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1 Introduction

Quantum gravity is expected to manifest itself in an effective field theory framework

through higher derivative terms. Supersymmetry provides some control over such terms,

and in a theory of N = 2 vector multiplets coupled to supergravity a certain class of higher

derivative terms can be described by generalizing the prepotential which encodes all the

couplings at the two-derivative level. While this function remains holomorphic within a

Wilsonian framework, the inclusion of threshold corrections due to massless particles is

known to induce non-holomorphic corrections to the couplings. In fact these corrections



are required for consistency with electric-magnetic duality and are essential for incorpo-
rating higher derivative corrections to black hole entropy. While supergravity provides a
powerful tool to organise an effective action for quantum gravity, the actual computation
of couplings requires a specific theory. String theory is the natural candidate, and in par-
ticular the higher derivative corrections to N = 2 vector multiplets are captured by the
topological string. However, the relation between supergravity and the topological string is
subtle, and non-holomorphic corrections are incorporated differently in the respective for-
malisms. In this paper we develop a new geometrical description of the higher derivative
corrections on the supergravity side, by showing that they can be understood in terms of
an extended scalar manifold which carries a deformed version of special geometry. We also
derive various exact relations between the variables used in supergravity and in the topolog-
ical string. The most interesting result we obtain is that the holomorphic anomaly equation
which controls the non-holomorphic corrections in both the supergravity and topological
string formalism can be derived from the integrability condition for the existence of a Hesse
potential on the extended scalar manifold.

Let us next introduce our topic in more technical terms. In four dimensions, the com-
plex scalar fields residing in N = 2 vector multiplets parametrize a scalar manifold which
is the target space of the non-linear sigma-model that enters in the Wilsonian Lagrangian
describing the couplings of N = 2 vector multiplets at the two-derivative level. The scalar
manifold is an affine special Kahler manifold in global supersymmetry, and a projective
special Kéhler manifold in local supersymmetry; both types of target space geometry are
referred to as special geometry [1-7]. Special geometry, when formulated in terms of com-
plex variables Y/, is encoded in a holomorphic function F(©)(Y), called the prepotential.
When formulated in terms of special real coordinates, it is the Hesse potential that plays
a central role. For affine special Kahler manifolds, the Hesse potential is related to the
prepotential by a Legendre transform [8].

When coupling the N = 2 vector multiplets to the square of the Weyl multiplet, the
resulting Wilsonian Lagrangian, which now contains higher derivative terms proportional
to the square of the Weyl tensor, in encoded in a generalized prepotential F(Y,T), where
T denotes a complex scalar field residing in the lowest component of the square of the Weyl
multiplet. The complex scalar fields (YI ,T) will be called supergravity variables in the
following. The prepotential F(©)(Y) is obtained from F(Y,Y) by setting T = 0. Electric-
magnetic duality, a central feature of N = 2 systems based on vector multiplets, then acts
by symplectic transformations of the vector (Y, Fy), where F; = 0F/9Y . While F(Y,Y)
itself does not transform as a function under symplectic transformations, Fy = 0F/0Y
does [9]. The associated Hesse potential, obtained by a Legendre transform of Im F(Y,Y),
is also a symplectic function.

Away from the Wilsonian limit, the coupling functions encoded in Fy receive non-
holomorphic corrections, in general. In supergravity models arising from string theory,
these modified coupling functions can be derived in the context of topological string the-
ory [10, 11]. The precise relation between these two computations is subtle, however [12].
The coupling functions computed in topological string theory depend on stringy variables
(Y1, 7) that do not coincide with the supergravity variables (Y/,T) (unless Y = 0). The



precise relation between these two sets of coordinates was discussed in [12] and was used
to express the supergravity Hesse potential (which is a symplectic function) in terms of
stringy variables. The Hesse potential is not any longer obtained from the holomorphic
generalized prepotential F'(Y,T) that characterizes the Wilsonian Lagrangian. Instead, it
is computed from a deformed version of F' that is not any longer holomorphic. It was then
laboriously shown, by means of power law expansions, that the Hesse potential contains a
unique subsector () that comprises coupling functions F() (3,Y) that, for n > 2, satisfy
the holomorphic anomaly equation of topological string theory,

(n) ~ n—1
aaFyI = iFI(O)JK (Z aJF(T)ﬁKF("_T) — 2aDJ8KF(”_1)) . (1.1)

r=1

Here, o denotes the deformation parameter that characterizes the deviation from the Wilso-

0)JK

nian limit. The superscript (0) in F I( indicates that this quantity has been formed by

taking derivatives of F(©(Y), and that indices have been raised using the inverse N(IO{
corresponding metric N 1(3) = 2ImF 1(3). If no such superscript is present, as in F' IJ K then
it is understood that we take derivatives of the generalized prepotential F(Y,T), and that
indices are lowered and raised using N7y = 2ImF7;. This convention is applied throughout
the paper.

While in topological string theory o = —% [10], one may ask a more general question,
namely whether irrespective of the value of «, the holomorphic anomaly equation (1.1) can
be understood in terms of Hessian structures and Hessian geometry. This is indeed the
case, as we will show in this paper. Namely, the anomaly equation (1.1) may be viewed
as the integrability condition for the existence of a Hesse potential in supergravity. This
is simplest to establish in the case when a = 0, as we will explain next (when a = 0,
the coupling functions are encoded in Fy(Y,T) on the supergravity side, and hence still
holomorphic in supergravity variables).

Any affine special K&hler manifold M can be realised as an immersion into a complex
symplectic vector space V' [7], as we will review in section 2.1. When passing from the
prepotential F(© to the generalized prepotential F(Y,Y), this construction gets extended,
giving rise to a holomorphic family of immersions and deformed affine special Kahler man-
ifolds, which combine into a complex manifold M=MxC. By pulling back the standard
Hermitian form of V', the space M becomes equipped with a Kéhler metric g and a flat
torsion free connection V which we use to define special real coordinates. Taking the Leg-
endre transform of the generalized prepotential F'(Y,T) as a Hesse potential, we can then
define a Hessian metric g/. When analysing the integrability condition for the existence
of a Hesse potential, namely that Vg must be a completely symmetric rank three tensor
in complex coordinates, one infers the anomaly equation (1.1) with o = 0, as we will show
in subsection 3.6. This anomaly equation can also be viewed as a consequence of a tension
between preserving holomorphicity and symplectic covariance, as follows. We introduce
stringy variables J!, and we derive various properties of the difference AY! = Y — Y1,
We then express the symplectic function Fy(Y,Y) in terms of stringy variables. By taking
multiple derivatives dy|y of Fy we obtain symplectic functions 0% Fr|y that we express



back in terms of supergravity variables. Then, setting T = 0, we obtain the set of sym-
plectic functions F™ = 2i D' Py /n!|y—o introduced in [9] that, for n > 2, satisfy the
anomaly equation (1.1) with = 0. The symplectic covariant derivative Dy introduced
in [9] is related to OAY ! /0T, and thus it is simply a consequence of the passage from stringy
to supergravity variables. The non-holomorphicity induced by the coordinate transforma-
tion reflects the tension between holomorphicity and symplecticity, and is thus a universal
feature of the deformation induced by the passage from the prepotential F(©) (Y) to the
generalized prepotential F(Y,YT).

The aforementioned Hessian structure condition (namely that Vgl is totally symmet-
ric) gives a master equation for Fy,

O0;DxFy = F{¥ Py Prg |

which, upon applying D%} to it and setting T = 0, yields, by induction, the anomaly
equation (1.1) with o = 0 for the functions F(™ defined above. This master equation for
Fy is on par with the one derived for the topological free energy Fiop,

Ftop(y,j},Q) :ZQnF(n)(y“)_})’

n=1

where () is an expansion parameter related to the topological string coupling, which satisfies
. =5(0)JK
07 Frop = iF\ 50 Frop O Fiop -

Next, let us discuss the case a % 0. When turning on «, Fy ceases to be holomorphic.
Thus, starting from a non-holomorphic generalized prepotential F as in [12], we investigate
the consequences for the master equation for Fy that result from the Hessian structure
condition. The equation we obtain is quite complicated. To compare it with (1.1), we
specialise to a particular deformation, proportional to aV (IO‘; , where N (IO‘; is the inverse of

N [(3) = —i(F I(S) — F 1(3) ). Working at lowest order, we show that when setting T = 0,
the master equation for Fy equals the anomaly equation (1.1) with n = 2. The anomaly
equation for the higher F(®) can, in principle, be obtained from this master equation by
acting with multiple covariant derivatives Dy on it. Here, Dy denotes the symplectic
covariant derivative introduced in [13], which is based on a non-holomorphic generalized
prepotential F'. We note that while the specific a-deformation we picked is tied to the
topological string, the framework presented in this paper is quite general and can be applied
to other deformed systems, such as those discussed in [13].

The paper is organised as follows. In section 2 we review the extrinsic construction
of special Kdhler manifolds through immersion into a model vector space. In section 3
we deform this construction by passing from the prepotential F(©) to the holomorphic
generalized prepotential F'(Y,Y). We introduce the Hessian structure based on special real
coordinates, and use the latter to introduce stringy variables (J!,Y), as in [12]. We relate
the difference 9AY ' /OT to the symplectic covariant derivative of [9], which we subsequently
use to derive a master equation for Fy. Next, we use the Hessian structure to derive a



different equation for Fy, which we then relate to the holomorphic anomaly equation (1.1)
with @« = 0. In section 4 we redo the analysis, but now based on a non-holomorphic
generalized prepotential F'. In the concluding section we compare the approach of [12]
for obtaining the holomorphic anomaly equation with the approach taken here. In the
appendices we have collected some standard material to facilitate the reading of the paper.

2 Review of special Kahler geometry

2.1 Affine special Kihler manifolds

We start by reviewing the intrinsic definition of (affine) special Kahler geometry given
in [6]: a K&hler manifold (M, g,w) with complex structure J is affine special Kahler if
there exists a flat, torsion-free, symplectic connection V such that

dyJ =0. (2.1)

We will refer to V as the special connection. Our convention for the relation between
metric g, Kahler form w and complex structure J is

or, in local coordinates

Wac = gabec .
The definition of the exterior covariant derivative dy is reviewed in appendix A. As shown
in appendix B, in V-affine coordinates ¢* the condition (2.1) becomes

O’y =0, (2.2)
while the coefficients wg;, are constant. This in turn implies that

8()Lgbc = 8bgac )

which by applying the Poincaré lemma twice shows that the Kéhler metric is Hessian,
Gab = ain 9

where the real function H is called a Hesse potential. The coordinate-free version of this
local definition of a Hessian metric is as follows: given a Riemannian metric g and a flat,
torsion-free connection V, the pair (g, V) is called a Hessian structure, and ¢ is called a
Hessian metric, if the rank-3 tensor Vg is totally symmetric. It is easy to see that, given
a Kéhler manifold with a flat, torsion-free, symplectic connection V, the condition (2.1) is
equivalent to the requirement that the metric g is Hessian (that is Vg is totally symmetric).

On an affine special Kédhler manifold one can choose the V-affine coordinates (¢%) =
(x!, 1) to be Darboux coordinates, i.e. such that the Kihler form takes the standard form

1
w = 2dz" Adyr = Qudg® Adg" ,  (Qup) = (—OIL 0) .



The coordinates g% are called special real coordinates, and are unique up to affine trans-
formations with symplectic linear part.!

As shown in [6] the above definition is equivalent to the well known alternative defi-
nition in terms of special holomorphic coordinates Y/ and of a holomorphic prepotential
F(YT). We will now review the holomorphic formulation of special Kihler geometry in the
context of the universal extrinsic construction of [7], which allows to realize any affine spe-
cial Kdahler manifold, at least locally. For simply connected affine special Kéahler manifold
this construction in fact works globally. The universal construction realises special Kéhler
manifolds M as immersions into the standard complex symplectic vector space V = T*C",
where dim V' = 2dim M = 4n. We now review some details, which we are going to use for
our later generalised construction.

Let (Y1, W}) be complex Darboux coordinates on V = T*C" ~ C?". Then

Q=dy!' AdW;
is the standard complex symplectic form on V', and
YW = iQ(~,T) =1 (dYI ® dW[ —dWr ® d?l> = gy +iwy (2.3)

is the associated Hermitian form, gy is a flat (indefinite) K&hler metric, and wy the corre-
sponding Kéhler form.
Next, let
o: M-V

be a non-degenerate, holomorphic, Lagrangian immersion of a complex manifold M of (real)
dimension 2n into V. We can assume, without loss of generality, that the image ¢(M) is
realized as a graph, that is the immersion has been chosen such that, when identifying M
locally with its image, we can take Y as coordinates on the locally embedded M, so that
in terms of coordinates (Y!, W) the immersion takes the form

¢p: M-V, YD YL E(Y)).

This situation is generic, and can always be achieved, at least locally, by a symplectic
transformation. Since the immersion ¢ is Lagrangian, we have ¢*Q2 = 0, which is readily
seen to be the integrability condition for the existence of a holomorphic function F' such
that F; = OF/0Y!. In the non-generic situation where ¢(M) is not realized as a graph,
the immersion is still well defined and can be described using a complex symplectic vector
(Y1(Z),W;(Z)), where Z = (Z") are holomorphic coordinates on M. However, the com-
ponents Y/ cannot be used as coordinates on M, and the components Wy fail to satisfy
the integrability condition for the existence of a prepotential. This is well known in the
literature as a symplectic vector (or ‘holomorphic section’) ‘without prepotential’ [14]. We
will assume in the following that we are in a generic symplectic frame where a prepotential
exists.

'We remark that the special coordinates (¢*) differ from standard Darboux coordinates by a conventional
normalization factor, see appendix B for details.



Since the immersion is non-degenerate, the pull back vy = ¢*vyy of the Hermitian
form =y to M is a non-degenerate Hermitian form, which by decomposition into real and
imaginary part defines a non-degenerate metric and two-form:

YM = gm + W -

The explicit form of v,y is
YM = N[JdYI ®dYJ ,

where
2

. _ ks .
Ny =2ImFy; = —i(Fry — Frj) = W[Z(YKFK — FrYH)).

From this expression for Np; it is manifest that the metric gps is Kéahler, with Kéahler
potential
K =i(Y'F — Fiy?ly, (2.4)

and affine special Kahler with prepotential F'.

Special holomorphic and special real coordinates are related as follows. Given special
holomorphic coordinates Y/ on M, the corresponding special real coordinate are given by
the real part of the complex symplectic vector (Y, Fy):

vy = 4! +iul($,y) ,
Fr = yr +ivr(z,y) .

Moreover, the holomorphic prepotential and the Hesse potential are related by a Legendre
transform [8]:
H(z,y) = 2ImF(z + iu(z,y)) - 2yru’ (2,y) .

We remark that special real coordinates are well defined, at least locally, in any symplectic
frame (including those without a prepotential) as a consequence of the non-degeneracy of
the symplectic form. For simply connected special Kéhler manifolds they are even globally
defined functions, since the immersion is global, though not necessary global coordinates,

since the immersion need not be an embedding.

2.2 Conical affine special Kiahler manifolds

While affine special Kéhler manifolds are the scalar manifolds of generic rigid N = 2 vector
multiplets, conical affine special Kéhler manifolds are the scalar manifolds of rigid super-
conformal vector multiplets. These are in turn the starting point for the construction of
the coupling of vector multiplets to Poincaré supergravity, which proceeds as follows:? (i)
start with a theory of n + 1 superconformal vector multiplets, (ii) gauge the superconfor-
mal algebra; this introduces various connections which reside in the Weyl multiplet, (iii)
partially gauge fix the superconformal transformations to obain a theory of n vector mul-
tiplets coupled to Poincaré supergravity. In this construction the projective special Kahler
manifold M of the supergravity theory arises as a Kihler quotient of a conical affine special

2This is reviewed in [15, 16].



Kahler manifold. Since we will not use this construction, we refer the interested reader to
the literature.

The additional condition implied by superconformal symmetry is, in terms of spe-
cial holomorphic coordinates, that the prepotential is homogeneous of degree two under
complex scale transformations,

FOXH) =XFrxh, xeor.

This is equivalent to the statement that the Hesse potential is homogeneous of degree
two under real scale transformations of the special real coordinates, and invariant under
the U(1) part of C*. The condition can also be formulated in a coordinate-free way [7]:
a conical affine special Kihler manifold® is a special Kihler manifold equipped with a
homothetic Killing vector field ¢ satisfying

Ve=DE=1d,

where V is the special connection, D the Levi-Civita connection, and Id the identity en-
domorphism on T'M. One can then show that this implies the existence of an infinitesimal
holomorphic homothetic C* action on M, which is generated by £ and J&. To obtain a
projective special Kéahler manifold by a Ké&hler quotient, one needs to assume that this
group action is free and proper.

3 The holomorphic deformation

3.1 Deformation of the immersion

One possible deformation of the vector multiplet action is to give it an explicit dependence
on a background chiral multiplet [9], see [15] for a review. By identifying this chiral mul-
tiplet with the Weyl multiplet W2, one can describe a particular class of higher derivative
terms. Compatibility with superconformal symmetry determines the scaling behaviour of
the chiral multiplet, while insisting on a local supersymmetric action implies that the de-
pendence is holomorphic, that is the standard F-term vector multiplet action is deformed
by allowing the prepotential, as a function on superspace, to depend explicitly on the chiral
multiplet. After integration over superspace, the action is a local functional of the fields,
which contains additional terms involving holomorphic derivatives of the prepotential with
respect to the background. When identifying the chiral multiplet with the Weyl multiplet
W2, one finds that the auxiliary fields cannot any longer be eliminated in closed form, but
only iteratively, thus generating an expansion in derivatives. Such an action is naturally
interpreted as a Wilsonian effective action.

In the following we will investigate how the introduction of a background field can be
interpreted as a deformation of special geometry. Since we focus on the scalar geometry,
the background chiral field enters through its lowest component, a complex scalar denoted

3 Apart from ‘conical’ the term ‘conic’ is also use in the literature.



Y. The generalized prepotential F(Y, ) is holomorphic in Y/ and Y, and (graded) homo-
geneous of degree two, that is

FOY,\“Y) = NF(Y,T), AeC,

where w is the weight of T under scale transformations. If T is the lowest component of the
Weyl multiplet W2, then w = 2. Our geometric model for the deformation parameterized
by T is a map

p:M:=MxC-V, YLT)~ ¥ FY,Y), (3.1)

which can be interpreted as a holomorphic family of immersions ¢y : M — V , (Y1) —
(Y7, F1(Y,Y)), that define a family of affine special Kéhler structures on M. While T is a
scalar under symplectic transformations, it enters into the transformation of the complex
symplectic vector (Y7, F;(Y,Y)), and other objects, through the generalized prepotential.
Our set-up is consistent with [9], in particular we can draw on the various formulae for
symplectic transformations derived there.

We define a metric and a two-form on M = M x C by pulling back the canonical
hermitian form ~y:

v=¢* vy =g+iw=NpdY!' @dY’ +iFirdY! @ dY — iFrdY @ dY?!

where N;j = —i(Fr; — Frj). We assume that « is non-degenerate, which certainly is true
for sufficiently small Y.* In the following, holomorphic coordinates on M are denoted
(v4) = (Y1, T). Using the conventions

dadb = é(da@db%—db@da) ,
da Ndb = da ® db— db® da ,
we obtain the metric
g = gapdv?div? = Ny;dY1dY”7 + iFpedYTdY — iFjedYdY
which is a Kéhler metric gap = 81247 5K with Kéhler potential
K=—i(Y'F(Y,Y) - Fi(Y,T)Y') , (3.2)

and
) _ 1_ - 1 _
W= —%NIJdYI AdY? + SFpedY! AdY — JFped A dY!

is the associated Kéhler form. The Kéahler metric g45 has occured in the deformed sigma
model [17], which provides a field theoretic realization of our set-up.

“In applications Y will not necessarily be small, but it is reasonable to expect that v is non-degenerate,
at least generically.



3.2 Real coordinates and the Hesse potential

Following [18], we now define special real coordinates and a Hesse potential in presence of

the deformation. Special real coordinates are defined by
YI:$I+iuI($7y7T)T)7 FI:yI+ivI($7y7T7T)7

and the (generalized) Hesse potential is related to the (generalized) prepotential by a

Legendre transform:
H(z,y,Y,T) = —i(F — F) — 2ypul (z,y, 7, T) ,

where F = F(Y (z,u(z,y, Y, T)),T).
We are interested in the coordinate transformation between special complex and special

real coordinates®
(x7 u? T? T) ’_> (‘/L‘7 y(',r7 u? T? T)? TJ T)

and its inverse

(2,9, 7, 7) — (z,u(z,y, Y, T),T,T).

When rewriting derivatives between the coordinate systems, one needs to carefully use
the chain rule: when differentiating a function f = f(z,y(z,u,Y,Y),Y,T) the following

formulae are useful

of ) _ of| , 9f| Oyx
oxl|, oxl|, = Oyk|, Oz’
of | _ Of | yx

oul|,  Oyk|, Oul ’

or| " of| . or| o
or,, = or|,, " Oy, 9T -

The Jacobians for the coordinate transformations take the form

1 0 0 0
D(z,u,Y,T) g—g y %Z Ou Ou

_ Y T lay oF lay

D(z,y,Y,Y) | 0o o 1 0
0 0 0 1

and
1 0 0 0
= 0 0 0 0
D(w,u,T,T) 0 0 1 0
0 0 0 1

5We find it convenient to work with T and T when using special ‘real’ coordinates instead of decomposing

them into their real and imaginary parts.

~10 -



By the chain rule it is straightforward to evaluate

1 0 0 0

D(z,y,Y,T) | 3R —3N 3Fix $Frr

D(z,u,T,Y) 0 0 1 0 ’
o 0 0 1

where 2F7; = Ry; + ¢Nyy. This matrix can easily be inverted, with the result:

1 0 0 0
D(z,u,Y,T) | N7'R —2N~! N"'Fjx N~ Fpy
D(z,y, T,T) 0 0 1 0

0 0 0 1

In order to transform the Kéhler metric to special real coordinates, the following relations

are useful:
OH OH

_ _ I
w— vr , 873”——2?,6

Moreover, using the chain rule one computes:

@ , — 5 (N+RN R)IJ 5

ovy ou”’ _1nIJ

o), = ot |, T2
T Y

8@1 1

ol | = 2t

Using the notation (¢%) = (z!,yr), the Kihler metric g expressed in special real variables
takes the form

O*H O*H ’H -
= dq®dq® dq®dY _dqg®dY
9= g™ YU T ggaar N T gpapr
where
9°H \ ([ N+RN 'R -2RN™!
0q°0qb | —2N~'R 4N—1 ’
and
ﬁ_Qﬁ NMNp 827]{_2}7 NMN g
orlor T IM NY ; orlor _ “HIM NTY
02H O2H _
— _9oNIE _ — NV E,,.
Y10 I Oyr0T T

In the undeformed case the Kéhler metric is simultaneously Hessian. To see whether this
is still the case, we first note that M can be equipped with an affine structure and thus
a Hessian metric ¢ with Hesse potential H can be defined. This requires the existence
of a flat, torsion-free connection. For fixed T we know that the special connection V is

- 11 -



such a connection, with affine coordinates z!,y;. We can extend V to a flat, torsion-free
connection on M = M x C by imposing

Vdz' =0, Vdy;=0, VdY=0, Vdr=0.

If 2!, y; are not global coordinates on M, we use that M can be covered by special real
coordinate systems, which are related by affine transformations with symplectic linear part.
Since for fixed T # 0 the map ¢~ still induces an affine special Kéhler structure, special
real coordinate systems extend to M and provide it with the affine structure required to
define a flat torsion-free connection.

Upon computing the components of the Hessian metric ¢ explicitly, we realize that
is not equal to the Kéhler metric g. The difference between the two metrics is

0’H 0*°H - 0*H _ _
H 2
—g=0H,,, = ——dYdY + 2————=dYdYT ——dYdY
9 -9 =y = roT e orar * aTeT ’
where
82H 1J — aQH . IJ
ToT — N FiyFyry , IToT —iFyy + N FiyFyy ,
0*H -
m = 'LF’I‘T"’NIJF[’I‘FJT .

We remark that these metric coefficients are symplectic functions, see [9], which is necessary
in order that g/ — g is a well defined tensor field (which we know to be the case, because
g™ and g are both metric tensors). We further remark that

2H = K — 2iYFy + 2iYFy

differs from the Kéhler potential (3.2) by a Kéhler transformation. Therefore 2H, taken

K as K. However, when

as a Kéahler potential, defines the same Kahler metric ¢ = ¢
taking K as a Hesse potential one does not get the Hessian metric g/. While a Kéhler
potential is unique up to Kéahler transformations, a Hesse potential is unique up to affine
transformations. Moreover, since our Hessian metric has definite scaling properties, we
can impose that the Hesse potential is homogeneous of degree two, which is automatic in
the way we have defined it as the Legendre transform of the generalized prepotential. If
homogeneity is imposed on top of using special real coordinates, then the Hesse potential
is unique up to symplectic transformations. We remark that the Hesse potential is the sum
of two symplectic functions. Different linear combinations of these two functions define
different metrics. By inspection one finds that defining the (generalized) Hesse potential
as the Legendre transform of the generalized prepotential leads to a particularly simple
form of the coefficients 02 H lz,y- We will see later how the Hessian metric g™ encodes the
holomorphic anomaly equation.

3.3 Deformed special Kihler geometry

We are now in position to demonstrate that M carries itself a deformed version of affine
special Kahler geometry. We have already seen that g is a Kéhler metric with Kéahler form
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w. To compare this with the two-form 2da! A dy;, which is the Kéhler form on M, we
compute

; _ 1 _ 1- -
2dz! A dyr = —%NI sdY! N YT = SFiyd NdY! + S FrrdY! A dT
1 1. _
+§F1TdYI AdY + 5Fmdyf AdYT (3.3)
and therefore the Kéahler form can be written as

1 1. _
w = 2dx’ A dy; — §F]TdYI AdY — 5szyf AdY .

This shows in particular that 2da’ A dy;, when considered as a form on M , is not of type
(1,1) (since w is, and both differ by pure forms). Using the rewriting

FredY! AdY = dPy AdY = —d(YdFy) ,

we find 1 1
w = 2dz’ A dy; + d(TdPr) + 5d(wfdﬁqf) : (3.4)

Thus the difference between the Kahler forms w of M and 2dz! A dy; of M is exact, so
that both forms are homologous. The deformation involves the function Fy = Oy F, which
plays a central role in describing the deformation and should be viewed as the supergravity
counterpart of the topological free energy Fi,p,. First, note that while the generalized
prepotential F', and its higher derivatives 0% F with n > 1, are not symplectic functions,
Fy is a symplectic function [9]. Moreover, it is independent of the undeformed (two-
derivative) prepotential F(O(Y) = F(Y, T = 0), but contains all the information about the
deformation. We remark that while within the present construction Fvy is holomorphic,
this condition will be relaxed later.
Next we compute

Vw = —%d(FIT) @ (dYT AdY) +c.c. (3.5)

which shows that w is not parallel, and the connection V is not a symplectic connection on
M. This shows that while (M ,g,w, V) is Kéhler, it is not special Kéhler. The deformation
is controlled by an exact form, which is determined by the symplectic function Fx.

The fourth condition on a special connection is that the complex structure is covariantly
closed. To compute the exterior covariant derivative of the complex structure J, we note
that the vector fields 0,1,0y,,0yv,0y define a V-parallel frame which is dual to the V-
parallel co-frame da!, dyr,dY,dY. Using this one verifies that

9 19 1. 9 1 9
SR v Ty M ) -
VayT v<28x1+2 ”ayJ> 21 ® 5

Using that dyJ = dJ%, — J* A dve, where e, is any basis of sections of TM, so that
dve, = Ve,, we find

1
dyJ = | —idY!' A =dF;;+cc. | @ — .
2 8yJ
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Note the rewriting
dY' NdFp; = dYT A FrppdY = —d(Fr7dY!) = d(FpydY) ,

where we used symmetry of F7; and the chain rule. Therefore

dyJ = (—id(FrdY) 4+ c.c) ® ai = (=iFrxdY’ AdY +cc) ® o . (3.6)
Y1 oyr

which is non-vanishing. As a consistency check, observe that it is manifest that cl2V =0,
which must be true because V is flat. Since the complex structure J of M is not covariantly
closed, the fourth condition required on the connection V in order to define a special Kéahler
manifold is also violated. Again the deformation involves an exact form constructed out of
the function Fx.

In summary, (M = MxQC, J, g) is a Kéhler manifold with Kahler form w, equipped with
a flat, torsion-free connection, such that Vw and dyJ are given by (3.5) and (3.6). We will
call such manifolds deformed affine special Kéhler manifolds. Since our definition involves
the map ¢, this is not an intrinsic definition, but the name for a specific construction.

For completeness we remark that the pullback of the complex symplectic form 2 of V'
is non-vanishing:®

¢*Q = FredY! AdY = —d(TdFy) .

As we by now expect, the right hand side is exact and controlled by Fx.

3.4 Stringy complex coordinates

The framework introduced so far is based on a generalized holomorphic prepotential
F(Y,Y), a complex symplectic vector (Y, F;(Y,Y)) and a map ¢ : M — V which in-
troduces a Kahler metric g on M = M x C, which deviates from being special Kahler if
Fy # 0. Although T is a symplectic scalar, symplectic transformations of data derived
from F' or the symplectic vector (YI , Fr) depend on Y. If we expand F' in a power series

F(Y,Y) = iF@(Y)Tg ,

9=0

then the functions F (9)(Y) are holomorphic and homogeneous of degree 2 — 2¢g, but they
are not symplectic functions, and transform in a complicated way under symplectic trans-
formations.

When the background is identified with the Weyl multiplet W2, our formalism describes
an Wilsonian effective action for vector multiplets which includes a certain class of higher
derivative terms. The same class of terms can be described using the topological string,
but the formalism used in this context is different. There is no generalized prepotential,
but instead one works with an undeformed complex symplectic vector (V!, F' I(O) ())). The
information which is encoded in the symplectic function Fy in the supergravity formalism

5Tt is of course clear already for dimensional reasons that M cannot be a (locally immersed) Lagrangian
submanifold of V.
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is then differently encoded in a hierarchy of genus-g topological free energies F(9) ,Y)
which individually are symplectic functions, at the expense of not being holomorphic.
The deviation from holomorphicity is controlled by the holomorphic anomaly equation.
Elaborating on [12], we will now show that the relation between the two frameworks can
be understood as a coordinate transformation. This will proceed in two steps. First we will
show that when starting from the holomorphically deformed special geometry introduced so
far, one obtains a hierarchy of free energies, where F'(!) is holomorphic, while the F(9) with
g > 1 are non-holomorphic and satisfy a version of the holomorphic anomaly equation where
the two-derivative term is absent. This is not quite the situation for the topological string,
where already F(!) is non-holomorpic and the anomaly equation requires an additional two-
derivative term. In the next section we will generalize our deformed special geometry by
making it explicitly non-holomorphic, and then show that by a coordinate transformation
we obtain the full anomaly equation.

The relation between the supergravity coordinates Y/ and the stringy coordinates Y}’
is defined by imposing that the corresponding special real coordinates agree [12]:

290 )~ \ B+ EET) ) T\ FO0) + O )
This implicitly defines a non-holomorphic coordinate transformation between complex co-

ordinates on M ,
Y1) - ), (3.7)

which we parametrize as [12]
V=Y I+ AY(Y,Y, T, 7).

Note that by construction Y! = Y for T = 0. In particular, the Y still are holomorphic
coordinates on M. If T # 0 the coordinate transformation can be constructed itera-
tively [12]. Since this gets complicated very soon, we will focus on statements that can be
made without expansion or iteration.

To this end, let us consider the two-form 2dx! A dy; given in (3.3). Using (3.7), we
express this two-form in the new complex variables (!, ), obtaining

j OAY OAY’ ~
2z’ Ady; = —~ Ny |— dVE A ayT — C22  gypK A ay!
A dyr 5 IJ|: P Y N P N% y
OAY! OAY _
I ¢J J I K L
onyr oAyt .
+2= s da? A dY 4 2 da /\dT]
+Fryda! AdY + Freda' AdY | (3.8)

where in the last two lines we combined various terms into terms containing dz!. We now
convert all differentials appearing in (3.8) to the real flat frame (dx!, dyr,dY,dY) using

Y = do! + N R, da? — 2iN dy;
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where here and in the following we use a notation where the subscript or superscript (0)
indicates that a quantity has been calculated using the undeformed prepotential FO) V) =
F(Y,Y =0). Then, by comparing the differentials on both sides of the resulting expression,
we obtain the relations

J
ag;/ = —iN"EFyry | (3.9)
OAY!T  9AY!
1J __ I KJ
N = <5K_ oy oYK )N“” ’
OAY K

where in the last equation the square bracket denotes antisymmetrization of the uncon-
tracted indices.

3.5 The symplectic covariant derivative

The advantage of the stringy coordinates is that the variable T does not enter into symplec-
tic transformations. Thus given any symplectic function G(Y, T) (not necessarily holomor-
phic), then the symplectic transformation behaviour is not modified when taking partial
derivatives with respect to Y. In particular, if G(,Y) is a symplectic function, then so
is 0G/OY. In contrast, when using the supergravity variables Y/, then partial derivatives
with respect to T change the symplectic transformation behaviour. For example, while the
derivative Fy of the generalized prepotential is a symplectic function, its derivatives like
Fyy are not [9]. Using (3.9) there is a systematic way to compensate for this behaviour.
Suppose G(Y,T) is a symplectic function, given in supergravity variables, which for the
time being we assume to be holomorphic.” Expressing G in stringy variables, we obtain
G =GY(),T),T).2 When regarding G as a function of J and T, the partial derivative
with respect to T is again a symplectic function. Now apply the chain rule:

0G| _ 0G| oG | ov!
8Ty_8TY Y|y oY
and use (3.9)
oyt OAY! 1]
oY~ or =+ iN"“"Fyy.
Therefore, if G(Y,T) is a symplectic function, then
0G 1T oG
DG = — N Fyy—
YG= Gy | TN gy
is also symplectic. The expression
Dy = 9 +iNY Ry — (3.10)
oY |y EE

"This restriction will be lifted later.
8Note that, though we do not indicate this by notation, Y (Y, T) is not holomorphic.
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which we have derived from the coordinate transformation between supergravity and
stringy variables, is the symplectic covariant derivative which was introduced in [9] based
on studying the symplectic transformation behaviour of derivatives of symplectic functions.
We remark that while G was assumed holomorphic, Dy G is not holomorphic, due to the
presence of the inverse metric N'/. By taking higher covariant derivatives D}G, one can
create a whole tower of symplectic functions. We remark that when the initial function G is
non-holomorphic, the covariant derivative needs to be modified, as will be discussed later.

The main application of this result is to show how one can obtain, starting from
Fx(Y,T) a hierarchy of functions F(™(),)) which can be interpreted as topological free
energies, because they satisfy the holomorphic anomaly equation. While this is result
known from [9] we briefly explain how this works and how the hierarchy of equations for
the functions F() (3,Y) can be consolidated into a master anomaly equation.

First, following [9] we define’ a hierarchy of symplectic functions through covariant
derivatives of the holomorphic symplectic function Fy(Y,Y):

M (Y, Y, T, T) = %Dg—lFT ,

forn=1,2,..., and ®© = 0. Then

M) = py
2 = L DyP,

etc. @) is the only holomorphic function in this hierarchy. One computes

o0 ONIK
oyl — 2 gyl

1.
FixFgy = QFj]K(?J@(I)@K@(U ,

where Fj] K= F’IPQN PINQK  From this starting point it is straightforward to obtain the
holomorphic anomaly equation

(n) ~ n—1
86(1;1 — %F]JKE 9,09 e" ) | > 2 (3.11)
r=1

by complete induction. Next we define
(y Y) = (Y Y, T=7T=0) (3.12)

where we used that Y/ = P! for T = 0. Explicit expressions for F(U, F?) and F®) are
given in (C.3) (the normalization used there differs by a factor 2i).
Setting T = 0, one obtains a holomorphic anomaly equation

(n)
({);;_ﬂ L ,{gZaJF( Vo F=) | n > 2 (3.13)

9Note that here we use a different normalisation from the one used in section 1.
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for the functions F(™) (¥,Y). This is not the full anomaly equation for the genus n topolog-
ical free energies of the topological string. The reason is that, so far, Fyy and hence @) and
FM are holomorphic, while for the topological string they are not. This will be addressed
in the next step where we extend our formalism to the case of a non-holomorphic Fy. For
terminological convenience we will refer to the functions F(™ as genus n topological free
energies, or free energies for short.!?

The hierarachy of equations (3.13) can be re-organised into a master anomaly equation
for the topological free energy

o0

Fop(,2,Q) =Y _Q"F™ (1Y),
n=1
where the expansion parameter () is, for the topological string, related to the topological
string coupling. Taking into account that F(1) is (so far) holomorphic, it is straightforward
to verify that (3.13) follows from

8F‘top 71
oyl 2

F{6)01 FropOx Frop (3.14)

by expansion in Q.

Since Fv is the natural master function in the supergravity formalism, one would like
to have a master anomaly equation for it. This is not straightforward, since the Taylor
coefficients of Fy(Y,T) with respect to T are not symplectic functions. We proceed by
expressing Fy in stringy variables and introducing a shift in Y:

Fe(V,Y,7,7,Q) :== Fx(V,Y,T+Q,Y).

Then we make a Taylor expansion with respect to the ‘fluctuation’ ). As indicated by
notation, we need to treat Y and Y as independent variables, and the ‘shifted’ Fy is not
any more holomorphic in supergravity variables. Also note that when using supergravity
variables the dependence on () is not any more of the form T + Q.
Now we express the expansion coefficients in supergravity variables:
- 1 T |
Fr,V,7,7,Q) = 3 Q" Pr(Y, 9,1, T) =} —Q"DyFr(Y,T)
n=1 n=1
0 n
=y Q—(n + 1)1 (Y, Y, T, T)

n!
1

=3 (n+1)Q e (Y, Y, T,T).
n=1

Next we integrate with respect to Q:

G, Y, T,1,Q) => Qe (v, v,1,7),

n=0

10We remark that our formalism is independent of an explicit realization by a concrete topological string
model, and in this sense independent of the topological string. Our formalism is a general framework, for
which the topological string is one (important) application.
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and by setting ¥ = 0 = T we obtain the topological free energy Fiop.

GV, Y, T=T=0Q) =GV, T="=0,Q) =» QF"(YY)

n=0

= Ftop(yajjaQ) .

The function G satisfies the master anomaly equation

8‘;0 = %F{KaJGaKG ,
which for T = T = 0 becomes the master anomaly equation (3.14) for the topological
free energy.

We note that the relation between the topological free energies F9) and the function
Fvy is complicated. This is of course to be expected from [12]. The reason is that in a
Taylor expansion of Fy(Y,Y) the coefficients are not symplectic functions. The topological
free energies can be regarded as coefficients in a symplectically covariant Taylor expansion,
which in practice we cannot manage in closed form but only by evaluating derivatives at
T = 0. We also remark that the use of two complementary set of complex coordinates,
reflects that there is a tension between holomorphicity and symplecticity. In the supergrav-
ity variables we have manifest holomorphicity, but only the full symplectic vector (Y, Fy)
and the full function Fy are symplectically covariant. If one wants to organise data in a
hierarchy of symplectic function, holomorphicity is violated, albeit in a systematic way con-
trolled by the anomaly equation. One can then either work with the covariant derivatives
p(ntl) ~ DY Fx or use the stringy variables and work with the free energies F (n),

Above we obtained a master equation for Fy from the master anomaly equation for
Fiop. The result is not quite satisfactory, as we need the background shift @) as a device.
But in the next section we will see that a master equation for Fy can be obtained directly
within the supergravity formalism.

3.6 Anomaly equation from the Hessian structure

We will now show that the holomorphic anomaly equation arises as an integrability con-
dition for the existence of a Hesse potential on M. The metric g™ being Hessian means
that S = Vg is a completely symmetric rank three tensor. In V-affine coordinates
Q® = (z!,y;, Y, T) the components of the tensor S are simply the third partial derivatives
of the Hesse potential, or equivalently the first partial derivatives of the metric, and there-
fore proportional to the Christoffel symbols of the first kind (which for a Hessian metric
are completely symmetric with respect to V-affine coordinates):

Supe = 03 H = a9l .

One particular relation is
SIITT = STxIT )

or
0p1 97y = Orgliy » (3.15)
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where

gy = —iDy Py

and
ggT = 2F[JNJKFK’I‘ .

We now evaluate equation (3.15) in supergravity coordinates (Y!,Y!, T, Y), using the
corresponding Jacobian to obtain

g Gggmr 8g¥T ou’ ag% here 0 n 0
pu— pu— W — —_— — J—
AN el | 9l |, Oxl ouk arl|, oyl " ovT
and
g _ 0931y _ Og7iy OuX dgpiy
N o A ) oY ou
z,y T,
We find for the various terms,
394& .0 A KL
ol . = —ZWDTFT — i F7 " Py Fry
dgity 0 9 ArKL
= =— - —= | (F N FgyF
duk | oYK  oyK ( TY +1 KY LT)
= Fryry — FgP9Fpy Foy — 2NP9Fpy For — FxP9FpyFor |
99’ . L
(;.;T = —iFrry + Pry/ e + (Frg + Fry) (iPy’® Fry + Pry?)
T,
dgth . . L
85? = Fixy +iFrk"Fry +i (Frp + Fr) (iFx™ Fpy + Pri")
xr

—iFik " Fry — (Fip + Frp) Fg*F Fpry | (3.16)
where indices are raised using N?/. Then, the Hessian condition (3.15) results in

waTFY = Fryx NP NEC Fpy Foy (3.17)
In the holomorphic case at hand (9;Fy = 0), this equation can be regarded as a master
anomaly equation in supergravity variables. First note that for T = 0 (3.17) reduces to
the anomaly equation for F(?). The anomaly equations for F(™) with n > 2 are obtained
by covariant differentiation of (3.17). Here one uses that holomorphicity of the generalized
prepotential implies
8[_FT =0 s D'I‘F[JK =0

and one also uses the identity [13]

Dy, N79;)=0.
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For example, to derive the anomaly equation for ®®) and, hence, for F®) we need to
evaluate

8ij2rF’r = DyajD'rFy + i(ajNJK)FjraKD'rFT
= 3F/R0;Frdx Dy Py .

Using that Df}leT = n!®(™) this becomes

2
0;08) — /59,600,002 — %FIJK 30,800, 00)

r=1

which for Y = 0 is the anomaly equation for F®). Proceeding by induction one obtains
the full hierarchy (3.11) of anomaly equations.

One may ask whether other components of S will give rise to additional non-trivial
differential equations. To investigate this, we now consider the component S, 1y = 0,1 g?T,
which is constructed out of the metric component ggf = N Fi¢Fyy. Evaluating the
relation Syryy = Sypry = Oy gl in supergravity variables we find that it is identically
satisfied. Thus, the only non-trivial differential equation resulting from ga?T and gf;IT is
encoded in the relation S,y = Sy, 1.

4 The non-holomorphic deformation

So far we have assumed that F(Y,T) and, hence, Fy are holomorphic in the supergravity
variables, which implies that F(1())) is also holomorphic, while F9)(),Y) with g > 1
satisfy the anomaly equation (3.13). For the topological string the situation is more com-
plicated since already F' (1)(3),37) is non-holomorphic. We therefore now generalize our
framework and induce geometric data on M using a non-holomorphic map ¢ : M — V,
which then corresponds to a non-holomorphic generalized prepotential F = F(Y,Y, Y, T).
This explicit non-holomorphicity will in turn modify the anomaly equation (3.13) satisfied
by the topological free energies F(9) (3,Y). The precise form of the modification depends
on the details of the non-holomorphic deformation. We will first keep the discussion gen-
eral, and later show that when chosing a particular non-holomorphic deformation we obtain
the correct full anomaly equation (at least to leading order in a formal expansion we will
explain later). As discussed in [13] there are other types of non-holomorphic deformations
that are, for example, relevant for non-linear deformations of electrodynamics. Any such
deformation could be analyzed in the framework of our formalism.

Since F' and Fy are no longer holomorphic, they will have non-vanishing derivatives
with respect to Y1 and Y. In the following we will use a notation involving ‘unbarred’
indices I, J, ... and ‘barred’ indices I, J, .. ..

4.1 Non-holomorphic deformation of the prepotential

We generalize the map (3.1) to

¢ - M=MxC-V, YL1)— ! FY,Y,TT), (4.1)
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where F7 = 0F/ Y, can be obtained from a generalized prepotential F. We assume that
F has the form [18]

FY,Y,T,T) = FO®) +2Q(,Y,T,T), (4.2)

where F() is the undeformed prepotential, and where  is real-valued.!! The holomorphic
deformation is recovered when 2 is harmonic. This makes use of the observation that the
complex symplectic vector (Y7, F;) does not uniquely determine the prepotential F [12].
If we make a transformation

FOW) — FON) +9(v, 1),
_ _ _ _ 1 o
Q(Y’ Y, Tv T) - Q(K Y, T’ T) - *(Q(K T) - g(Y, T)) )
1
where ¢g(Y, T) is holomorphic, then F' changes by an antiholomorphic function, F — F + g,

and the symplectic vector (Y, Fy) and the map ¢ are invariant. If Q is harmonic,
QY,Y,T,T) = f(Y,1) + f(Y,T),
we can make a transformation with ¢ = 2¢f and obtain
F — FOY) 4 2if(Y,T) = F(Y,Y),

which is a holomorphically deformed prepotential, as considered in the previous section.
If, however, §2 is not harmonic, then we have a genuine generalization which requires us to
consider non-holomorphic generalized prepotentials. For the case of the topological string,
it is convenient to split the non-holomorphic generalized prepotential as in (4.2) into the
undeformed prepotential F(©) and a real-valued non-harmonic function € which encodes
all higher derivative effects, holomorphic as well as non-holomorphic.
We proceed by analysing the geometry induced by pulling back the standard hermitian
form ~y of V' given by (2.3) to M using (4.1):
v = —i(F — FOay! @ dv? +2(Qy + Qp7)dY! @ a7 + 207 ,dY! © dy”
+2Q,7dYT @ dY7 + 2Q73dY! @ dYT + 2Q5¢dY @ dYT + 2Q7,dY! @ dYT
+20,7dYT @ dY" .

By decomposing v = g + iw, we obtain the following metric on M:
g = —i(FY — FONay'ay’ +2(Qy + Qp7)dy dy” +207,dv dy” + 20, ;avdy”’
+2Q7pdY AT + 2QrpdYdY ! 4 2QppdY!dY + 20,4dTdY ! .

From this expression it is manifest that ¢ is not Hermitian, and hence not Kéhler with
respect to the natural complex structure J. The non-Hermiticity is encoded in the mixed

1This function is not to be confused with the complex symplectic form on the vector space V introduced
in subsection 2.1.
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derivatives €277, which makes it manifest that it is related to the non-harmonicity of (2.
This metric occurs in the sigma model discussed in [17].
The imaginary part of « defines a two-form on M:

1

. 0 —~(0 > . <
w = 27,(_Z(F}J) ~ FON)ay! ndy”? —i(Qpz + Qpg)dY! Ady?
—iQp,dYT AdYT +iQ, ;dV T AdYT — iQppdY T A dY — iQpydY AdYT
—iQppdY ! AN dY 4 iQpdY T A AT . (4.3)

This two-form is no longer of type (1,1) with respect to the standard complex structure,
which is consistent with the non-Hermiticity of g. However, w is still closed

dw=0,

so that (M ,w) is at least a symplectic manifold.
Comparing w to dz! A dy”, we find:

2dz’ N dyr = w+ 2, 7dY T A dY T +iQpydY T AdY — iQppdY T AdT
+iQpdY T A dY — iQpydY T A dY . (4.4)
As a consistency check, we verify that 2dz! A dy; — w is closed:
1 1 - —
2daz’ A dyr = w — d(TdPr) = d(TdFy) — 00F

where 0 = dY! ® 0y + dY ® Oy. Note that the difference between the symplectic form
2da’ A dy; of M and the symplectic form w of M is still exact. Compared to (3.4) we have
an additional term which measures the non-holomorphicity of the generalized prepotential.

4.2 Real coordinates and the Hesse potential

To convert from complex supergravity variables we need to generalize our previous calcu-
lation of the Jacobian and its inverse:

10 0 0
D(z,y,Y,T) _ | 3R+ —3N- 5(Frr + Fry) 3(Fry + Fry)
D(z,u,T,Y) 0 0 1 0

0 0 0 1

and, by a straigtforward matrix inversion

1 0 0 0
D(z,u,T,T) _ | N2'Ry —2N=' NZ'(Fry + Fy) N2'(Fry + Fry)
D(z,y, T, T) 0 0 1 0

0 0 0 1

This reduces to the previous result when switching off the non-holomorphic deformation.
When restricting to the left upper block, the result agrees with [17]. We have used the
following definitions [17]:

Niyj = Npj+2ImF,; = —i(Fry— Fr; £ F 7 F Fry)
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and
Riry = Rrj£2Rel} ;= F]J-i-Fjj:tFIj:i:FjJ .
Note that NI = N_, while R] = R.
As already observed in [18], in the presence of explicit non-holomorphic deformations
the Hesse potential is not to be defined as the Legendre transform of 2ImF" but rather as

the Legendre of
L =2ImF — 2Q = 2ImF® + 20 . (4.5)

As explained in [12, 13], the function L can be interpreted as a Lagrange function, and
the Hesse potential as the corresponding Hamilton function.'? Thus the Hesse potential
associated to a non-holomorphically deformed prepotential is

H(xaya’rv’f):*Z(F*F)*QQ*Q’U,I:U[

By taking derivatives with respect to the real coordinates (Q4) = (¢%, T, Y), where (¢%) =
(x!,y7) we obtain the components of a Hessian metric:

OH <N+ +R_N"'R, —2R_N~! )

9“9 —oN"'R, AN~
0*H ; n KJ =
5uTor = i = Fry) + Rope N2 (Frr + Fry)
O°H K _
= —2N'*(F Fr
Dy;0T = (Frr + Fry)
together with their complex conjugates and
°H ) . _ '
ot = —Frt + N (Fry = Fry)(Pry = Frg) = —iDr Py,
O*H ”2H
oror YT ayer YT
where
- 0 d
Dy =0y +iNZ2(Fry — Frj) vl oyl (4.6)

is the symplectic covariant derivative introduced in [13]. This covariant derivative is a
generalization of (3.10) which generates a hierarchy of symplectic functions starting from
a non-holomorphic symplectic function. For holomorphic symplectic functions it reduces
to (3.10). We will show below that Dy can be derived by transforming the partial derivative
Or| y from stringy variables to supergravity variables.

As before, the Hessian metric g differs from the metric ¢ induced by pulling back gy
using ¢ by differentials involving derivatives of H with respect to Y, T:

gH = g —|— aQH‘:E,y

where 0*H O*°H 0*H
) _H PH o PH oo
O*H|,, = sxapdYdT + 2 o d LAY + S dTdY

12Tn [12, 13] the Hesse potential is normalized differently by a factor 2 compared to [18] and the present
paper.
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4.3 The symplectic covariant derivative

As before we can use (4.3) and (4.4) to obtain exact information about the coordinate
transformation AY! = Y — Y between supergravity variables and stringy variables. By
proceeding as in subsection 3.4, namely converting the expression (4.4) from supergravity
variables to stringy variables, and then converting the result to real variables, we find the
following consistency condition:

OAY!

T —iN" (Frer + Fry) (4.7)

where N'7 is the inverse of the matrix

Nij = Npj+iF,;;—iFy = —i(Fry — Fry— Fr; + Fyy)
= —i(Fry —FI—j—ZiQJI‘—QinI)

defined in [13]. Note that N;; = N_;;, which was defined before. The for-
mula (4.7) can be used to derive a modified symplectically covariant derivative, which
allows to generate new symplectic functions given a non-holomorphic symplectic function
G(Y,Y,Y,T). Indeed, if such a function is given we can express it in stringy variables,
G=GYYJ), r,0),Y(Y,Y,T,7),T,T), and we know that 0G/0Y|y, is a symplectic

function. Expressing this function in supergravity variables we obtain

a= 2

1
o OAY
ar|, o

(ayl - af/I)G = DTG y

where Dy denotes the symplectically covariant derivative introduced in (4.6), as can be
readily verified by using Fy = 2iQy, where (2 is real valued, which implies Fry = —Fy7.
This derivative operator was already found in [13] based on studying the symplectic trans-
formation of derivatives of a non-holomorphic generalized prepotential. We have now
derived this covariant derivative from a coordinate transformation.

The symplectically covariant derivative Dy can be applied to any non-holomorphic
symplectic function. Thus, we can now construct a hierarchy of symplectic functions start-
ing from a non-holomorphic Fy:

n 1 n \/ Y
pn+1) — I REy(Y,Y,T,T) . (4.8)

As before, we define topological free energies by

FOX.) = ey Y, 1.7)| . n>2.

These functions will satisfy a holomorphic anomaly equation, whose precise form depends
on the details of the non-holomorphic deformation.
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4.4 The holomorphic anomaly equation

We would like to show that for a suitable choice of a non-holomorphic deformation we
obtain the holomorphic anomaly equation of the topological string. As anticipated from [12]
this is laborious to do explicitly, since an explicit non-holomorphic deformation leads to
a proliferation of non-holomorphic terms. As in [12] we will resort to a (formal) series
expansion in parameters which control the non-holomorphicity, and rely on results about
the symplectic transformation behaviour of various quantites.

The non-holomorphic dependence of the topological free energies F(9) is entirely en-
coded in N(IO{ (which, we recall, is the inverse of N 1(3) = —i(FI(S) - F}S))) The higher
F) (with g > 2) are polynomials of degree 3g — 3 in N1/, while F() depends on the

(0)°
logarithm of det N(IO{ . In the following, we will focus on the polynomial dependence on

N [(3) of the higher F9) keeping F(!) holomorphic for the time being. We thus consider
the deformation

Q(Ya Y7 T, T) = f(Y¢ T) + QﬁTN(I(){ fIJ(Y7 T) +c.c., (49)

where the departure from harmonicity is encoded in V. (IO‘; We will work to first order in the
deformation parameter 8 and in IV, (IO‘; to avoid a proliferation of new terms compared to the
holomorphic case. Note that in applications 8 and N (IO{ are not necessarily small, so that
the expansion is formal. The above defines a toy model that, as we will see, reproduces the
holomorphic anomaly equation for the topological free energies F(@) for ¢ > 2, to leading
order in 8 and in [V, (IO{ Since F() is still holomorphic, this toy model does not fully capture
the topological string. We will address this issue at the end of this section.
Expanding

FV, 1) = fj T () = fr= fj n YY) (4.10)
n=1

n=1

we obtain from (4.9)
Qr = O+ 3 ny! (f<">(y) +26 N f}ﬁ‘”) . (4.11)
n=2

To first order in S and in N(IO‘; , the function Fy = 2iQ)y, given by

Fe(Y, Y, ) = 2 fr + 28 Nlg frs(¥,T) + 28 T Nf§, frrs(V, T)] (4.12)
= 2i [fO() + 27 (FOF) + 28 N 117 (1)
+372 () +28 N £ 00) +--]

transforms as a function under symplectic transformations provided we modify the trans-
formation behaviour of f(Y,Y) to (note that we are using supergravity coordinates Y!),

fY,0) — f(Y,0) +2iBY 2§ f1,(Y, ), (4.13)
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to first order in B and in Z{”. Here, Z{7 denotes the transformation matrix given in (C.2).
Note that (8 N(IOJ) frs transforms as follows [12] under symplectic transformations, to first

order in 8 and in N(IO{ (or Z{7,

BN fr0 — 8 (NG —i287) (f1s - FI9L 257 fp)
= 3 (N{OJ) —z'ng) frs+O(N"12,,22). (4.14)
Using (4.13) and (4.14), it follows that (4.12) is a symplectic function at this order.

We now observe that
Fry o< BOpNG) (4.15)

which is of higher order in N (_0)1, and hence will be dropped. Thus

Dy Frly_g = DigyyFx oot O((N(B)l)Q) ;

where by
0
oy’

we denote the symplectically covariant derivative (3.10). Thus, while when starting with

o .
D(O)T = 87 + ZNIJF[’I‘

a non-holomorphic function (3.10) must normally be replaced by (4.6), we neglect the
additional terms in the present context because they will necessarily bring in higher pow-
ers of N (6)1.

Hence, by working to order 8 and neglecting terms of order (N, (6)1)2, we obtain

DY Frly_y = D%)T(%‘}%)‘T:o +4ir3N(Id§3¥ (Z(m+ 1)Tmf1g3n)>

m=1

=0
= D?O)T(QifT)’TZO +4if8 (n + 1! NG ) (4.16)

Now we consider the hierarchy (4.8),

DR Py
(n+1)!
1

— n ; 1J (9: () 2 (7132
= oy Do @i+ 26N @ifi))] 7+ O (NG )

pntl)

T=0

For f = 0 only the first term F}S&ng) = [(n+ 1)!}_1D?0)T (2ifr)|y_q is present, which
satisfies the anomaly equation (3.13). Including the deformation term of order 5 we get
(note that Y! = Y when T = 0)

O _porny _ 9 gl g FOM (235

8yK 837[( holo T=0
1~ 0)1J = r n+l—r . n
= iFl(() (Z 8IF}EO%08JF}E010 ) 43 Féhc?lo)[]) :
r=1
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Redefining F(™ — 2iF () (with n > 1), we obtain

af)KF(”H) —ir O (Z OpF ("), Fni=n) _ 25D18JF(")> : (4.17)
r=1

up to terms of higher order in IV (6)1. Here we used that the Levi-Civita connection Dy and

the non-holomorphic deformation terms of the F(") involve at least one further power of
N(B)l, which can be dropped at the order we are working at. Note that (4.17) is the full

holomorphic anomaly equation for the higher F(™) in big moduli space [12]. The standard
normalization of the anomaly equation is obtained by setting —28 = 1.

Let us return to the transformation law (4.13). Inserting the expansion (4.10) into
it, we see that f() remains invariant under symplectic transformations. This is not what
happens in topological string theory, where f(!) transforms into f&) — f1) + o Indet S,
with a € R. This transformation behavior is, in turn, compensated for by the presence of

an additional term In det N 1(3), which ensures that the topological free energy F(!), given by

FO@,9) =2 (fO0) + FOF) + alndet Y )

is invariant under symplectic transformations. If we now insist that £() and Q are related
by FU = 2iQy|r—0, then this is only possible if we take Y to be real, in which case 2
given in (4.9) gets modified to

Y, V,T) = ( FY,T) + 28T N 15 (Y, T) + c.c.) +aTlndet N9 | (4.18)

to first order in . Thus, while the deformation 8 did not enforce any restriction on Y, the
presence of the deformation « does.

So far, we restricted ourselves to working at first order in «, 5 and N(B)l. At higher
order, the analysis in [12] shows that o and 5 get locked onto the same value o = 5. This
is a consequence of the requirement that €2 should transform consistently under symplectic
transformations. In this way we recover the non-holomorphic deformation relevant for the
topological string.

4.5 From Hessian structure to the full anomaly equation

We now show how to recover the holomorphic anomaly equation (4.17) from the underlying
Hessian structure. We proceed as in subsection 3.6, and consider the totally symmetric rank
three tensor S = Vg, where g/ denotes the Hessian metric computed in subsection 4.2.
As before, we consider the components

SIITT = STxIT :

Since S is a tensor, we can evaluate this relation in other coordinate systems, in particular
in complex supergravity coordinates. As before, using

g¥x = —iDyFr
ou 0git 0 0
Seryy = 0Oy, 9y = Outl, 94y + Eva auT;;r , where 0|, = oy T + oyT
g _ 09,1 _ 0931y Oul 0gyiy
T Ty oY dzxl duk
z,y T,
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we obtain, after some rearrangements, an expression for the antiholomorphic derivative

A9y ul dgth ., B gty B oult 9gity
oY Y ouk oyt 9zl ouk

u

0
Wﬂ?ﬁr =

After a lengthy but straightforward calculation similar to the one in subsection 3.6, we find

.0 gt
— D~ Fy = 21 4.19
) 2 O (4.19)
= iFpyy + 2(Fsr + Fgy)NZ [Frpy — Frpy]

~i(Fsr + Fgr) NSV (Foy + Foy)NCT [Frpp + Fipp — 2F1pp] -

In the holomorphic case, this reduces to (3.17). In the non-holomorphic case based on (4.9)
it can be readily verified that when setting T = 0, one obtains the holomorphic anomaly
equation (4.17) for F® to leading order in 8 and N(B)l. Namely, using (4.9) and setting
T =0, (4.19) reduces to

9 9 - SL QP 7
WDTFT o = 28737[}7( ) = (_FfTT + FgyNZ FQny FfPZ) ’T:O .
Using Frpylr—0 = —2iQpry|r=0 = —S,BFIEO)KLf[((l)L = 42‘5FIEO)KLFI((1%, and redefining

F® — 2iF™) we obtain (4.17) for F?),

We note that, in principle, one may now proceed to derive the holomorphic anomaly
equation for the higher F(™ (with n > 3) by applying covariant derivatives Dy to (4.19),
and subsequently setting Y = 0, as in subsection 3.6.

We finish by verifying that the component S, ryv = 0,1 g?i., which is constructed out
of the metric component g%—r = —iD~ Fy, does not give rise to an additional non-trivial
differential equation. Evaluating the relation S, ivy = Sy,rv = Oy ggr in supergravity
variables we find that it is identically satisfied. Thus, the only non-trivial differential
equation resulting from g4 and g?T is encoded in the relation S, ryy = Sy 1.

5 Concluding remarks

Let us conclude with a comparison of the approach taken in [12] and the one taken here
for obtaining the holomorphic anomaly equation. Both are based on the Hesse potential,
which is obtained by a Legendre transform, see (4.5). In the approach of [12] one works
directly with the Hesse potential, while here we work with the associated Hessian structure
(9", V) on the extended scalar manifold M = M x C. The Hesse potential, which is akin
to a Hamiltonian [12], is a symplectic function of the special real coordinates. It can also be
expressed either in terms of supergravity variables (Y, T) (and their complex conjugate) or
in terms of stringy (or covariant) variables (Y, Y) (and their complex conjugate), see (3.7).
The approach in [12] consisted in first expressing the Hesse potential in terms of covariant
variables by means of a power series expansion in AY !, and then expressing AY? in terms
of a power series in derivatives of €2, which we recall was introduced in (4.2). In this way it
was shown in [12] that the Hesse potential, when expressed in terms of covariant variables,

~ 99 —



equals an infinite sum of symplectic functions, which were denoted by Hga). The label a
indicates that the leading term is of order Q2%. For higher values of a there are several
functions (labelled by i = 1,2, ...) with the same value of a. This decomposition is unique.
In this decomposition there is only one function, namely #(), whose leading term is Q
itself, while the leading term of all the other Hga) (with a > 2) involves derivatives of (2.
In [12] it was shown that (1) comprises a subsector of the full Hesse potential that encodes
the holomorphic anomaly equation. This was achieved by using the explicit expression for
H M| which consists of an infinite sum that starts with 4Q, and that involves terms of higher
and higher powers of derivatives of 2. By using the fact that €2 depends on Y, this infinite
sum was in turn rewritten as a series expansion in Y, with coefficient functions that are
again symplectic functions. When (2 is taken to be harmonic, these symplectic functions,
denoted by F(™ (the first three of which we display in (C.3)), satisfy the holomorphic
anomaly equation (1.1) with & = 0. Subsequently, by deforming 2 by a-dependent terms,
as in (4.18), it was shown [12] that the resulting functions F("™) satisfy the full holomorphic
anomaly equation (1.1).

Thus, summarizing, it was shown in [12] that the full Hesse potential, when expressed
in terms of covariant variables, contains a subsector H(!) that, in turn, contains an infinite
set of functions F(™) that satisfy the full h(()l)omorphic anomaly equation (1.1). The other
a

sectors, described by the other functions H, ', are constructed out of derivatives of €2, and
thus contain derived information. They are nevertheless important, since they are needed
to build up the full Hesse potential.

In the approach taken in this paper, we instead work with the Hessian metric ¢
associated with the full Hesse potential. We work in supergravity variables, and we focus
on particular components of ¢/, namely on g?T and ggf. These two components (both of
which are given in terms of the symplectic covariant derivative introduced in [9, 13]) encode
different information. For instance, when evaluated at T = 0, g{f{T gives the symplectic

function F(), while g?T gives the symplectic function %) evaluated at Y = 0. This is
(a)

reminiscent of the decomposition of the full Hesse potential into symplectic functions H,
discussed above. We then consider the totally symmetric rank three tensor S = Vg,
and we first focus on its component Syryry = 9,1 g4y. Evaluating the relation S,rpy =
Sy1v in supergravity variables and subsequently setting T = 0 we obtain the holomorphic
anomaly equation for F(?). One may then ask whether other components of S will lead to
additional non-trivial differential equations. To address this, we consider the component
Spiyy = Oyt ggf. Evaluating the relation S, iry = Sy,iv = O ggT in supergravity
variables we find that it is identically satisfied. Thus, we conclude that the only non-trivial
differential equation resulting from g4, and 9¥T is encoded in the relation S,y = Sy, ry.
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A Connections on vector bundles

We review some standard facts about connections in vector bundles. Let E — M be a
vector bundle over a manifold M. Then a connection or covariant derivative V on F is
a map

V : X(M) x D(E) = T(E), (X,s) Vs

which is a linear derivation (satisfies the product rule) with respect to sections s € I'(E)
of E, and which is C°°(M)-linear with respect to vector fields in X € X(M).

For vector bundles of the form QP (M, E) = APT*M ® E, that is for bundles of p-forms
with values in a vector bundle FE, the covariant exterior derivative

dy : QP(M,E) — QPTY(M, E)

is uniquely determined by its action on sections of E. For a given basis {s,} of sections
one sets
b
dvse = Vs =w,sp ,

where w? is the connection one-form of V. The derivative of a general section s = f%s, €
Q%(M, E), where f¢ € C°°(M) is then

dvs = df* ® sq + [ wlsy, .

The extension to forms of degree p > 0 is completely determined by linearity and the
product rule
dy(a®s)=da® s+ (—1)*% Adys

where o € QP(M). The exterior covariant derivative dy of w € QP (M, E) can be expressed
in terms of the covariant derivative V by

(dyw)(Xo, ..., Xp) = > (-1)'Vx,(w(... X;...))
l

=0
+Z Zﬂw XZ,X] XlX]),
1<J

where X, ... X, are vector fields, and where X indicates that the corresponding vector
field is omitted.

The curvature of the connection V is given by RV (s) = dy(dys). If the connection V
is flat, then d2v = 0, so that dy defines an exact sequence. In this case a version of the
Poincaré lemma exists.
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B Special coordinates

One of the defining conditions of affine special Kahler geometry is dyJ = 0, where J is the
complex structure. We can apply the above results since J is a section of End(E) ~ E*®FE,
where £ = TM. In the following we derive the local form (2.2) of (2.1), and also explain
how the existence of special coordinates can be derived.

Let A be a section of End(TM). Choosing dual bases {e®},{e,} of sections, and
regarding A as a T'M-valued one-form, we have

A= A%, =A% @ e, € QY(M, TM)

and
dyA=dA"®e, — A Aw, e, € Q2(M,TM) .

If the connection V is flat, we can choose sections e, such that the connection one-form
vanishes, w,” = 0 and in such a frame dy A = 0 reduces to dA® = 0. Thus the one-forms
A% are locally exact, A* = d¢®.

Since £ = T'M, the torsion of the connection V is defined by

TV(X,Y)=VxY —VyX — [X,Y].

One can show that
TV(X,Y) = dyld(X,Y),

where

Id=e"®e, =02’ ® e

is the identity endomorpism of T'M. If V is both flat and torsion free, then dylId = 0 implies
that in a frame where the connection vanishes, the one-forms I* = e® are locally exact
e = dt®. This defines a set of V-affine coordinates. In such coordinates the condition (2.1)
becomes

dyJ =0=dJ*=0=0d,J";=0.

If the manifold M is in addition equipped with a non-degenerate, closed two-form
w € Q?(M), dw = 0, then a connection V is called symplectic if the symplectic form w is
parallel:

Vw=0«< Vxw = X(wg)e* A e’ + wap(Vxe*) A e+ wae® AVxe =0,

for all vector fields X. If the connection V is in addition flat, we can choose sections
e® such that Vxe® = 0. With respect to such a basis the coefficients of w are constant,
X (wgp) = 0. If the connection V is in addition torsion-free, the co-frame e® comes from an
affine coordinate system t%, and

1
w= iwabdt“ A dt®
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where wgp is a constant, antisymmetric, non-degenerate matrix. Using the linear part of
the affine transformation that we can apply to %, the matrix wy, can be brought to the

0 1
Standard __
(wab) = (—]l O) .

This form is still invariant under affine transformations where the linear part is symplectic.

standard form

The associated coordinates are called Darboux coordinates. Thus we have seen that for
a flat, torsion-free, symplectic connection the V-affine coordinates can be chosen to be
Darboux coordinates. In the context of affine special Kéhler geometry such coordinates
are called special real coordinates.

We remark that in the main part of this paper we use special real coordinates (¢%) =
(z!,yr) where the Kihler form takes the form

w = 2dz’ A dyr = Qupdg® A dgb .

Note that the components of w with respect to the coordinates (¢%) are wgp = 2Qqp =
2w§£aﬂdard. In other words the special real coordinates differ from standard Darboux coor-
dinates by a conventional factor v/2.

C Symplectic transformations and functions

Symplectic transformations acts as follows on a symplectic vector (Y!, Fy) (I =0,...n),
vl s vty + 21 F;
Fr — V]JFJ + W[JYJ ,

where U, V, Z,W are the (n+ 1) x (n + 1) real submatrices that give rise to an element of
Sp(2n+2,R). When F equals the prepotential FO) then N (IO‘; transforms as follows under
symplectic transformations [9],

N S ST = S (N 28 )
where
Solu = Ulx + ZIJF}% 7
zt =[Sy kZK7 (C.2)

Consider a generalized prepotential F(Y,Y, T, T) = FO(Y) 4 2iQ(Y,Y,Y,T), where
Q is taken to be harmonic, Q(Y,Y,T,T) = f(V,Y) + f(Y,T). Expanding f(Y,Y) as
in (4.10) and inserting this into (3.12), yields explicit expressions for the symplectic func-
tions F(™). The first three read as follows,

O — 9; f(l) 7 (©3)
F® =9 ( £O - N f§1>> 7
PO = i 79 - 20 12757 + 20N 1)
2t (0 J 1) £(1) p(1
+3 P NG Ny N6 1 z(z)) ,
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in accordance with [12]. These expressions get modified when (2 is not any longer harmonic.
The resulting expressions for the topological string can be found in appendix D of [12].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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