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1 Introduction

Holography in string theory [1–3] allows to study properties of relativistic strongly coupled

quantum field theories on the screen in terms of Einstein classical gravity in the bulk,

if the curvature is small. For the case of large curvature one should replace classical

gravity by full string theory in the bulk. In particular in [4] IIB (super) strings in null

geodesics of AdS5 × S5 have been considered. In this sector string theory is soluble and

the corresponding gauge dual sector has been identified.

Non-relativistic holography, the application of holographic ideas to non-relativistic

physics, has also been considered. Non-relativistic holography is useful to study properties

of strongly correlated systems in condensed matter (see [5, 6] and references therein). In this

case one could consider relativistic metrics in the bulk with non-relativistic isometries [7, 8]

or to consider non-relativistic gravity theories in the bulk; see for example [9–11]. Like in

the relativistic case, if the curvature is large one should use non-relativistic strings in

the bulk. Vibrating non-relativistic strings were introduced in [12, 13]. Their action was

obtained by the non-relativistic “stringy” limit of a relativistic string where not only the

time direction is large but also a spatial direction along the string [14]. The action was also

obtained using the non-linear realization technique applied to a “stringy” contraction of

the Poincare group, called “stringy” Galilei algebra [15, 16]. This algebra has two type of

non-central extensions. The “stringy” limit of (super) strings in AdS5×S5 was constructed

as another soluble sector of the AdS/CFT correspondence [17].

There is also the ordinary non-relativistic limit of the relativistic string where only the

time direction becomes large; in this case the non-relativistic string does not vibrate [18].

It represents a continuum of non-relativistic massless particles [19] with an energy density

which depends on the position of the particle in the string. The action is invariant under

Galilean transformations that close without central extension. The Lagrangian can be

obtained also by the method of non-linear realizations.
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The first check that holographic ideas are working is to verify that the symmetries

of the bulk and the screen coincide. In the case of non-relativistic holography one should

check that the Galilean symmetries in the bulk and in the screen coincide.

As a first step towards using non-relativistic strings in non-relativistic holography, we

study in this paper the general Noether Galilean symmetries of non-relativistic strings.

We will write the generator of the most general point transformation and will impose on

it the condition of Noether symmetry, which gives the associated non-relativistic Killing

equations that one must solve. For a massive non-relativistic particle, the maximal set of

symmetries is larger than the Galilei group, and it is in fact the Schrödinger group [20, 21],

which is the group corresponding to the z = 2 case of an infinite set of z-Galilean conformal

algebras [22–24].

For a relativistic string, one can consider two non-relativistic (NR) limits according

to whether one or two longitudinal coordinates are scaled, which we call, respectively NR

particle limit ans NR stringy limit. For the particle limit, a non-vibrating non-relativistic

string is obtained, whose maximal set of symmetries turns out to be an infinite dimensional

extension of the Galilean conformal algebra [19, 22, 25, 26], but with dynamical exponent

z = −1. The enhancement of non-relativistic symmetries for non-relativistic gauge field

theories has also been discussed in [27–29]. However, the extended algebras that we obtain

in the NR particle limit seem to be fundamentally different due to their stringy origin, and

this is reflected, in particular, in the negative values of the dynamical exponent.

The particle limit of (super) strings in AdS5 × S5 would lead also to a soluble sector

of AdsS/CFT correspondence and is therefore worth to explore.

For the stringy limit, a non-relativistic vibrating string is obtained, with a new infinite

dimensional algebra, which we call the stringy Galilean conformal algebra. The conserved

charges are computed and we show the existence of an infinite set of non-central extensions.

For general a p-brane, the p+ 1 longitudinal directions allow to consider p+ 1 different

non-relativistic limits. In this paper we study only the case of the particle limit, which turns

out to have a group of transformations corresponding to an infinite dimensional extension

of the Galilean algebra with z = −p.
The organization of the paper is as follows. In section 2 we discuss the conditions

under which the terms that are obtained in the expansion of the relativistic action are

invariant under Galilean transformations, and review the construction of the two non-

relativistic limits for a relativistic string. The non-relativistic particle limit of a general

p-brane is discussed as well. In section 3 we write down the equations of motion for both

non-relativistic strings and, in particular, for the non-vibrating string, we discuss the gauge

fixing procedure and the resulting dynamics.

In section 4 we consider the most general generator of point transformations for the

non-vibrating string. The Noether condition for symmetries is applied and a set of non-

relativistic Killing equations for the symmetry generators are obtained. After solving them,

we obtain the algebra of symmetry transformations. Results are also presented for the NR

particle limit of a p-brane.

In section 5 we apply the same procedure to the NR stringy limit of the string and

discuss the corresponding algebra of transformations and the appearance of non-central

extensions. Finally, we review our results and consider some open problems in section 6.
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2 Non-relativistic limits of a relativistic extended object

In this section we will study the possible non-relativistic limits of an extended object, a

relativistic p-brane. We first analyze some general properties on the non-relativistic limit.

Consider a general action of a relativistic extended object with coordinates X’s,1

S[X] =

∫
L[X] (2.1)

we assume that the Lagrangian density L is pseudo-invariant under a given set of relativistic

symmetries δR,

δRL = ∂ · F, (2.2)

where ∂ · F denotes the divergence of F . In order to study the non-relativistic limit we

introduce a dimensionless parameter ω and we scale the variables and constants of the

Lagrangian and relativistic transformations accordingly.

We assume that the Lagrangian density and the symmetry transformation can be

expanded in powers of ω,2

δR = δ0 + ω−2δ−2 + . . . , (2.3)

L = ω2L2 + L0 + ω−2L−2 + . . . , (2.4)

F = ω2F2 + F0 + ω−2F−2 + . . . . (2.5)

where the first term in the expansion of the relativistic symmetry, δR, is the non-relativistic

transformation δ0.3 Condition (2.2) implies and infinite set of conditions. For the first

orders in the expansion parameter we have

δ0L2 = ∂ · F2, (2.6)

δ0L0 + δ−2L2 = ∂ · F0, (2.7)

δ0L2 + δ−2L0 + δ−4L2 = ∂ · F−2. (2.8)

From these one sees that the highest order Lagrangian density L2, which appears with a

divergent factor ω2, is always (pseudo)invariant under δ0, while the finite one, L0 is only

invariant if δ−2L2 is a divergence. The latter condition happens, in particular, if L2 itself

is itself a divergence or, even more particularly, if L2 = 0, which will one of the cases that

we will be considering. In the limit ω →∞ all the terms with negative powers of ω vanish.

Let us apply these ideas to a relativistic string in flat space-time described by the

Nambu-Goto action

S = −T
∫

d2σ
√
− detG, (2.9)

1The results obtained will also apply to any relativistic field theory Lagrangian.
2The details of the expansion may depend on the system and symmetry that one is considering, but the

same ideas can be applied to other cases. This particular expansion is motivated by the result that one

obtains in the case of the NR limit of a relativistic particle, and is also useful for the systems that we are

considering.
3The analysis below can also be used for the Carroll limit that was introduced as a different type of

non-relativistic limit by Levy-Leblond [30]; see also [31].
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where G is the induced metric, with elements

Gαβ = ∂αX
µ∂βXµ, (2.10)

and where Xµ(τ, σ), µ = 0, 1, . . . d are the embedding coordinates in flat (d+ 1)-spacetime,

while the world-volume coordinates are σα = (σ0, σ1) = (τ, σ) α, β = 0, 1. As usual, we

will denote derivatives with respect to τ and σ by dots and primes, respectively.

For a string, one can consider two non-relativistic limits, which depend on whether one

or two embedding coordinates are scaled by ω. The particle limit is obtained for X0 = ωt,

Xi = xi, i = 1, . . . , d, for which [18]

SNG = −Tω
∫

dτdσ

√
(ṫ~x ′ − t′~̇x)2 +O

(
1

ω

)
(2.11)

After re-scaling Tω = TNR ≡ T , the first term in the expansion is a finite one in ω,

SPL = −T
∫

dτdσ

√(
ṫ~x ′ − t′~̇x

)2
, (2.12)

and, according to the general discussion, the Lagrangian density −T
√

(ṫ~x ′ − t′~̇x)2 will be,

at least, pseudo-invariant under Galilean transformations. In fact, the Galilean symmetry

transformations obtained by the NR limit

δt = β, δxi = ai + bit+ ωijxj , ωij = −ωji, (2.13)

close under the Galilei algebra without central extension i.e., the Lagrangian is invariant

under the Galilean transformations and not pseudo invariant [32, 33]. From (2.12) it follows

also that the action is invariant under the scaling

t→ λt, ~x→ λ−1~x, (2.14)

which indicates a negative dynamical exponent. This will be reflected in the full extended

Galilean transformations that we will construct.

The stringy limit is obtained with XL = ωX̂L, L = 0, 1, Xi = yi, i = 2, . . . , d [12, 13]

(see also [14]). After some algebra, one obtains

√
− detG = w2

√
− det Ĝ+

1

2

√
− det Ĝ

(
Ĝ−1

)γδ
G̃γδ +O

(
1

w2

)
, (2.15)

where

Ĝαβ = ∂αX̂
L∂βX̂L, (2.16)

G̃αβ = ∂αyi∂βyi. (2.17)

The term
√
− det Ĝ is, in fact, a total derivative, since

det Ĝ = −
[
∂τ
(
X0∂σX

1
)

+ ∂σ
(
−X0∂τX

1
)]2

, (2.18)
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and hence, according to the previous discussion, the action [14]

SSL = −T
2

∫
dτdσ

√
− det Ĝ

(
Ĝ−1

)γδ
G̃γδ (2.19)

will be invariant under Galilean transformations

δX̂L = εL + ωLMX̂
M , δyi = εi + ωijy

j + ωiLX̂
L. (2.20)

After some algebra, the corresponding Lagrangian density can be written as [34]

LSL =
T

2

1(
ṫz′ − t′ż

) [(−t′2 + z′2
)
~̇y 2 +

(
−ṫ2 + ż2

)
~y ′ 2 + 2

(
t′ṫ− z′ż

)
~̇y · ~y ′

]
, (2.21)

with X̂0 = t, X̂1 = z.

For a p-brane it makes sense to consider p+1 different non-relativistic limits, according

to the number (1, 2, . . . , p + 1) of embedding coordinates that are scaled. The case of the

NR p-brane limit of a p-brane, which for p = 1 corresponds to the NR stringy limit of the

string, was discussed in [16].

Here we consider the NR particle limit of a p-brane in flat spacetime, for general p.

The relativistic Lagrangian density is given by

L = −T
√
− detG, Gαβ = ∂αX

µ∂βXµ, α, β = 0, 1, . . . , p+ 1, µ = 0, 1, . . . , d. (2.22)

As in the string case, the NR particle limit is obtained with X0 = ωt, Xi = xi, i =

1, 2, . . . , d. One has

Gαβ = −ω2∂αt∂βt+ G̃αβ , with G̃αβ = ∂αxi∂βxi. (2.23)

Then

detG =
1

(p+ 1)!
εα1α2...αp+1εβ1β2...βp+1Gα1β1Gα2β2 · · ·Gαp+1βp+1

=
1

(p+ 1)!
εα1α2...αp+1εβ1β2...βp+1(

−ω2∂α1t∂β1t+ G̃α1β1

)
(
−ω2∂α2t∂β2t+ G̃α2β2

)
...(
−ω2∂αp+1t∂βp+1t+ G̃αp+1βp+1

)
.

(2.24)

When forming the products, any term with a power higher than ω2 will have at least two

derivatives of t with indexes belonging to the same ε, and hence will cancel by symmetry.

The only surviving terms are the p + 1 ones with power ω2 (which are all equal due to

symmetry), and the term with p+ 1 factors of elements of G̃, which is equal to det G̃,

detG = −ω2 1

p!
εα1α2...αp+1 εβ1β2...βp+1 ∂α1t ∂β1t G̃α2β2 · · · G̃αp+1βp+1 + det G̃, (2.25)

– 5 –
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The expansion in ω of the relativistic Lagrangian density is

L = −Tω
√

1

p!
εα1α2...αp+1 εβ1β2...βp+1 ∂α1t ∂β1t G̃α2β2 · · · G̃αp+1βp+1 +O

(
1

ω

)
. (2.26)

According to the general discussion above, the action with Lagrangian density

LPL = −T̂
√

1

p!
εα1α2...αp+1 εβ1β2...βp+1 ∂α1t ∂β1t G̃α2β2 · · · G̃αp+1βp+1 , (2.27)

where T̂ = ωT , will be NR (pseudo)invariant. For p = 1 one recovers the action (2.12) for

the NR string, while p = 0 yields a particle Lagrangian which is just a total derivative −T̂ ṫ.
In this case, the next term in the ω expansion will also be NR invariant, and it results in

the standard NR particle action.

3 Equations of motion of non-relativistic strings

The Lagrangian densities for the extended NR objects that we have constructed in the

previous section are homogeneous functions of first order of the derivatives of the field

variables (and in particular of the derivatives with respect to τ), and hence are invariant

under diffeomorphisms, have an identically zero canonical Hamiltonian, and yield p + 1

first-class constraints Φa(~x, t, ~p, E) = 0, a = 0, . . . , p. The canonical action is thus given by

S =

∫
dτdσ1 · · · dσp

(
ẋipi − ṫE −

p∑
a=0

λaΦa(~x, t, ~p, E)

)
, (3.1)

with {λa} a set of p+ 1 Lagrange multipliers.

Let us consider first the Lagrangian density corresponding to the action (2.11),

L = −T
√(

ṫ~x ′ − t′~̇x
)2

= −T
√
~B2, ~B = ṫ~x ′ − t′~̇x. (3.2)

The canonical momenta are

E = −∂L
∂ṫ

=
T√
~B2

~B · ~x′, (3.3)

~p =
∂L
∂~̇x

=
T√
~B2
t′ ~B, (3.4)

and yield the primary first-class constraints

Φ0 =
1

2T

(
~p 2 − T 2

(
t′
)2)

, (3.5)

Φ1 = ~p · ~x′ − Et′, (3.6)

with equal-τ Poisson brackets

{Φ0 (σ) ,Φ0 (σ̃)} = Φ1 (σ) ∂σδ (σ − σ̃)− Φ1 (σ̃) ∂σ̃δ (σ − σ̃) ,

{Φ1 (σ) ,Φ0 (σ̃)} = Φ0 (σ) ∂σδ (σ − σ̃)− Φ0 (σ̃) ∂σ̃δ (σ − σ̃) ,

{Φ1 (σ) ,Φ1 (σ̃)} = Φ1 (σ) ∂σ (δ (σ − σ̃))− Φ1 (σ̃) ∂σ̃δ (σ − σ̃) .

(3.7)

– 6 –
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The canonical action is

S =

∫
dτdσ

(
−Eṫ+ ~p · ~̇x− 1

2T
λ
(
~p 2 − T 2t′

2
)
− µ

(
~p · ~x′ − Et′

))
, (3.8)

and the corresponding equations of motion are

Ė =
(
Tλt′ + µE

)′
, (3.9)

~̇p = (µ~p )′ , (3.10)

ṫ = µt′, (3.11)

~̇x =
λ

T
~p+ µ~x′, (3.12)

provided that the terms coming from partial integrations in σ are zero.

For closed strings this is automatic, while for open strings one has to demand that((
Tλt′ + µE

)
δt− µpiδxi

)∣∣
B

= 0, (3.13)

where B indicates evaluation at the boundary of σ. In order to satisfy this one can impose4

µ|B = 0, (3.14)

t′δt
∣∣
B

= 0. (3.15)

Notice that (3.15) is satisfied for both Dirichlet and Neumann conditions on t. Conservation

of total energy, however, requires Neumann conditions (see (3.26) below) and hence we will

take as our boundary conditions

µ|B = 0, (3.16)

t′
∣∣
B

= 0. (3.17)

One can compute the canonical generator of the gauge transformations and get the

following transformations of the state variables,

δDiffxi =
1

T
ε0pi + ε1x

′
i, (3.18)

δDifft = ε1t
′, (3.19)

with ε0 and ε1 arbitrary functions of τ , σ, and with E and pi given by (3.3) and (3.4),

respectively.

One can check that under these transformations the Lagrangian density (3.2) varies as

δDiffL = ∂τ
(
Tε0

(
t′2 − ṫt′

))
+ ∂σ (ε1L) . (3.20)

Equations (3.9)–(3.12) contain two Lagrangian multipliers λ(τ, σ) and µ(τ, σ). If we

consider the conformal gauge λ = 1, µ = 0 the equations of motion become

Ė = Tt
′′
, (3.21)

~̇p = 0, (3.22)

ṫ = 0, (3.23)

~̇x =
1

T
~p, (3.24)

and they should be supplemented with the constraints (3.5), (3.6).

4We thank Paul Townsend for remarks concerning the boundary conditions.
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The equations of motion for any value of σ are the ones of a massless Galilean parti-

cle [19], except for the fact that now we have (3.21) instead of Ė = 0. The total energy

H(τ) =

∫
dσ E(τ, σ) (3.25)

is nevertheless conserved. Indeed

Ḣ =

∫
dσ Ė =

∫
dσ Tt′′ = T

∫
dσ ∂σt

′, (3.26)

which is zero for closed strings, but also for open strings, due to the boundary condition

(3.17). It follows from (3.21) that energy flows along the string according to the curvature

of the t coordinate, and this is a unique feature of having an extended object instead of a

particle.

In order to study the reduced physical space we must introduce two gauge fixing

constraints, Ψ0 and Ψ1, such that {Φ0,Φ1,Ψ0,Ψ1} is a set of second-class constraints

on the variety M defined by all four constraints. The arbitrary functions can then be

determined by demanding the stability of Ψ0 and Ψ1.

Let us remark first that the naive gauge fixing condition Ψ(τ, σ) = t(τ, σ)− 1√
T
τ is not

acceptable. Indeed, one has that {Φ0,Ψ} = 0 trivially and

{Φ1(τ, σ),Ψ(τ, σ̃)}|M = t′(τ, σ)δ(σ − σ̃)
∣∣
M = 0 (3.27)

where t(τ, σ) = 1√
T
τ on M has been used in the last step. Hence, a condition of the form

t ∼ τ does not render second class any of the original primary constraints, and does not

determine any of the Lagrangian multipliers λ, µ. From the above computation it is clear

that an acceptable gauge condition has to include a dependence on σ for t, and we choose

Ψ0(τ, σ) = t(τ, σ)− f(σ), (3.28)

where we leave f free so that the boundary conditions for the open string, or the winding

number assignement for the closed string, can be satisfied. Since t cannot be chosen as

the evolution parameter of the gauge-fixed system, a sensible second gauge condition is

given by

Ψ1(τ, σ) = x1(τ, σ)− 1

T
p1(τ, σ)τ. (3.29)

One has then the non-zero Poisson brackets

{Φ1(τ, σ),Ψ0(τ, σ̃)}|M = f ′(σ)δ(σ − σ̃), (3.30)

{Φ0(τ, σ),Ψ1(τ, σ̃)}|M = − 1

T
p1(τ, σ)δ(σ − σ̃)

∣∣∣∣
M

= − 1

T
p∗1(τ, σ)δ(σ − σ̃), (3.31)

{Φ1(τ, σ),Ψ1(τ, σ̃)}|M = − 1

T
τp∗1(τ, σ̃)∂σδ(σ − σ̃), (3.32)

where p∗1 means p1 expressed in terms of f ′ and pi, i = 2, . . . , d, using Φ0,

p∗1(τ, σ) =

(
T 2(f ′(σ))2 −

d∑
i=2

p2
i (τ, σ)

)1/2

. (3.33)
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The stability of the gauge conditions yields

Ψ̇0(τ, σ)
∣∣∣
M

= −f ′(σ)µ(τ, σ), (3.34)

Ψ̇1(τ, σ)
∣∣∣
M

=
1

T
λ(τ, σ)p∗1(τ, σ) + (µ(τ, σ)τp∗1(τ, σ))′ − 1

T
p∗1(τ, σ). (3.35)

Requiring these to be zero one has µ = 0 and λ = 1, and hence (3.28) and (3.29) define

a conformal gauge. E is expressed in terms of the physical variables using Φ1 = 0. The

transverse coordinates xi(σ), pi(σ), i = 2, . . . , d, with equations of motion

ṗi = 0, (3.36)

ẋi =
1

T
pi, (3.37)

with x1 the evolution parameter, constitute the reduced, or physical, phase space. From

these equations one can see that the physical degrees of freedom do not vibrate, and

constitute a continuum of massless Galilean particles, in the sense that the corresponding

algebra of conserved charges associated to the Galilean symmetries does not exhibit any

central extension. It should be noticed [35] that the physical degrees of freedom describe a

Galilean string with vanishing potential energy density, although the tension parameter T

in the NR lagrangian density is finite. On the other hand, non-relativistic and carrollian

symmetries of relativistic tensionless strings have been discussed in [36, 37].

Let us consider now the NR stringy limit of the string. The Lagrangian density (2.21)

can be written in terms of light-cone coordinates r = t− z, s = t+ z as

Lrs =
T

ṙs′ − r′ṡ
(
−r′s′ẏ2

i − ṙṡy′2i +
(
ṙs′ + r′ṡ

)
ẏiy
′
i

)
. (3.38)

The canonical momenta are given by

πr =
∂Lrs
∂ṙ

= − s′

ṙs′ − r′ṡ
Lrs + T

−ṡy′2i + s′ẏiy
′
i

ṙs′ − r′ṡ
, (3.39)

πs =
∂Lrs
∂ṡ

=
r′

ṙs′ − r′ṡ
Lrs + T

−ṙy′2i + r′ẏiy
′
i

ṙs′ − r′ṡ
, (3.40)

pi =
∂Lrs
∂ẏi

=
−2Tr′s′ẏi
ṙs′ − r′ṡ

+ T
ṙs′ + r′ṡ

ṙs′ − r′ṡ
y′i, (3.41)

and yield the primary first class constraints [38]

Φ0 =
1

2T

(
p2
i + T 2y′2i

)
− πrr′ + πss

′, (3.42)

Φ1 = πrr
′ + πss

′ + piy
′
i, (3.43)

with exactly the same equal-τ Poisson brackets (3.7) of the non-vibrating case.

The canonical action is

S =

∫
dτdσ (πrṙ + πsṡ+ piẏi − λΦ0 − µΦ1) , (3.44)
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from which one can compute the equations of motion for the fields,

ṙ = −(λ− µ)r′,

ṡ = (λ+ µ)s′,

ẏi = λ
1

T
pi + µy′i,

π̇r = −((λ− µ)πr)
′,

π̇s = ((λ+ µ)πs)
′,

ṗi =
(
Tλy′i + µpi

)′
.

(3.45)

In order to get these equations, one has to cancel the boundary terms coming from

integrations in σ, namely

−λ
(
Ty′iδyi − πrδr + πrδs

)
− µ (πrδr + πsδs+ piδyi)

∣∣
B

= 0. (3.46)

For closed strings this is again automatic, while for open strings one can satisfy them

by demanding that

µ|B = 0, πr|B = 0, πs|B = 0, y′i
∣∣
B

= 0. (3.47)

From (3.39) and (3.40) it follows then that r′ = 0 and s′ = 0 also at the boundary, and

then, from (3.41), that pi = 0 at the boundary too. Hence, together with (3.47), we have

pi|B = 0, r′
∣∣
B

= 0, s′
∣∣
B

= 0. (3.48)

After computing the canonical generator of the gauge transformations one obtains for

the state variables the following diffeomorphism transformations

δDiffr = −(ε0 − ε1)r′, (3.49)

δDiffs = (ε0 + ε1)s′, (3.50)

δDiffyi =
1

T
ε0pi + ε1y

′
i, (3.51)

with ε0 and ε1 arbitrary functions of τ, σ and with pi given by (3.41). Notice that for the

covariant longitudinal variables t, z one has

δDifft = ε0z
′ + ε1t

′, (3.52)

δDiffz = ε0t
′ + ε1z

′. (3.53)

If we consider the conformal gauge λ = 1, µ = 0 the equations of motion become in [38]

ṙ = −r′,
ṡ = s′,

ẏi =
1

T
pi,

π̇r = −π′r,
π̇s = π′s,

ṗi = Ty′′i ,

(3.54)
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and we get classical string vibrations in the transverse directions, ÿi = y′′i . We refer to [38]

for a discussion of the classical dynamics of this system. At quantum level it is described

by a conformal field theory, with critical dimension D = 26 (see [12, 13]).

4 Space-time symmetries of the non-vibrating NR string

In this section we will derive spacetime symmetries for the non-vibrating NR string and

also for the corresponding higher dimensional objects obtained from relativistic p-branes.

We will construct all the spacetime symmetries given by point transformations, that is,

transformations generated by generators of the form

G(τ) =

∫
dσ1 · · · dσp (ξi(~x, t)pi − ξ0(~x, t)E + F (~x, t)) , (4.1)

where we have grouped into ~x = (xi) all the space-like variables, ~p = (pi) is the canonical

momentum associated to ~x and E is the canonical momentum corresponding to t, with the

sign convention E = −∂L
∂ṫ

. The function F is zero if the transformation leaves invariant

the Lagrangian density, and different from zero if it is only pseudoinvariant (the variation

yields a total derivative) [32, 33]. Functions ~ξ, ξ0 and F will be determined by demanding

that G be a constant of movement. Noether’s theorem for the Hamiltonian formalism

ensures then that G generates symmetries of the action.

We consider the following generator of space-time transformations

G =

∫
dσ
(
~ξ(t, ~x) · ~p− ξ0(t, ~x)E

)
. (4.2)

Since the action is exactly invariant under Galilean transformations, we make the ansatz

that this will also be the case for the extended transformations that we are looking for,

and hence we do not add any F term.

Using the equations of motion, disregarding boundary terms and using the primary

constraint p2
i = T 2t′2, one arrives at

Ġ =

∫
dσ

1

T
λ
(
∂iξjpjpi − piE∂iξ0 + pipi∂tξ0 + T 2t′x′i∂iξ0

)
. (4.3)

Since the functions ξ0, ξi do not depend on pi or the σ derivatives of the several fields, the

terms corresponding to all the powers of all these must be zero by themselves. One gets

then the set of non-relativistic Killing equations

∂iξ0 = 0, (4.4)

1

2
(∂iξj + ∂jξi) + δij∂tξ0 = 0, (4.5)

where (4.4) comes from the second and fourth terms in (4.3), and (4.5) from the quadratic

terms in pi. For i 6= j (4.5) implies

∂iξj + ∂jξi = 0, (4.6)
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while for i = j,

∂iξi + ∂tξ0 = 0, i = 1, . . . , d. (4.7)

The general solution to (4.6) is

ξi(t, ~x) = ai(t) + ωij(t)xj + c(t)xi, (4.8)

with

ωij(t) = −ωji(t). (4.9)

Substituting this into (4.7) one gets then

c(t) + ∂tξ0 = 0, (4.10)

with solution,

ξ0(t, ~x) = −
∫

dt c(t) + Ψ (~x) , (4.11)

but taking into account that ∂iξ
0 = 0 one gets

ξ0(t, ~x) = −
∫

dt c(t) + c0. (4.12)

The transformations for the fields are

δt = −
∫

du c(u) + c0, (4.13)

δxi = ai(t) + ωij(t)xj + c(t)xi. (4.14)

For c = 0 one gets, as special cases, time translations, space translations, boosts and

standard rotations, but also time-dependent rotations and higher order (in time) transfor-

mations of xi. The transformations corresponding to c0, ai(t) and ωij(t) constitute what

is sometimes known as the Coriolis group [39].

Particular cases of c 6= 0 are

1. c(t) = c, which yields δxi = cxi and δt = −ct. These constitute the infinitesimal

form of the scaling xi → ecxi and t→ e−ct.

2. c(t) = 2κt, for which δxi = 2κtxi and δt = −κt2.

If we set c(t) = −dβ(t)
dt and absorb c0 into β, the above transformations can be rewritten as

δt = β(t), (4.15)

δxi = ai(t) + ωij(t)xj −
dβ(t)

dt
xi, (4.16)

which contains d + 1 + d(d−1)
2 arbitrary functions of t. One can check that, if Bi are the

components of ~B given in (3.2),

δBi = ωij(t)Bj , (4.17)

and hence the action is invariant under these transformations, which is consistent with

not considering any F term in the generator. Since the transformations that we have
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obtained depend on arbitrary functions of t, one has in fact an infinite-dimensional algebra

of transformations.

If we expand the arbitrary functions is powers of t,

ai(t) =
∑
n≥−1

a
(n)
i tn+1, (4.18)

ωij(t) =
∑
n≥0

ω
(n)
ij t

n, (4.19)

β(t) =
∑
n≥−1

β(n)tn+1, (4.20)

one can read off from (4.15) and (4.16) the vector fields that generate the corresponding

transformations

M̂
(n)
i = tn+1∂i, n ≥ −1, (4.21)

Ĵ
(n)
ij = tn(xj∂i − xi∂j), n ≥ 0, (4.22)

L̂(n) = tn+1∂t − (n+ 1)tnxi∂i, n ≥ −1. (4.23)

They generate the algebra[
M̂

(n)
i , M̂

(m)
j

]
= 0, (4.24)[

M̂
(n)
i , Ĵ

(m)
jk

]
= δikM̂

(n+m)
j − δijM̂ (n+m)

k , (4.25)[
L̂(n), M̂

(m)
i

]
= (n+m+ 2) M̂

(n+m)
i , (4.26)[

L̂(n), L̂(m)
]

= (m− n) L̂(n+m), (4.27)[
L̂(n), Ĵ

(m)
ij

]
= mĴ

(n+m)
ij , (4.28)[

Ĵ
(n)
ij , Ĵ

(m)
kl

]
= δikĴ

(n+m)
jl − δilĴ

(n+m)
jk + δjlĴ

(n+m)
ik − δjkĴ

(n+m)
il . (4.29)

We have thus obtained an infinite dimensional extension of the Galilean algebra. Other

algebras of the same type have been considered in the literature; see for instance [25, 40]

and references therein.

The standard Galilean algebra is generated by

L̂(−1) = ∂t ≡ Ĥ (time translations), (4.30)

M̂
(−1)
i = ∂i ≡ P̂i (spatial translations), (4.31)

M̂
(0)
i = t∂i ≡ B̂i (Galilean boosts), (4.32)

Ĵ
(0)
ij = xj∂i − xi∂j ≡ L̂ij (spatial rotations). (4.33)

As in [40], one can try to extend this algebra by adding to these

M̂
(1)
i = t2∂i ≡ K̂i (second order boosts), (4.34)

L̂(0) = t∂t − xi∂i ≡ D̂ (dilatations), (4.35)

L̂(1) = t2∂t − 2txi∂i ≡ K̂ (special conformal transformations). (4.36)
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These generators are similar to those appearing in the Galilean conformal algebra [19, 40].

Notice, however, that the relative sign in D̂ and K̂ between time and space directions

is negative, while in the standard Galilean conformal algebra one has D̂ = t∂t + xi∂i,

K̂ = t2∂t + 2txi∂i. Hence our extension of the Galilean algebra has dynamical exponent

z = −1, i.e. space and time scale inversely one respect to the other. This can be seen

directly from the action (2.12): the scaling that leaves the action invariant is t → eλt,

~x→ e−λ~x.

The fact that the dynamical exponent is negative has as a consequence that the nu-

merical factor in (4.26) is always positive, except for
[
L̂(−1), M̂

(−1)
i

]
= 0, and this implies

that any subalgebra containing any M̂
(n)
i and one L̂(m) with m ≥ 1 will contain also all of

the M̂
(n)
i . In particular, [

L̂(1), M̂
(1)
i

]
= 4M̂

(2)
i , (4.37)

and thus all of our extensions of the Galilean algebra that contain special conformal trans-

formations are infinite dimensional.

An infinite-dimensional extension of the Galilean algebra [22], called z-Galilean Con-

formal algebra is discussed in [25] for the special case of a 2 + 1 spacetime, with 1/z taking

positive integer as well as half integer values. The algebra that we have obtained corre-

sponds to a sub-algebra of an z-Galilean Conformal algebra one but with z = −1, and

defined for any dimension of spacetime.

The generator of the symmetry transformations is

G(τ) =

∫
dσ

((
ai(t) + ωij(t)xj −

dβ(t)

dt
xi

)
pi − β(t)E

)
(4.38)

with all the variables (xi, t, pi and E) functions of τ and σ.

Using the expansions in powers of t yields the infinite set of charges

M
(n)
i =

∫
dσ tn+1pi, n ≥ −1, (4.39)

J
(n)
ij =

∫
dσ tn(pixj − pjxi), n ≥ 0, (4.40)

L(n) =

∫
dσ

(
−tn+1E − (n+ 1)tnxipi

)
, n ≥ −1. (4.41)

In [19] it is shown that for a massless non-relativistic particle the generators of boost

and momenta are proportional. Equation (4.39) for n = 0 shows that in our case we have

the analogous relation for the corresponding generator densities.

One can check that

Ṁ
(n)
i =

∫
dσ
(
µtn+1pi

)′
, (4.42)

J̇
(n)
ij =

∫
dσ (µtn (pixj − pjxi))′ , (4.43)

L̇(n) =

∫
dσ
(
−tn+1

(
µE + Tλt′

)
− (n+ 1)µtnxipi

)′
, (4.44)
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and hence they are conserved if the boundary conditions (3.16)(3.17) are used. This shows

that, under the same boundary conditions, the boundary terms that we disregarded in the

computation of Ġ are actually zero.

The above conserved charges generate, under the Poisson bracket, an algebra which,

except for an overall minus sign, coincides with the algebra of the vector fields which

generate the transformations of xi and t. No non-central extensions appears because, as

we remarked before, the Lagrangian density is exactly invariant under the transformations.

The analysis that we have developed for the particle limit of the string can be gener-

alized to the case of the particle limit of p-branes, and one ends up with the following set

of vector fields for the symmetry transformations:

L̂(n) = tn+1∂t −
1

p
(n+ 1)tnxi∂i, (4.45)

M̂
(n)
i = tn+1∂i, (4.46)

Ĵ
(n)
ij = −tn(xi∂j − xj∂i) ≡ −tnLij , (4.47)

the only difference with respect to the string (p = 1) case being the 1/p factor in the spatial

component of L̂(n). It turns out that the algebra of these generators is exactly the same

that in the string case, except for[
L̂(n), M̂

(m)
i

]
=

(
m+ 1 +

1

p
(n+ 1)

)
M

(n+m+1)
i , (4.48)

which reduces to (4.26) for p = 1. Hence we have obtained an infinite dimensional Galilean

conformal algebra with dynamical exponent z = −p.

5 Spacetime symmetries of NR stringy limit of string

We consider now the most general generator of canonical point transformations for the

non-relativistic string in r, s, yi variables,

G =

∫
dσ
(
piξi(~y, r, s) + πrξr(~y, r, s) + πsξs(~y, r, s)− F

(
~y, ~y ′, r, r′, s, s′

))
, (5.1)

where the F term has been added because the Lagrangian density is only pseudo-invariant

under the stringy Galilei transformations.

Computing Ġ one obtains, after some algebra and some integrations by parts,

Ġ =

∫
dσλ

(
− Ty′i(∂jξiy′j + ∂rξir

′ + ∂sξis
′

+
1

T
pipj∂jξi − pi∂rξir′ + pi∂sξis

′

+ πr∂iΦry
′
i + 2πr∂sξrs

′ +
1

T
πrpi∂iξr

− πs∂iξsy′i − 2πs∂rξsr
′ +

1

T
πspi∂iξs

− 1

T
pi[F ]i + r′[F ]r − s′[F ]s

)
−
∫

dσµ
(
y′i[F ]i + r′[F ]r + s′[F ]s

)
,

(5.2)
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where [F ]x denotes the Lagrangian derivative of F respect to x, [F ]x = ∂xF − ∂σ(∂x′F ).

Demanding that this be zero imposes the following set of Killing equations

∂iξr = 0, (5.3)

∂iξs = 0, (5.4)

∂sξr = 0, (5.5)

∂rξs = 0, (5.6)

∂iξj + ∂jxi = 0, (5.7)

[F ]s = −Ty′i∂sξi, (5.8)

[F ]r = Ty′i∂rξi, (5.9)

1

T
[F ]i = −∂rξir′ + ∂sξis

′, (5.10)

y′i[F ]i + r′[F ]r + s′[F ]s = 0. (5.11)

Equation (5.3) and (5.4) come from the terms proportional to πrpi and πspi, respectively,

and they also ensure the cancellation of the terms proportional to πry
′
i and πsy

′
i. Likewise,

the terms proportional to πrs
′ and πsr

′ lead to (5.5) and (5.6). Condition (5.7) comes

from the terms proportional to pipj and y′iy
′
j .

5 Finally, the last four equations are obtained

from the pieces proportional to λs′, λr′, λpi and µ. Notice, however, that (5.11) is a linear

combination of (5.8), (5.9) and (5.10), and hence can be disregarded.

From (5.3)–(5.6) one has

ξr(~y, r, s) = f(r), (5.12)

ξs(~y, r, s) = g(s), (5.13)

while the most general solution to (5.7) is

ξi = Λi(r, s) + ωij(r, s)yj , (5.14)

with the functions Λi(r, s) and ωij to be determined, and with ωij skew-symmetric.

Given the structure of (5.8) and (5.9), we make the ansatz that Λi(r, s) and ωij(r, s)

are, in fact, the sum of a function of r and a function of s,

Λi(r, s) = Bi(r) +Bi(s), ωij(r, s) = ωij(r) + ωij(s). (5.15)

Let us start with ξi = Bi(r) and (5.9). One has that ∂rξi = ∂rBi(r), and (5.9) is satis-

fied with

F = Ty′iBi(r), (5.16)

without any condition on the function Bi(r). Notice that, for the particular case that Bi
be a constant, F becomes a derivative in σ and hence its contribution to G becomes a

boundary term. Expanding Bi(r) in powers of r we get

Bi(r) =
∑
n≥−1

b
(n)
i rn+1 (5.17)

5Notice that these terms cannot be combined into the constraint Φ0 due to the relative sign.
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with corresponding

F = Ty′i
∑
n≥−1

b
(n)
i r(n+1). (5.18)

Due to the separation of Λ as a sum of functions of r and s, the solution to (5.8) will

look exactly the same, with different parameters b
(n)
i , and with a global minus sign for the

corresponding contribution to F . Thus, the solution to (5.8) and (5.9) of the form Λi(r, s)

will be (we combine the two constant contributions into a single one, ai = b
(0)
i + b

(0)
i , and

disregard the corresponding total derivative contribution T (b
(0)
i − b

(0)
i )y′i in F )

ξi = ai +
∑
n≥0

(
b
(n)
i rn+1 + b

(n)
i sn+1

)
, (5.19)

F = Ty′i
∑
n≥0

(
b
(n)
i rn+1 − b(n)

i sn+1
)
. (5.20)

It turns out that (5.19)(5.20) also solve (5.10).

Let us now consider the terms coming from ωij(r) and ωij(s). Equations (5.8) and (5.9)

are satisfied with

F = Ty′i (ωij(r)− ωij(s)) yj , (5.21)

but, substituting into (5.10), one finds that, after canceling corresponding terms from

both sides,

(−ωij(r) + ωji(r) + ωij(s)− ωji(s)) y′j = 0, (5.22)

which only holds if ωij(r) = ωij(s) = ωij , and then, from (5.21), F = 0.6

Let us now return to the solutions (5.12) and (5.13). Since f and g are arbitrary, we

can expand them in a power series to obtain f(r) =
∑

n≥−1 αnr
n+1, g(s) =

∑
n≥−1 βns

n+1.

Putting everything together we write the final form of the transformations as

δr =
∑
n≥−1

αnr
n+1, (5.25)

δs =
∑
n≥−1

βns
n+1, (5.26)

δyi = ai + ωijyj +
∑
n≥0

(
b
(n)
i rn+1 + b

(n)
i sn+1

)
. (5.27)

6As a direct check that only constant functions ωij (or ωij) yield symmetries of the action, one can

consider δyi = ωij(r)yj and compute

δLrs = Ty′iyjω̇ij − T ẏiyjω′
ij . (5.23)

This cannot be written as ∂τGτ + ∂σGσ, unless ω̇ij = ω′
ij = 0, in which case δLrs = 0. For instance

∂τ
(
Ty′iyjωij

)
+ ∂σ (−T ẏiyjωij) = Ty′iyjω̇ij − T ẏiyjω′

ij + 2Ty′iẏjωij , (5.24)

which has an extra term.
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These transformations have associated vector fields given by

P̂i = ∂i, (5.28)

L̂ij = yj∂i − yi∂j , (5.29)

L̂(n) = rn+1∂r, n ≥ −1, (5.30)

L̂
(n)

= sn+1∂s, n ≥ −1, (5.31)

M̂
(n)
i = rn+1∂i, n ≥ 0, (5.32)

M̂
(n)

i = sn+1∂i, n ≥ 0. (5.33)

These generate two copies of the same algebra, which contains the Witt algebra, with

relevant commutators (the commutators involving P̂i are those of M̂
(n)
i extended to n = −1)[

L̂(n), L̂(m)
]

= −(n−m)L̂(n+m), (5.34)[
L̂(n), M̂

(m)
i

]
= (m+ 1)M̂

(n+m)
i , (5.35)[

L̂ij , M̂
(n)
k

]
= δikM̂

(n)
j − δjkM̂

(n)
i , (5.36)[

L̂ij , L̂kl

]
= δikL̂jl − δilL̂jk + δjlL̂ik − δjkL̂il. (5.37)

Notice that P̂i, L̂ij , L̂
(−1), L̂(0) and M̂

(0)
i form a subalgebra, with associated transformations

δr = α−1 + α0r, (5.38)

δyi = ai + ωijyj + b
(0)
i r, (5.39)

which correspond to translations and dilatations for the longitudinal light-cone variable r

and translations, rotations and Galilean boosts (in the longitudinal light-cone variable r)

for the transverse variables yi. One can add the operators M̂
(1)
i , M̂

(2)
i , . . . , M̂

(N)
i , N ≥ 1,

and still get a closed algebra, with transformations

δr = α−1 + α0r, (5.40)

δyi = ai + ωijyj + b
(0)
i r + b

(1)
i r2 + b

(2)
i r3 + · · ·+ b

(N)
i rN+1. (5.41)

Because of (5.35), adding to the above set any of the L̂(n), n ≥ 1, forces the inclusion

of all the M̂
(n)
i .

In terms of the covariant variables t = X̂0, z = X̂1, the transformations are

δt =
1

2
g(t+ z) +

1

2
f(t− z), (5.42)

δz =
1

2
g(t− z)− 1

2
f(t− z), (5.43)

δyi = ai + ωijyj +Bi(t− z) +Bi(t+ z). (5.44)

Expanding the arbitrary functions in powers of t and z one gets, to the lowest orders,

δt = γ−1 + γ0t+ γ0z + γ1t
2 + 2γ1tz + γ1z

2 +O(3), (5.45)

δz = γ−1 + γ0z + γ0t+ γ1t
2 + 2γ1tz + γ1z

2 +O(3), (5.46)

δyi = ai + ωijyj + c
(0)
i t+ c

(0)
i z + c

(1)
i t2 + 2c

(1)
i tz + c

(1)
i z2 +O(3), (5.47)
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with

γn =
βn + αn

2
, γn =

βn − αn
2

, c
(n)
i = b

(n)
i + b

(n)
i , c

(n)
i = b

(n)
i − b

(n)
i . (5.48)

If the expansion of the arbitrary function in powers of r and s is carried out in the

canonical generator of the transformations one gets

G =

∫
dσ

piai + piωijyj + pi
∑
n≥0

(
b
(n)
i rn+1 + b

(n)
i sn+1

)
+ πr

∑
n≥−1

αnr
n+1 + πs

∑
n≥−1

βns
n+1

−Ty′i
∑
n≥0

(
b
(n)
i rn+1 − b(n)

i sn+1
) .

(5.49)

From this one can read the charges

Pi =

∫
dσ pi,

Lij =

∫
dσ (yipj − yjpi),

L(n) =

∫
dσ πrr

n+1, n ≥ −1,

L
(n)

=

∫
dσ πss

n+1, n ≥ −1,

M
(n)
i =

∫
dσrn+1

(
pi − Ty′i

)
, n ≥ 0,

M
(n)
i =

∫
dσsn+1

(
pi + Ty′i

)
, n ≥ 0.

(5.50)

The computation of Ġ, which has led to the charges (5.50), has been done performing

several integrations by parts, which produce surface terms that we have disregarded. In

order for the charges to be conserved, appropriate boundary conditions must be imposed so

that those boundary terms are zero, and they can be obtained directly from the conservation

of the charges. One has

L̇ij =

∫
dσ
(
yi
(
Tλy′j + µpj

)
− yj

(
Tλy′i + µpi

))′
, (5.51)

Ṗi =

∫
dσ
(
Tλy′i + µpi

)′
, (5.52)

L̇(n) =

∫
dσ
(
−(λ− µ)πrr

n+1
)′
, (5.53)

Ṁ
(n)
i =

∫
dσ
(
(λ− µ)rn+1

(
Ty′i − pi

))′
, (5.54)

and similar expressions to (5.53) and (5.54) for the L
(n)

and M
(n)
i charges, respectively.

Hence, conditions (3.47)(3.48) are sufficient for conservation of the charges in the open

string case.
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These charges generate, up to possible non-central extensions which come from bound-

ary terms, the same extension of the Galilean algebra obtained with the vector fields asso-

ciated to the transformation.

The possibility of obtaining non-central extensions is due to the presence of a nonzero F

term in the canonical generator. Computing the Poisson brackets of the conserved charges,

one obtains the same algebra (with a reversed sign), except for the fact that the brackets

among M
(n)
i (and among M

(n)
i ) are non-zero:

{
M

(n)
i ,M

(m)
j

}
= Tδij

n−m
m+ n+ 2

∫
dσ
(
rm+n+2

)′
, (5.55){

Pi,M
(m)
j

}
= −Tδij

∫
dσ
(
rm+1

)′
. (5.56)

(the second relation can be obtained from the first one with the extended index n = −1).

One can check that the new non-zero results do not spoil the closedness of the algebra.

6 Discussion and outlook

In this paper we have considered different non-relativistic limits of relativistic extended

objects. A p-brane in Minkowski space has p + 1 target longitudinal directions, which in

the non-relativistic limit could become large, and therefore we can consider p+ 1 different

non-relativistic limits. In the case of the string we have two limits that we call particle-

limit, when only the temporal X0 coordinate becomes large, and the stringy limit, when

the two longitudinal directions are large.

In the first case the string obtained does not vibrate, and physically it is a collection of

non-relativistic free massless Galilean particles [19] whose energy density depends on the

position of the particle in the string. In the second case we have a string that vibrates. At

quantum level, if the spatial longitudinal directions are bounded, the theory is described

by a conformal field theory with critical dimension 26 [12, 13].

For both types of strings we have studied and solved the non-relativistic Killing equa-

tions. For the non-vibrating string we obtain symmetry transformations that close under

an algebra [22] which turns out to be an infinite dimensional extension of the Galilean

algebra with an exotic dynamical exponent z = −1. In the vibrating case we obtain a

different infinite dimensional extension of the original stringy Galilean algebra [15]. An

infinite set of non-central extensions in the algebra of conserved charges is also obtained.

If should be emphasized that among the symmetries there is an infinite set of polynomial

shift symmetries [41, 42]. The presence of polynomial shift symmetries has been noticed

in Galileon theories [43].

For future work it will be interesting to study in detail the action, dynamics and

symmetries of all the p + 1 non-relativistic limits of a p-brane. For instance, in the case

of a 2-brane, if one considers the intermediate NR stringy limit, one obtains a system that

vibrates and represents a continuum of non-relativistic vibrating strings [44].
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