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1 Introduction

Butterfly effects in the holographic geometry have been extensively studied in recent, which

led to interesting new insights into quantum chaos and the behaviours of entanglement in

near-thermal systems [1–3]. These investigations use eternal AdS black hole [4] which has

two asymptotically AdS to describe the thermofield double state. After adding a small

perturbation to one of the two CFTs at early time tw one then studies the effect on the

structure of the state at t = 0. In this picture the perturbation can be modeled by a shock

wave near the horizon of the black hole. In the dual holographic geometry the shock wave

will travel across the horizon of the black hole and the mutual information of two space-like

regions in each boundary given by

I(A,B) = S(A) + S(B)− S(A ∪B) (1.1)
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can be calculated by the Ryu-Takayanagi prescription for for entanglement entropy [5–7].

After an amount of time t∗ the mutual information between the two sides is disrupted and

it shows the butterfly effect familiar from chaotic dynamics.

In the initial investigation [1] the dual black hole geometry in is the non-rotating BTZ

black hole. The later analysis has generalized to AdSd [8], multiple shock waves [2], and

localized shock waves [9, 10]. The string corrections of the scrambling time were presented

in [11]. The butterfly effect for black holes with rotation or charge had also been studied

in [8, 12, 13]. That on black Dp branes was investigated in [14].

In this article, our goals are to understand how the external field and spatial non-

commutativity will affect the butterfly effect from the holographic dual geometry. The

previous studies [8, 12, 13, 15, 16] which used the AdS-Reissner-Nordstrom geometry as

the model spacetime is not the external field. The EM fields therein are used to form the

black hole itself and dual to the field theory in the present of chemical potential. In our

model the extra fields are the external electric field, magnetic field or NSNS b-field, which

are called as Melvin fields [17]. The Melvin electric or magnetic field appears in this paper is

the genuinely external field while the NSNS b-field describes the spatial non-commutativity.

The stringy effects in scrambling was studied by Shenker and Stanford [11]. They

found that the stringy and Planckian correction will increase the scrambling time by

t∗ =
β

2π

[
1 +

d(d− 1)`2s
4`2AdS

+ . . .

]
logS (1.2)

where d is the space-time dimension of the boundary theory, `s and `AdS are the string

and AdS space length respectively. S is the entropy. In our studies the three Melvin fields,

however, do not modify the scrambling time. This property seems a little strange at first

sight. Since the three spacetimes are constructed through the processes of dimensional

reduction, twist and/or T-duality it is natural to conjecture that the scrambling time is

invariant under any combination of the three processes. The general formula in [1] or (2.17)

tells us that the scrambling time depends on entropy and temperature. While it has been

known, for a long time, that certain duality transformations do not affect the temperature

and entropy of various gravity solutions [18, 19] our three Melvin-field deformed spacetimes

provide the interesting examples which have the same scrambling time.

The mutual information is an important concept in information theory and is a useful

quantity to describe the chaos. Previous studies on AdS-Reissner-Nordstrom geometry had

found that the chemical potential therein (will is proportion to the EM field) will decrease

the mutual information [8, 12, 13, 17]. However, in our model spacetime the extra EM fields

will increase the mutual information. We also find that the mutual information increases

with the increase of the spacial noncommutativity. While the property is consistent to

previous literature [20] we furthermore investigate the backreaction property by considering

the mutual information on the shockwave Melvin field geometry.

This paper is organized as follows. In section 2 we first follow the method in [1] to

derive the formula of scrambling time in the more general black branes background and

apply it to our model spacetime. In section 3 we first apply the transformation of mixing

azimuthal and internal coordinate [21–23] or mixing time and internal coordinate [24–30]
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to the 11D M-theory with a stack N black M5-branes [31, 32] to find the spacetime of a

stack of N black D4-branes with magnetic or electric flux in 10 D IIA string theory, after

the Kaluza-Klein reduction.1 Next, we follow [34] to begin with a N black D3 branes and

by applying the three chains of operation to find a model spacetime: 1. T-dualize along z

to obtain a N black D2 branes [35–39]. 2. “Twist” the compactification. 3. T-dualize along

z to obtain Melvin Universe supported by the flux of the NSNS b-field. After applying the

mapping of Seiberg and Witten [40] we then find a new Melvin Universe which describe the

non-comutative spacetime.2 We calculate the scrambling time in the above three spacetimes

to see how the background field will affect it.

In section 4 we calculate the mutual information in the above three spacetimes and

determine the critial interval therein. In section 5 we follow the method in [1, 8] to derive

the formula of extremal surface in the more general black branes background and apply it

to study the corrected mutual information in the backreaction geometry due to the shock

wave in our three model spacetimes in section 6. Last section is used to summarize our

results and makes some discussions.

2 Scrambling time in general black branes background

2.1 Shockwave geometry

We first derive the formula of scrambling time in the following general black branes back-

ground

ds2 = −a(r)f(r)dt2 +
dr2

b(r)f(r)
+ dΣ2

d−1 (2.1)

in which the horizon locates at r = rH and f(rH) = 0 while a(rH) 6= 0, b(rH) 6= 0. Contract

to [1] above metric has two extra functions a(r) and b(r) which could help us to explicitly

see how the external filed will affect the butterfly effect. The associated temperature is

T =
f ′(rH)

√
a(rH)b(rH)

4π
(2.2)

The line element can be expressed in the Kruskal coordinate

ds2 =
4a(r)f(r)

a(rH)b(rH)f ′(rH)2
e−f

′(rH)r∗
√
a(rH)b(rH)dUdV (2.3)

U = e
f ′(rH )

2
(−t+r∗)

√
a(rH)b(rH) (2.4)

V = e
f ′(rH )

2
(t+r∗)

√
a(rH)b(rH) (2.5)

in which r∗ is the tortoise coordinate defined by dr∗ = dr

f(r)
√
a(r)b(r)

.

We now follow [1] to add a small null perturbation of asymptotic energy E �M (M is

the ADM mass of black branes) at time tw and radius r = Λ in the left asymptotic region.

1The method had been applied by us in a previous paper to the zero temperature of M2-branes [33].
2The original method in [31] was applied to zero-temperature spacetime.
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Figure 1. Penrose diagram of an eternal black hole perturbed by a shock wave.

We denote Ũ , Ṽ as coordinates to the left of the perturbation and U, V are those to the

right. Then, the shell propagating on the constant U surface is described by

Ũw = e
f ′(r̃H )

2
(−tw+r̃∗(Λ))

√
a(r̃H)b(r̃H) (2.6)

Uw = e
f ′(rH )

2
(−tw+r∗(Λ))

√
a(rH)b(rH) (2.7)

We can patch two side of geometry and the matching condition which relates Ṽ to V is

described by

ŨwṼ = −ef ′(r̃H)r̃∗(r)
√
a(r̃H)b(r̃H) (2.8)

UwV = −ef ′(rH)r∗(r)
√
a(rH)b(rH) (2.9)

In the case of linear order in small E and large tw the matching condition can be used to

find the shift

Ṽ = V + α (2.10)

which is shown in figure 1.

2.2 Scrambling time

Since the large value of tw will lead r → rH we can make a approximation f(r) ≈ f ′(rH)(r−
rH) + · · · and tortoise coordinate becomes

r∗(r) ≈
∫ r

0

dr

f ′(rH)(r − rH)
√
a(rH)b(rH)

=
1

f ′(rH)
√
a(rH)b(rH)

ln
(

(r−rH)/rH

)
(2.11)

Therefore

ŨwṼ − UV ≈ −
drH
rHdM

E (2.12)

In small E we can approx Ũw ≈ U [1] and

α = − 1

Uw

drH
rHdM

E (2.13)
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To proceed we will express the shift value in terms of entropy. Using the black hole

area law and thermodynamic first law we can find that

1 =
TdSBH
dM

=
1

4

TdVd−1(rH)

dM
= TSBH

V ′d−1(rH)

Vd−1(rH)

drH
dM

(2.14)

and thus

α = − 1

Uw

E

TSrH

Vd−1(rH)

V ′d−1(rH)
(2.15)

= −e−
f ′(rH )

2
(−tw+r∗(Λ))

√
a(rH)b(rH)

[
E

T rHSBH

Vd−1(rH)

V ′d−1(rH)

]
(2.16)

The scrambling time t∗ is defined to be the value of tw when α = 1 and E ≈ T . Then we

finally find the formula

t∗ = r∗(Λ) +
β

2π
ln

[
V ′d−1(rH)

Vd−1(rH)
rHSBH

]
(2.17)

It is interesting to see that while our general metric is different from that in [1, 14] (in

which a(r) = b(r) = 1) the formula of scrambling time t∗ has same form. Notice that, in

the general metric the value of Vd−1(rH), T , SBH may be different form that in the case

of a(r) = b(r) = 1 and the scrambling time t∗ therein could be different therefore.

3 Scrambling time in Melvin field deformed geometry

3.1 Scrambling time in electric field deformed geometry

We now apply the transformation of mixing time and internal coordinate to the 11D

M-theory with a stack N black M5 branes to find the spacetime of a stack of N black

D4 branes with electric flux after the Kaluza-Klein reduction.

The full N black M5-branes solution is given by

ds2
11 = H

−1
3
(
−f(r)dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4 + dx2

5

)
+H

2
3

(
dr2

f(r)
+ r2dΩ2

4

)
(3.1)

dΩ2
4 ≡ dγ2 + cos2γdϕ2

1 + sin2γ(dψ2 + cos2ψ dϕ2
2) (3.2)

where H is the harmonic function defined by

H = 1 +
R3

r3
, R3 ≡ 16πG11 T5N

3
(3.3)

in which G11 is the D-dimensional Newton’s constant and T5 is the M5 brane tension. The

function f(r) specified by the horizon at rH is

f(r) = 1−
r3
H

r3
(3.4)
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Now we transform the time t by mixing it with the compactified coordinate x5 in the

following substituting

t→ t− E x5 (3.5)

Using above substitution the line element (3.1) becomes

ds2
11 = − H

−1
3 f(r)

1− E2f(r)
dt2 +H

−1
3
(
dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+H

2
3

(
dr2

f(r)
+ r2dΩ2

4

)
+H

−1
3
(
1− E2f(r)

)(
dx5 +

Ef(r)

1− E2f(r)
dt

)2

(3.6)

Using the relation between the 11D M-theory metric and string frame metric, dilaton field

and 1-form potential

ds2
11 = e−2φ/3ds2

10 + e4φ/3(dx11 + 2Aµdx
µ)2 (3.7)

the 10D IIA background is described by

ds2
10 =− H

−1
2 f(r)√

1−E2f(r)
dt2+

√
1−E2f(r)

[
H
−1
2
(
dx2

1+dx2
2+dx2

3+dx2
4

)
+H

1
2

(
dr2

f(r)
+r2dΩ2

4

)]
(3.8)

e
4Φ
3 = H

−1
3
(
1− E2f(r)

)
, At =

Ef(r)

2(1− E2f(r))
(3.9)

In this decomposition into ten-dimensional fields which do not depend on the x5, the ten-

dimensional Lagrangian density becomes

L = R− 2(∇Φ)2 − e2
√

3Φ FµνF
µν (3.10)

and from (3.10) we see that the parameter E represents the magnitude of the external

electric field. In the case of E = 0 the above spacetime becomes the well-known geometry

of a stack of N black D4-branes. Thus, the background describes the spacetime of a stack

of N black D4-branes with electric flux.

To calculate the thermal quantities of the black branes system we have to change the

metric in string frame into the Einstein frame by the relation

gEµν = e−
Φ
2 gSµν (3.11)

Thus the line element in Einstein frame is

ds2
E = −H

−3
8 f(r)(1− E2f(r))−

7
8 dt2 + (1− E2f(r))

1
8

[
H
−3
8
(
dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+H

5
8

(
dr2

f(r)
+ r2dΩ2

4

)]
(3.12)
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In the “near horizon” limit we can approximate H ∼ R3

r3 and metric become

ds2
E = −

(
R3

r3

)−3
8

f(r)(1−E2f(r))−
7
8 dt2+(1−E2f(r))

1
8

[(
R3

r3

)−3
8 (
dx2

1+dx2
2+dx2

3+dx2
4

)
+

(
R3

r3

) 5
8
(
dr2

f(r)
+ r2dΩ2

4

)]
(3.13)

Use above metric we can calculate the black brane temperature

T (E) = T0 (3.14)

where T0 is that without electirc field and scrambling time

t∗(E) = (t∗)0 (3.15)

in which (t∗)0 is the scrambling time without electric field. The trivial property is the

consequence of E2f(rH) = 0.

3.2 Scrambling time in magnetic field deformed geometry

We now apply the transformation of mixing azimuthal and internal coordinate to the 11D

M-theory with a stack N black M5-branes to find the spacetime of a stack of N black D4

branes with magnetic flux.

Using the full N black M5-branes metric described in (3.1) we can transform the angle

ϕ1 by mixing it with the compactified coordinate x5 in the following substituting

ϕ1 → ϕ1 +Bx5 (3.16)

Using the above substitution the line element (3.1) becomes

ds2
11 =

H
2
3 r2 cos2 γ

1 +B2Hr2 cos2 γ
dϕ2

1 +H−
1
3
(
−f (r) dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+H

2
3

[
dr2

f (r)
+ r2

[
dγ2 + sin2 γ

(
dψ2 + cos2 ψdϕ2

2

)]]
+H−

1
3
(
1 +B2Hr2 cos2 γ

)(
dx5 +

BHr2 cos2 γ

1 +B2Hr2 cos2 γ
dϕ1

)2

(3.17)

Using the relation between the 11D M-theory metric and string frame metric, dilaton field

and 1-form potential, the 10D IIA background is then described by

ds2
10 =

H
1
2 r2 cos2 γ√

1 +B2Hr2 cos2 γ
dϕ2

1 +
√

1 +B2Hr2 cos2 γ

×
{
H−

1
2
(
−f(r)dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+H

1
2

[
dr2

f (r)
+ r2(dγ2 + sin2 γ

(
dψ2 + cos2 ψdϕ2

2

)]}
(3.18)

e
4
3

Φ = H−
1
3
(
1 +B2Hr2 cos2 γ

)
, Aϕ1

=
BHr2 cos2 γ

2 (1 +B2Hr2 cos2 γ)
(3.19)
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In this decomposition into ten-dimensional fields which do not depend on the x5, the ten-

dimensional Lagrangian density will be described by (3.10) and the parameter B is the

magnetic field defined by B2 = 1
2FµνF

µν |ρ=0. In the case of B = 0 the above spacetime

becomes the well-known geometry of a stack of N black D4-branes. Thus, the background

describes the spacetime of a stack of N black D4-branes with magnetic flux.

The line element in Einstein frame is

ds2
E = H

5
8 r2 cos2 γ

(
1 +B2Hr2 cos2 γ

)− 7
8 dϕ2

1

+
(
1 +B2Hr2 cos2 γ

) 1
8

{
H−

3
8
(
−f (r) dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+H

5
8

[
dr2

f (r)
+ r2

(
dγ2 + sin2 γ

(
dψ2 + cos2 ψdϕ2

2

))]}
(3.20)

In the “near horizon” the metric become

ds2
E =

(
R3

r3

) 5
8

r2 cos2 γ

(
1 +B2

(
R3

r3

)
r2 cos2 γ

)− 7
8

dϕ2
1

+

(
1 +B2

(
R3

r3

)
r2 cos2 γ

) 1
8

{(
R3

r3

)− 3
8 (
−f (r) dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4

)
+

(
R3

r3

) 5
8
[
dr2

f (r)
+ r2

(
dγ2 + sin2 γ

(
dψ2 + cos2 ψdϕ2

2

))]}
(3.21)

Use above metric we can calculate the black brane temperature

T (B) = T0 (3.22)

where T0 is that without magnetic field and scrambling time

t∗(B) = (t∗)0 (3.23)

in which (t∗)0 is the scrambling time without magnetic field. Therefore, likes as the Malvin

electic field the Malvin magnetic field also does not modify the scrambling time.

3.3 Scrambling time in noncommutative geometry

To begin with, we quote the formula of T-duality [35–39]. After the T-duality on z coor-

dinate the metric, dilaton field and B field become:

g̃zz = 1/gzz, g̃µz = Bµz/gzz, g̃µν = gµν − (gµzgνz −BµzBνz)/gzz (3.24)

e−2φ̃ = gzz e
−2φ, B̃zµ = gzµ/gzz, (3.25)

Now consider the metric of a stack of N black D3 branes

ds2
10 = H−1/2

[
− f(r)dt2 + dρ2 + ρ2dφ2 + dz2

]
+H1/2

[
f(r)−1dr2 + r2dΩ2

5

]
(3.26)
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which has zero dilation field and f(r) = 1 − r4
h/r

4. T-dualize along z gives a stack of N

black D2 branes which is described by

ds2
10 = H−1/2

[
− f(r)dt2 + dρ2 + ρ2dφ2

]
+H1/2

[
dz̃2 + f(r)−1dt2 + r2dΩ2

5

]
(3.27)

e−2Φ = H−1/2 (3.28)

After performing the twist by replacing

φ→ φ+ bz̃ (3.29)

and then T-dualize along z̃ will give a stack of N black D3 branes described by

ds2
10 = H−1/2

[
−f(r)dt2 + dρ2 +

ρ2dφ2 + dz2

1 +H−1b2ρ2

]
+H1/2

[
f(r)−1dt2 + r2dΩ2

5

]
(3.30)

e−2Φ = 1 +H−1b2ρ2 (3.31)

Bzφ =
H−1bρ2

1 +H−1b2ρ2
(3.32)

in which bzφ is the flux of the NSNS b-field. After applying the mapping of Seiberg and

Witten [33]

(G+ θ)µν = [(g + b)µν ]−1 (3.33)

the metric G and non-commutativity parameter θ are

Gµνdx
µdxν = H−1/2

[
− f(r)dρ2 + ρ2dφ2 + dz2

]
+H1/2

[
f(r)−1dr2 + r2dΩ2

5

]
(3.34)

θzφ = b (3.35)

which describes the black branes geometry with non-commutativity θzφ = b [31]. Note that

in Cartesian coordinates the non-commutativity parameter is non-constant.

The line element in Einstein frame is

ds2
10 =

(
1 +

r4

R4
ρ2B2

) 1
4

(R4

r4

)−1
2

−f(r)dt2 + dρ2 +
ρ2dφ2 + dz2

1 +
(
R4

r4

)−1
B2ρ2


+

(
R4

r4

) 1
2(
f(r)−1dr2 + r2dΩ2

5

) (3.36)

in which the “near horizon” lime H → R4

r4 is used.

Use above metric we can calculate the black brane temperature

T (B) = T0 (3.37)

where T0 is that without NSNS B-field and scrambling time

t∗(B) = (t∗)0 (3.38)

in which (t∗)0 is the scrambling time without NSNS B-field. The trivial property is a

consequence of the invariance of entropy under T duality [20].
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4 Mutual information in Melvin field deformed geometry

In this section we will compute the mutual information of a region A on the left asymp-

totic boundary and its partner B on the right asymptotic boundary. Note that A = B

when the left and right boundaries are identified. For simplicity we consider the mutual

information (1.1) between two strips contained in the left and right side of the geometry

respectively. Therefore we can use the Ryu-Takayanagi prescription [5–7] to calculate the

entangle entropy (EE) between each strip and the rest of the system (S(A) and S(B)), and

the EE of their union (S(A ∪B)).

To consider a strip we can pick up an interval L in a coordinate y with

−L
2
< y <

L

2
(4.1)

Since that in the black brane system there is a function f(r) which is zero on horizon

r = rH we can let y = y(r) in the Ryu-Takayanagi prescription and, after integrating other

coordinates besides r, the action can be described by

A = 2

∫ ∞
rmin

dr C(r)
√
f(r)−1 +D(r)y′(r)2 (4.2)

in which rmin is the turning point. This is the general action which includes those in [8, 14]

and mode spacetimes studied in this paper. A minimal bulk surface is found by extremzing

the area functional, which leads to

y′(r) =
1√

f(r)D(r)
(
C2(r)D(r)
C2

minDmin
− 1
) (4.3)

in which Cmin ≡ C(rmin) andDmin ≡ D(rmin). Note that the interval L can be calculated by

L = 2

∫ ∞
rmin

dr y′(r) (4.4)

In this way the minimum surface becomes

Area = 2

∫ ∞
rmin

dr
C(r)√
f(r)

1√
1− C2

minDmin

C2(r)D(r)

(4.5)

and

I(L) = S(A)+S(B)−S(A ∪B) =

∫ ∞
rmin

dr
C(r)√
f(r)

1√
1− C2

minDmin

C2(r)D(r)

−
∫ ∞
rH

dr
C(r)√
f(r)

(4.6)

where the second term is S(A ∪ B) that from area of surface which passes through the

horizon to connect to the other side [1].
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Figure 2. Mutual information under Melvin electric field for the case of rH = 1 and R = 10.

We now want to find the critical interval Lc in which the mutual information becomes

zero. To proceed, we first rewrite the mutual information function as

I(L) =
√
C2

minDmin
L

2
+

∫ ∞
rmin

dr
C(r)√
f(r)

√
1−

C2
minDmin

C2(r)D(r)
−
∫ ∞
rH

dr
C(r)√
f(r)

(4.7)

Notice that above result is an exact relation. Since the mutual information becomes zero

when rmin ≈ rH above relation leads to

Lc =
2√

C2
HDH

∫ ∞
rH

dr
C(r)√
f(r)

1−

√
1−

C2
HDH

C2(r)D(r)

 (4.8)

≈ C(rH)
√
D(rH)

∫ ∞
rH

dr
1√

f(r) C(r)D(r)
+ · · · (4.9)

Above formula gives same scaling relation between Lc and R as that in [8]. We now apply

these formulas to the Melvin field deformed geometry.

4.1 Mutual information and critical interval in electric field deformed

geometry

For the electric field deformed geometry the action becomes

A(E) =
16π2

3

∫ ∞
rmin

dr rR3 (1− E2f(r))
1
2

√
f(r)−1 +

r4

R4
y′(r)2 (4.10)

Using above formulation we present figure 2 to show the mutual information in Melvin

electric field spactime.

The associated critical interval Lc(E) calculated from above formula is plotted in

figure 3.

Use the approximation relation

Lc(E) ≈ 1

r3
H

∫ ∞
rH

dr
1

r5
√
f(r)

√
1− E2f(r)

+ · · · (4.11)

the increasing property of the function Lc(E) can be easily read.
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Figure 3. Critical interval Lc(E) of the mutual information under Melvin electric field for the case

of rH = 1 and R = 10.
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Figure 4. Mutual information under Melvin electric field for the case of rH = 1 and R = 10.

4.2 Mutual information and critical interval in magnetic field deformed

geometry

For the small-magnetic field deformed geometry the action becomes

A(B) =

∫ ∞
rmin

dr rR3

(
1 +

2B2R3

5r

) 1
2

√
f(r)−1 +

r3

R3

(
1 +

8B2R3

35r

)
y′(r)2 (4.12)

Using above formulation we present figure 4 to show the mutual information in Melvin

magnetic field spactime.

The associated critical interval Lc(B) calculated from above formula is plotted in

figure 5.

Use the approximation relation

Lc(B) ≈ 1

r3
H

∫ ∞
rH

dr
1

r5
√
f(r)

√(
1 + 2B2R3

5r

) + · · · (4.13)

the decreasing property of the function Lc(B) can be easily read.
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Figure 6. Mutual information under NSNS b-field for the case of rH = 1 and R = 10.

4.3 Mutual information and critical interval in noncommutative geometry

For the NSNS b-field deformed geometry the action becomes

A(b) =

∫ ∞
rmin

dr rρR4

√
1 +

r4

R4
b2

√√√√f(r)−1 +
r4

R4

1 + r4

R4 b2
y′(r)2 (4.14)

Using above formulation we present figure 6 to show the mutual information in Melvin

NSNS b-field spactime.

The associated critical interval Lc(b) calculated from above formula is plotted in

figure 7.

Use the approximation relation

Lc(b) ≈
∫ ∞
rmin

dr ρ
R3r3

H

√
1 + r4

R4 b2

r5
√
f(r)

+ · · · (4.15)

the increasing property of the function Lc(b) can be easily read.

Above results show that the Melvin electric field, Melvin magnetic field and NSNS

b-field will increase the mutual information.
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Figure 7. Critical interval Lc(b) of the mutual information under NSNS b-field for the case of

rH = 1 and R = 10.

5 Extremal surface in shockwave Melvin field geometry

We now consider the mutual information in the backreaction geometry due to the present

of shock wave.

5.1 Extremal surfaces

The area of minimal surface is reduced to two-dimensional problem and is dercribed by

r(t) [8]. It can be studied from the general form

A =

∫
dt

√
−a(r)f(r) +

ṙ2

b(r)f(r)
(5.1)

Regarding A as a particle action we see that the t-translation symmetry in there gives a

conserved quantity

γ ≡
√
−a(r0)f(r0) =

−a(r)f(r)√
−a(r)f(r) + ṙ2

b(r)f(r)

(5.2)

where r0 is define as the radial position where ṙ = 0. Since that r0 is behind the horizon

and thus f(r0) is negative as shown in figure 8. Above relation implies that

dt =
dr√

a(r)b(r)f(r)2
(

1 + a(r)f(r)
γ2

) (5.3)

Therefore the entanglement entropy can be evaluated from the extremal surface [5–7]

SA∪B(r0) =
A
4

=
1

4

∫
dr

√
a(r)√

b(r)
(
γ2 + a(r)f(r)

) (5.4)

In order to examine how the EE depends on α we have to find the relation between α and

r0. In below, for self-consistent, we will slightly generalize [8] to derive this relation in our

model spacetimes.
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Figure 8. The Penrose diagram and minimal surface (dashing horizontal line) in the shockwave

geometry. The left half of the surface is split into three segments, labeled I, II, and III. The smallest

value of r attained by the surface is r = r0, which marks the division between II and III and locates

at (u2, v2).

5.2 Surface location

For the segment I, the minimal surface stretches from the boundary at (u, v) = (1, 1) to

(u; v) = (u1; 0). Using the definition of u we have

u1 ≡ exp

[
f ′(rH)

√
a(rH)b(rH)

2

(
∆r∗ −∆t

)]

= exp

2π

β

∫ R

∞

dr

f(r)
√
a(r)b(r)

1− 1√
1 + a(r)f(r)

γ2

 (5.5)

Since that r =∞ at left boundary and r = rH at right boundary (u1, 0) as shown in figure 5.

For the segment II, the u2 can be evaluated in a same way and

u2 = exp

2π

β

∫ r0

∞

dr

f(r)
√
a(r)b(r)

1− 1√
1 + a(r)f(r)

γ2

 (5.6)

Since that r = r0 at right boundary (u2, v2) as shown in figure 8. We now need to find the

formula about v2. In this case we can define a reference point (ū, v̄) which is in the interior

of the black brane and at some radial coordinate r = r̄ < rH . Then

v2 ≡
ūv̄

u2
exp
[
f ′(rH)∆r∗(r)

√
a(rH)b(rH)

]
=
ūv̄

u2
exp

[
4π

β

∫ r0

r̄

dr

f(r)
√
a(r)b(r)

]
(5.7)

Note that if we choose the point located at r∗(r̄) = 0 then ūv̄ = 1 [8].
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For the segment III, the right boundary is at (u, v) ≡ (u3, v3) = (0, α2 ) as shown in

figure 8. Using the definition of v we have

v3

v2
≡ α

2v2
= exp

[
f ′(rH)

√
a(rH)b(rH)

2

(
∆r∗ + ∆t

)]

= exp

2π

β

∫ rH

r0

dr

f(r)
√
a(r)b(r)

1− 1√
1 + a(r)f(r)

γ2

 (5.8)

Since that r = r0 at left boundary (u2, v2) and r = rH at right boundary (0, α2 ) as shown

in figure 8.

Combine above three relations we can find that

α = 2ūv̄ exp [K1 +K2 +K3] (5.9)

where

K1 =
4π

β

∫ r0

r̄

dr

f(r)
√
a(r)b(r)

(5.10)

K2 =
2π

β

∫ ∞
rH

dr

f(r)
√
a(r)b(r)

1− 1√
1 + a(r)f(r)

γ2

 (5.11)

K3 =
4π

β

∫ rH

r0

dr

f(r)
√
a(r)b(r)

1− 1√
1 + a(r)f(r)

γ2

 (5.12)

Using above relation the entanglement entropy can be expressed as function α. Since it is

divergent we can renormalized it by subtracting its value at α = 0. Then

SRA∪B(α) = SA∪B(α)− SA∪B(0) (5.13)

In next section we will use above formulas to numerically study the mutual information in

three kinds of shockwave Melvin field geometry.

6 Mutual information in shockwave Melvin field geometry

6.1 Mutual information in shockwave electric field deformed geometry

For the Melvin electric field deformed geometry the minimal surface is described by

A =
1

4

∫
dt

√
R3

r3
r4
√

1− E2f(r)

×

√
−
(
R3

r3

)−3
8 (

1− E2f(r)
)−7

8
f(r) +

(
R3

r3

) 5
8(

1− E2f(r)
) 1

8 ṙ2

f(r)
(6.1)

The relation between α and r0 is shown in figure 9.

The figure 10 describes the renormalized entanglement entropy “−SRA∪B” as function

of Malvin electric field E. Note that the total entanglement entropy is S(A) + S(B) −
S(A ∪ B) − SRA∪B and thus “−SRA∪B” describes the corrected mutual information from

backreaction geometry due to the shock wave.

– 16 –



J
H
E
P
0
2
(
2
0
1
7
)
0
3
2

E=0

E=0.4

E=0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

r0

rh

a

Figure 9. Relation between α and r0 under Melvin electric field E.
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Figure 10. Renormalized entanglement entropy “−SR
A∪B” as function of Malvin electric field E.

6.2 Mutual information in shockwave magnetic field deformed geometry

For the Melvin magnetic field deformed geometry the minimal surface is described by

A ≈ 1

4

∫
dt

√
R3

r3
r4

(
1 +

B2R3/r

40

) √
−
(
R3

r3

)−3
8

f(r) +

(
R3

r3

) 5
8 ṙ2

f(r)
(6.2)

in which we adopt the approximation for the case of small B field. The relation between

α and B, and renormalized entanglement entropy −SRA∪B as function of Malvin magnetic

field B are shown in the figures 11 and 12.

6.3 Mutual information in shockwave noncommutative geometry

For the NSNS b-field deformed geometry the minimal surface is described by

A ≈ 1

4

∫
dt

√
R4

r4
r4

(
1 +

b2r4/R4

8

) √
−
(
R4

r4

)−1
2

f(r) +

(
R4

r4

) 1
2 ṙ2

f(r)
(6.3)

in which we adopt the approximation for the case of small b field. The relation between α

and r0, and renormalized entanglement entropy − SRA∪B as function of non-commutativity

b are shown in the figures 13 and 14.

– 17 –



J
H
E
P
0
2
(
2
0
1
7
)
0
3
2

B=0

B=0.1

B=0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

r0

rh

a

Figure 11. Relation between α and r0 under Melvin magnetic field B.
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Figure 12. Renormalized entanglement entropy “−SR
A∪B” as function of Malvin magnetic field B.
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Figure 13. Relation between α and r0 under Melvin NSNS b-field.
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All above figures show that Melvin fields will enhance the mutual information in the

backreaction geometry due to the shock wave.

7 Conclusion

The idea that entanglement entropy has some resemblance to thermodynamic entropy

including a sort of first law-like relation has been vigorously investigated recently from the

field theoretical and from the holographic sides [41, 42]. The study of mutual information

might also serve to determine which set of quantities are expected to be different. In

this paper we extend previous method [33, 34] to derive three kinds of Melvin geometry.

First and second geometries describe the spacetime of a stack of N black D4-branes with

magnetic or electric flux in 10 D IIA string theory. The third geometry describes a Melvin

Universe supported by the flux of the NSNS b-field, which relates to the non-comutative

spacetime. We then follow the method in [1, 8] to derive the new formula of scrambling time

and holographic mutual information in more general spaceimes and use the new formulas

to investigate the scrambling time and holographic mutual information in the three model

spacetimes. We first find that while the three kinds of external field do no modify the

scrambling time they can enhance the mutual information. We also study the mutual

information corrected by the backreaction geometry due to the shock wave. It also shows

that the three kinds of external field will enhance the mutual information.

Finally, we shall mention that the prescription of Melvin twist used in this paper

is a powerful solution generating technique in string theories [21–30]. Applying it to the

Dp-brane background and the subsequent near horizon limit gives rise to supergravity duals

for a variety of decoupled field theories depending on the orientation of the brane and the

Melvin twist. There are many geometries which can be generated from a slight variation

of the Melvin twist, as shown in the table of reference [34]. One of our three geometries

describes the supergravity background dual to the non-commutative gauge theory, in which

the non-commutativity are not constant values [34, 43, 44]. The electric-field deformed and

magnetic-field deformed spacetimes are related to the fluxbranes [45, 46]. The holographic

duality for the fluxbranes remains an interesting and open problem [46]. Note that the

procedure of Melvin twist relies on having a U(1) × U(1) compact isometry along which
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one performs a sequence of T-duality, twist, and a T-duality. For examples, if one of the

U(1) is transverse to the brane, then one obtains a dipole field theory [47–49]. If taking

both of the U(1) to be transverse to the brane gives rise to the construction of Lunin and

Maldacena [50]. It is interesting to investigate the quantum chaos on these spacetimes. It

is also interesting to see that whether the properties found in this paper could be shown

in any simple field theory models. We are now searching the toy mode and investigating

the properties from the field theoretic side.
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