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black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-

Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville

integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean

two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory,

and it relies on a trick originally due to Fateev, which involves duality relations between

different Selberg type integrals. This enables us to rewrite the correlation functions of

sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-

Witten (WZW) theory, and use this to perform further consistency checks of the recently

conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point corre-

lation functions in sine-Liouville theory involving n − 2 winding modes actually coincide

with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n−2

oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1].
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amplitudes with arbitrary n. We also comment on the connection between GFZZ and other
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1 Introduction

Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality [2–4] relates the n-point correlation

functions of the sine-Liouville integrable model to n-point string amplitudes in the Eu-

clidean two-dimensional black hole [5–7]. The latter theory being described by the

SL(2,R)/U(1) Wess-Zumino-Witten (WZW) model [7], FZZ duality turns out to be a

duality between two seemingly distinct non-rational conformal field theories (CFTs). This

is an important result in string theory as it is at the very root of the construction of the

black hole matrix model [3]. Besides, it has also been important to investigate other string

theory scenarios, such as AdS3 ×N spacetimes [8] and time-dependent backgrounds [9].

FZZ duality has its origin in mirror symmetry [10]. In fact, the N = 2 supersymmetric

extension of the duality relates the super-Liouville theory and the Kazama-Suzuki model

associated to the SL(2,R)/U(1) coset. In [11], Maldacena has shown precisely how the

bosonic FZZ duality follows from the supersymmetric duality through a Goodard-Kent-

Olive quotient. It follows from this that FZZ can be thought of as a sort of T-duality,

which relates two non-compact target spaces of quite different aspects [12]. The duality is

surprising for several reasons; in particular, because it associates two models with different

topologies and totally different target space interpretations: while the Euclidean black hole,

corresponding to the so-called cigar manifold has topology R2, the sine-Liouville model is

defined on the cylinder R× S.

When thought of as a string σ-model, sine-Liouville has the interpretation of a non-

homogeneous tachyon condensate in flat space and in presence of a linear dilaton, while
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the string theory on the black hole describes a curved spacetime, also in presence of a

dilaton configuration that takes the linear form in an appropriate gauge. The FZZ duality

can then be interpreted as the equivalence between two different ways of deforming the

linear dilaton background, either with the tachyon marginal operator or with the graviton

marginal operator [13]. Following this interpretation, in a recent paper [1] Giveon, Ithzaki,

and Kutasov proposed a generalization of FZZ duality which associates to a larger set of

oscillator type primary operators of the WZW theory a set of exponential vertex operators

in sine-Liouville theory. This Generalized FZZ conjecture (GFZZ) is supported by the fact

that the two kind of operators, even when the corresponding wave functions exhibit differ-

ent behaviors, actually share the same quantum numbers. In [14], a check of GFZZ at the

level of the interacting theory was performed by explicitly computing 3-point correlation

functions. It was shown there that the duality also holds when vertex interactions are

included. The main goal of this paper is to extend the computation of [14] to the case of

n-point functions with arbitrary n. Unlike the case of the 3-point functions, for which the

result can be explicitly computed in terms of special functions, an analogous expression

for the n-point correlators with n > 3 is not at hand. This means that in order to extend

the result of [14] to the n-point functions for arbitrary n we have to be more creative: to

circumvent such obstruction, we will resort to integral realizations of the n-point correla-

tion functions on the Riemann sphere and use it to show the equivalence among different

observables.

The paper is organized as follows: in section 2, we will discuss the original FZZ duality.

Resorting to the integral representation in terms of Selberg-type integrals, we will show how

the n-point correlation functions in the sine-Liouville theory can be expressed as n-point

functions in the WZW model that describes the string σ-model on the two-dimensional

black hole. An intermediate step will be reducing the correlators of the sine-Liouville

theory to those of Liouville theory, and then use the H+
3 -Liouville correspondence to relate

them with the WZW observables. This will lead us to a succinct derivation of the FZZ

duality for the sphere topology.1 In section 3, we will use the techniques and results of

section 2 to investigate the recently proposed GFFZ duality [1]. We will explicitly show

that maximally winding violating n-point amplitudes in sine-Liouville theory coincides with

the correlation functions in the SL(2,R)/U(1) WZW model that include n − 2 oscillator

operators of the type described in [1]. We will also discuss GFZZ duality in relation to

other marginal deformations of the linear dilaton background.

2 FZZ duality

2.1 Step 1: correlation functions in sine-Liouville theory

The sine-Liouville field theory is defined by the action

Ssine-L[λ] =
1

2π

∫
d2z

(
∂φ∂̄φ+ ∂X∂̄X +

RQφ√
2

+ 4πλ e
1√
2Q
φ

cos

(√
k

2
X̃

))
(2.1)

1A proof of FZZ correspondence for all genus has been given in [4] using the path integral approach.
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where φ(z, z̄) is a scalar field that takes values in R and presents a background charge

Q = −1/
√
k − 2, while the field X(z, z̄) lives on a circle of radius

√
k and represents an

angular direction; thus, the target space interpretation of this model describes an Euclidean

space with topology R × S1. The field X̃(z, z̄) = XL(z) − XR(z̄) that appears in the

interaction term of (2.1) is the T-dual of X(z, z̄) = XL(z) +XR(z̄).

Action (2.1) defines a non-compact conformal field theory with central charge

c = 2 +
6

k − 2
(2.2)

whose interpretation within the context of string theory is that of a two-dimensional linear

dilaton background in presence of a non-homogeneous tachyon condensate. The tachyon

potential resembles a Liouville wall that prevents the strings from exploring the strongly

coupled region, with the string coupling being

gs(φ) = e
−
√

2
k−2

φ
. (2.3)

One of the reasons why the duality between the sine-Liouville theory (2.1) and the

Euclidean black hole σ-model is remarkable is that, as mentioned, it relates two models

with different topology; while sine-Liouville is defined on the cylinder, the Euclidean black

hole resembles the geometry of a semi-infinite cigar and thus has topology R2. This is

related to the fact that in each of these models the mechanism by means of which the

strings are prevented from going to the strong coupling region is different: both models are

asymptotically — i.e. at large φ in (2.1) — equivalent to a cylinder of radius
√
k. In the

case of the Euclidean black hole, the asymptotic cylindrical region is far from the horizon,

with the compact direction of the cylinder corresponding to the Euclidean time. In both

models the string coupling constant vanishes in the asymptotic cylinder. In sine-Liouville

theory, the Liouville type wall is what prevents the strings from entering into the strong

coupling zone, while in the black hole such region is not accessible simply because it lies

behind the horizon and thus does not belong to the Euclidean manifold.2

The vertex operators that create primary states in the theory (2.1) are given by

V p,ω
j (z, z̄) = e

√
2

k−2
jφ(z,z̄)

e
i
√

2
k
pX(z,z̄)+i

√
2kωX̃(z,z̄)

, (2.4)

where the quantum numbers j, p, and ω represent the momentum in
√
k units along the

longitudinal direction φ, the momentum along the compact direction X, and the winding

number around the latter, respectively. Notice that, unlike p, the winding number ω is

not a conserved quantity in this model due to the presence of the interaction term. It is

customary to define the variables

m =
1

2
(p+ kω) , m̄ =

1

2
(p− kω) , (2.5)

which facilitate the comparison with the WZW observables.

2See [15] for an interesting discussion on the relevance of the inner black hole region for describing the

high-energy string scattering and how it relates to FZZ.
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Another notable difference between sine-Liouville theory and the Euclidean black hole

σ-model is the mechanisms by means of which each CFT allows for the violation of the

winding number conservation: in sine-Liouville theory the winding number is not conserved

because of the explicit dependence on X̃ in the potential. This is usually rephrased as

the winding number being broken by a condensate of wound strings. In contrast, in the

cigar CFT the winding number is not conserved simply because the wound strings can

in principle slip through the tip of the cigar. Explicit computation of WZW correlators

actually confirms this picture of the winding number violation in both theories [16–18].

In terms of the variables (2.5), the vertex operators (2.4) read

Vj,m,m̄(z, z̄) = e

√
2

k−2
jφ(z,z̄)

e
i
√

2
k
mX(z)+i

√
2
k
m̄X̄(z̄)

(2.6)

where now we are denoting X(z) = XL(z) and X̄(z̄) = XR(z̄) for short. The conformal

dimension of these vertex operators is given by

∆ = −j(j + 1)

k − 2
+
m2

k
, ∆̄ = −j(j + 1)

k − 2
+
m̄2

k
. (2.7)

The interaction term in (2.1) can be written as a particular integrated vertex opera-

tor (2.6); namely

2λ

∫
d2z cos

(√
k

2
X̃(z, z̄)

)
= λ

∫
d2z V1− k

2
, k
2
, k
2
(z, z̄) + λ

∫
d2z V1− k

2
, k
2
,− k

2
(z, z̄). (2.8)

This leads to define the two screening charges

Q± = λ

∫
d2z V1− k

2
, k
2
,± k

2
(z, z̄), (2.9)

which can be used to give an integral realization of correlation functions.

Correlation functions in sine-Liouville model are defined as follows

Asine-L =

〈 n∏
i=1

: Vji,mi,m̄i(zi, z̄i) :

〉
sine-L

=

∫
DφDXe−Ssine-L[λ]

n∏
i=1

Vji,mi,m̄i(zi, z̄i)

(2.10)

and standard CFT techniques permit to write the residues of these correlation functions as3

Asine-L =
λs̃+s

s̃!s!

∫ s∏
l=1

d2ul

∫ s̃∏
r=1

d2vr

∫
DφDXe−Ssine-L[λ=0]

n∏
i=1

Vji,mi,m̄i(zi, z̄i)

×
s∏
l=1

V1− k
2
, k
2
, k
2
(ul, ūl)

s̃∏
r=1

V1− k
2
, k
2
,− k

2
(vr, v̄r) (2.11)

3We will abuse the notation and not make distinction between the correlation functions and the associate

residues. There is a relative factor ∼ Γ(1 + s)Γ(−s) when relating both quantities. This factor comes

from the integration of the zero-mode φ0, and it produces a divergence in the case of resonant correlators

s ∈ Z≥0. Such divergence is associated to the non-compactness of the target space. Analytic extension of

the expressions above to values s ∈ C is required in order to gather the most general correlators.
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with

n∑
i=1

ji + 1− k − 2

2
(s̃+ s) = 0 , (2.12)

which now reduces to a (n+ s+ s̃)-point correlator of the free theory λ = 0. Using (2.11),

one can resort to the operator product expansion (OPE) in the free theory, namely

Vji,mi,m̄i(zi, z̄i)Vjj ,mj ,m̄j (zj , z̄j) ' (zi − zj)−
2

k−2
jijj+

2
k
mimj (z̄i − z̄j)−

2
k−2

jijj+
2
k
m̄im̄j (2.13)

and, after Wick contraction, write

Asine-L =
λs̃+s

s̃!s!

n∏
i<j

(zi − zj)−
2

k−2
jijj+

2
k
mimj (z̄i − z̄j)−

2
k−2

jijj+
2
k
m̄im̄j

×
∫ s∏

l=1

d2ul

∫ s̃∏
r=1

d2vr

s∏
l=1

s̃∏
r=1

|ul − vr|2−2k
s∏
l<l′

|ul − ul′ |2
s̃∏

r<r′

|vr − vr′ |2

×
n∏
i=1

s∏
l=1

(zi − ul)ji+mi(z̄i − ūl)ji−m̄i
n∏
i=1

s̃∏
r=1

(zi − vr)ji−mi(z̄i − v̄r)ji+m̄i .

(2.14)

Condition (2.12) comes from the integration over the zero mode of φ. In addition, the

following conditions come from the integration over the zero mode of X,

n∑
i=1

mi +
k

2
s− k

2
s̃ = 0 ,

n∑
i=1

m̄i −
k

2
s+

k

2
s̃ = 0. (2.15)

These conditions translate into the conservation equations

∆p ≡
n∑
i=1

pi = 0 , ∆ω ≡
n∑
i=1

ωi = s̃− s (2.16)

from which we observe that the different relative amounts of operators of the type Q− and

Q+ used to screen the background charge in (2.14) translate into different values of the

total winding number ∆ω; in particular, s̃ = s ↔ ∆ω = 0. In other words, computing

correlation functions with ∆ω amounts to introduce the operators

(Q−)s+∆ω(Q+)s, (2.17)

in the free theory correlation functions and then perform the Coulomb gas calculation.

These correlators were explicitly computed in reference [18] for the case n = 3 with s̃−s = 1,

where it was shown that it yields an expression in terms of the Υ-functions that appear in

the Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ) formula [19, 20]. We will see below

how this computation can be done in an alternative way.

– 5 –
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2.2 Multiple Selberg integrals

Now, let us explain how to deal with the integrals of the type (2.14). These are defined

integrating over C with the measure d2ul = (i/2)duldūl (with, say, ul = xl + iyl, ūl =

xl − iyl), and can be computed by an appropriate contour prescription.4 In the particular

case n = 3, this can be explicitly computed and it yields the Dotsenko-Fateev formula [21].

Here, however, we are interested in the case n ≥ 3 with λi 6= 0. Fortunately, we will not need

to solve the integral (2.14) explicitly, but only exploiting some of its functional properties.

Let us define

INs,ν(y1, . . . yN ; δ1, . . . δN ;λ1, . . . λN )

≡ 1

s!

∫ s∏
r=1

d2vr
π

s∏
r=1

N∏
a=1

(vr − ya)δa−λa(v̄r − ȳa)δa+λa

s∏
r<r′

|vr − vr′ |2ν

A remarkable property that this integral obeys for generic N is the following [22]

INs,1(y1, . . . yN ; δ1, . . . δN ;λ1, . . . λN )

= INN−s−1,1(y1, . . . yN ;−1− δ1, . . . − 1− δN ;−λ1, . . . − λN )

×
N∏
a<b

(ya − yb)1+δa+δb−λa−λb(ȳa − ȳb)1+δa+δb+λa+λb

×
Γ(−s−

∑n
a=1(δa − λa))

Γ(1 + s+
∑n

a=1(δa + λa))

N∏
a=1

Γ(1 + δa − λa)
Γ(−δa − λa)

(2.18)

which generalizes the well known formula for the integral I2
1,ν(y1, y2; δ1, δ2; 0, 0), i.e. with

s = 1, N = 2, namely

∫
d2v |v− y1|2δ1 |v− y2|2δ2 = π|y1− y2|2+δ1+δ2 Γ(−1− δ1 − δ2)Γ(1 + δ1)Γ(1 + δ2)

Γ(2 + δ1 + δ2)Γ(−δ1)Γ(−δ2)
, (2.19)

or its chiral analogue with λi 6= 0. Formula (2.18) has appeared in the literature [22] in

different contexts; it has been used to explicitly compute correlation functions [23], as well

as to provide an alternative succinct derivation of the Dotsenko-Fateev formula [24]. Here,

following an idea of Fateev [25], we will use functional relation (2.18) to translate sine-

Liouville correlators into Liouville theory correlators. The first step to do so is to integrate

out in (2.11) the s̃ vertices inserted at the points v1, v2, v3, . . . vs̃, and then transform that

4To integrate, it is convenient to Wick rotate xl → ixl and introduce a deformation parameter in

|ul|2 = −x2
l + y2

l + iε in order to avoid the poles that emerge at xl = ±yl. The way to proceed is first to

define coordinates x±l = ±xl + yl and integrate over x−l while keeping the x+
l fixed.

– 6 –
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integral into the following

Asine-L =
λ2s+∆ωπs+∆ω

s!

(
Γ(2− k)

Γ(k − 1)

)s n∏
i=1

Γ(1 + ji −mi)

Γ(−ji − m̄i)

×
n∏
i<j

(zi − zj)η
+
ij (z̄i − z̄j)η̄

−
ij

∫ s∏
l=1

d2ul

n∏
i=1

s∏
l=1

|zi − ul|4ji−2(k−2)
s∏
l<l′

|ul − ul′ |−4(k−2)

×In+s
n−∆ω−1,1

(
z1, . . . zn, u1, . . . us;

−1− j1 +
k

2
ω1, . . .− 1− jn +

k

2
ωn, k − 2, . . . k − 2;

−p1

2
, . . .− pn

2
, 0 . . . 0

)
with

η±ij = − 2

k − 2

(
ji + 1− k

2

)(
jj + 1− k

2

)
+

2

k

(
mi ∓

k

2

)(
mj ∓

k

2

)
. (2.20)

This expression can be conveniently rearranged as follows

Asine-L =
π2−nc∆ω

k

(n−∆ω − 2)!

n∏
i=1

Γ(1 + ji −mi)

Γ(−ji − m̄i)

×
n∏
i<j

(zi − zj)
2
k

(mi− k2 )(mj− k2 )(z̄i − z̄j)
2
k

(m̄i+
k
2

)(m̄j+
k
2

) (2.21)

×
∫ n−∆ω−2∏

r=1

d2yr

n−∆ω−2∏
r=1

n∏
r=1

(zi − yr)mi−
k
2 (z̄i − ȳr)−m̄i−

k
2

n−∆ω−2∏
r<r′

|yr − yr′ |k

×µ̃s
n∏
i<j

|zi − zj |−4αiαjI2n−∆ω−2
s,−2b−2

(
z1, . . . zn, y1, . . . yn−∆ω−2;

−2α1

b
, . . .− 2αn

b
,

1

b2
, . . .

1

b2
; 0, . . . 0

)
where, in addition, we have used projective symmetry to fix one of the integration variables

at infinity, say yn−∆ω−1 =∞. For convenience, we have also defined the quantities

N ji
mi,m̄i =

Γ(1 + ji −mi)

Γ(−ji − m̄i)
, b2 =

1

k − 2
, αi = b(b−2/2− ji) , (2.22)

together with

µ̃ = π2λ2 Γ(−b−2)

Γ(1 + b−2)
, ck = π2λ. (2.23)

In the next subsection we will see how (2.21) can actually be rewritten in terms of cor-

relation functions of Liouville field theory. Later, in subsection 2.4, we will show that (2.21)

can also be written as correlators in the SL(2,R)/U(1) WZW theory.

– 7 –
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2.3 Step 2: reduction to Liouville correlation functions

The remarkable fact, early observed by Fateev [25], is that the last line of (2.21) can be

identified as a (2n−∆ω − 2)-point function in Liouville theory. In fact, Liouville N -point

correlation functions, which are defined by

AL =

〈 N∏
a=1

: e
√

2αaφ(za,z̄a) :

〉
L

=

∫
Dφe−SL[µ]

N∏
a=1

e
√

2αaφ(za,z̄a) (2.24)

with the Liouville action

SL[µ] =
1

2π

∫
d2z

(
∂φ∂̄φ+

RQLφ

2
√

2
+ 2πµ e

√
2bφ

)
, QL = b+

1

b
, (2.25)

admit an integral representation of the form

AL = µ̃s
N∏
a<b

|za − zb|−4αaαb INs,−2b−2

(
z1, . . . , zN ;−2α1

b
, . . . ,−2αN

b
; 0, . . . , 0

)
(2.26)

with

s = b2 + 1− b
N∑
a=1

αa, (2.27)

and where µ̃ is related to the constant that appears in the action (2.25) through [20]

(
πµ̃

Γ(b−2)

Γ(1− b−2)

) b
2

=

(
πµ

Γ(b2)

Γ(1− b2)

) b−1

2

. (2.28)

Expression (2.26) follows from the existence of a second marginal operator in the theory,

which is not the one that appears in action (2.25); namely exp(
√

2φ/b). This reflects the

self-duality of Liouville theory under (µ, b)↔ (µ̃, 1/b), cf. (2.31) below.

Then, we observe that the last line of (2.21) corresponds to (2.26) with N = 2n−∆ω−2,

and αi = −1/(2b) for i = n + 1, . . . 2n −∆ω − 2. Therefore, one observes that the sine-

Liouville correlation functions can be written in terms of Liouville correlation functions by

the following convolution formula5

Asine-L =
π2−nc∆ω

k

(n−∆ω − 2)!

×
n∏
i=1

N ji
mi,m̄i

∫ n−∆ω−2∏
r=1

d2yr

〈 n∏
i=1

e
√

2φ(zi,z̄i)
n−∆ω−2∏
r=1

e
− 1√

2b
φ(yr,ȳr)

〉
L

×
〈 n∏
i=1

e
i
√

2
k

( k
2
−mi)χ(zi)+i

√
2
k

( k
2

+m̄i)χ̄(z̄i)
n−∆ω−2∏
r=1

e
i
√
k
2
χ(yr)+i

√
k
2
χ̄(ȳr)

〉
free

(2.29)

5Hereafter we omit the normal ordering symbols :: for short.
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where we have also defined〈 n∏
i=1

e
i
√

2
k

( k
2
−mi)χ(zi)+i

√
2
k

( k
2

+m̄i)χ̄(z̄i)
n−∆ω−2∏
r=1

e
i
√
k
2
χ(yr)+i

√
k
2
χ̄(ȳr)

〉
free

=
n∏
i<j

(zi − zj)
2
k

( k
2
−mi)( k2−mj)(z̄i − z̄j)

2
k

( k
2

+m̄i)(
k
2

+m̄j)

×
n−∆ω−2∏
r=1

n∏
r=1

(zi − yr)mi−
k
2 (z̄i − ȳr)−m̄i−

k
2

n−∆ω−2∏
r<r′

|yr − yr′ |k , (2.30)

which, actually, can be interpreted as the correlation function of a free scalar χ with

background charge6 Qχ = i
√
k [26–28].

Formula (2.29) expresses that sine-Liouville can be represented by the product of Li-

ouville theory and a c < 1 CFT. More precisely, sine-Liouville n-point correlation function

that violates the total winding number in ∆ω units can be written in terms of a Liouville

(2n−∆ω− 2)-point correlation function7 that includes n−∆ω− 2 states with momentum

αi = −1/(2b), with i = n + 1, . . . 2n − ∆ω − 2. Such particular value of the Liouville

momentum α corresponds to a degenerate representation of Virasoro algebra; that is, to

a highest-weight representation that contains null states in the Virasoro Verma module.

This is crucial to make connection with the WZW correlators. In fact, in the following

subsection we will review how one can also associate to correlator (2.29) a correlator in

the WZW theory. This follows from the so-called H+
3 -Liouville correspondence [29–32],

which maps the Belavin-Polyakov-Zamolodchikov (BPZ) equation obeyed by the Liouville

correlators that include degenerate representations with the Knizhnik-Zamolodchikov (KZ)

equation obeyed by WZW correlators. However, before moving to that, let us review some

properties of Liouville correlation functions that will be needed later: let us begin by recall-

ing that, apart from the integral representation (2.26)–(2.28), Liouville N -point correlation

functions admits the alternative integral representation

AL = µŝ
N∏
a<b

|za − zb|−4αaαb INŝ,−2b2(z1, . . . , zN ;−2α1b, . . . ,−2αNb; 0, . . . , 0) (2.31)

with

ŝ = b−2s = −b−1
N∑
a=1

αa + b−2 + 1. (2.32)

This expression is the b ↔ 1/b dual to (2.26)–(2.28). Representation (2.31)–(2.32) is

probably more natural as it follows from perturbation theory in the theory (2.25), [33].

Also, it will be useful to be reminded of the reflection properties of Liouville correlation

functions: under the momentum reflection α → α∗ = QL − α, which leaves the conformal

6The total central charge of Liouville theory cupled with the U(1) field χ is c = 1 + 6Q2
L + 1− 6|Qχ|2 =

2 + 6/(k − 2), which matches (2.2).
7In particular, this provides an alternative way of computing the sine-Liouville 3-point function calculated

in [18], as formula (2.29) translates this problem into that of evaluating the Liouville DOZZ structure

constants.
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dimension of the exponential operators invariant, Liouville correlation functions satisfy the

following property [20]〈 N∏
a=1

e
√

2αaφ(za,z̄a)

〉
L

= R(α1)

〈
e
√

2α∗1φ(z1,z̄1)
N∏
a=2

e
√

2αaφ(za,z̄a)

〉
L

(2.33)

where

R(α) = −
(
πµ

Γ(b2)

Γ(1− b2)

)Q−2α
b Γ(2αb− b2)Γ(2αb−1 − b−2)

(QL − 2α)2Γ(1− 2αb+ b2)Γ(1− 2αb−1 + b−2)
(2.34)

is the reflection coefficient, which is closely related8 to the 2-point function [20].

2.4 Step 3: connection with the WZW correlation functions and FZZ

Now, let us explain how sine-Liouville n-point correlation functions (2.29) can also be

written as n-point correlation functions in the WZW theory. This follows from the main

result of reference [32], which actually proves that the right hand side of (2.29) is exactly

the expression of a SL(2,R)/U(1) WZW correlators.9 The result of [32] was generalizing

the so-called H3
+-Liouville correspondence [29, 30] to the case in which the winding number

is not necessarily conserved. Therefore, putting (2.29) and the result10 of [32] together,

we conclude

Asine-L ≡
〈 n∏
i=1

Vji,mi,m̄i(zi, z̄i)

〉
sine-L

=

〈 n∏
i=1

Vji,mi,m̄i(zi, z̄i)

〉
SL(2,R)/U(1)

(2.35)

where on the right hand side we have the correlator in the gauged SL(2,R)/U(1) WZW

theory. Expression (2.35) is the FZZ duality.

The SL(2,R)/U(1) WZW correlator in (2.35) involves primary operators11 Vji,mi,m̄i
that are constructed from the primary operators Φωi

ji,mi,m̄i
of the ungauged SL(2,R) theory.

The latter operators create Kac-Moody primary states |j,m〉⊗ |j, m̄〉 of Hermitian unitary

representations j of SL(2,R) in the spectral flow sector ω [16, 35]. The coset projection

amounts to impose the condition12 mi − m̄i − kωi = 0, which is consistent with (2.5).

8The reflection coefficient differs from the overall factor of the 2-point function by a factor π−1(QL −
2α), [34].

9Our notation relates to that in [32] by a Weyl reflection of the SL(2,R) isospin variable, j → −1 −
j, together with a Z2 transformation m̄ → −m̄; the latter maps the SL(2,R) highest-weight discrete

representations D+
j into the lowest-weight discrete representations D−j and vice versa. There is also an

extra global factor π1−n that can be absorbed in the normalization of the vertices and of the path integral.

Notice that here we managed to give a precise value for the coefficient ck in terms of λ and, consequently,

of µ, while in [32] it remains unspecified.
10See formula (3.29) therein.
11We decided to employ the same notation both for the sine-Liouville vertex operators (2.6) and for these

operators of the SL(2,R)/U(1) WZW theory. We do this to emphasize the interpretation of FZZ duality

as the equivalence between two different ways of deforming the same theory by adding different marginal

operators.
12Notice that in this convention there is a minus sign in the label m̄i with respect to [32]. This convention

is consistent with the winding number around the cigar to be ω = (m− m̄)/k.
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This permits to associate the winding number around the direction X of the coset to the

spectral flow parameter ω in the SL(2,R) theory. In the sector ∆ω = 0, the correlators in

the coset theory relates to those in the SL(2,R) theory by a prefactor13

n∏
i<j

(zi − zj)
2
k
mimj (z̄i − z̄j)

2
k
m̄im̄j (2.36)

The WZW theory for the coset SL(2,R)/U(1) has central charge

c =
3k

k − 2
− 1, (2.37)

where k is the WZW level; the term −1 comes from the U(1) gauging. Notice this

matches (2.2). In the semiclassical limit, k →∞, one obtains c = 2 as expected.

So far, we did not need to compute the WZW correlation functions explicitly. The

trick to avoid this was resorting to the H+
3 -Liouville correspondence. However, in the next

section we will need to compute a new set of WZW correlation functions, and therefore we

will need to introduce a convenient framework to do so. A useful technique is the Wakimoto

free field approach — see [16, 36] and references therein —. In terms of the Wakimoto free

fields, the action of the SL(2,R) WZW model reads

SWZW[µ] =
1

2π

∫
d2z

(
∂φ∂̄φ+ β∂̄γ + β̄∂γ̄ − Rφ√

2(k − 2)
+ 2πµββ̄ e

−
√

2
k−2

φ

)
(2.38)

which involves a β-γ system and a real scalar field φ(z, z̄). The latter represents the

longitudinal direction of the cigar, corresponding to the radial coordinate in the black

hole geometry. The dilaton varies linearly along φ and the string coupling vanishes in the

asymptotic region, far from the horizon. The horizon is located at the tip of the cigar, i.e.

at φ = 0. The value of the dilaton at the horizon can be adjusted by shifting the zero mode

of φ, which changes the value of µ. This means that the constant14 µ, which physically

corresponds to the mass of the two-dimensional black hole, is linked to the string coupling.

The black hole σ-model is not given by the SL(2,R) theory (2.38) but by the gauged

SL(2,R)/U(1) model. The latter can be constructed from the former by the following

recipe [36–38]: in addition to (2.38), one considers a free boson X,

SX =
1

2π

∫
d2z ∂X∂̄X (2.39)

and a copy of the c = −2 B-C ghost CFT

SBC =
1

2π

∫
d2z(C̄∂B̄ + C∂̄B) ; (2.40)

13See references [16, 28, 35] for the details of the construction of the spectral sectors of the SL(2,R) WZW

in terms of the product SL(2,R)/U(1) ×U(1).
14Notice that here we are denoting the black hole mass by µ. This is because when relating Liouville and

WZW correlators the black hole mass turns out to match the Knizhnik-Polyakov-Zamolodchikov (KPZ)

scaling coefficient of Liouville theory — often referred to as the Liouville cosmological constant —. In the

case of sine-Liouville theory the relation is given by (2.23) and (2.28). For instance, in the case of the theory

with c = 26, for which k = 9/4, the KPZ scaling for the sine-Liouville spherical partition function is λ8, as

discussed in [3].
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then, one considers the BRST charge

QU(1) =

∮
dz C(z)

(
J3(z)− i

√
k

2
∂X(z)

)
, (2.41)

with J3(z) being the local SL(2,R) current that generates the û(1) affine symmetry of the

U(1) direction of the coset. The SL(2,R) currents J3(z), J−(z), J+(z) have the following

OPE with operators

J3(z)Φj,m,m̄(w, w̄) ' m

(z − w)
Φj,m,m̄(w, w̄) + . . . (2.42)

J±(z)Φj,m,m̄(w, w̄) ' ±j −m
(z − w)

Φj,m±1,m̄(w, w̄) + . . . (2.43)

where the ellipses stand for regular terms; and analogously for the anti-holomorphic com-

ponents. This means that one can define the operators Vj,m,m̄ of the SL(2,R)/U(1) coset

as follows

Vj,m,m̄(z, z̄) = Φj,m,m̄(z, z̄)× ei
√

2
k
mX(z)−i

√
2
k
m̄X̄(z̄)

(2.44)

which, indeed, have conformal dimension (2.7) and are annihilated by (2.41). These are

the operators appearing on the right hand side of (2.35). In the next section, we will

use this free field representation to compute correlation functions in the coset theory and

investigate the GFZZ duality.

3 GFZZ duality

3.1 Black hole curvature operator

An efficient way to compute correlation functions in the non-compact WZW theory is to

consider the free theory SWZW[µ = 0] perturbed by the dimension-(1,1) operator

Ṽ1,1(z, z̄) = β(z)β̄(z̄) e
−
√

2
k−2

φ(z,z̄)
(3.1)

and resort to the free field representation [16, 36]. A remark that will be relevant below is

that operator (3.1) can be expressed as

Ṽ1,1(z, z̄) = J+(z)J̄+(z̄) Φ−1,−1,−1(z, z̄) (3.2)

where J+(z) is the local Kac-Moody current associated to the upper triangular element

of SL(2,R). It is possible to verify that (3.2) is actually an operator of the SL(2,R)/U(1)

coset CFT, as J3(z)J+(0) ' J+(0)/z + regular terms, while J3(z)Φ−1,−1,−1(0) '
−Φ−1,−1,−1(0)/z + regular terms. A way to verify that (3.1) is actually realized by (3.2) is

to use that in terms of the Wakimoto free fields the vertex operators of the SL(2,R) theory

are given by

Φj,m,m̄(z, z̄) = γj−m(z) e

√
2

k−2
jφ(z) × h.c. (3.3)
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where h.c. stands for the anti-holomorphic counterpart that depends on m̄, and that the

current J+(z) is simply given by the field β(z). Then, the regular part of OPE between

these fields yields (3.1). This is the first member of a family of operators with which

we will be concerned here. (3.1) is not of the form (3.3), it rather belongs to a different

representation. In fact, apart from (2.44), there are other operators in the coset which are

relevant for our discussion; namely

Ṽ`,¯̀(z, z̄) = (J+(z))`(J̄+(z̄))
¯̀

Φ− `+¯̀

2
,− `+¯̀

2
,− `+¯̀

2

(z, z̄) (3.4)

which are also of the coset — operator (3.1) corresponds to the particular case ` = ¯̀ = 1

—. In terms of Wakimoto free fields, operator (3.4) reads

Ṽ`,¯̀(z, z̄) = N`,¯̀ (β(z))`(β̄(z̄))
¯̀
e
−
√

2
k−2

(`+¯̀)
2

φ(z,z̄)
. (3.5)

with N`,¯̀ being a normalization. These β-dependent primary vertex operators have been

considered in the literature before — see for instance [16, 28, 37, 39] — and play an

important role in the formulation of the GFZZ duality of [1]. In the following subsections

we will study the properties of these operators.

3.2 Oscillator states and black hole amplitudes

As mentioned, the FZZ duality can be thought of as a duality between the graviton-like

operator Ṽ1,1, which controls the curvature of the black hole σ-model, and the tachyon-

like operators

V k
2
, k
2
,± k

2
(z, z̄) = e

−
√
k−2

2
φ(z,z̄)+i

√
k
2
X(z)±i

√
k
2
X̄(z̄)

, (3.6)

appearing in sine-Liouville action. In fact, both operators have the same quantum num-

bers. In a recent paper [1], Giveon, Itzhaki and Kutasov proposed that the the relation

between (3.1) and (3.6) might be regarded as the simplest example of a larger duality

between operators in the Euclidean black hole σ-model and tachyon-type operators in sine-

Liouville theory. More precisely, this GFZZ duality states the correspondence between

oscillator-type operators of the form (3.4) and the tachyon-like operators15

V `+¯̀−k
2

, k−`+
¯̀

2
,
¯̀−`−k

2

(z, z̄) = e
−
√

2
k−2

( k−`−
¯̀

2
)φ(z,z̄)+i

√
2
k

( k−`+
¯̀

2
)X(z)−i

√
2
k

( k+`−¯̀

2
)X̄(z̄)

. (3.7)

The conformal dimension of both operators is indeed the same; it is given by

∆ = `− (`+ ¯̀)(`+ ¯̀− 2)

4(k − 2)
, ∆̄ = ¯̀− (`+ ¯̀)(`+ ¯̀− 2)

4(k − 2)
, (3.8)

which in the case ` = ¯̀= 1 corresponds to the marginal deformations (3.1) with ∆ = ∆̄ = 1.

15Our notation relates to that of [1] by j → −1− j. The origin of the duality between these operators of

the coset theory is the equivalence between states of the SL(2,R) discrete representation D±j of the spectral

flow sector ω and those of the discrete representation D∓−k/2−j of the spectral flow sector ω ± 1 [1]; this is

similar to the relation between conjugate representations of the vertex operators [16].
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In [14] this GFZZ duality has been checked at the level of the interacting theory by

explicitly computing 3-point functions that involve both (3.5) and (3.7). Here, we aim to

go further and perform a consistency check of the duality at the level of n-point functions

for arbitrary n. As we said, this demands to be more creative than in [14] because, unlike

what happens in the case n = 3, for n > 3 an expression for the correlation functions in

terms of elementary functions is not available. The way of circumventing this obstruction

is using the integral representation of n-point functions discussed in the previous section.

We will focus for simplicity on the case in which the winding number number is violated

maximally; that is, on the n-point correlation functions that include n− 2 operators of the

type (3.7) in sine-Liouville theory. We will explicitly show that, indeed, such correlation

functions exactly match the n-point correlation functions involving the appropriate amount

of oscillator type states (3.5) in the Euclidean black hole σ-model, in agreement with [1].

More concretely, we want to compute

ÃWZW =

n−2∏
i=1

N`i,¯̀i
〈 n−2∏
i=1

Ṽ`i,¯̀i(zi, z̄i) Vjn−1,mn−1,m̄n−1(1, 1) Vjn,mn,m̄n(0, 0)
〉

SL(2,R)/U(1)

(3.9)

and show that this exactly agrees with the sine-Liouville correlator that involves n − 2

operators (3.7). We will do this in the following subsection.

3.3 Oscillator states amplitudes

Let us compute in the coset WZW theory the correlation function (3.9), which involves

n−2 oscillator-type operators Ṽ`,¯̀. For our purpose, it is enough to consider the case `i = ¯̀
i

which in the sine-Liouville side corresponds to a correlator with mi − m̄i = k for i ≤ n− 2

and with mn−1 = m̄n−1 = −mn = −m̄n, i.e. ωi = 1 for i ≤ n − 2, and ωn−1 = ωn = 0.

This yields ∆ω = n − 2. Direct computation of the WZW correlator using Wakimoto

representation, similar to the one carried out in [14], yields the integral representation

ÃWZW = µŝ
Γ(1 + jn−1 −mn−1)Γ(1 + jn −mn)

Γ(−jn−1 −mn−1)Γ(−jn −mn)

n−2∏
i=1

(−1)`iN`i,`i

×Inŝ,−2b2(z1, . . . zn−2, 1, 0;−2`1b
2, . . .− 2`n−2b

2, 2jn−1b
2 − 1, 2jnb

2 − 1; 0, . . . 0)

(3.10)

with

ŝ+
n−2∑
i=1

`i −
n∑

l=n−1

jl − 1 = 0. (3.11)

The Γ-functions in (3.10) come from the multiplicity factor of the Wick contraction of β−γ
fields of the ghost system, which have the free field correlator 〈β(z)γ(w)〉 = 1/(z −w); see

references [14, 16, 28, 36] for details.

Using the integral representation (2.31) for the Liouville correlation functions, and

comparing (2.32) with (3.11), one observes that (3.10) can be written in terms of Liouville
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theory correlator as follows

ÃWZW =
Γ(1 + jn−1 −mn−1)Γ(1 + jn −mn)

Γ(−jn−1 −mn−1)Γ(−jn −mn)

n−2∏
i=1

(−1)`iN`i,`i

×
〈 n−2∏

i=1

e
√

2α∗i φ(zi,z̄i) e
√

2αn−1φ(1,1) e
√

2αnφ(0,0)

〉
L

(3.12)

with

αi = b(b−2/2− ji), i = n− 1, n , (3.13)

`i = k/2 + ji , i = 1, 2, . . . n− 2 . (3.14)

Then, considering the correspondence between sine-Liouville operators and Liouville

correlators (2.29) in the special case ∆ω = n− 2, using the reflection property (2.33) of Li-

ouville correlation functions, using the identity between WZW and Liouville correlators [32]

for the case ∆ω = n − 2, and defining the normalization N`i,`i conveniently in order to

absorb factors R(αi) and Γ(1 + `i − k)/Γ(k − `i), one finally finds that the SL(2,R)/U(1)

WZW correlator

ÃWZW =

〈 n−2∏
i=1

Ṽ`i,`i(zi, z̄i) Vjn−1,mn−1,m̄n−1(1, 1) Vjn,mn,m̄n(0, 0)

〉
SL(2,R)/U(1)

(3.15)

is actually equivalent to the sine-Liouville correlator16

Asine-L =

〈 n−2∏
i=1

V`i− k2 ,
k
2
,− k

2
(zi, z̄i) Vjn−1,mn−1,m̄n−1(1, 1) Vjn,mn,m̄n(0, 0)

〉
sine-L

, (3.16)

with the dictionary (3.14). This exactly agrees with the GFZZ conjecture of [1]. The

matching between correlators (3.15) and (3.16) is consistent with — and gives further

support to — the identification between the operators (3.5) and (3.7), namely

Ṽ`,¯̀ ↔ V `+¯̀−k
2

, k−`+
¯̀

2
,
¯̀−`−k

2

. (3.17)

This operator map is remarkable for several reasons: first, it relates states with differ-

ent winding number. Secondly, it relates operators whose associated wave functions have

quite different support: while the large φ behavior of one of these operators is Ṽ`,` ∼
exp (−`

√
2/(k − 2)φ), the other goes like V`−k/2,k/2,k/2 ∼ exp (

√
2/(k − 2)(`− k/2)φ).

From this, we observe that also the large semiclassical — large k — limit of both op-

erators is different; while the former goes like Ṽ`,` ∼ exp (−`
√

(2/k)φ) the latter behaves

as V`−k/2,k/2,k/2 ∼ exp (−
√
k/2φ).

16Similar computation can be carried out for chiral correlators with `i 6= ¯̀
i provided one considers λi 6= 0

in (2.18).
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3.4 Other marginal deformations

Duality (3.17) is a generalization of the identification between the marginal operator (3.6)

of sine-Liouville theory and the metric operator (3.1) of the two-dimensional black hole

σ-model. In particular, (3.17) also relates other marginal operators in both theories. For

instance, in the WZW theory there exists a second marginal operator,17 whose Wakimoto

realization is given by

Ṽk−2,k−2(z, z̄) = (β(z))k−2(β̄(z̄))k−2e−
√

2(k−2)φ(z,z̄) , (3.18)

and corresponds to ` = ¯̀ = k − 2. Therefore, according to the identification (3.17), this

operator should correspond in the sine-Liouville theory to the dimension-(1,1) operator

V k
2
−2, k

2
,− k

2
(z, z̄) = e

(√
k−2

2
−
√

2
k−2

)
φ(z,z̄)

e
i
√
k
2
X(z)−i

√
k
2
X̄(z̄)

. (3.19)

Then, a natural question arises as to what is the role played by the marginal operator (3.19)

in sine-Liouville theory. It turns out that this operator has already appeared in the lit-

erature previously: in [13], Mukherjee, Mukhi and Pakman considered the sine-Liouville

theory deformed by the operator (3.19), and they showed that the resulting theory, being

now defined with the two marginal operators (2.8) and (3.19), is actually consistent with

the structure of sine-Liouville correlation functions. More importantly, they also showed

that the OPE of the two exponential marginal operators actually generates — and de-

mands the presence of — the black hole deformation operator (3.1). This peculiar feature

is somehow explained by (3.17).

Another special case of the GFZZ mapping (3.17) is ` = ¯̀ = 0, which corresponds

to the identity operator Ṽ0,0 = 1 in the WZW theory. It turns out that (3.17) maps the

identity operator to the dimension-(0,0) operator

V− k
2
, k
2
,− k

2
(z, z̄) = e

− k
2(k−2)

φ(z,z̄)+i
√
k
2
X(z)−i

√
k
2
X̄(z̄)

. (3.20)

This operator (3.20) has also appeared in the literature before [2], and it has been regarded

as a conjugate identity operator, which plays an important role in the computation of wind-

ing violating amplitudes [2, 14, 16, 17, 28]. In [17], operator (3.20) has been reconsidered

in the context of string theory on AdS3, and was identified as the the spectral flow operator.

The existence of this conjugate identity operator was intriguing from the worldsheet theory

point of view; however, in the light of (3.17) this is nothing but another manifestation of

the GFZZ duality.

Further identifications among different operators that appeared in the literature are

somehow explained by the GFZZ map (3.17). For instance, in the case ` = ¯̀= k−1, (3.17)

happens to connect different conjugate representations of the identity Ĩ0, Ĩ− considered

in reference [16], which turn out to be important to compute correlators with winding

string states. The identification between operators (3.17) permits to see from a different

perspective the relation between different conjugate representations of primary operators

17See [16] for explicit computations involving this operator.
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of arbitrary weight; see for instance the field Φ̃ω=−1
j,m=k/2,m̄=k/2 of [39], which corresponds

here to the oscillator operator Ṽj+k/2,j+k/2. From this point of view, correspondence (3.17)

appears as a particular case of the map of conjugated representations

Ṽj,m,m̄ = (β(z))j+m(β̄(z̄))j+m̄e
−
√

2
k−2

(j+ k
2

)φ(z,z̄)+i
√

2
k

(m− k
2

)X(z)+i
√

2
k

(m̄− k
2

)X̄(z̄) ↔ Vj,m,m̄

proposed in reference [39].

4 Conclusions

We have shown that n-point correlation functions in sine-Liouville theory involving n− 2

winding modes coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW

model that involve n − 2 operators of the oscillator type introduced in reference [1]. Our

result is consistent with the Generalized FZZ correspondence, and it extends our previous

work [14] to the case of n-point functions.
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