr(Ŝρ(T )) =
∑
bins

S(E,∆E)tr(PE,∆Eρ(T )) ≈
∑
bins

S(E,∆E)δE,E(T ) ≈ S(E(T )) = S(T ).

(6.26)

where E(T ) is the average energy at temperature T . As usual, the bin width ∆E does not

play a crucial role; the above identification is valid to leading order in large N , with for

example ∆E = O(1). Henceforth we suppress the bin width and distinguish between S(E)

and S(T ) by context. One can also argue that to leading order in N the measurement of

Ŝ does not disturb the state so that Ŝ is a semi-classical variable.

Thus there exists a linear operator Ŝ independent of T which measures the entropy

of the family of states ρ(T ). It is tempting to identify this operator with the extremal

area operator (in Planck units) of the black hole horizon. This identification seems almost

trivial, but it is in principle no different from what we did above since NH((1 + 2j/N)/2)

effectively counts the logarithm of the number of states with eigenvalue j.

Two important properties of Ŝ are that it is a coarse-grained observable and that it

behaves properly under superposition. We first address the behavior of Ŝ on mixtures,

then we discuss the coarse-grained properties, and finally return to general superpositions.

Consider a mixture of two thermal states,

ρ = pρ(T ) + (1− p)ρ(T ′), (6.27)

and suppose ρ(T ) and ρ(T ′) are distinguishable (this will be true provided T −T ′ does not

vanish too fast as N →∞). Then the entropy of ρ is simply

S(ρ) = pS(ρ(T )) + (1− p)S(ρ(T ′)) +H(p) (6.28)

where again H(x) is the Shannon entropy defined above. Now compare this to the expec-

tation value of Ŝ in the state ρ. We find

tr(Ŝρ) = pS(T ) + (1− p)S(T ′) (6.29)

without the subleading H(p) term. Hence to leading order in the thermodynamic limit,

the entropy of the mixture is reproduced by the linear operator. However, this behavior

is just what we expect (see section 2.4, 4.2) if the entropy operator is proportional to the

extremal area operator of the black hole since the expected value of the area is just the

weighted average of the two black hole areas.

To show that Ŝ is a coarse-grained observable we should consider the case where ρ is

not a thermal state but is instead a microstate of the thermal ensemble ρ = |E〉〈E|. Then

we compute

tr(Ŝ|E〉〈E|) = S(E), (6.30)

so in a microstate the entropy operator nevertheless returns the microcanonical entropy,

hence it is a coarse-grained observable which returns the coarse-grained entropy not the fine-

grained entropy. Furthermore, it is clear that in these cases what Ŝ is doing is measuring the

energy density and returning the appropriate entropy, a manifestly linear operation. That
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the entropy operator is a coarse-grained observable also matches holographic expectations

since the extremal area operator is built from the metric which is in turn constructed from

the stress tensor.

Finally, consider a general superposition of the form ρ = (
√
p|E〉+

√
1− p|E′〉)(√p〈E|+√

1− p〈E′|). The expectation of the entropy operator is

tr(Ŝρ) = pS(E) + (1− p)S(E′). (6.31)

Similarly, for the mixed state ρ = p|E〉〈E| + (1 − p)|E′〉〈E′| the fine grained entropy is

H(p) (the binary Shannon entropy) while the expectation of the entropy operator is the

same as for the superposition. Note, however, that measurement of the entropy operator

collapses the coherent superposition and leaves the mixed state behind if E and E′ are in

different bins.

From these calculations one sees that the entropy operator can only behave as expected

when acting on thermal states, microstates, and mild superpositions or mild mixtures of

these. If we begin to make generic superpositions of substantial numbers of microstates

then the entropy operator will no longer capture the coarse-grained entropy to leading

order in N .

6.3 N copies of a free field theory

In this subsection we present one final example of the general construction outlined in the

introduction to this section; essentially we study the free limit of a large N vector model.

For simplicity, consider a general bipartite system AB consisting of kA+kB free fermion

modes with creation and annihilation operators c†α and cα (α = 1, . . . , kA + kB) obeying

the algebra {cα, c†β} = δα,β . Then take N copies of these modes, labelled cαi, to give the

full algebra {cαi, c†βj} = δα,βδi,j defined on the composite system ANBN . The state of

ANBN is assumed to be N copies of a single pure Gaussian state of the original kA + kB
fermion modes.

Upon tracing out subsystem BN , the state on subsystem AN has the form

ρAN ∝
N∏
i=1

e−c
†
ihci (6.32)

where c†ihci = c†αihαβcβi with the restricted label set α, β = 1, . . . , kA. The quadratic form

of the reduced density matrix is guaranteed due to the initial Gaussian pure state, i.e.

because of Wick’s theorem.

Now we would like to construct a linear operator that measures the entropy of ρAN for

any h. First, note that if we knew the basis of fermion modes in which h was diagonal, then

this problem would be trivial because the problem reduces to decoupled two-level systems,

i.e. to qubits. The challenge, as with the N qubit model, is to find a way to measure

the spectrum without knowing the basis. To accomplish this measurement, we use a little

group theory. To the best of our knowledge our result is new, but we note that similar

technology has been used on free bosonic models [51, 52] as part of the “quantum marginal

problem” [53–56].
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Let k ≡ kA denote the number of modes in the subsystem. The correlation matrix of

a single copy, defined as

Gαβ = 〈c†αcβ〉ρA , (6.33)

is a k × k matrix which is one-to-one with the matrix h, G = (eh
T

+ 1)−1. The entropy of

a single copy can be written in terms of G using the well-known formula

S1 copy = −tr(G lnG+ (1−G) ln(1−G)). (6.34)

Clearly then if we knew the spectrum of G we could determine the entropy of the N

copy system.

However, G itself is not an ideal object to study since it is basis dependent. The basis

independent spectrum of G can be obtained from the k numbers tr(G`) for ` = 1, . . . , k. To

construct suitable observables consider the group U(k) of unitary transformations acting

on the modes cα. The generators of this group are

q = c†αcα (6.35)

and

jA = c†αt
A
αβcβ (6.36)

where tA are the analogs of the Pauli matrices for SU(k) and q generates the global phase

rotation in U(k). Under U(k) transformations q is invariant and jA transforms in the

adjoint representation.

Now on the N copy system we have the corresponding observables

Q =
1

N

∑
i

qi (6.37)

and

JA =
1

N

∑
i

jAi . (6.38)

With the factor of 1/N these observables are normalized so that their fluctuations vanish

in the large N limit. Essentially, this is the generalization of the addition of angular

momentum, generalized from SU(2) to U(k). From these observables we construct the k

Casimir invariants of U(k),

C1 = Q, (6.39)

C2 =
∑
A

JAJA, (6.40)

C3 =
∑
ABC

dABCJ
AJBJC , (6.41)

and so on up to the k-th Casimir containing k factors of JA.11

11The k-th Casimir may be obtained from the invariant tensor in the k-fold tensor product of adjoint

representations, i.e. the fusion to the identity of a product of k JAs.
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The Casimirs, being invariant operators, are not sensitive to the basis which diagonal-

izes G, but they do reveal the spectrum of G. For example, if λi are the eigenvalues of G,

then the expectation value of C1 = Q is 〈C1〉N =
∑

i λi. The expectation value of a general

C` contains terms of the form tr(Gn) with n ≤ `. Taken together, the expectation values of

all the C` suffice to determine the spectrum of G. Furthermore, as already mentioned, the

fluctuations of the C` vanish in the large N limit, so the spectrum of G becomes in essence

a classical variable which can simply be read off from the state without disturbing it.

Since the spectrum determines the single copy entropy via (6.34), the entropy operator

may be taken to be of the form (6.3) where the projectors are projective measurements of

the k Casimir operators constructed above.

To give one simple example of this construction, consider the case k = 2. Then we

are dealing with U(2) and the tA may be taken to be the Pauli matrices σx, σy, and σz.

The correlation matrix G has two eigenvalues, λ1 and λ2. The expectation values of the

Casimirs are

〈C1〉N = λ1 + λ2 (6.42)

and

〈C2〉N = (λ1 − λ2)2. (6.43)

Let Pc1,c2 denote the projector onto joint eigenspaces of C1 and C2 labelled by c1 and c2. It

is also useful to define the function χ(x) to be 0 for x < 0, x for x ∈ [0, 1], and 1 for x > 1.

The binary entropy is again H(p) = −p ln p− (1− p) ln(1− p). The entropy operator may

then be taken to be

Ŝ =
∑
c1,c2

N

[
H

(
χ

(
c1 +

√
c2

2

))
+H

(
χ

(
c1 −

√
c2

2

))]
Pc1,c2 . (6.44)

6.4 Different sets of states

As discussed in the homology section and alluded to generally above, one can choose

different sets of states to define an entropy operator. For example, one can consider the

entropies of subsystems of one side of a two-sided black hole. In this case the homology

constraint has an effect because there is a wormhole. We may define an entropy operator

which measures the classical geometry outside the black hole and returns the appropriate

area in Planck units as the entropy. However, this same entropy operator, when applied to

black hole microstates, will still give a entropies appropriate to the corresponding two-sided

state. In particular, the homology constraint will not be properly implemented and the

entropy of a region and its one-sided complement will not agree.

By the same token, an entropy operator defined for black hole microstates will also

not in general function correctly when applied to two-sided states. Of course, this is

consistent with everything we said above because these two sets of states are related by

superpositions of exponentially many elements. One and two-sided black holes do agree

when we restrict to subsystems of less than half the system size. This did not have to be so

(it does not follow from just large N) but is a consequence of strong coupling (dominance

of the identity block). More generally, we would only expect sufficiently small sub-systems

to agree between one and two-sided black holes.
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Still another interesting class of states is black holes formed by collapse. We can

define another linear entropy operator appropriate to these time dependent states, and

this operator only sometimes agrees with the operator for two-sided black holes.

6.5 Recap

What the results of this section establish is that effective linear entropy operators exist for

simple non-interacting large N systems. Moreover, the thermodynamic analysis showed

that strictly non-interacting copies were not essential; only something analogous to a ther-

modynamic limit need exist. The preceding sections established that a linear entropy

operator also exists for very strongly interacting large N theories. These data points are

suggestive of a more general picture in which the key physics is simply large N . Indeed, in

the beginning of this section we gave a general argument, framed in terms of gentle distin-

guishing measurements, that large N was sufficient. The physics is that large N renders

appropriate sets of states semi-classical and hence distinguishable. Large N also gives us

leave to neglect small entropies of mixing, as in (6.11).

In the case of thermal states indexed by temperature, one could simply measure the

energy to gently distinguish different temperatures. For a conformal field theory, this

amounts to a measurement of the field theory stress tensor averaged over some region.

For theories that are furthermore holographic and described by Einstein gravity, the

stress tensor again plays a privileged role. This is true both for thermal states and more

generally. This is because the dual geometry is a natural semi-classical variable that dis-

tinguishes different states. Furthermore, in Einstein gravity the geometry is closely related

to the field theory stress tensor; a fact reflected in the dominance of the Virasoro identity

block in conformal field theories dual to Einstein gravity.

Hence holographic duality has two remarkable aspects: the entropy is a linear operator

on certain classes of states (true for all large N theories) and the entropy operator has an

incredibly simple interpretation in the dual geometry.

7 Considerations and future directions

In this paper we have analyzed in some detail the entropy of macroscopic superpositions in

semi-classical states within the context of AdS3/CFT2. The main technical tool used was

the dominance of the Virasoro identity block in computations of the entropy, a technique

that relies on large central charge c and strong coupling (sparse spectrum). We also gave

arguments that the same results would be obtained in Einstein gravity in higher dimensions

and in fact in a wide variety of systems with an appropriate large N or thermodynamic

limit. In this final section we investigate some consequences of our results for certain

aspects of quantum information and quantum gravity.

First we note that our extended RT proposal is the same as the recent independent

proposal of [57]. They reviewed the standard argument that entropy cannot be a linear

operator and argued that the entropy of mild superposition would approximately average

assuming at large N that different Schmidt bases were uncorrelated. Our distinguishability
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arguments include this assumption as a special case and provide a more general infor-

mation theoretic understanding of entropy as a linear operator. We have also explicitly

demonstrated that entropies average for holographic CFT2s and shown how to construct

entropy operators for the non-interacting limit of a large N vector model. Thus our analysis

includes both weak and strong coupling. Our investigation also considered a number of

additional features including the interplay of linearity and homology, the non-linearity of

Renyi entropies, and the precise limits of linearity.

7.1 Conditions for a semi-classical spacetime

Our results also bear on the entropic approach to bulk reconstruction. For example, it has

been found that the leading order in N2 contribution to the tripartite information for any

three subregions is nonpositive for any semi-classical holographic state [12]. However, since

the tripartite information is linear in the entropies, the inequality I3 ≤ 0 will continue to

hold even for superpositions of semi-classical states. In fact, this conclusion holds for the

entropy cone of [58] since it is closed under averaging.

7.2 Quantum error correction and superpositions

Our results imply that we can enlarge the code subspace of states employed in the interpre-

tation that holography is a quantum error correcting code [22]. There the code subspace

is defined as a space of states perturbatively close to a single reference state (such as the

vacuum) that has a semi-classical description in the bulk. Bulk operators in the entan-

glement wedge of some boundary region therefore have representations in that region and

which act within the code subspace [23]. Our results suggest that the code subspace can

actually be enlarged to a direct sum of such subspaces, each of which is defined around a

different reference state. Perturbative bulk operators therefore have representations that

are block diagonal in the code subspace.

One can prove this last statement provided that the different semi-classical states are

distinguishable within the entanglement wedge. Consider a code subspace composed of a

direct sum of such distinguishable code subspaces Hi each defined around a different refer-

ence state. Here distinguishable means the states have different geometries and obey (6.2)

to a high degree of approximation. These code subspaces are not perturbatively connected.

Next, consider an operator φ defined in such a way with respect to the boundary that it

acts within the entanglement wedge of some region A in all states in the full code subspace.

We now show that if the operator φ satisfies the condition for operator algebra quantum

error correction (OAQEC) proved in [22] for a set of code subspaces Hi distinguishable

within A, then it is also satisfied within ⊕iHi. In particular, we will show that

〈ψ|
[
φ,XĀ

]
|ψ′〉 = 0 (7.1)

for arbitrary |ψ〉 and |ψ′〉 within ⊕iHi, and for any operator XĀ on the complement region

Ā. We can decompose the states under the direct sum as |ψ〉 =
∑

i |ci〉 and find

〈ψ|
[
φ,XĀ

]
|ψ′〉 =

∑
i

〈ci|
[
φ,XĀ

]
|c′i〉+

∑
i 6=j
〈ci|
[
φ,XĀ

]
|c′j〉 (7.2)
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The first sum vanishes by virtue of φ satisfying the OAQEC condition within any Hi. We

finally argue that the second sum is also zero. Since φ acts perturbatively within the code

subspace the second term is a sum of terms of the form 〈ci|XĀ|c′j〉 where the two states

are distinguishable within the region A. As discussed earlier around (6.2), this entails

the existence of a projection operator purely on A which projects on either of the two

code subspaces. Since this operator commutes with any XĀ these matrix elements of XĀ

must vanish.

7.3 A nonlinearity for single sided pure states

We demonstrated in section 5 that there cannot be a linear entropy operator for all semi-

classical states with two asymptotic boundaries. This was primarily due to topology change

induced by superposing exponentially many semiclassical states. We argue here that the

same obstruction applies in semiclassical states with a single asymptotic boundary.

Building on [59], consider a state that describes two black holes in pure microstates,

separated by some large distance in global AdS.12 Moreover, consider the setup where the

two black holes have non-overlapping gravitational dressing to two different CFT regions

A and Ac, as is shown in figure 8. Such a state can be created by acting on the vacuum

with a product unitary as

|ψi〉 = U iAU
i
Ac |0〉 (7.3)

where i labels the black hole microstate. These unitaries are chosen such that the states

|ψi〉 are distinguishable both on A and Ac satisfying

trAc
[
U iAc |0〉〈0|U

j†
Ac

]
= δijρA (7.4)

and similarly for A. Since the state is prepared by a product unitary on A and Ac, the

entanglement entropy of any of those regions will be exactly that of the vacuum. As shown

in figure 8, the RT surface is simply that of vacuum AdS. Since by the entanglement wedge

reconstruction proposal the area operator can be viewed as supported either on A or Ac it

will be degenerate within the subspace spanned by |ψi〉 with its eigenvalue given by that

in the vacuum. So we can write

ŜA =
∑
i

SA(|0〉)|ψi〉〈ψi| (7.5)

where SA(|0〉) is the entanglement entropy in the vacuum state.

Consider now the superposition of the states |ψi〉 involving all the microstates of the

black hole. Here we are restricting to some energy window that involves summing over an

exponential number of states. This is

|w〉 =
1√
M

M∑
i

|ψi〉 =
1√
M

M∑
i

U iAU
i
Ac |0〉 (7.6)

12Such a state will not in general be static, but perhaps supersymmetry can be used to obtain one that

is such. This point will not affect our argument.
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Figure 8. Two largely separated black holes in AdS with non-overlapping gravitational dressing.

The geometry of the white regions is that of pure AdS. The black holes on the left are two

microstates while those on the right are highly entanglement, implying the existence of an Einstein-

Rosen bridge.

where M is the number of microstates. This state is expected to be dual to a wormhole

connecting the two black holes in global AdS. This is motivated by ER=EPR [46] ideas

and is also supported by explicit constructions involving pair creation of black holes via

tunneling [60, 61]. The trace of the replicated density matrix of A is

TrρnA =
M∑
i

1

Mn
Tr
(
ρiA
)n

(7.7)

where ρiA = U iAρAU
i†
A and 7.4 implies that ρiρj = δij(ρi)2 as an operator statement. This

gives the von Neumann entropy

SA(|w〉) = SA(|0〉) + lnM. (7.8)

Had we used 7.5 to compute the entropy we would completely miss the lnM contribu-

tion coming from area of the wormhole which captures the entanglement between the

black holes.

7.4 Connections to one-shot information theory

Because our arguments relied on a kind of thermodynamic limit, they are related to recent

studies of the so-called one shot information theory of quantum field theories [62]. Standard

many-copy information deals with operational tasks like compression in the limit where the

states of interest consist of many independent copies of a single state, the model considered

in section 6.1. One speaks about compression rates, for example: the resources needed per

copy to compress many copies of a state. The resources needed in the single copy limit are

typically different, but in many cases the existence of a thermodynamic limit in a single

copy setting is sufficient to effectively be in the many copy limit. It would be interesting

to further explore these connections as part of the burgeoning one-shot information theory

of quantum fields. A concrete question concerns the possibility of universal compression,

similar to known results in the N qubit model, but perhaps based on representations of
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the conformal group instead of the permutation group. One application of these ideas

is the justification of the oft made assumption that one may reason about holographic

entanglement by simply “counting Bell pairs”.

7.5 Tensor networks for superpositions

Another interesting direction relates to tensor network models of AdS/CFT. Because of

the connection between tensor networks and geometry, it is a prediction of our work that

superpositions of macroscopically distinct tensor networks obey the extended RT proposal

in its network form. One setting where this prediction can be tested is the random tensor

networks models introduced in [63] and generalized and studied in detail in [64]. Some

care must be exercised, since the simplest random tensor network calculations involve

not the entanglement entropy but the second Renyi entropy (which does not behave as

a linear operator as we show below). However, the general distinguishability arguments

should apply to random tensor networks, so we expect that the extended RT proposal does

apply to random tensor networks. One simplified setting where this could be explicitly

checked consists of so-called random stabilizer tensor networks. Every subsystem density

matrix of a stabilizer network has a flat spectrum, so the analysis of random stabilizers is

considerably simpler than for generic random tensors. It is also interesting to explore the

construction of a more elaborate single tensor network which encodes a superposition of

simpler tensor networks.

7.6 Comment on (non)linearity of Renyi entropies

Finally, we briefly comment on the inherent non-linearity of the Renyi entropy. Recall that

the Renyi entropy Sn is defined as

Sn =
1

1− n
log tr(ρn). (7.9)

It is usually assumed in field theory calculations that the limit n→ 1, which recovers the

von Neumann entropy, is smooth. In fact, the identity block calculations above are only

really controlled in the limit n→ 1 with c(n− 1) kept large.

Here we show that for superpositions of the type we have been considering the Renyi

entropy is badly discontinuous as a function of n if the large N limit is taken first. For

simplicity consider two states ρa and ρb with no overlap,

ρaρb = 0. (7.10)

Further suppose that these states have a flat spectrum with entropies S(ρa) = Sa = Nsa
and S(ρb) = Sb = Nsb.

The Renyi entropy of the state σ = pρa + (1− p)ρb is

Sn(σ) =
1

1− n
log
(
pne−(n−1)Sa + (1− p)ne−(n−1)Sb

)
. (7.11)

To gain intuition set p = 1/2; the expression inside the logarithm has drastically different

behavior depending on whether n < 1 or n > 1. Suppose without loss of generality that
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Sa ≥ Sb. Then for n < 1 the Renyi entropy is

Sn<1 = Sa +
n

1− n
log 2 +O

(
e−N(n−1)(sa−sb)

)
. (7.12)

Hence for fixed n 6= 1 the limit N →∞ gives Sn<1 = Sa. For n > 1 the Sa term inside the

logarithm is now exponentially smaller than the Sb term. Hence

Sn>1 = Sb +
n

1− n
log 2 +O

(
e−N(n−1)(sb−sa)

)
, (7.13)

and the large N limit again produces a discontinuity.

These results are not an artifact of setting of p = 1/2. For any p ∈ (ε, 1 − ε) with ε

fixed, the Renyi entropy is discontinuous as N →∞.
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A Entanglement entropy for a semi-classical superposition

In this appendix we present our calculation of the Virasoro identity block contribution to

the entanglement entropy of an interval in a state of the form∑
i

αiOi(0)|0〉. (A.1)

where the operators Oi will be assumed to be primary operators. We comment above in

sections 3 & 4.1 when we expect the Virasoro identity block contribution to be a good

approximation to the entanglement entropy.

As reviewed above in the main text, the entropy is given by

S = −∂nTrρn|n→1. (A.2)

where the density matrix in the replicated manifold is given by

Trρn = 〈0|

(∑
i

α∗i (Oi(0))†
)n

σnσ−n

(∑
i

αiOi(0)

)n
|0〉 (A.3)

=

n∑
a1,...,aM=0
b1,...,bM=0

αa11 . . . αaMM α∗b11 . . . α∗bMM 〈0|(O†1)b1 . . . (O†M )bMσnσ−nO
a1
1 . . . OaMM |0〉 (A.4)
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where

Oa11 . . . OaMM ≡
a1︷ ︸︸ ︷

O1 ⊗ . . .⊗O1⊗ · · · ⊗
aM︷ ︸︸ ︷

OM ⊗ . . .⊗OM +

(
n!

a1! . . . aM !
− 1

)
permutations

(A.5)

≡ Oh({ai}) (A.6)

where h({ai}) =
∑

i aihi, and hi are the holomorphic dimensions of the operators Oi.

Focusing only on the Virasoro identity block contribution and performing the OPE expan-

sions in the t-channel it is clear that the only non-zero contributions will come from terms

with ai = bi. The trace then becomes

Trρn =
n∑

a1,...,am=0

|α1|2a1 . . . |αM |2aM δn,∑M
j aj
〈0|O†h({ai})σnσ−nOh({ai})|0〉 (A.7)

Before proceeding we note that the operators Oh({ai}) are sums over primary operators

with canonically normalized two point functions, 1/xh+h̄, and so will not be canonically

normalized themselves. We fix this with the following rescaling

Oh({ai}) →
√

n!

a1! . . . aM !
Oh({ai}). (A.8)

then the trace becomes

Trρn =
n∑

a1,...,aM=0

(
n!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM 〈0|O†h({ai})σnσ−nOh({ai})|0〉. (A.9)

Before taking the derivative with respect to n we need to perform the sum over the ai’s.

For n > 1 the summand involves four point functions of heavy operators whose Virasoro

identity block contribution is not known in closed form. To get around this, we first consider

a modified form of the above equation

m∑
a1,...,aM=0

(
m!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM 〈0|O†h({ai})σnσ−nOh({ai})|0〉. (A.10)

where we replaced n in the upper limit of the sum over ai and in the combinatoric factor

with a new variable m. We will tune m and n separately in the meantime and then take

the m→ n limit before differentiating. Next, we take n close to 1 and use the known closed

form expression of the identity block for this four point function. These are

〈0|O†h({ai})σnσ−nOh({ai})|0〉 =

( √
1− 24

∑
i hiai/cn

2 sin l
2

√
1− 24

∑
i hiai/cn

) c(n−1)
3

≡ f({ai}, n, l). (A.11)

where l is the size of the interval. Note, that here we have specialized to the case of

operators with no spin. This function is unfortunately sufficiently complicated that we

cannot perform the sum directly. Instead, we perform a Taylor expansion of the function
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in the size of the interval, l, and then preform the sum over ai term by term. We will see

that the Taylor expansion in l is resummable even after differentiating w.r.t. n.

Let us first make the following definition

f({ai}, n, l) =

( √
1− 24

∑
i hiai/cn

2 sin l
2

√
1− 24

∑
i hiai/cn

) c(n−1)
3

≡
(
g({ai}, n, l)

l

) c(n−1)
3

(A.12)

The function g({ai}, n, l) goes to 1 as l→ 0. Expanding in l we have

f({ai}, n, l) = l
c(1−n)

3

∞∑
k=0

∂kl g
c(n−1)

3 |l→0

k!
lk (A.13)

For the k-th derivative of g
c(n−1)

3 we use the formula,

∂kl g
c(n−1)

3 = k!
k∑

{ci}=0


(
c(n−1)

3

)
!

(c1)!(c2)! . . . (ck)!
(
c(n−1)

3 −
∑

i ci

)
!


× g

c(n−1)
3
−
∑
i ci∏k

j=1(j!)cj
(∂1
l g)c1(∂2

l g)c2 . . . (∂kl g)ck (A.14)

along with the condition that
∑k

j=1 j×cj = k. The expansion of g(a, n, l) and its derivatives

in l are

∂kl g({ai}, n, l) =

∞∑
p=0

(−1)p+12(22p−1 − 1)B2p

(2p− k)!

(x
2

)2p
l2p−k (A.15)

Where x =

√
1− 24

∑
i hiai
cn , and B2p are the Bernoulli numbers. Taking the limit as l→ 0

we get

∂kl g({ai}, n, l)|l→0 = (−1)
k
2

+12(2k−1 − 1)Bk

(x
2

)k
for even k (A.16)

= 0 for odd k. (A.17)

Plugging this back into A.14 we get

∂kl g
c(n−1)

3 = k!

k∑
{ci}even=0


(
c(n−1)

3

)
!

(c2)!(c4)! . . . (ck)!
(
c(n−1)

3 −
∑

i ci

)
!

 1∏k
j= even(j!)cj

(A.18)

×
(
(−1)2(2−1 − 1)B0

) c(n−1)
3
−
∑
i ci

k∏
i=even

(
(−1)i/2+12(2i−1 − 1)Bi

2i

)ci
xk

≡ k!Gk(n)xk (A.19)

The expansion of f({ai}, n, l) now simplifies to

f({ai}, n, l) =
∞∑

k=even

Gk(n)

(√
1−

24
∑

i hiai
nc

)k
lk−

c(n−1)
3 (A.20)

– 44 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
4

where the sum over k runs only over the evens because of
∑k

j=1 j × cj = k and equa-

tions (A.16) & (A.17); since all the codd terms vanish, k must be even.

Plugging this into the formula for the entropy, we have that

S = − lim
n→1

∂n lim
m→n

( ∞∑
k=even

Gk(n)lk−
c(n−1)

3

m∑
a1,...,aM=0

(
m!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM

×

(√
1−

24
∑

i hiai
nc

)k)
(A.21)

= −
∞∑

k=even

lim
n→1

∂n lim
m→n

(
Gk(n)lk−

c(n−1)
3

m∑
a1,...,aM=0

(
m!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM

×

(√
1−

24
∑

i hiai
nc

)k)
(A.22)

Thus, we can perform the differentiation and continuation in n before summing over k. Let

us consider the terms with k = 0 and k 6= 0 separately.

Before differentiation, the k = 0 term is

G0(n)l−
c(n−1)

3

m∑
a1,...,aM=0

(
m!

a1! . . . am!

)
|α1|2a1 . . . |αm|2am

= G0(n)l−
c(n−1)

3

(
M∑
i=1

|αi|2
)m

(A.23)

=

(
−2(2−1 − 1)B0

l

) c(n−1)
3

(
M∑
i=1

|αi|2
)m

(A.24)

The contribution this gives to the entanglement entropy is

S0 =
M∑
i=1

|αi|2
(
c

3
ln

(
l

−2(2−1 − 1)B0

)
+
c

3
ln

1

ε

)
(A.25)

where we have put back the UV cut-off ε. Note here that
∑M

i=1 |αi|2 = 1 but we chose to

keep it explicit for later purposes. We see that this contribution is simply the average of

those of the branches of the wavefunction. This contribution is also the leading part of the

entanglement entropy.

Now let us focus on the k 6= 0 contributions to the entropy. There are many terms

on which ∂n can act, but note that Gk(n) actually vanishes as n → 1 making it the only

relevant term to act the derivative on. We can further pinpoint exactly which part of Gk(n)

the derivative needs to hit. It turns out that the important factor is the
(
c(n−1)

3 −
∑

i ci

)
!

in the denominator. When taking n to 1 this just becomes the factorial of a negative

integer, thus blowing up and causing the entire expression to vanish. Taking its derivative

we find

lim
n→1

∂n
1(

c(n−1)
3 −

∑
i ci

)
!

= − c
3

ψ(0)(1−
∑

i ci)

Γ(1−
∑

i ci)
=
c

3
(−1)

∑
i ci−1

(∑
i

ci − 1

)
! (A.26)
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As required, this does not vanish. Taking m→ n and then the n→ 1 of the other factors

in the k-th contribution of S we find

Sk = − c

3

 lim
n→1

n∑
a1,...,aM=0

(
n!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM

(√
1−

24
∑

i hiai
nc

)k lk

×
k∑

{ci}even=0

(−1)
∑
i ci−1 (

∑
i ci − 1)!

(c2)!(c4)! . . . (ck)!

1∏k
j= even(j!)cj

×
(
(−1)2(2−1 − 1)B0

)−∑i ci
k∏

i=even

(
(−1)i/2+12(2i−1 − 1)Bi

2i

)ci
(A.27)

We still have the first factor we need to evaluate. This sum simply turns out to be

n∑
a1,...,aM=0

(
n!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM

(√
1−

24
∑

i hiai
nc

)k

=

 M∑
i=1

|αi|2
(√

1− 24hi
nc

)kn

(A.28)

and the n→ 1 limit of which is obvious.

We’re almost done now. We found that all the contributions to the entropy separate

as contributions from the different branches of the wavefunction. What is left is to see is

that the sum over k can actually be done and gives the answer claimed. Focusing on a

single branch we have

Si =

(
c

3
ln

(
l

−2(2−1 − 1)B0

)
+
c

3
ln

1

ε

)
−
(
c

3

) ∞∑
k=even

k∑
{ci}even=0

(−1)
∑
i ci−1 (

∑
i ci − 1)!

(c2)!(c4)! . . . (ck)!

1∏k
j= even(j!)cj

×

×
(
(−1)2(2−1 − 1)B0

)−∑i ci

(√
1− 24hi

c

)k k∏
i=even

(
(−1)i/2+12(2i−1 − 1)Bi

2i

)ci
(A.29)

The question now is whether this is expansion resums to anything that we know of. Indeed

it does and it resums to

Si =
c

3
ln

 2

ε
√

24hi
c − 1

sinh

(
l

2

√
24hi
c
− 1

) (A.30)

exactly. Thus, the total entropy is

S =

M∑
i=1

|αi|2
c

3
ln

 2

ε
√

24hi
c − 1

sinh

(
l

2

√
24hi
c
− 1

) (A.31)

=
M∑
i=1

|αi|2Si (A.32)

And the entropy simply averages!
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Finally, we perform the check that our method of expanding and resuming preserves

the requirement that Trρ → 1 as n → 1. From equation (A.21), we can read off the form

of the reduced density matrix

Trρn =

∞∑
k=even

Gk(n)lk−
c(n−1)

3

×
m∑

a1,...,aM=0

(
m!

a1! . . . aM !

)
|α1|2a1 . . . |αM |2aM

(√
1−

24
∑

i hiai
nc

)k
(A.33)

Taking n→ 1 this becomes

Trρ =

M∑
i=1

|αi|2
∞∑

k=even

(
lim
n→1

Gk(n)
)
lk

(√
1− 24hi

c

)k
(A.34)

We need to know what is the limit of Gk(n). From equation (A.19) we have

Gk(n) =
∂kl g

c(n−1)
3

k!xk
(A.35)

implying that limn→1Gk(n) = δk,0. Therefore

Trρ =

M∑
i=1

|αi|2 = 1 (A.36)
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[56] M. Christandl, M. Burak Şahinoğlu, and M. Walter, Recoupling coefficients and quantum

entropies, arXiv:1210.0463.

[57] K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence

in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

[58] N. Bao et al., The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839]

[INSPIRE].

[59] L. Susskind, ER=EPR, GHZ and the consistency of quantum measurements, Fortsch. Phys.

64 (2016) 72 [arXiv:1412.8483] [INSPIRE].

[60] D. Garfinkle and A. Strominger, Semiclassical Wheeler wormhole production, Phys. Lett. B

256 (1991) 146 [INSPIRE].

[61] D. Garfinkle, S.B. Giddings and A. Strominger, Entropy in black hole pair production, Phys.

Rev. D 49 (1994) 958 [gr-qc/9306023] [INSPIRE].

[62] B. Czech, P. Hayden, N. Lashkari and B. Swingle, The information theoretic interpretation

of the length of a curve, JHEP 06 (2015) 157 [arXiv:1410.1540] [INSPIRE].

[63] B. Swingle, Constructing holographic spacetimes using entanglement renormalization,

arXiv:1209.3304 [INSPIRE].

[64] P. Hayden et al., Holographic duality from random tensor networks, arXiv:1601.01694.

– 50 –

http://dx.doi.org/10.1063/1.527958
http://dx.doi.org/10.1103/PhysRevA.66.022311
http://dx.doi.org/10.1103/PhysRevA.66.022311
https://arxiv.org/abs/quant-ph/0202001
http://dx.doi.org/10.1007/s00220-005-1435-1
https://arxiv.org/abs/quant-ph/0409016
http://dx.doi.org/10.1007/s00220-008-0442-4
https://arxiv.org/abs/quant-ph/0703225
http://dx.doi.org/10.1063/1.4818950
http://dx.doi.org/10.1063/1.4818950
https://arxiv.org/abs/1302.6990
https://arxiv.org/abs/quant-ph/0409113
http://dx.doi.org/10.1016/j.aop.2004.09.012
http://dx.doi.org/10.1016/j.aop.2004.09.012
https://arxiv.org/abs/quant-ph/0410052
http://dx.doi.org/10.1007/s00220-008-0552-z
http://dx.doi.org/10.1007/s00220-008-0552-z
https://arxiv.org/abs/0802.0918
https://arxiv.org/abs/1210.0463
http://dx.doi.org/10.1103/PhysRevD.93.084049
https://arxiv.org/abs/1503.08825
http://inspirehep.net/search?p=find+J+PHRVA,D93,084049
http://dx.doi.org/10.1007/JHEP09(2015)130
https://arxiv.org/abs/1505.07839
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07839
http://dx.doi.org/10.1002/prop.201500094
http://dx.doi.org/10.1002/prop.201500094
https://arxiv.org/abs/1412.8483
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8483
http://dx.doi.org/10.1016/0370-2693(91)90665-D
http://dx.doi.org/10.1016/0370-2693(91)90665-D
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B256,146%22
http://dx.doi.org/10.1103/PhysRevD.49.958
http://dx.doi.org/10.1103/PhysRevD.49.958
https://arxiv.org/abs/gr-qc/9306023
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9306023
http://dx.doi.org/10.1007/JHEP06(2015)157
https://arxiv.org/abs/1410.1540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1540
https://arxiv.org/abs/1209.3304
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3304
https://arxiv.org/abs/1601.01694

	Introduction
	The area operator of the Ryu-Takayanagi proposal
	A gauge invariant area operator
	The boundary support of the area operator
	The linearity of the area operator
	The area operator on superpositions — A prediction

	How to compute entanglement entropy in 1 + 1 CFTs
	Entanglement entropy and the replica trick
	A single interval example

	Entanglement entropy for superpositions of semi-classical states
	Superpositions of one-sided AdS spacetimes
	Superpositions of eternal black holes

	Linearity vs. homology
	A failure of linearity: homology
	The source of the homology constraint in the CFT

	Entropy operators more generally
	N copies of a qubit
	Thermal states
	N copies of a free field theory
	Different sets of states
	Recap

	Considerations and future directions
	Conditions for a semi-classical spacetime
	Quantum error correction and superpositions
	A nonlinearity for single sided pure states
	Connections to one-shot information theory
	Tensor networks for superpositions
	Comment on (non)linearity of Renyi entropies

	Entanglement entropy for a semi-classical superposition

