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1 Introduction

Quantum gravity is expected to manifest itself in an effective field theory framework

through higher derivative terms. Supersymmetry provides some control over such terms,

and in a theory of N = 2 vector multiplets coupled to supergravity a certain class of higher

derivative terms can be described by generalizing the prepotential which encodes all the

couplings at the two-derivative level. While this function remains holomorphic within a

Wilsonian framework, the inclusion of threshold corrections due to massless particles is

known to induce non-holomorphic corrections to the couplings. In fact these corrections
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are required for consistency with electric-magnetic duality and are essential for incorpo-

rating higher derivative corrections to black hole entropy. While supergravity provides a

powerful tool to organise an effective action for quantum gravity, the actual computation

of couplings requires a specific theory. String theory is the natural candidate, and in par-

ticular the higher derivative corrections to N = 2 vector multiplets are captured by the

topological string. However, the relation between supergravity and the topological string is

subtle, and non-holomorphic corrections are incorporated differently in the respective for-

malisms. In this paper we develop a new geometrical description of the higher derivative

corrections on the supergravity side, by showing that they can be understood in terms of

an extended scalar manifold which carries a deformed version of special geometry. We also

derive various exact relations between the variables used in supergravity and in the topolog-

ical string. The most interesting result we obtain is that the holomorphic anomaly equation

which controls the non-holomorphic corrections in both the supergravity and topological

string formalism can be derived from the integrability condition for the existence of a Hesse

potential on the extended scalar manifold.

Let us next introduce our topic in more technical terms. In four dimensions, the com-

plex scalar fields residing in N = 2 vector multiplets parametrize a scalar manifold which

is the target space of the non-linear sigma-model that enters in the Wilsonian Lagrangian

describing the couplings of N = 2 vector multiplets at the two-derivative level. The scalar

manifold is an affine special Kähler manifold in global supersymmetry, and a projective

special Kähler manifold in local supersymmetry; both types of target space geometry are

referred to as special geometry [1–7]. Special geometry, when formulated in terms of com-

plex variables Y I , is encoded in a holomorphic function F (0)(Y ), called the prepotential.

When formulated in terms of special real coordinates, it is the Hesse potential that plays

a central role. For affine special Kähler manifolds, the Hesse potential is related to the

prepotential by a Legendre transform [8].

When coupling the N = 2 vector multiplets to the square of the Weyl multiplet, the

resulting Wilsonian Lagrangian, which now contains higher derivative terms proportional

to the square of the Weyl tensor, in encoded in a generalized prepotential F (Y,Υ), where

Υ denotes a complex scalar field residing in the lowest component of the square of the Weyl

multiplet. The complex scalar fields (Y I ,Υ) will be called supergravity variables in the

following. The prepotential F (0)(Y ) is obtained from F (Y,Υ) by setting Υ = 0. Electric-

magnetic duality, a central feature of N = 2 systems based on vector multiplets, then acts

by symplectic transformations of the vector (Y I , FI), where FI = ∂F/∂Y I . While F (Y,Υ)

itself does not transform as a function under symplectic transformations, FΥ = ∂F/∂Υ

does [9]. The associated Hesse potential, obtained by a Legendre transform of Im F (Y,Υ),

is also a symplectic function.

Away from the Wilsonian limit, the coupling functions encoded in FΥ receive non-

holomorphic corrections, in general. In supergravity models arising from string theory,

these modified coupling functions can be derived in the context of topological string the-

ory [10, 11]. The precise relation between these two computations is subtle, however [12].

The coupling functions computed in topological string theory depend on stringy variables

(YI ,Υ) that do not coincide with the supergravity variables (Y I ,Υ) (unless Υ = 0). The
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precise relation between these two sets of coordinates was discussed in [12] and was used

to express the supergravity Hesse potential (which is a symplectic function) in terms of

stringy variables. The Hesse potential is not any longer obtained from the holomorphic

generalized prepotential F (Y,Υ) that characterizes the Wilsonian Lagrangian. Instead, it

is computed from a deformed version of F that is not any longer holomorphic. It was then

laboriously shown, by means of power law expansions, that the Hesse potential contains a

unique subsector H(1) that comprises coupling functions F (n)(Y, Ȳ) that, for n ≥ 2, satisfy

the holomorphic anomaly equation of topological string theory,

∂F (n)

∂ȲI
= iF̄

(0)JK
I

(
n−1∑
r=1

∂JF
(r)∂KF

(n−r) − 2αDJ∂KF
(n−1)

)
. (1.1)

Here, α denotes the deformation parameter that characterizes the deviation from the Wilso-

nian limit. The superscript (0) in F̄
(0)JK
I indicates that this quantity has been formed by

taking derivatives of F (0)(Y ), and that indices have been raised using the inverse N IJ
(0)

corresponding metric N
(0)
IJ = 2ImF

(0)
IJ . If no such superscript is present, as in F̄ JKI , then

it is understood that we take derivatives of the generalized prepotential F (Y,Υ), and that

indices are lowered and raised using NIJ = 2ImFIJ . This convention is applied throughout

the paper.

While in topological string theory α = −1
2 [10], one may ask a more general question,

namely whether irrespective of the value of α, the holomorphic anomaly equation (1.1) can

be understood in terms of Hessian structures and Hessian geometry. This is indeed the

case, as we will show in this paper. Namely, the anomaly equation (1.1) may be viewed

as the integrability condition for the existence of a Hesse potential in supergravity. This

is simplest to establish in the case when α = 0, as we will explain next (when α = 0,

the coupling functions are encoded in FΥ(Y,Υ) on the supergravity side, and hence still

holomorphic in supergravity variables).

Any affine special Kähler manifold M can be realised as an immersion into a complex

symplectic vector space V [7], as we will review in section 2.1. When passing from the

prepotential F (0) to the generalized prepotential F (Y,Υ), this construction gets extended,

giving rise to a holomorphic family of immersions and deformed affine special Kähler man-

ifolds, which combine into a complex manifold M̂ = M ×C. By pulling back the standard

Hermitian form of V , the space M̂ becomes equipped with a Kähler metric g and a flat

torsion free connection ∇ which we use to define special real coordinates. Taking the Leg-

endre transform of the generalized prepotential F (Y,Υ) as a Hesse potential, we can then

define a Hessian metric gH . When analysing the integrability condition for the existence

of a Hesse potential, namely that ∇gH must be a completely symmetric rank three tensor

in complex coordinates, one infers the anomaly equation (1.1) with α = 0, as we will show

in subsection 3.6. This anomaly equation can also be viewed as a consequence of a tension

between preserving holomorphicity and symplectic covariance, as follows. We introduce

stringy variables YI , and we derive various properties of the difference ∆Y I = YI − Y I .

We then express the symplectic function FΥ(Y,Υ) in terms of stringy variables. By taking

multiple derivatives ∂Υ|Y of FΥ we obtain symplectic functions ∂nΥFΥ|Y that we express
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back in terms of supergravity variables. Then, setting Υ = 0, we obtain the set of sym-

plectic functions F (n) = 2iDn−1
Υ FΥ/n!|Υ=0 introduced in [9] that, for n ≥ 2, satisfy the

anomaly equation (1.1) with α = 0. The symplectic covariant derivative DΥ introduced

in [9] is related to ∂∆Y I/∂Υ, and thus it is simply a consequence of the passage from stringy

to supergravity variables. The non-holomorphicity induced by the coordinate transforma-

tion reflects the tension between holomorphicity and symplecticity, and is thus a universal

feature of the deformation induced by the passage from the prepotential F (0)(Y ) to the

generalized prepotential F (Y,Υ).

The aforementioned Hessian structure condition (namely that ∇gH is totally symmet-

ric) gives a master equation for FΥ,

∂ĪDΥFΥ = F̄ JKI FΥJFΥK ,

which, upon applying Dn
Υ to it and setting Υ = 0, yields, by induction, the anomaly

equation (1.1) with α = 0 for the functions F (n) defined above. This master equation for

FΥ is on par with the one derived for the topological free energy Ftop,

Ftop(Y, Ȳ, Q) =
∞∑
n=1

QnF (n)(Y, Ȳ) ,

where Q is an expansion parameter related to the topological string coupling, which satisfies

∂ĪFtop = iF̄
(0)JK
I ∂JFtop ∂KFtop .

Next, let us discuss the case α 6= 0. When turning on α, FΥ ceases to be holomorphic.

Thus, starting from a non-holomorphic generalized prepotential F as in [12], we investigate

the consequences for the master equation for FΥ that result from the Hessian structure

condition. The equation we obtain is quite complicated. To compare it with (1.1), we

specialise to a particular deformation, proportional to αN IJ
(0), where N IJ

(0) is the inverse of

N
(0)
IJ = −i(F (0)

IJ − F̄
(0)
IJ ). Working at lowest order, we show that when setting Υ = 0,

the master equation for FΥ equals the anomaly equation (1.1) with n = 2. The anomaly

equation for the higher F (n) can, in principle, be obtained from this master equation by

acting with multiple covariant derivatives DΥ on it. Here, DΥ denotes the symplectic

covariant derivative introduced in [13], which is based on a non-holomorphic generalized

prepotential F . We note that while the specific α-deformation we picked is tied to the

topological string, the framework presented in this paper is quite general and can be applied

to other deformed systems, such as those discussed in [13].

The paper is organised as follows. In section 2 we review the extrinsic construction

of special Kähler manifolds through immersion into a model vector space. In section 3

we deform this construction by passing from the prepotential F (0) to the holomorphic

generalized prepotential F (Y,Υ). We introduce the Hessian structure based on special real

coordinates, and use the latter to introduce stringy variables (YI ,Υ), as in [12]. We relate

the difference ∂∆Y I/∂Υ to the symplectic covariant derivative of [9], which we subsequently

use to derive a master equation for FΥ. Next, we use the Hessian structure to derive a
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different equation for FΥ, which we then relate to the holomorphic anomaly equation (1.1)

with α = 0. In section 4 we redo the analysis, but now based on a non-holomorphic

generalized prepotential F . In the concluding section we compare the approach of [12]

for obtaining the holomorphic anomaly equation with the approach taken here. In the

appendices we have collected some standard material to facilitate the reading of the paper.

2 Review of special Kähler geometry

2.1 Affine special Kähler manifolds

We start by reviewing the intrinsic definition of (affine) special Kähler geometry given

in [6]: a Kähler manifold (M, g, ω) with complex structure J is affine special Kähler if

there exists a flat, torsion-free, symplectic connection ∇ such that

d∇J = 0 . (2.1)

We will refer to ∇ as the special connection. Our convention for the relation between

metric g, Kähler form ω and complex structure J is

ω(· , ·) = g(· , J ·) ,

or, in local coordinates

ωac = gabJ
b
c .

The definition of the exterior covariant derivative d∇ is reviewed in appendix A. As shown

in appendix B, in ∇-affine coordinates qa the condition (2.1) becomes

∂[aJ
b
c] = 0 , (2.2)

while the coefficients ωab are constant. This in turn implies that

∂agbc = ∂bgac ,

which by applying the Poincaré lemma twice shows that the Kähler metric is Hessian,

gab = ∂2
a,bH ,

where the real function H is called a Hesse potential. The coordinate-free version of this

local definition of a Hessian metric is as follows: given a Riemannian metric g and a flat,

torsion-free connection ∇, the pair (g,∇) is called a Hessian structure, and g is called a

Hessian metric, if the rank-3 tensor ∇g is totally symmetric. It is easy to see that, given

a Kähler manifold with a flat, torsion-free, symplectic connection ∇, the condition (2.1) is

equivalent to the requirement that the metric g is Hessian (that is ∇g is totally symmetric).

On an affine special Kähler manifold one can choose the ∇-affine coordinates (qa) =

(xI , yI) to be Darboux coordinates, i.e. such that the Kähler form takes the standard form

ω = 2dxI ∧ dyI = Ωabdq
a ∧ dqb , (Ωab) =

(
0 1

−1 0

)
.
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The coordinates qa are called special real coordinates, and are unique up to affine trans-

formations with symplectic linear part.1

As shown in [6] the above definition is equivalent to the well known alternative defi-

nition in terms of special holomorphic coordinates Y I and of a holomorphic prepotential

F (Y I). We will now review the holomorphic formulation of special Kähler geometry in the

context of the universal extrinsic construction of [7], which allows to realize any affine spe-

cial Kähler manifold, at least locally. For simply connected affine special Kähler manifold

this construction in fact works globally. The universal construction realises special Kähler

manifolds M as immersions into the standard complex symplectic vector space V = T ∗Cn,

where dimV = 2 dimM = 4n. We now review some details, which we are going to use for

our later generalised construction.

Let (Y I ,WI) be complex Darboux coordinates on V = T ∗Cn ' C2n. Then

Ω = dY I ∧ dWI

is the standard complex symplectic form on V , and

γV = iΩ(·, ·) = i
(
dY I ⊗ dW I − dWI ⊗ dY

I
)

= gV + iωV (2.3)

is the associated Hermitian form, gV is a flat (indefinite) Kähler metric, and ωV the corre-

sponding Kähler form.

Next, let

φ : M → V

be a non-degenerate, holomorphic, Lagrangian immersion of a complex manifold M of (real)

dimension 2n into V . We can assume, without loss of generality, that the image φ(M) is

realized as a graph, that is the immersion has been chosen such that, when identifying M

locally with its image, we can take Y I as coordinates on the locally embedded M , so that

in terms of coordinates (Y I ,WI) the immersion takes the form

φ : M → V , (Y I) 7→ (Y I , FI(Y )) .

This situation is generic, and can always be achieved, at least locally, by a symplectic

transformation. Since the immersion φ is Lagrangian, we have φ∗Ω = 0, which is readily

seen to be the integrability condition for the existence of a holomorphic function F such

that FI = ∂F/∂Y I . In the non-generic situation where φ(M) is not realized as a graph,

the immersion is still well defined and can be described using a complex symplectic vector

(Y I(Z),WI(Z)), where Z = (ZI) are holomorphic coordinates on M . However, the com-

ponents Y I cannot be used as coordinates on M , and the components WI fail to satisfy

the integrability condition for the existence of a prepotential. This is well known in the

literature as a symplectic vector (or ‘holomorphic section’) ‘without prepotential’ [14]. We

will assume in the following that we are in a generic symplectic frame where a prepotential

exists.

1We remark that the special coordinates (qa) differ from standard Darboux coordinates by a conventional

normalization factor, see appendix B for details.
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Since the immersion is non-degenerate, the pull back γM = φ∗γV of the Hermitian

form γV to M is a non-degenerate Hermitian form, which by decomposition into real and

imaginary part defines a non-degenerate metric and two-form:

γM = gM + iωM .

The explicit form of γM is

γM = NIJdY
I ⊗ dȲ J ,

where

NIJ = 2ImFIJ = −i(FIJ − F̄IJ) =
∂2

∂Y I∂Ȳ J
[i(Y K F̄K − FK Ȳ K)] .

From this expression for NIJ it is manifest that the metric gM is Kähler, with Kähler

potential

K = i(Y I F̄I − FI Ȳ I) , (2.4)

and affine special Kähler with prepotential F .

Special holomorphic and special real coordinates are related as follows. Given special

holomorphic coordinates Y I on M , the corresponding special real coordinate are given by

the real part of the complex symplectic vector (Y I , FI):

Y I = xI + iuI(x, y) ,

FI = yI + ivI(x, y) .

Moreover, the holomorphic prepotential and the Hesse potential are related by a Legendre

transform [8]:

H(x, y) = 2ImF (x+ iu(x, y))− 2yIu
I(x, y) .

We remark that special real coordinates are well defined, at least locally, in any symplectic

frame (including those without a prepotential) as a consequence of the non-degeneracy of

the symplectic form. For simply connected special Kähler manifolds they are even globally

defined functions, since the immersion is global, though not necessary global coordinates,

since the immersion need not be an embedding.

2.2 Conical affine special Kähler manifolds

While affine special Kähler manifolds are the scalar manifolds of generic rigid N = 2 vector

multiplets, conical affine special Kähler manifolds are the scalar manifolds of rigid super-

conformal vector multiplets. These are in turn the starting point for the construction of

the coupling of vector multiplets to Poincaré supergravity, which proceeds as follows:2 (i)

start with a theory of n + 1 superconformal vector multiplets, (ii) gauge the superconfor-

mal algebra; this introduces various connections which reside in the Weyl multiplet, (iii)

partially gauge fix the superconformal transformations to obain a theory of n vector mul-

tiplets coupled to Poincaré supergravity. In this construction the projective special Kähler

manifold M̄ of the supergravity theory arises as a Kähler quotient of a conical affine special

2This is reviewed in [15, 16].
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Kähler manifold. Since we will not use this construction, we refer the interested reader to

the literature.

The additional condition implied by superconformal symmetry is, in terms of spe-

cial holomorphic coordinates, that the prepotential is homogeneous of degree two under

complex scale transformations,

F (λXI) = λ2F (XI) , λ ∈ C∗ .

This is equivalent to the statement that the Hesse potential is homogeneous of degree

two under real scale transformations of the special real coordinates, and invariant under

the U(1) part of C∗. The condition can also be formulated in a coordinate-free way [7]:

a conical affine special Kähler manifold3 is a special Kähler manifold equipped with a

homothetic Killing vector field ξ satisfying

∇ξ = Dξ = Id ,

where ∇ is the special connection, D the Levi-Civita connection, and Id the identity en-

domorphism on TM . One can then show that this implies the existence of an infinitesimal

holomorphic homothetic C∗ action on M , which is generated by ξ and Jξ. To obtain a

projective special Kähler manifold by a Kähler quotient, one needs to assume that this

group action is free and proper.

3 The holomorphic deformation

3.1 Deformation of the immersion

One possible deformation of the vector multiplet action is to give it an explicit dependence

on a background chiral multiplet [9], see [15] for a review. By identifying this chiral mul-

tiplet with the Weyl multiplet W 2, one can describe a particular class of higher derivative

terms. Compatibility with superconformal symmetry determines the scaling behaviour of

the chiral multiplet, while insisting on a local supersymmetric action implies that the de-

pendence is holomorphic, that is the standard F-term vector multiplet action is deformed

by allowing the prepotential, as a function on superspace, to depend explicitly on the chiral

multiplet. After integration over superspace, the action is a local functional of the fields,

which contains additional terms involving holomorphic derivatives of the prepotential with

respect to the background. When identifying the chiral multiplet with the Weyl multiplet

W 2, one finds that the auxiliary fields cannot any longer be eliminated in closed form, but

only iteratively, thus generating an expansion in derivatives. Such an action is naturally

interpreted as a Wilsonian effective action.

In the following we will investigate how the introduction of a background field can be

interpreted as a deformation of special geometry. Since we focus on the scalar geometry,

the background chiral field enters through its lowest component, a complex scalar denoted

3Apart from ‘conical’ the term ‘conic’ is also use in the literature.
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Υ. The generalized prepotential F (Y,Υ) is holomorphic in Y I and Υ, and (graded) homo-

geneous of degree two, that is

F (λY, λwΥ) = λ2F (Y,Υ) , λ ∈ C ,

where w is the weight of Υ under scale transformations. If Υ is the lowest component of the

Weyl multiplet W 2, then w = 2. Our geometric model for the deformation parameterized

by Υ is a map

φ : M̂ := M ×C→ V , (Y I ,Υ) 7→ (Y I , FI(Y,Υ)) , (3.1)

which can be interpreted as a holomorphic family of immersions φΥ : M → V , (Y I) 7→
(YI , FI(Y,Υ)), that define a family of affine special Kähler structures on M . While Υ is a

scalar under symplectic transformations, it enters into the transformation of the complex

symplectic vector (Y I , FI(Y,Υ)), and other objects, through the generalized prepotential.

Our set-up is consistent with [9], in particular we can draw on the various formulae for

symplectic transformations derived there.

We define a metric and a two-form on M̂ = M × C by pulling back the canonical

hermitian form γV :

γ = φ∗γV = g + iω = NIJdY
I ⊗ dȲ J + iF̄IΥdY

I ⊗ dῩ− iFIΥdΥ⊗ dȲ I ,

where NIJ = −i(FIJ − F̄IJ). We assume that γ is non-degenerate, which certainly is true

for sufficiently small Υ.4 In the following, holomorphic coordinates on M̂ are denoted

(vA) = (Y I ,Υ). Using the conventions

da db =
1

2
(da⊗ db+ db⊗ da) ,

da ∧ db = da⊗ db− db⊗ da ,

we obtain the metric

g = gABdv
Adv̄B = NIJdY

IdȲ J + iF̄IΥdY
IdῩ− iFJΥdΥdȲ J ,

which is a Kähler metric gAB = ∂2
A,B̄

K with Kähler potential

K = −i
(
Ȳ IFI(Y,Υ)− F̄I(Ȳ , Ῡ)Y I

)
, (3.2)

and

ω = − i
2
NIJdY

I ∧ dȲ J +
1

2
F̄IΥdY

I ∧ dῩ− 1

2
FIΥdΥ ∧ dȲ I

is the associated Kähler form. The Kähler metric gAB has occured in the deformed sigma

model [17], which provides a field theoretic realization of our set-up.

4In applications Υ will not necessarily be small, but it is reasonable to expect that γ is non-degenerate,

at least generically.
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3.2 Real coordinates and the Hesse potential

Following [18], we now define special real coordinates and a Hesse potential in presence of

the deformation. Special real coordinates are defined by

Y I = xI + iuI(x, y,Υ, Ῡ) , FI = yI + ivI(x, y,Υ, Ῡ) ,

and the (generalized) Hesse potential is related to the (generalized) prepotential by a

Legendre transform:

H(x, y,Υ, Ῡ) = −i(F − F̄ )− 2yIu
I(x, y,Υ, Ῡ) ,

where F = F (Y (x, u(x, y,Υ, Ῡ)),Υ).

We are interested in the coordinate transformation between special complex and special

real coordinates5

(x, u,Υ, Ῡ) 7→ (x, y(x, u,Υ, Ῡ),Υ, Ῡ)

and its inverse

(x, y,Υ, Ῡ) 7→ (x, u(x, y,Υ, Ῡ),Υ, Ῡ) .

When rewriting derivatives between the coordinate systems, one needs to carefully use

the chain rule: when differentiating a function f = f(x, y(x, u,Υ, Ῡ),Υ, Ῡ) the following

formulae are useful

∂f

∂xI

∣∣∣∣
u

=
∂f

∂xI

∣∣∣∣
y

+
∂f

∂yK

∣∣∣∣
x

∂yK
∂xI

,

∂f

∂uI

∣∣∣∣
x

=
∂f

∂yK

∣∣∣∣
x

∂yK
∂uI

,

∂f

∂Υ

∣∣∣∣
x,u

=
∂f

∂Υ

∣∣∣∣
x,y

+
∂f

∂yK

∣∣∣∣
x

∂yK
∂Υ

.

The Jacobians for the coordinate transformations take the form

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=


1 0 0 0
∂u
∂x

∣∣
y

∂u
∂y

∣∣∣
x

∂u
∂Υ

∣∣
x,y

∂u
∂Ῡ

∣∣
x,y

0 0 1 0

0 0 0 1


and

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=


1 0 0 0
∂y
∂x

∣∣∣
u

∂y
∂u

∣∣∣
x

∂y
∂Υ

∣∣∣
x,u

∂y
∂Ῡ

∣∣∣
x,u

0 0 1 0

0 0 0 1

 .

5We find it convenient to work with Υ and Ῡ when using special ‘real’ coordinates instead of decomposing

them into their real and imaginary parts.
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By the chain rule it is straightforward to evaluate

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=


1 0 0 0

1
2R −

1
2N

1
2FIΥ

1
2 F̄IΥ

0 0 1 0

0 0 0 1

 ,

where 2FIJ = RIJ + iNIJ . This matrix can easily be inverted, with the result:

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=


1 0 0 0

N−1R −2N−1 N−1FIΥ N−1F̄IΥ
0 0 1 0

0 0 0 1

 .

In order to transform the Kähler metric to special real coordinates, the following relations

are useful:
∂H

∂xI
= 2vI ,

∂H

∂yI
= −2uI .

Moreover, using the chain rule one computes:

∂vI
∂xJ

∣∣∣∣
y

=
1

2

(
N +RN−1R

)
IJ

,

∂vI
∂yJ

∣∣∣∣
x

= −∂u
J

∂xI

∣∣∣∣
y

= 2
(
N−1

)IJ
,

∂vI
∂uJ

∣∣∣∣
x

=
1

2
RIJ .

Using the notation (qa) = (xI , yI), the Kähler metric g expressed in special real variables

takes the form

g =
∂2H

∂qa∂qb
dqadqb +

∂2H

∂qa∂Υ
dqadΥ +

∂2H

∂qa∂Ῡ
dqadῩ ,

where (
∂2H

∂qa∂qb

)
=

(
N +RN−1R −2RN−1

−2N−1R 4N−1

)
,

and

∂2H

∂xI∂Υ
= 2F̄IMN

MNFNΥ ,
∂2H

∂xI∂Ῡ
= 2FIMN

MN F̄NΥ ,

∂2H

∂yI∂Υ
= − 2N IJFJΥ ,

∂2H

∂yI∂Ῡ
= − 2N IJ F̄JΥ .

In the undeformed case the Kähler metric is simultaneously Hessian. To see whether this

is still the case, we first note that M̂ can be equipped with an affine structure and thus

a Hessian metric gH with Hesse potential H can be defined. This requires the existence

of a flat, torsion-free connection. For fixed Υ we know that the special connection ∇ is
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such a connection, with affine coordinates xI , yI . We can extend ∇ to a flat, torsion-free

connection on M̂ = M ×C by imposing

∇dxI = 0 , ∇dyI = 0 , ∇dΥ = 0 , ∇dῩ = 0 .

If xI , yI are not global coordinates on M , we use that M can be covered by special real

coordinate systems, which are related by affine transformations with symplectic linear part.

Since for fixed Υ 6= 0 the map φΥ still induces an affine special Kähler structure, special

real coordinate systems extend to M̂ and provide it with the affine structure required to

define a flat torsion-free connection.

Upon computing the components of the Hessian metric gH explicitly, we realize that

is not equal to the Kähler metric g. The difference between the two metrics is

gH − g = ∂2H|x,y =
∂2H

∂Υ∂Υ
dΥdΥ + 2

∂2H

∂Υ∂Ῡ
dΥdῩ +

∂2H

∂Ῡ∂Ῡ
dῩdῩ ,

where

∂2H

∂Υ∂Ῡ
= N IJFIΥF̄JΥ ,

∂2H

∂Υ∂Υ
= −iFΥΥ +N IJFIΥFJΥ ,

∂2H

∂Ῡ∂Ῡ
= iF̄ΥΥ +N IJ F̄IΥF̄JΥ .

We remark that these metric coefficients are symplectic functions, see [9], which is necessary

in order that gH − g is a well defined tensor field (which we know to be the case, because

gH and g are both metric tensors). We further remark that

2H = K − 2iΥFΥ + 2iῩF̄Υ

differs from the Kähler potential (3.2) by a Kähler transformation. Therefore 2H, taken

as a Kähler potential, defines the same Kähler metric g = gK as K. However, when

taking K as a Hesse potential one does not get the Hessian metric gH . While a Kähler

potential is unique up to Kähler transformations, a Hesse potential is unique up to affine

transformations. Moreover, since our Hessian metric has definite scaling properties, we

can impose that the Hesse potential is homogeneous of degree two, which is automatic in

the way we have defined it as the Legendre transform of the generalized prepotential. If

homogeneity is imposed on top of using special real coordinates, then the Hesse potential

is unique up to symplectic transformations. We remark that the Hesse potential is the sum

of two symplectic functions. Different linear combinations of these two functions define

different metrics. By inspection one finds that defining the (generalized) Hesse potential

as the Legendre transform of the generalized prepotential leads to a particularly simple

form of the coefficients ∂2H|x,y. We will see later how the Hessian metric gH encodes the

holomorphic anomaly equation.

3.3 Deformed special Kähler geometry

We are now in position to demonstrate that M̂ carries itself a deformed version of affine

special Kähler geometry. We have already seen that g is a Kähler metric with Kähler form
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ω. To compare this with the two-form 2dxI ∧ dyI , which is the Kähler form on M , we

compute

2dxI ∧ dyI = − i
2
NIJdY

I ∧ dȲ J − 1

2
FIΥdΥ ∧ dȲ I +

1

2
F̄IΥdY

I ∧ dῩ

+
1

2
FIΥdY

I ∧ dΥ +
1

2
F̄IΥdȲ

I ∧ dῩ , (3.3)

and therefore the Kähler form can be written as

ω = 2dxI ∧ dyI −
1

2
FIΥdY

I ∧ dΥ− 1

2
F̄IΥdȲ

I ∧ dῩ .

This shows in particular that 2dxI ∧ dyI , when considered as a form on M̂ , is not of type

(1, 1) (since ω is, and both differ by pure forms). Using the rewriting

FIΥdY
I ∧ dΥ = dFΥ ∧ dΥ = −d(ΥdFΥ) ,

we find

ω = 2dxI ∧ dyI +
1

2
d(ΥdFΥ) +

1

2
d(ῩdF̄Υ) . (3.4)

Thus the difference between the Kähler forms ω of M̂ and 2dxI ∧ dyI of M is exact, so

that both forms are homologous. The deformation involves the function FΥ = ∂ΥF , which

plays a central role in describing the deformation and should be viewed as the supergravity

counterpart of the topological free energy Ftop. First, note that while the generalized

prepotential F , and its higher derivatives ∂nΥF with n > 1, are not symplectic functions,

FΥ is a symplectic function [9]. Moreover, it is independent of the undeformed (two-

derivative) prepotential F (0)(Y ) = F (Y,Υ = 0), but contains all the information about the

deformation. We remark that while within the present construction FΥ is holomorphic,

this condition will be relaxed later.

Next we compute

∇ω = −1

2
d(FIΥ)⊗ (dY I ∧ dΥ) + c.c. (3.5)

which shows that ω is not parallel, and the connection ∇ is not a symplectic connection on

M̂ . This shows that while (M̂, g, ω,∇) is Kähler, it is not special Kähler. The deformation

is controlled by an exact form, which is determined by the symplectic function FΥ.

The fourth condition on a special connection is that the complex structure is covariantly

closed. To compute the exterior covariant derivative of the complex structure J , we note

that the vector fields ∂xI , ∂yI , ∂Υ, ∂Ῡ define a ∇-parallel frame which is dual to the ∇-

parallel co-frame dxI , dyI , dΥ, dῩ. Using this one verifies that

∇ ∂

∂Y I
= ∇

(
1

2

∂

∂xI
+

1

2
FIJ

∂

∂yJ

)
=

1

2
dFIJ ⊗

∂

∂yJ
.

Using that d∇J = dJaea − Ja ∧ d∇ea where ea is any basis of sections of TM̂ , so that

d∇ea = ∇ea, we find

d∇J =

(
−idY I ∧ 1

2
dFIJ + c.c.

)
⊗ ∂

∂yJ
.
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Note the rewriting

dY I ∧ dFIJ = dY I ∧ FIJΥdΥ = −d(FIJdY
I) = d(FIΥdΥ) ,

where we used symmetry of FIJ and the chain rule. Therefore

d∇J = (−id(FIΥdΥ) + c.c.)⊗ ∂

∂yI
=
(
−iFIJΥdY

J ∧ dΥ + c.c.
)
⊗ ∂

∂yI
, (3.6)

which is non-vanishing. As a consistency check, observe that it is manifest that d2
∇ = 0,

which must be true because ∇ is flat. Since the complex structure J of M̂ is not covariantly

closed, the fourth condition required on the connection ∇ in order to define a special Kähler

manifold is also violated. Again the deformation involves an exact form constructed out of

the function FΥ.

In summary, (M̂ = M×C, J, g) is a Kähler manifold with Kähler form ω, equipped with

a flat, torsion-free connection, such that ∇ω and d∇J are given by (3.5) and (3.6). We will

call such manifolds deformed affine special Kähler manifolds. Since our definition involves

the map φ, this is not an intrinsic definition, but the name for a specific construction.

For completeness we remark that the pullback of the complex symplectic form Ω of V

is non-vanishing:6

φ∗Ω = FIΥdY
I ∧ dΥ = −d(ΥdFΥ) .

As we by now expect, the right hand side is exact and controlled by FΥ.

3.4 Stringy complex coordinates

The framework introduced so far is based on a generalized holomorphic prepotential

F (Y,Υ), a complex symplectic vector (Y I , FI(Y,Υ)) and a map φ : M̂ → V which in-

troduces a Kähler metric g on M̂ = M × C, which deviates from being special Kähler if

FΥ 6= 0. Although Υ is a symplectic scalar, symplectic transformations of data derived

from F or the symplectic vector (Y I , FI) depend on Υ. If we expand F in a power series

F (Y,Υ) =
∞∑
g=0

F (g)(Y )Υg ,

then the functions F (g)(Y ) are holomorphic and homogeneous of degree 2 − 2g, but they

are not symplectic functions, and transform in a complicated way under symplectic trans-

formations.

When the background is identified with the Weyl multiplet W 2, our formalism describes

an Wilsonian effective action for vector multiplets which includes a certain class of higher

derivative terms. The same class of terms can be described using the topological string,

but the formalism used in this context is different. There is no generalized prepotential,

but instead one works with an undeformed complex symplectic vector (YI , F (0)
I (Y)). The

information which is encoded in the symplectic function FΥ in the supergravity formalism

6It is of course clear already for dimensional reasons that M̂ cannot be a (locally immersed) Lagrangian

submanifold of V .
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is then differently encoded in a hierarchy of genus-g topological free energies F (g)(Y, Ȳ)

which individually are symplectic functions, at the expense of not being holomorphic.

The deviation from holomorphicity is controlled by the holomorphic anomaly equation.

Elaborating on [12], we will now show that the relation between the two frameworks can

be understood as a coordinate transformation. This will proceed in two steps. First we will

show that when starting from the holomorphically deformed special geometry introduced so

far, one obtains a hierarchy of free energies, where F (1) is holomorphic, while the F (g) with

g > 1 are non-holomorphic and satisfy a version of the holomorphic anomaly equation where

the two-derivative term is absent. This is not quite the situation for the topological string,

where already F (1) is non-holomorpic and the anomaly equation requires an additional two-

derivative term. In the next section we will generalize our deformed special geometry by

making it explicitly non-holomorphic, and then show that by a coordinate transformation

we obtain the full anomaly equation.

The relation between the supergravity coordinates Y I and the stringy coordinates YI

is defined by imposing that the corresponding special real coordinates agree [12]:(
2xI

2yI

)
=

(
Y I + Ȳ I

FI(Y,Υ) + F̄I(Ȳ , Ῡ)

)
=

(
YI + ȲI

F
(0)
I (Y) + F̄

(0)
I (Ȳ)

)
.

This implicitly defines a non-holomorphic coordinate transformation between complex co-

ordinates on M̂ ,

(Y I ,Υ) 7→ (YI ,Υ) , (3.7)

which we parametrize as [12]

YI = Y I + ∆Y I(Y, Ȳ ,Υ, Ῡ) .

Note that by construction YI = Y I for Υ = 0. In particular, the YI still are holomorphic

coordinates on M . If Υ 6= 0 the coordinate transformation can be constructed itera-

tively [12]. Since this gets complicated very soon, we will focus on statements that can be

made without expansion or iteration.

To this end, let us consider the two-form 2dxI ∧ dyI given in (3.3). Using (3.7), we

express this two-form in the new complex variables (YI , ȲI), obtaining

2dxI ∧ dyI = − i
2
NIJ

[
−∂∆Y J

∂YK
dYK ∧ dYI − ∂∆Y J

∂ȲK
dȲK ∧ dȲI

+

(
δIKδ

J
L −

∂∆Y I

∂YK
δJL + δIK

∂∆Y J

∂ȲL

)
dYK ∧ dȲL

+2
∂∆Y I

∂Υ
dxJ ∧ dΥ + 2

∂∆Y I

∂Ῡ
dxJ ∧ dῩ

]
+FIΥdx

I ∧ dΥ + F̄IΥdx
I ∧ dῩ , (3.8)

where in the last two lines we combined various terms into terms containing dxI . We now

convert all differentials appearing in (3.8) to the real flat frame (dxI , dyI , dΥ, dῩ) using

dYI = dxI + iN IK
(0) R

(0)
KJ dx

J − 2iN IJ
(0) dyJ ,
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where here and in the following we use a notation where the subscript or superscript (0)

indicates that a quantity has been calculated using the undeformed prepotential F (0)(Y) =

F (Y,Υ = 0). Then, by comparing the differentials on both sides of the resulting expression,

we obtain the relations

∂∆Y J

∂Υ
= −iNJKFKΥ , (3.9)

N IJ =

(
δIK −

∂∆Y I

∂YK
+
∂∆Y I

∂ȲK

)
NKJ

(0) ,

N[IK
∂∆Y K

∂YJ ]
= 0 ,

where in the last equation the square bracket denotes antisymmetrization of the uncon-

tracted indices.

3.5 The symplectic covariant derivative

The advantage of the stringy coordinates is that the variable Υ does not enter into symplec-

tic transformations. Thus given any symplectic function G(Y,Υ) (not necessarily holomor-

phic), then the symplectic transformation behaviour is not modified when taking partial

derivatives with respect to Υ. In particular, if G(Y,Υ) is a symplectic function, then so

is ∂G/∂Υ. In contrast, when using the supergravity variables Y I , then partial derivatives

with respect to Υ change the symplectic transformation behaviour. For example, while the

derivative FΥ of the generalized prepotential is a symplectic function, its derivatives like

FΥΥ are not [9]. Using (3.9) there is a systematic way to compensate for this behaviour.

Suppose G(Y,Υ) is a symplectic function, given in supergravity variables, which for the

time being we assume to be holomorphic.7 Expressing G in stringy variables, we obtain

G = G(Y (Y,Υ),Υ).8 When regarding G as a function of Y and Υ, the partial derivative

with respect to Υ is again a symplectic function. Now apply the chain rule:

∂G

∂Υ

∣∣∣∣
Y

=
∂G

∂Υ

∣∣∣∣
Y

+
∂G

∂Y I

∣∣∣∣
Υ

∂Y I

∂Υ

and use (3.9)
∂Y I

∂Υ
= −∂∆Y I

∂Υ
= +iN IJFJΥ .

Therefore, if G(Y,Υ) is a symplectic function, then

DΥG :=
∂G

∂Υ

∣∣∣∣
Y

+ iN IJFJΥ
∂G

∂Y I

is also symplectic. The expression

DΥ =
∂

∂Υ

∣∣∣∣
Y

+ iN IJFJΥ
∂

∂Y I
, (3.10)

7This restriction will be lifted later.
8Note that, though we do not indicate this by notation, Y (Y,Υ) is not holomorphic.

– 16 –



J
H
E
P
0
2
(
2
0
1
6
)
1
6
1

which we have derived from the coordinate transformation between supergravity and

stringy variables, is the symplectic covariant derivative which was introduced in [9] based

on studying the symplectic transformation behaviour of derivatives of symplectic functions.

We remark that while G was assumed holomorphic, DΥG is not holomorphic, due to the

presence of the inverse metric N IJ . By taking higher covariant derivatives Dn
ΥG, one can

create a whole tower of symplectic functions. We remark that when the initial function G is

non-holomorphic, the covariant derivative needs to be modified, as will be discussed later.

The main application of this result is to show how one can obtain, starting from

FΥ(Y,Υ) a hierarchy of functions F (n)(Y, Ȳ) which can be interpreted as topological free

energies, because they satisfy the holomorphic anomaly equation. While this is result

known from [9] we briefly explain how this works and how the hierarchy of equations for

the functions F (n)(Y, Ȳ) can be consolidated into a master anomaly equation.

First, following [9] we define9 a hierarchy of symplectic functions through covariant

derivatives of the holomorphic symplectic function FΥ(Y,Υ):

Φ(n)(Y, Ȳ ,Υ, Ῡ) =
1

n!
Dn−1

Υ FΥ ,

for n = 1, 2, . . ., and Φ(0) = 0. Then

Φ(1) = FΥ

Φ(2) =
1

2
DΥFΥ ,

etc. Φ(1) is the only holomorphic function in this hierarchy. One computes

∂Φ(2)

∂Ȳ I
=
i

2

∂NJK

∂Ȳ I
FJΥFKΥ =

1

2
F̄ JKI ∂JΦ(1)∂KΦ(1) ,

where F̄ JKI = F̄IPQN
PJNQK . From this starting point it is straightforward to obtain the

holomorphic anomaly equation

∂Φ(n)

∂Ȳ I
=

1

2
F̄ JKI

n−1∑
r=1

∂JΦ(r)∂KΦ(n−r) , n ≥ 2 (3.11)

by complete induction. Next we define

F (n)(Y, Ȳ) = Φ(n)(Y, Ȳ ,Υ = Ῡ = 0) (3.12)

where we used that Y I = YI for Υ = 0. Explicit expressions for F (1), F (2) and F (3) are

given in (C.3) (the normalization used there differs by a factor 2i).

Setting Υ = 0, one obtains a holomorphic anomaly equation

∂F (n)

∂ȲI
=

1

2
F̄ JKI(0)

n−1∑
r=1

∂JF
(r)∂KF

(n−r) , n ≥ 2 (3.13)

9Note that here we use a different normalisation from the one used in section 1.
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for the functions F (n)(Y, Ȳ). This is not the full anomaly equation for the genus n topolog-

ical free energies of the topological string. The reason is that, so far, FΥ and hence Φ(1) and

F (1) are holomorphic, while for the topological string they are not. This will be addressed

in the next step where we extend our formalism to the case of a non-holomorphic FΥ. For

terminological convenience we will refer to the functions F (n) as genus n topological free

energies, or free energies for short.10

The hierarachy of equations (3.13) can be re-organised into a master anomaly equation

for the topological free energy

Ftop(Y, Ȳ, Q) =
∞∑
n=1

QnF (n)(Y, Ȳ) ,

where the expansion parameter Q is, for the topological string, related to the topological

string coupling. Taking into account that F (1) is (so far) holomorphic, it is straightforward

to verify that (3.13) follows from

∂Ftop

∂ȲI
=

1

2
F̄ JKI(0)∂JFtop∂KFtop (3.14)

by expansion in Q.

Since FΥ is the natural master function in the supergravity formalism, one would like

to have a master anomaly equation for it. This is not straightforward, since the Taylor

coefficients of FΥ(Y,Υ) with respect to Υ are not symplectic functions. We proceed by

expressing FΥ in stringy variables and introducing a shift in Υ:

FΥ(Y, Ȳ,Υ, Ῡ, Q) := FΥ(Y, Ȳ,Υ +Q, Ῡ) .

Then we make a Taylor expansion with respect to the ‘fluctuation’ Q. As indicated by

notation, we need to treat Υ and Ῡ as independent variables, and the ‘shifted’ FΥ is not

any more holomorphic in supergravity variables. Also note that when using supergravity

variables the dependence on Q is not any more of the form Υ + Q.

Now we express the expansion coefficients in supergravity variables:

FΥ(Y, Ȳ,Υ, Ῡ, Q) =
∞∑
n=1

1

n!
Qn∂nΥFΥ(Y, Ȳ,Υ, Ῡ) =

∞∑
n=1

1

n!
QnDn

ΥFΥ(Y,Υ)

=

∞∑
n=1

Qn

n!
(n+ 1)!Φ(n)(Y, Ȳ ,Υ, Ῡ)

=

∞∑
n=1

(n+ 1)QnΦ(n)(Y, Ȳ ,Υ, Ῡ) .

Next we integrate with respect to Q:

G(Y, Ȳ ,Υ, Ῡ, Q) =

∞∑
n=0

Qn+1Φ(n+1)(Y, Ȳ ,Υ, Ῡ) ,

10We remark that our formalism is independent of an explicit realization by a concrete topological string

model, and in this sense independent of the topological string. Our formalism is a general framework, for

which the topological string is one (important) application.
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and by setting Υ = 0 = Ῡ we obtain the topological free energy Ftop.

G(Y, Ȳ ,Υ = Ῡ = 0, Q) = G(Y, Ȳ,Υ = Ῡ = 0, Q) =
∞∑
n=0

Qn+1F (n+1)(Y, Ȳ)

= Ftop(Y, Ȳ, Q) .

The function G satisfies the master anomaly equation

∂

∂Ȳ I
G =

1

2
F̄ JKI ∂JG∂KG ,

which for Υ = Ῡ = 0 becomes the master anomaly equation (3.14) for the topological

free energy.

We note that the relation between the topological free energies F (g) and the function

FΥ is complicated. This is of course to be expected from [12]. The reason is that in a

Taylor expansion of FΥ(Y,Υ) the coefficients are not symplectic functions. The topological

free energies can be regarded as coefficients in a symplectically covariant Taylor expansion,

which in practice we cannot manage in closed form but only by evaluating derivatives at

Υ = 0. We also remark that the use of two complementary set of complex coordinates,

reflects that there is a tension between holomorphicity and symplecticity. In the supergrav-

ity variables we have manifest holomorphicity, but only the full symplectic vector (Y I , FI)

and the full function FΥ are symplectically covariant. If one wants to organise data in a

hierarchy of symplectic function, holomorphicity is violated, albeit in a systematic way con-

trolled by the anomaly equation. One can then either work with the covariant derivatives

Φ(n+1) ' Dn
ΥFΥ or use the stringy variables and work with the free energies F (n).

Above we obtained a master equation for FΥ from the master anomaly equation for

Ftop. The result is not quite satisfactory, as we need the background shift Q as a device.

But in the next section we will see that a master equation for FΥ can be obtained directly

within the supergravity formalism.

3.6 Anomaly equation from the Hessian structure

We will now show that the holomorphic anomaly equation arises as an integrability con-

dition for the existence of a Hesse potential on M̂ . The metric gH being Hessian means

that S = ∇gH is a completely symmetric rank three tensor. In ∇-affine coordinates

Qa = (xI , yI ,Υ, Ῡ) the components of the tensor S are simply the third partial derivatives

of the Hesse potential, or equivalently the first partial derivatives of the metric, and there-

fore proportional to the Christoffel symbols of the first kind (which for a Hessian metric

are completely symmetric with respect to ∇-affine coordinates):

Sabc = ∂3
abcH = ∂ag

H
bc .

One particular relation is

SxIΥΥ = SΥxIΥ ,

or

∂xIg
H
ΥΥ = ∂Υg

H
xIΥ , (3.15)
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where

gHΥΥ = −iDΥFΥ

and

gHxIΥ = 2F̄IJN
JKFKΥ .

We now evaluate equation (3.15) in supergravity coordinates (Y I , Ȳ I ,Υ, Ῡ), using the

corresponding Jacobian to obtain

SxIΥΥ =
∂gHΥΥ

∂xI

∣∣∣∣
y

=
∂gHΥΥ

∂xI

∣∣∣∣
u

+
∂uK

∂xI
∂gHΥΥ

∂uK
, where

∂

∂xI

∣∣∣∣
u

=
∂

∂Y I
+

∂

∂Ȳ I

and

SΥxIΥ =
∂gH

xIΥ

∂Υ

∣∣∣∣∣
x,y

=
∂gH

xIΥ

∂Υ

∣∣∣∣∣
x,u

+
∂uK

∂Υ

∂gH
xIΥ

∂uK
.

We find for the various terms,

∂gHΥΥ

∂xI

∣∣∣∣
u

= −i ∂

∂Ȳ I
DΥFΥ − iF̄ĪKLFKΥFLΥ ,

∂gHΥΥ

∂uK

∣∣∣∣
x

=

(
∂

∂Y K
− ∂

∂Ȳ K

)(
FΥΥ + iNKLFKΥFLΥ

)
= FKΥΥ − FKPQFPΥFQΥ − 2NPQFKPΥFQΥ − F̄KPQFPΥFQΥ ,

∂gH
xIΥ

∂Υ

∣∣∣∣∣
x,u

= −iFIΥΥ + FΥI
JFJΥ +

(
FIJ + F̄IJ

) (
iFΥ

JKFKΥ + FΥΥ
J
)
,

∂gH
xIΥ

∂uK

∣∣∣∣∣
x

= FIKΥ + iFIK
LFLΥ + i

(
FIL + F̄IL

) (
iFK

LPFPΥ + FΥK
L
)

−iF̄IKLFLΥ −
(
FIL + F̄IL

)
F̄K

LPFPΥ , (3.16)

where indices are raised using N IJ . Then, the Hessian condition (3.15) results in

∂

∂Ȳ I
DΥFΥ = F̄IJKN

JPNKQFPΥFQΥ . (3.17)

In the holomorphic case at hand (∂ĪFΥ = 0), this equation can be regarded as a master

anomaly equation in supergravity variables. First note that for Υ = 0 (3.17) reduces to

the anomaly equation for F (2). The anomaly equations for F (n) with n > 2 are obtained

by covariant differentiation of (3.17). Here one uses that holomorphicity of the generalized

prepotential implies

∂ĪFΥ = 0 , DΥF̄IJK = 0

and one also uses the identity [13]

[DΥ, N
IJ∂J ] = 0 .
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For example, to derive the anomaly equation for Φ(3) and, hence, for F (3) we need to

evaluate

∂ĪD
2
ΥFΥ = DΥ∂ĪDΥFΥ + i(∂ĪN

JK)FJΥ∂KDΥFΥ

= 3F̄ JKI ∂JFΥ∂KDΥFΥ .

Using that Dn−1
Υ FΥ = n!Φ(n) this becomes

∂ĪΦ
(3) = F̄ JKI ∂JΦ(1)∂KΦ(2) =

1

2
F̄ JKI

2∑
r=1

∂JΦ(r)∂KΦ(3−r) ,

which for Υ = 0 is the anomaly equation for F (3). Proceeding by induction one obtains

the full hierarchy (3.11) of anomaly equations.

One may ask whether other components of S will give rise to additional non-trivial

differential equations. To investigate this, we now consider the component SxIΥῩ = ∂xIg
H
ΥῩ

,

which is constructed out of the metric component gH
ΥῩ

= N IJFIΥF̄JΥ. Evaluating the

relation SxIΥῩ = SῩxIΥ = ∂Ῡ g
H
xIΥ

in supergravity variables we find that it is identically

satisfied. Thus, the only non-trivial differential equation resulting from gHΥΥ and gH
ΥῩ

is

encoded in the relation SxIΥΥ = SΥxIΥ.

4 The non-holomorphic deformation

So far we have assumed that F (Y,Υ) and, hence, FΥ are holomorphic in the supergravity

variables, which implies that F (1)(Y) is also holomorphic, while F (g)(Y, Ȳ) with g > 1

satisfy the anomaly equation (3.13). For the topological string the situation is more com-

plicated since already F (1)(Y, Ȳ) is non-holomorphic. We therefore now generalize our

framework and induce geometric data on M̂ using a non-holomorphic map φ : M̂ → V ,

which then corresponds to a non-holomorphic generalized prepotential F = F (Y, Ȳ ,Υ, Ῡ).

This explicit non-holomorphicity will in turn modify the anomaly equation (3.13) satisfied

by the topological free energies F (g)(Y, Ȳ). The precise form of the modification depends

on the details of the non-holomorphic deformation. We will first keep the discussion gen-

eral, and later show that when chosing a particular non-holomorphic deformation we obtain

the correct full anomaly equation (at least to leading order in a formal expansion we will

explain later). As discussed in [13] there are other types of non-holomorphic deformations

that are, for example, relevant for non-linear deformations of electrodynamics. Any such

deformation could be analyzed in the framework of our formalism.

Since F and FΥ are no longer holomorphic, they will have non-vanishing derivatives

with respect to Ȳ I and Ῡ. In the following we will use a notation involving ‘unbarred’

indices I, J, . . . and ‘barred’ indices Ī , J̄ , . . ..

4.1 Non-holomorphic deformation of the prepotential

We generalize the map (3.1) to

φ : M̂ = M ×C→ V , (Y I ,Υ) 7→ (Y I , FI(Y, Ȳ ,Υ, Ῡ)) , (4.1)
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where FI = ∂F/∂Y I , can be obtained from a generalized prepotential F . We assume that

F has the form [18]

F (Y, Ȳ ,Υ, Ῡ) = F (0)(Y ) + 2iΩ(Y, Ȳ ,Υ, Ῡ) , (4.2)

where F (0) is the undeformed prepotential, and where Ω is real-valued.11 The holomorphic

deformation is recovered when Ω is harmonic. This makes use of the observation that the

complex symplectic vector (Y I , FI) does not uniquely determine the prepotential F [12].

If we make a transformation

F (0)(Y ) → F (0)(Y ) + g(Y,Υ) ,

Ω(Y, Ȳ ,Υ, Ῡ) → Ω(Y, Ȳ ,Υ, Ῡ)− 1

2i
(g(Y,Υ)− ḡ(Ȳ , Ῡ)) ,

where g(Y,Υ) is holomorphic, then F changes by an antiholomorphic function, F → F + ḡ,

and the symplectic vector (Y I , FI) and the map φ are invariant. If Ω is harmonic,

Ω(Y, Ȳ ,Υ, Ῡ) = f(Y,Υ) + f̄(Ȳ , Ῡ) ,

we can make a transformation with g = 2if and obtain

F → F (0)(Y ) + 2if(Y,Υ) =: F (Y,Υ) ,

which is a holomorphically deformed prepotential, as considered in the previous section.

If, however, Ω is not harmonic, then we have a genuine generalization which requires us to

consider non-holomorphic generalized prepotentials. For the case of the topological string,

it is convenient to split the non-holomorphic generalized prepotential as in (4.2) into the

undeformed prepotential F (0) and a real-valued non-harmonic function Ω which encodes

all higher derivative effects, holomorphic as well as non-holomorphic.

We proceed by analysing the geometry induced by pulling back the standard hermitian

form γV of V given by (2.3) to M̂ using (4.1):

γ = −i(F (0)
IJ − F̄

(0)

Ī J̄
)dY I ⊗ dȲ J + 2(ΩIJ + ΩĪ J̄)dY I ⊗ dȲ J + 2ΩĪJdY

I ⊗ dY J

+2ΩIJ̄dȲ
I ⊗ dȲ J + 2ΩĪῩdY

I ⊗ dῩ + 2ΩIΥdΥ⊗ dȲ I + 2ΩĪΥdY
I ⊗ dΥ

+2ΩIῩdῩ⊗ dȲ I .

By decomposing γ = g + iω, we obtain the following metric on M̂ :

g = −i(F (0)
IJ − F̄

(0)

Ī J̄
)dY IdȲ J + 2(ΩIJ + ΩĪ J̄)dY IdȲ J + 2ΩĪJdY

IdY J + 2ΩIJ̄dȲ
IdȲ J

+2ΩĪῩdY
IdῩ + 2ΩIΥdΥdȲ I + 2ΩĪΥdY

IdΥ + 2ΩIῩdῩdȲ I .

From this expression it is manifest that g is not Hermitian, and hence not Kähler with

respect to the natural complex structure J . The non-Hermiticity is encoded in the mixed

11This function is not to be confused with the complex symplectic form on the vector space V introduced

in subsection 2.1.
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derivatives ΩIJ̄ , which makes it manifest that it is related to the non-harmonicity of Ω.

This metric occurs in the sigma model discussed in [17].

The imaginary part of γ defines a two-form on M̂ :

ω =
1

2i
(−i(F (0)

IJ − F̄
(0)

Ī J̄
))dY I ∧ dȲ J − i(ΩĪ J̄ + ΩIJ)dY I ∧ dȲ J

−iΩĪJdY
I ∧ dY J + iΩIJ̄dȲ

I ∧ dȲ J − iΩĪῩdY
I ∧ dῩ− iΩIΥdΥ ∧ dȲ I

−iΩĪΥdY
I ∧ dΥ + iΩIῩdȲ

I ∧ dῩ . (4.3)

This two-form is no longer of type (1, 1) with respect to the standard complex structure,

which is consistent with the non-Hermiticity of g. However, ω is still closed

dω = 0 ,

so that (M̂, ω) is at least a symplectic manifold.

Comparing ω to dxI ∧ dyI , we find:

2dxI ∧ dyI = ω + 2iΩIJ̄dY
I ∧ dȲ J + iΩIΥdY

I ∧ dΥ− iΩĪῩdȲ
I ∧ dῩ

+iΩIῩdY
I ∧ dῩ− iΩĪῩdȲ

I ∧ dΥ . (4.4)

As a consistency check, we verify that 2dxI ∧ dyI − ω is closed:

2dxI ∧ dyI = ω − 1

2
d(ΥdFΥ)− 1

2
d(ῩdFῩ)− ∂∂F ,

where ∂ = dY I ⊗ ∂Y I + dΥ ⊗ ∂Υ. Note that the difference between the symplectic form

2dxI ∧ dyI of M and the symplectic form ω of M̂ is still exact. Compared to (3.4) we have

an additional term which measures the non-holomorphicity of the generalized prepotential.

4.2 Real coordinates and the Hesse potential

To convert from complex supergravity variables we need to generalize our previous calcu-

lation of the Jacobian and its inverse:

D(x, y,Υ, Ῡ)

D(x, u,Υ, Ῡ)
=


1 0 0 0

1
2R+ −1

2N−
1
2(FIΥ + F̄ĪΥ) 1

2(F̄ĪῩ + FIῩ)

0 0 1 0

0 0 0 1


and, by a straigtforward matrix inversion

D(x, u,Υ, Ῡ)

D(x, y,Υ, Ῡ)
=


1 0 0 0

N−1
− R+ −2N−1

− N−1
− (FIΥ + F̄ĪΥ) N−1

− (F̄ĪῩ + FIῩ)

0 0 1 0

0 0 0 1

 .

This reduces to the previous result when switching off the non-holomorphic deformation.

When restricting to the left upper block, the result agrees with [17]. We have used the

following definitions [17]:

N±IJ = NIJ ± 2ImFIJ̄ = −i(FIJ − F̄Ī J̄ ± FIJ̄ ∓ F̄ĪJ)
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and

R±IJ = RIJ ± 2ReFIJ̄ = FIJ + F̄Ī J̄ ± FIJ̄ ± F̄ĪJ .

Note that NT
− = N−, while RT± = R∓.

As already observed in [18], in the presence of explicit non-holomorphic deformations

the Hesse potential is not to be defined as the Legendre transform of 2ImF but rather as

the Legendre of

L = 2ImF − 2Ω = 2ImF (0) + 2Ω . (4.5)

As explained in [12, 13], the function L can be interpreted as a Lagrange function, and

the Hesse potential as the corresponding Hamilton function.12 Thus the Hesse potential

associated to a non-holomorphically deformed prepotential is

H(x, y,Υ, Ῡ) = −i(F − F̄ )− 2Ω− 2uIyI .

By taking derivatives with respect to the real coordinates (QA) = (qa,Υ, Ῡ), where (qa) =

(xI , yI) we obtain the components of a Hessian metric:

∂H

∂qa∂qb
=

(
N+ +R−N

−1
− R+ −2R−N

−1
−

−2N−1
− R+ 4N−1

−

)
,

∂2H

∂xI∂Υ
= −i(FIΥ − F̄ĪΥ) +R−IKN

KJ
− (FJΥ + F̄J̄Υ) ,

∂2H

∂yI∂Υ
= −2N IK

− (FKΥ + F̄K̄Υ) ,

together with their complex conjugates and

∂2H

∂Υ∂Ῡ
= −iFΥῩ +N IJ

− (F̄ĪῩ − F̄IῩ)(FΥJ − FΥJ̄) = −iDΥFῩ ,

∂2H

∂Υ∂Υ
= −iDΥFΥ ,

∂2H

∂Ῡ∂Ῡ
= iDΥFΥ ,

where

DΥ = ∂Υ + iN IJ
− (FΥJ − FΥJ̄)

(
∂

∂Y I
− ∂

∂Ȳ I

)
(4.6)

is the symplectic covariant derivative introduced in [13]. This covariant derivative is a

generalization of (3.10) which generates a hierarchy of symplectic functions starting from

a non-holomorphic symplectic function. For holomorphic symplectic functions it reduces

to (3.10). We will show below that DΥ can be derived by transforming the partial derivative

∂Υ|Y from stringy variables to supergravity variables.

As before, the Hessian metric gH differs from the metric g induced by pulling back gV
using φ by differentials involving derivatives of H with respect to Υ, Ῡ:

gH = g + ∂2H
∣∣
x,y

where

∂2H
∣∣
x,y

=
∂2H

∂Υ∂Υ
dΥdΥ + 2

∂2H

∂Υ∂Ῡ
dΥdῩ +

∂2H

∂Ῡ∂Ῡ
dῩdῩ .

12In [12, 13] the Hesse potential is normalized differently by a factor 2 compared to [18] and the present

paper.
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4.3 The symplectic covariant derivative

As before we can use (4.3) and (4.4) to obtain exact information about the coordinate

transformation ∆Y I = YI − Y I between supergravity variables and stringy variables. By

proceeding as in subsection 3.4, namely converting the expression (4.4) from supergravity

variables to stringy variables, and then converting the result to real variables, we find the

following consistency condition:

∂∆Y I

∂Υ
= −iN̂ IK(FKΥ + F̄K̄Υ) , (4.7)

where N̂ IJ is the inverse of the matrix

N̂IJ = NIJ + iFJĪ − iF̄J̄I = −i(FIJ − F̄Ī J̄ − FĪJ + F̄IJ̄)

= −i(FIJ − F̄Ī J̄ − 2iΩJĪ − 2iΩJ̄I)

defined in [13]. Note that N̂IJ = N−IJ , which was defined before. The for-

mula (4.7) can be used to derive a modified symplectically covariant derivative, which

allows to generate new symplectic functions given a non-holomorphic symplectic function

G(Y, Ȳ ,Υ, Ῡ). Indeed, if such a function is given we can express it in stringy variables,

G = G(Y (Y, Ȳ,Υ, Ῡ), Ȳ (Y, Ȳ,Υ, Ῡ),Υ, Ῡ), and we know that ∂G/∂Υ|Y is a symplectic

function. Expressing this function in supergravity variables we obtain

∂

∂Υ

∣∣∣∣
Y
G =

∂

∂Υ

∣∣∣∣
Y

G− ∂∆Y I

∂Υ
(∂Y I − ∂Ȳ I )G =: DΥG ,

where DΥ denotes the symplectically covariant derivative introduced in (4.6), as can be

readily verified by using FΥ = 2iΩΥ, where Ω is real valued, which implies F̄ĪΥ = −FΥĪ .

This derivative operator was already found in [13] based on studying the symplectic trans-

formation of derivatives of a non-holomorphic generalized prepotential. We have now

derived this covariant derivative from a coordinate transformation.

The symplectically covariant derivative DΥ can be applied to any non-holomorphic

symplectic function. Thus, we can now construct a hierarchy of symplectic functions start-

ing from a non-holomorphic FΥ:

Φ(n+1) =
1

(n+ 1)!
Dn

ΥFΥ(Y, Ȳ ,Υ, Ῡ) . (4.8)

As before, we define topological free energies by

F (n)(Y, Ȳ) := Φ(n)(Y, Ȳ ,Υ, Ῡ)
∣∣∣
Υ=0

, n ≥ 2 .

These functions will satisfy a holomorphic anomaly equation, whose precise form depends

on the details of the non-holomorphic deformation.
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4.4 The holomorphic anomaly equation

We would like to show that for a suitable choice of a non-holomorphic deformation we

obtain the holomorphic anomaly equation of the topological string. As anticipated from [12]

this is laborious to do explicitly, since an explicit non-holomorphic deformation leads to

a proliferation of non-holomorphic terms. As in [12] we will resort to a (formal) series

expansion in parameters which control the non-holomorphicity, and rely on results about

the symplectic transformation behaviour of various quantites.

The non-holomorphic dependence of the topological free energies F (g) is entirely en-

coded in N IJ
(0) (which, we recall, is the inverse of N

(0)
IJ = −i(F (0)

IJ − F̄
(0)
IJ )). The higher

F (g) (with g ≥ 2) are polynomials of degree 3g − 3 in N IJ
(0), while F (1) depends on the

logarithm of detN IJ
(0). In the following, we will focus on the polynomial dependence on

N
(0)
IJ of the higher F (g), keeping F (1) holomorphic for the time being. We thus consider

the deformation

Ω(Y, Ȳ ,Υ, Ῡ) = f(Y,Υ) + 2βΥN IJ
(0) fIJ(Y,Υ) + c.c ., (4.9)

where the departure from harmonicity is encoded in N IJ
(0). We will work to first order in the

deformation parameter β and in N IJ
(0) to avoid a proliferation of new terms compared to the

holomorphic case. Note that in applications β and N IJ
(0) are not necessarily small, so that

the expansion is formal. The above defines a toy model that, as we will see, reproduces the

holomorphic anomaly equation for the topological free energies F (g) for g ≥ 2, to leading

order in β and in N IJ
(0). Since F (1) is still holomorphic, this toy model does not fully capture

the topological string. We will address this issue at the end of this section.

Expanding

f(Y,Υ) =
∞∑
n=1

Υn f (n)(Y )⇒ fΥ =
∞∑
n=1

nΥn−1f (n)(Y ) , (4.10)

we obtain from (4.9)

ΩΥ = f (1) +
∞∑
n=2

nΥn−1
(
f (n)(Y ) + 2β N IJ

(0) f
(n−1)
IJ

)
. (4.11)

To first order in β and in N IJ
(0), the function FΥ = 2iΩΥ, given by

FΥ(Y, Ȳ ,Υ) = 2i
[
fΥ + 2β N IJ

(0) fIJ(Y,Υ) + 2βΥN IJ
(0) fΥIJ(Y,Υ)

]
(4.12)

= 2i
[
f (1)(Y ) + 2Υ

(
f (2)(Y ) + 2β N IJ

(0) f
(1)
IJ (Y )

)
+3Υ2

(
f (3)(Y ) + 2β N IJ

(0) f
(2)
IJ (Y )

)
+ · · ·

]
,

transforms as a function under symplectic transformations provided we modify the trans-

formation behaviour of f(Y,Υ) to (note that we are using supergravity coordinates Y I),

f(Y,Υ) −→ f(Y,Υ) + 2iβΥZIJ0 fIJ(Y,Υ) , (4.13)
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to first order in β and in ZIJ0 . Here, ZIJ0 denotes the transformation matrix given in (C.2).

Note that β N IJ
(0) fIJ transforms as follows [12] under symplectic transformations, to first

order in β and in N IJ
(0) (or ZIJ0 ),

β N IJ
(0) fIJ −→ β

(
N IJ

(0) − iZ
IJ
0

)(
fIJ − F (0)

IJLZ
LP
0 fP

)
= β

(
N IJ

(0) − iZ
IJ
0

)
fIJ +O(N−1Z0,Z2

0 ) . (4.14)

Using (4.13) and (4.14), it follows that (4.12) is a symplectic function at this order.

We now observe that

FĪΥ ∝ β ∂ĪNJK
(0) (4.15)

which is of higher order in N−1
(0) , and hence will be dropped. Thus

Dn
ΥFΥ|Υ=0 = Dn

(0)ΥFΥ

∣∣∣
Υ=0

+O((N−1
(0) )2) ,

where by

D(0)Υ =
∂

∂Υ
+ iN IJFIΥ

∂

∂Y J

we denote the symplectically covariant derivative (3.10). Thus, while when starting with

a non-holomorphic function (3.10) must normally be replaced by (4.6), we neglect the

additional terms in the present context because they will necessarily bring in higher pow-

ers of N−1
(0) .

Hence, by working to order β and neglecting terms of order (N−1
(0) )2, we obtain

Dn
ΥFΥ|Υ=0 = Dn

(0)Υ(2ifΥ)
∣∣∣
Υ=0

+ 4iβN IJ
(0)∂

n
Υ

( ∞∑
m=1

(m+ 1)Υmf
(m)
IJ

)∣∣∣∣∣
Υ=0

= Dn
(0)Υ(2ifΥ)

∣∣∣
Υ=0

+ 4iβ (n+ 1)!N IJ
(0) f

(n)
IJ . (4.16)

Now we consider the hierarchy (4.8),

F (n+1) =
Dn

ΥFΥ

(n+ 1)!

∣∣∣∣
Υ=0

=
1

(n+ 1)!
Dn

(0)Υ(2ifΥ)
∣∣∣
Υ=0

+ 2β N IJ
(0) (2if

(n)
IJ )

∣∣∣
Υ=0

r +O(β2, (N−1
(0) )2) .

For β = 0 only the first term F
(n+1)
holo = [(n + 1)!]−1Dn

(0)Υ (2ifΥ)|Υ=0 is present, which

satisfies the anomaly equation (3.13). Including the deformation term of order β we get

(note that Y I = YI when Υ = 0)

∂

∂ȲK
F (n+1) =

∂

∂ȲK
F

(n+1)
holo − 2iβ F̄

(0)IJ
K (2if

(n)
IJ )

∣∣∣
Υ=0

=
1

2
F̄

(0)IJ
K

(
n∑
r=1

∂IF
(r)
holo∂JF

(n+1−r)
holo − 4iβ F

(n)
(holo)IJ

)
.
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Redefining F (n) → 2iF (n) (with n ≥ 1), we obtain

∂

∂ȲK
F (n+1) = iF

(0)IJ
K

(
n∑
r=1

∂IF
(r)∂JF

(n+1−r) − 2βDI∂JF
(n)

)
, (4.17)

up to terms of higher order in N−1
(0) . Here we used that the Levi-Civita connection DI and

the non-holomorphic deformation terms of the F (n) involve at least one further power of

N−1
(0) , which can be dropped at the order we are working at. Note that (4.17) is the full

holomorphic anomaly equation for the higher F (n) in big moduli space [12]. The standard

normalization of the anomaly equation is obtained by setting −2β = 1.

Let us return to the transformation law (4.13). Inserting the expansion (4.10) into

it, we see that f (1) remains invariant under symplectic transformations. This is not what

happens in topological string theory, where f (1) transforms into f (1) → f (1) + α ln detS0,

with α ∈ R. This transformation behavior is, in turn, compensated for by the presence of

an additional term ln detN
(0)
IJ , which ensures that the topological free energy F (1), given by

F (1)(Y, Ȳ) = 2i
(
f (1)(Y) + f̄ (1)(Ȳ) + α ln detN

(0)
IJ

)
,

is invariant under symplectic transformations. If we now insist that F (1) and Ω are related

by F (1) = 2iΩΥ|Υ=0, then this is only possible if we take Υ to be real, in which case Ω

given in (4.9) gets modified to

Ω(Y, Ȳ ,Υ) =
(
f(Y,Υ) + 2βΥN IJ

(0) fIJ(Y,Υ) + c.c.
)

+ αΥ ln detN
(0)
IJ , (4.18)

to first order in α. Thus, while the deformation β did not enforce any restriction on Υ, the

presence of the deformation α does.

So far, we restricted ourselves to working at first order in α, β and N−1
(0) . At higher

order, the analysis in [12] shows that α and β get locked onto the same value α = β. This

is a consequence of the requirement that Ω should transform consistently under symplectic

transformations. In this way we recover the non-holomorphic deformation relevant for the

topological string.

4.5 From Hessian structure to the full anomaly equation

We now show how to recover the holomorphic anomaly equation (4.17) from the underlying

Hessian structure. We proceed as in subsection 3.6, and consider the totally symmetric rank

three tensor S = ∇gH , where gH denotes the Hessian metric computed in subsection 4.2.

As before, we consider the components

SxIΥΥ = SΥxIΥ .

Since S is a tensor, we can evaluate this relation in other coordinate systems, in particular

in complex supergravity coordinates. As before, using

gHΥΥ = −iDΥFΥ ,

SxIΥΥ = ∂xI |y g
H
ΥΥ = ∂xI |u g

H
ΥΥ +

∂uK

∂xI
∂gHΥΥ

∂uK
, where ∂xI |u =

∂

∂Y I
+

∂

∂Ȳ I
,

SΥxIΥ =
∂gH

xIΥ

∂Υ

∣∣∣∣∣
x,y

=
∂gH

xIΥ

∂Υ

∣∣∣∣∣
x,u

+
∂uK

∂xI
∂gH

xIΥ

∂uK
,
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we obtain, after some rearrangements, an expression for the antiholomorphic derivative

∂

∂Ȳ I
gHΥΥ =

∂gH
xIΥ

∂Υ

∣∣∣∣∣
u

+
∂uK

∂Υ

∂gH
xIΥ

∂uK
−
∂gHΥΥ

∂Y I
− ∂uK

∂xI
∂gHΥΥ

∂uK
.

After a lengthy but straightforward calculation similar to the one in subsection 3.6, we find

−i ∂

∂Ȳ I
DΥFΥ =

∂gHΥΥ

∂Ȳ I
(4.19)

= iF̄ĪΥΥ + 2(FSΥ + F̄S̄Υ)NSL
−
[
F̄ĪL̄Υ − F̄ĪLΥ

]
−i(FSΥ + F̄S̄Υ)NSL

− (FQΥ + F̄Q̄Υ)NQP
−
[
F̄ĪP̄ L̄ + F̄ĪPL − 2F̄ĪP̄L

]
.

In the holomorphic case, this reduces to (3.17). In the non-holomorphic case based on (4.9)

it can be readily verified that when setting Υ = 0, one obtains the holomorphic anomaly

equation (4.17) for F (2) to leading order in β and N−1
(0) . Namely, using (4.9) and setting

Υ = 0, (4.19) reduces to

∂

∂Ȳ I
DΥFΥ

∣∣∣∣
Υ=0

= 2
∂

∂ȲI
F (2) =

(
−F̄ĪΥΥ + FSΥN

SL
− FQΥN

QP
− F̄ĪP̄ L̄

)∣∣∣
Υ=0

.

Using F̄ĪΥΥ|Υ=0 = −2iΩĪΥΥ|Υ=0 = −8βF̄
(0)KL

Ī
f

(1)
KL = 4iβF̄

(0)KL

Ī
F

(1)
KL, and redefining

F (n) → 2iF (n), we obtain (4.17) for F (2).

We note that, in principle, one may now proceed to derive the holomorphic anomaly

equation for the higher F (n) (with n ≥ 3) by applying covariant derivatives DΥ to (4.19),

and subsequently setting Υ = 0, as in subsection 3.6.

We finish by verifying that the component SxIΥῩ = ∂xIg
H
ΥῩ

, which is constructed out

of the metric component gH
ΥῩ

= −iDΥFῩ, does not give rise to an additional non-trivial

differential equation. Evaluating the relation SxIΥῩ = SῩxIΥ = ∂Ῡ g
H
xIΥ

in supergravity

variables we find that it is identically satisfied. Thus, the only non-trivial differential

equation resulting from gHΥΥ and gH
ΥῩ

is encoded in the relation SxIΥΥ = SΥxIΥ.

5 Concluding remarks

Let us conclude with a comparison of the approach taken in [12] and the one taken here

for obtaining the holomorphic anomaly equation. Both are based on the Hesse potential,

which is obtained by a Legendre transform, see (4.5). In the approach of [12] one works

directly with the Hesse potential, while here we work with the associated Hessian structure

(gH ,∇) on the extended scalar manifold M̂ = M ×C. The Hesse potential, which is akin

to a Hamiltonian [12], is a symplectic function of the special real coordinates. It can also be

expressed either in terms of supergravity variables (Y I ,Υ) (and their complex conjugate) or

in terms of stringy (or covariant) variables (YI ,Υ) (and their complex conjugate), see (3.7).

The approach in [12] consisted in first expressing the Hesse potential in terms of covariant

variables by means of a power series expansion in ∆Y I , and then expressing ∆Y I in terms

of a power series in derivatives of Ω, which we recall was introduced in (4.2). In this way it

was shown in [12] that the Hesse potential, when expressed in terms of covariant variables,
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equals an infinite sum of symplectic functions, which were denoted by H(a)
i . The label a

indicates that the leading term is of order Ωa. For higher values of a there are several

functions (labelled by i = 1, 2, . . . ) with the same value of a. This decomposition is unique.

In this decomposition there is only one function, namely H(1), whose leading term is Ω

itself, while the leading term of all the other H(a)
i (with a ≥ 2) involves derivatives of Ω.

In [12] it was shown that H(1) comprises a subsector of the full Hesse potential that encodes

the holomorphic anomaly equation. This was achieved by using the explicit expression for

H(1), which consists of an infinite sum that starts with 4Ω, and that involves terms of higher

and higher powers of derivatives of Ω. By using the fact that Ω depends on Υ, this infinite

sum was in turn rewritten as a series expansion in Υ, with coefficient functions that are

again symplectic functions. When Ω is taken to be harmonic, these symplectic functions,

denoted by F (n) (the first three of which we display in (C.3)), satisfy the holomorphic

anomaly equation (1.1) with α = 0. Subsequently, by deforming Ω by α-dependent terms,

as in (4.18), it was shown [12] that the resulting functions F (n) satisfy the full holomorphic

anomaly equation (1.1).

Thus, summarizing, it was shown in [12] that the full Hesse potential, when expressed

in terms of covariant variables, contains a subsector H(1) that, in turn, contains an infinite

set of functions F (n) that satisfy the full holomorphic anomaly equation (1.1). The other

sectors, described by the other functions H(a)
i , are constructed out of derivatives of Ω, and

thus contain derived information. They are nevertheless important, since they are needed

to build up the full Hesse potential.

In the approach taken in this paper, we instead work with the Hessian metric gH

associated with the full Hesse potential. We work in supergravity variables, and we focus

on particular components of gH , namely on gHΥΥ and gH
ΥῩ

. These two components (both of

which are given in terms of the symplectic covariant derivative introduced in [9, 13]) encode

different information. For instance, when evaluated at Υ = 0, gHΥΥ gives the symplectic

function F (2), while gH
ΥῩ

gives the symplectic function H(2) evaluated at Υ = 0. This is

reminiscent of the decomposition of the full Hesse potential into symplectic functions H(a)
i

discussed above. We then consider the totally symmetric rank three tensor S = ∇gH ,

and we first focus on its component SxIΥΥ = ∂xI g
H
ΥΥ. Evaluating the relation SxIΥΥ =

SΥxIΥ in supergravity variables and subsequently setting Υ = 0 we obtain the holomorphic

anomaly equation for F (2). One may then ask whether other components of S will lead to

additional non-trivial differential equations. To address this, we consider the component

SxIΥῩ = ∂xI g
H
ΥῩ

. Evaluating the relation SxIΥῩ = SῩxIΥ = ∂Ῡ g
H
xIΥ

in supergravity

variables we find that it is identically satisfied. Thus, we conclude that the only non-trivial

differential equation resulting from gHΥΥ and gH
ΥῩ

is encoded in the relation SxIΥΥ = SΥxIΥ.
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A Connections on vector bundles

We review some standard facts about connections in vector bundles. Let E → M be a

vector bundle over a manifold M . Then a connection or covariant derivative ∇ on E is

a map

∇ : X(M)× Γ(E)→ Γ(E) , (X, s) 7→ ∇Xs

which is a linear derivation (satisfies the product rule) with respect to sections s ∈ Γ(E)

of E, and which is C∞(M)-linear with respect to vector fields in X ∈ X(M).

For vector bundles of the form Ωp(M,E) = ΛpT ∗M ⊗E, that is for bundles of p-forms

with values in a vector bundle E, the covariant exterior derivative

d∇ : Ωp(M,E)→ Ωp+1(M,E)

is uniquely determined by its action on sections of E. For a given basis {sa} of sections

one sets

d∇sa = ∇sa = ωbasb ,

where ωba is the connection one-form of ∇. The derivative of a general section s = fasa ∈
Ω0(M,E), where fa ∈ C∞(M) is then

d∇s = dfa ⊗ sa + faωbasb .

The extension to forms of degree p > 0 is completely determined by linearity and the

product rule

d∇(α⊗ s) = dα⊗ s+ (−1)degαα ∧ d∇s ,

where α ∈ Ωp(M). The exterior covariant derivative d∇ of ω ∈ Ωp(M,E) can be expressed

in terms of the covariant derivative ∇ by

(d∇ω)(X0, . . . , Xp) =

p∑
l=0

(−1)l∇Xl
(ω(. . . X̂l . . .))

+
∑
i<j

(−1)i+jω([Xi, Xj ], . . . X̂i . . . X̂j . . .) ,

where X0, . . . Xp are vector fields, and where X̂ indicates that the corresponding vector

field is omitted.

The curvature of the connection ∇ is given by R∇(s) = d∇(d∇s). If the connection ∇
is flat, then d2

∇ = 0, so that d∇ defines an exact sequence. In this case a version of the

Poincaré lemma exists.

– 31 –



J
H
E
P
0
2
(
2
0
1
6
)
1
6
1

B Special coordinates

One of the defining conditions of affine special Kähler geometry is d∇J = 0, where J is the

complex structure. We can apply the above results since J is a section of End(E) ' E∗⊗E,

where E = TM . In the following we derive the local form (2.2) of (2.1), and also explain

how the existence of special coordinates can be derived.

Let A be a section of End(TM). Choosing dual bases {ea}, {ea} of sections, and

regarding A as a TM -valued one-form, we have

A = Aaea = Aabe
b ⊗ ea ∈ Ω1(M,TM)

and

d∇A = dAa ⊗ ea −Aa ∧ ω b
a eb ∈ Ω2(M,TM) .

If the connection ∇ is flat, we can choose sections ea such that the connection one-form

vanishes, ω b
a = 0 and in such a frame d∇A = 0 reduces to dAa = 0. Thus the one-forms

Aa are locally exact, Aa = dφa.

Since E = TM , the torsion of the connection ∇ is defined by

T∇(X,Y ) = ∇XY −∇YX − [X,Y ] .

One can show that

T∇(X,Y ) = d∇Id(X,Y ) ,

where

Id = ea ⊗ ea = δbae
a ⊗ eb

is the identity endomorpism of TM . If∇ is both flat and torsion free, then d∇Id = 0 implies

that in a frame where the connection vanishes, the one-forms Ia = ea are locally exact

ea = dta. This defines a set of ∇-affine coordinates. In such coordinates the condition (2.1)

becomes

d∇J = 0⇒ dJa = 0⇒ ∂[bJ
b
c] = 0 .

If the manifold M is in addition equipped with a non-degenerate, closed two-form

ω ∈ Ω2(M), dω = 0, then a connection ∇ is called symplectic if the symplectic form ω is

parallel:

∇ω = 0⇔ ∇Xω = X(ωab)e
a ∧ eb + ωab(∇Xea) ∧ eb + ωabe

a ∧∇Xeb = 0 ,

for all vector fields X. If the connection ∇ is in addition flat, we can choose sections

ea such that ∇Xea = 0. With respect to such a basis the coefficients of ω are constant,

X(ωab) = 0. If the connection ∇ is in addition torsion-free, the co-frame ea comes from an

affine coordinate system ta, and

ω =
1

2
ωabdt

a ∧ dtb
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where ωab is a constant, antisymmetric, non-degenerate matrix. Using the linear part of

the affine transformation that we can apply to ta, the matrix ωab can be brought to the

standard form

(ωab)
Standard =

(
0 1

−1 0

)
.

This form is still invariant under affine transformations where the linear part is symplectic.

The associated coordinates are called Darboux coordinates. Thus we have seen that for

a flat, torsion-free, symplectic connection the ∇-affine coordinates can be chosen to be

Darboux coordinates. In the context of affine special Kähler geometry such coordinates

are called special real coordinates.

We remark that in the main part of this paper we use special real coordinates (qa) =

(xI , yI) where the Kähler form takes the form

ω = 2dxI ∧ dyI = Ωabdq
a ∧ dqb .

Note that the components of ω with respect to the coordinates (qa) are ωab = 2Ωab =

2ωStandard
ab . In other words the special real coordinates differ from standard Darboux coor-

dinates by a conventional factor
√

2.

C Symplectic transformations and functions

Symplectic transformations acts as follows on a symplectic vector (Y I , FI) (I = 0, . . . n),

Y I → U IJY
J + ZIJFJ ,

FI → VI
JFJ +WIJY

J ,

where U, V, Z,W are the (n+ 1)× (n+ 1) real submatrices that give rise to an element of

Sp(2n+ 2,R). When F equals the prepotential F (0), then N IJ
(0) transforms as follows under

symplectic transformations [9],

N IJ
(0) → S̄0

I
K S0

J
LN

KL
(0) = S0

I
K S0

J
L

(
NKL

(0) − iZ
KL
0

)
, (C.1)

where

S0
I
K = U IK + ZIJF

(0)
JK ,

ZIJ0 = [S−1
0 ]IKZ

KJ . (C.2)

Consider a generalized prepotential F (Y, Ȳ ,Υ, Ῡ) = F (0)(Y ) + 2iΩ(Y, Ȳ ,Υ, Ῡ), where

Ω is taken to be harmonic, Ω(Y, Ȳ ,Υ, Ῡ) = f(Y,Υ) + f̄(Ȳ , Ῡ). Expanding f(Y,Υ) as

in (4.10) and inserting this into (3.12), yields explicit expressions for the symplectic func-

tions F (n). The first three read as follows,

F (1) = 2i f (1) , (C.3)

F (2) = 2i
(
f (2) −N IJ

(0) f
(1)
I f

(1)
J

)
,

F (3) = 2i

(
f (3) − 2N IJ

(0) f
(2)
I f

(1)
J + 2f

(1)
I N IJ

(0)f
(1)
JKN

KL
(0) f

(1)
L

+
2i

3
F

(0)
IJKN

IP
(0)N

JQ
(0) N

KR
(0) f

(1)
P f

(1)
Q f

(1)
R

)
,
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in accordance with [12]. These expressions get modified when Ω is not any longer harmonic.

The resulting expressions for the topological string can be found in appendix D of [12].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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