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1 Introduction

Precise measurements at particle colliders such as the LHC necessitate theory predictions

with competitive accuracy, which involve the evaluation of loop integrals. Often one needs

to go beyond the one-loop level, for instance if the next-to-leading order (NLO) accuracy

is not sufficient or if the leading-order (LO) diagrams are already loop-induced. While the

one-loop problem is solved in principle, the calculation of two-loop integrals is in general

still a major challenge with current technology. Thus any possible strategy to simplify loop

calculations is highly appreciable.

The Four-Dimensional Regularization/Renormalization (FDR) approach proposed by

Pittau in 2012 [1] could potentially provide a way to reduce the enormous effort required

especially for next-to-next-to-leading order (NNLO) calculations [2]. In this approach an

additional small mass parameter µ is introduced, maintaining gauge invariance, however,

and loop integrals are redefined in a way that they are finite in four dimensions. Com-

pared to working in Dimensional Regularization (DR) [3], which requires the evaluation

of D = (4 − 2ε)-dimensional integrals, this offers several simplifications. First of all the

calculation of an L-loop observable does not require the knowledge of higher terms in the

ε expansion of the (L− 1)-loop result, i.e. no ε
ε terms are generated. In addition, the four-

dimensionality avoids problems regarding the continuation of γ5 to D dimensions1 and, in

principle, welcomes numerical approaches. Another advantage of FDR is that infrared (IR)

1Already in ref. [1] it was shown that FDR produces the correct chiral anomaly at one-loop order.
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divergencies2 are regulated at the same time, which was demonstrated to work at NLO

using a small gluon mass in the phase-space integration [4] but still needs to be explored

for higher orders [5]. For IR-finite observables, to which we will restrict ourselves in this

paper, complete one-loop [6–8] and two-loop [2] calculations have been performed finding

agreement with DR results.

Whereas the computations mentioned above were performed analytically, we will pur-

sue a numerical approach in this paper. For dimensionally-regulated integrals it is ab-

solutely necessary to expand in the regulator ε before the numerical integration can be

performed.3 This can be achieved (at one-loop order) using local subtraction terms in

loop momentum space [9] or (at in principle arbitrary loop order) in Feynman parameter

space using sector decomposition [10, 11], for example. For FDR integrals, however, the

divergencies merely lead to a logarithmic dependence on the regulator µ. If the expected

asymptotic behavior is known, one could in principle try to evaluate the integrals directly

for small values of µ, subtract the corresponding logarithmic terms from the result, and

extrapolate to µ = 0. Nevertheless, this would lead to sharply peaked integrands that are

difficult to evaluate numerically. An expansion in the regulator on the integrand level is

thus very helpful, although not strictly necessary. A possible way to find suitable local

subtraction terms on the level of Feynman parameters is the main topic of this paper.

The structure of the rest of this paper is the following: in section 2 we present our

idea how to construct subtraction terms on the level of Feynman parameters, essentially

by partly linearizing the denominator. Some physical applications of this idea are shown

in section 3 before we give our conclusions in section 4.

2 Formalism

We begin this section with a brief review of the definition of the FDR integral [1] in sec-

tion 2.1 before we elaborate on our approach to construct subtraction terms for the one

and two-loop cases in section 2.2.4

2.1 The FDR integral

Consider a dimensionally regulated, IR-finite L-loop integral

IDR = µ2εL
R

L∏
k=1

∫
dDlk J({li, qi,mi}, ε), (2.1)

where qi and mi denote external momenta and internal masses, respectively, and D =

4− 2ε.5 The FDR interpretation of such an integral is based on a splitting of the integrand

2By IR divergencies we mean both soft and collinear singularities.
3Trying to evaluate integrals for small values of ε is not only hopeless because of the polynomial depen-

dence on 1
ε
, but it would not allow the regularization of ultraviolet (UV) and IR divergencies at the same

time, either.
4For a presentation in full detail see ref. [12].
5Since we restrict ourselves to the treatment of UV divergencies in this paper, we identify the scale

required to keep the dimensionality with the renormalization scale µR from the beginning.
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of the form

J = lim
µ→0

[JV + JF ] , (2.2)

where a new scale µ is introduced, which is required to be lower than all the other scales

in the problem and will be identified with the renormalization scale later. The splitting

is defined in such a way that JV sums up the contributions from divergent vacuum con-

figurations, which are assumed to be unphysical. Consequently, JF must contain all the

information on the physical process and, since it is free of UV divergencies, it can be

calculated in four dimensions.

The divergent vacuum integrals contained in the integral over JV depend only on µ, so

they either yield contributions proportional to powers of µ2, which vanish in the asymptotic

limit µ → 0, constant terms, or logarithms of the form lnk
(
µ2

µ2R

)
, k ∈ {1, 2, · · · , L}. The

latter can be eliminated by setting µ = µR. Thus, if the FDR integral is defined as

IFDR ≡ lim
µ→0

L∏
k=1

∫
d4lk JF ({li, qi,mi}, µ)

∣∣∣∣
µ=µR

= IDR − lim
µ→0

L∏
k=1

∫
dDlk JV ({li}, µ, ε)

∣∣∣∣
µ=µR

, (2.3)

the difference between IFDR and IDR is a (ε-dependent) constant.

To construct the splitting into JF and JV the prescription is to replace the loop momen-

tum in every propagator by l2i → l2i −µ2 ≡ li
2
,6,7 and to apply the partial-fraction relations

1

li
2 −m2

j

=
1

l
2
i

(
1 +

m2
j

l
2
i −m2

j

)
, (2.4a)

1

(li + qj)
2 −m2

j

=
1

l
2
i

1 +
m2
j − q2

j − 2li · qj
(li + qj)

2 −m2
j

 (2.4b)

repeatedly to the integrand, until all the terms are either divergent vacuum integrals or

UV-finite. The former can be identified as part of JV and be dropped, the latter as part

of JF and be evaluated in four dimensions.8 In this way, the UV divergencies contained in

IDR are traded in for IR divergencies related to vanishing µ.

For gauge theories it is essential that the rules l2i → li
2

are applied to the numerator as

well so that the additional mass scale µ does not spoil gauge invariance. In addition, the

µ2 piece has to be treated exactly as the corresponding l2i term until all UV divergencies

6In this context, li can also mean a linear combination of loop momenta.
7For fermionic propagators, it was originally required in ref. [1] to replace /l → /l − µ, but it is also valid

to calculate the fermion traces first and replace l2 → l2 − µ2 afterwards [7]. Throughout this paper we

pursue the latter approach.
8The language used here and around eq. (2.3) holds strictly only for the one-loop case. At higher loop

orders, divergent sub-integrals occur, which should be treated as a lower-order integral with the remaining

loop momenta interpreted as external momenta. As a result, one has to drop vacuum integrals that are

multiplied by a factorized non-vacuum integral. This is concretized in ref. [5] as sub- and global vacua.
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are subtracted, i.e. one should distinguish different µ2
i and count them as l2i when deciding

by power counting how often eq. (2.4) has to be applied. In this way, gauge symmetry

is preserved. The purpose of this is to ensure that FDR and DR results are related in a

consistent and universal way. They are connected by finite renormalization constants [2, 5],

like results obtained in different renormalization schemes.

Tensor reduction is allowed in FDR as well and can be performed in four dimensions,

which generates fewer terms. However, the resulting factors of l2i are not to be interpreted

as l2i − µ2
i and can thus be canceled against suitable propagators only at the price of

introducing µ2
i terms in the numerator. Such terms can give finite contributions and must

be treated carefully.9

2.2 Construction of the subtraction terms

2.2.1 General structure in Feynman parameter representation

After isolating and subtracting the UV divergencies, an L-loop FDR integral typically has

the form

I =

L∏
j=1

∫
d4lj N

(
{li, qi,mi}, µ2

)
·
Nx∏
k=1

Dαk(pk, qk,mk) ·
Ny∏
n=1

Dβn
0 (pn), αi, βi ∈ N, (2.5)

where pi and qi are linear combinations of the loop and external momenta, respectively,

and we distinguish two types of propagators:

D−1(p, q,m) = (p+ q)2 −m2 − µ2 + iε, (2.6a)

D−1
0 (p) = p2 − µ2 + iε. (2.6b)

We restrict ourselves to cases where one can find a momentum routing such that q2
i 6= m2

i for

all i, i.e. we assume sufficiently good IR behavior. The IR regime is then governed entirely

by the D0-type propagators, which are generated in heaps from applying the partial fraction

relations (2.4) but may also originate from massless lines of the graph under consideration.

Furthermore, N denotes a non-trivial numerator including scalar products of loop and

external momenta as well as powers of µ2.

Since we exclude IR divergencies, the integral will have an asymptotic small-µ2 behavior

of the form

I =

L∑
i=0

Ai lni
(
µ2
)

+O
(
µ2
)
. (2.7)

The O
(
µ2
)

terms should be dropped according to the definition of the FDR integral (2.3)

so we are interested only in the logarithmic behavior for µ2 → 0, i.e. in the coefficients

A0, · · · , AL.

In order to find the origin of the divergencies that occur in this limit, it turns out to

be useful to introduce Feynman parameters first. As we will see, in Feynman parameter

9For details see ref. [5], for example, where they are described as extra integrals.
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space one can construct simpler integrals that possess the same small-µ2 behavior as the

original integral and can serve as local subtraction terms. These auxiliary integrands can

be integrated analytically over at least a subset of the parameters so that their logarithmic

dependence on µ2 becomes explicit. The remaining integrations can then be performed

numerically.

Denoting the Feynman parameters for the two classes of propagators defined in eq. (2.6)

xi and yi, respectively, one obtains integrals of the form

I =

Nx∏
i=1

∫ 1

0
dxi

Ny∏
j=1

∫ 1

0
dyj δ

(
1−

Nx∑
k=1

xk −
Ny∑
l=1

yl

)

·
p(x1, · · · , xNx , y1, · · · , yNy)

(bT adj(A)b+ det(A)c)N1 det(A)N2

. (2.8)

The L×L matrix A, the L-dimensional vector b, and the scalar c are obtained by expressing

the sum of all propagators in terms of the loop momenta l = (l1, · · · , lL):

Nx∑
j=1

D(pj , qj ,mj) +

Ny∑
k=1

D0(pk) = lTAl + 2b · l − c. (2.9)

The elements of A are sums of xi and yi parameters, b contains terms of the form xiqi, and

c reads

c =

Nx∑
i=1

xi(m
2
i − q2

i ) + µ2 − iε. (2.10)

p is a polynomial whose coefficients depend on the kinematic invariants and is a result

of higher powers of propagators as well as possible non-trivial denominators. One way to

treat the latter is to interpret them as inverse propagators and to calculate the derivative

with respect to the corresponding Feynman parameter rather than integrating over it [13].

If we ask which region in parameter space the logarithmic divergencies regulated by µ

originate from, it must be the region where the denominator of eq. (2.8) is of order µ2. Note

that the only place where µ2 enters the denominator is c. Assuming q2
i < m2

i for all i,10 it

follows that all the xi need to be small in order to make the denominator of order µ2. The

term bT adj(A)b vanishes as well in this limit, so that indeed bT adj(A)b+ det(A)c ∝ µ2.

A potential problem arises if det(A) vanishes as well. In a more detailed analysis,

one finds that this produces overlapping singularities that need to be disentangled. After

discussing in brief the one-loop case, where this problem is absent, we will show how this

can be resolved for the case L = 2.

2.2.2 Subtraction terms for the one-loop case

For L = 1 a major simplification occurs: it is det(A) =
∑Nx

i=1 xi +
∑Ny

i=1 yi = 1, which

obviously never vanishes. In addition, there is only one y parameter, which we integrate

10If this condition is relaxed, threshold singularities will occur, which are usually avoided in the numerical

integration by introducing a suitable deformation of the integration contour [14, 15]. In principle this

appears to be possible for the method presented here, but it is beyond the scope of this paper.
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out using the delta function to obtain

I(1l) =

Nx∏
i=1

∫ 1

0
dxi θ

(
1−

Nx∑
k=1

xk

)
p
(
x1, · · · , xNx , 1−

∑Nx
k=1 xk

)
(
µ2 +

∑Nx
j=1 xj(m

2
j − q2

j ) +
(∑Nx

j=1 xjqj

)2 )N1
. (2.11)

As pointed out above, the region of interest is where all xi go to zero. Applying the

useful relation
n∏
i=1

∫ 1

0
dxi θ

(
1−

n∑
k=1

xk

)
f(x1, · · · , xn)

=
n∏
i=1

∫ 1

0
dxi δ

(
1−

n∑
k=1

xk

)∫ 1

0
dr rn−1f(rx1, · · · , rxn), (2.12)

one can achieve that this region is associated with the vanishing of only one parameter,

namely r:

I(1l) =

Nx∏
i=1

∫ 1

0
dxi δ

(
1−

Nx∑
k=1

xk

)∫ 1

0
dr rNx−1

· p (rx1, · · · , rxNx , 1− r)(
µ2 + r

∑Nx
j=1 xj(m

2
j − q2

j ) + r2
(∑Nx

j=1 xjqj

)2 )N1
(2.13)

Now we are ready to construct an auxiliary integrand that is easier to integrate but

has the correct dependence on ln(µ2). For this purpose, we rewrite eq. (2.13) as

I(1l) =
1

(M2)N1

Nx∏
i=1

∫ 1

0
dxi δ

(
1−

Nx∑
k=1

xk

)∫ 1

0
dr p̃(x1, · · · , xNx , r)

· I(N1,n1,n2,n3)
1

 µ2

M2
,

∑Nx
j=1 xj(m

2
j − q2

j )

M2
,

(∑Nx
j=1 xjqj

)2

M2
; r

 , (2.14)

where we have introduced a generic notation for the integrand,

I
(N1,n1,n2,n3)
1 (a, c1, c2; r) ≡ rN1−1+n1(1− r)n2an3

(a+ c1r + c2r2)N1
, (2.15)

and factorized as many factors of r,(1− r), and a from p so that the remainder p̃ is still a

polynomial.

The behavior for small µ2 is now completely determined by the parameters of I1. In

the case n1 = n3 = 0, for example, there will be a logarithmic dependence on µ2. We

observe that the coefficient of ln(µ2) does not depend on c2, i.e. stetting c2 = 0 would

alter only the finite term. Similarly, n2 and the r dependence of p̃ do not influence the

logarithm. Thus it suffices to calculate the auxiliary integral

A(1l) ≡ 1

(M2)N1

Nx∏
i=1

∫ 1

0
dxi δ

(
1−

Nx∑
k=1

xk

)

·
∫ 1

0
dr I

(N1,0,0,0)
1

(
µ2

M2
,

∑Nx
j=1 xj(m

2
j − q2

j )

M2
, 0; r

)
p̃(x1, · · · , xNx , 0), (2.16)
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in order to reproduce the correct µ2 dependence in this case. The denominator is now

linear in r, which is the decisive simplification. To get the correct finite part one now only

has to calculate

lim
µ→0
R(1l) ≡ lim

µ→0

{
I(1l) −A(1l)

}
=

1

(M2)N1

Nx∏
i=1

∫ 1

0
dxi δ

(
1−

Nx∑
k=1

xk

)∫ 1

0
dr

·

{
I

(N1,n1,n2,n3)
1

(
0,

∑Nx
j=1 xj(m

2
j − q2

j )

M2
,

(∑Nx
j=1 xjqj

)2

M2
; r

)
p̃(x1, · · · , xNx , r)

− I(N1,0,0,0)
1

(
0,

∑Nx
j=1 xj(m

2
j − q2

j )

M2
, 0; r

)
p̃(x1, · · · , xNx , 0)

}
, (2.17)

where we were able to interchange the limit µ → 0 with the integration because the

integrand is well-behaved in the region of small r by construction. Thus the evaluation of

the difference can be done completely numerically if necessary.

2.2.3 Subtraction terms for the two-loop case

In the case L = 2, one can label the momenta in such a way that each propagator contains

either l1, l2, or l12 ≡ l1 + l2. We will distinguish three subclasses of propagators, depending

on which of the three momenta they contain. For the D-type propagators (cf. eq. (2.6)) we

introduce three disjoint index sets X1, X2, and X12 with the following property: if a prop-

agator contains li (i ∈ {1, 2, 12}), the index of its Feynman parameter will be an element

of Xi. Since the D0-type propagators are uniquely determined by the loop momentum, we

can simply define the parameter of 1
l2i−µ2

to be yi for i ∈ {1, 2, 12}.
Using these conventions and assuming that the integral under consideration contains

at least one D and one D0 propagator with each li,
11 one can verify easily that

det(A) = a1a2 + a1a12 + a2a12, (2.18a)

bT adj(A)b = a12(b1 − b2)2 + a2(b1 + b12)2 + a1(b2 + b12)2, (2.18b)

where

ai = yi +
∑
k∈Xi

xk, bi =
∑
k∈Xi

xkqk, i ∈ {1, 2, 12}. (2.19)

Now it is crucial to understand when a zero of det(A) overlaps with the region we are

interested in, i.e. where all xi are small. Since it is

a1 + a2 + a12 = y1 + y2 + y12 +

Nx∑
i=1

xi = 1 (2.20)

11This provides the most complicated case. The other cases tend to be simpler but need to be distinguished

carefully, which is done in detail in ref. [12].
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due to the delta function, the point a1 = a2 = a12 = 0 is outside the integration boundaries.

Thus only the zeros at (a1, a2, a12) = (1, 0, 0), (0, 1, 0), (0, 0, 1) remain, which, in view of

eq. (2.19), are associated with zeros of either y1, y2, or y12. It turns out to be sufficient to

factorize the worst-behaved zero. Consider a typical structure that will lead to a logarithmic

dependence on µ2:

1

l1
4
l2

2
l12

2 (2.21)

Since the propagator 1

l1
2 is squared, its parameter y1 will appear as an extra factor in the

numerator. Thus the behavior at a1 = 1 is worst because in the other cases this extra

factor becomes small and partly compensates the vanishing of the denominator.

The next step is to find a parametrization that not only factorizes the worst zero of

det(A) but also makes it possible to judge which terms can be neglected in an easy-to-

integrate auxiliary integrand. It is convenient to eliminate the parameter of the D0-type

propagator with the highest power, which, like in the example above, we assume to be y1

in the following. To parametrize the zero of det(A) and the simultaneous vanishing of the

xi in terms of a smaller set of parameters, we make use of the following transformation,

which corresponds to applying eq. (2.12) three times to different subsets of parameters:

xi → (1− r)txi i ∈ X1, (2.22a)

xi → rsxi i ∈ X2 ∪ X12, (2.22b)

y1 → (1− r)(1− t), (2.22c)

yi → r(1− s)yi i ∈ {2, 12}. (2.22d)

The limit (a1, a2, a12) → (1, 0, 0) is mapped to r → 0, and a factor of r can be split off

from det(A) and also from the complete denominator.

Application of this transformation to eq. (2.8) (reduced to L = 2 and Ny = 3) yields

I(2l) =

Nx∏
i=1

∫ 1

0
dxi δ

1−
∑
l∈X1

xl

 δ

1−
∑

m∈X2∪X12

xm


·
∫ 1

0
dy2

∫ 1

0
dy12 δ (1− y2 − y12)

∫ 1

0
dr

∫ 1

0
ds

∫ 1

0
dt I

(N1,N2)
2 (r, s, t), (2.23)

where again the behavior for small µ2 is determined by an integral over fewer parameters,

namely

I
(N1,N2)
2 (r, s, t)

≡ p̃(x1, · · · , xNx , y2, y12, r, s, t)

[(1− r + r d(s)) (µ2 + c1rs+ c2(1− r)t) + e(r, s, t)]N1 (1− r + r d(s))N2
. (2.24)

The coefficients

c1 =
∑

k∈X2∪X12

xk(m
2
k − q2

k), (2.25a)

c2 =
∑
k∈X1

xk(m
2
k − q2

k) (2.25b)

– 8 –
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are constants with respect to r, s, and t, whereas d and e are polynomials in these variables:

d(s) = a2(s)a12(s), (2.26a)

e(r, s, t) = (1− r)2t2b21 + 2rs(1− r)t [a2(s)b12 − a12(s)b2] · b1
+ r2s2

[
a2(s)b212 + a12(s)b22

]
+ rs2(1− r)(b2 + b12)2, (2.26b)

where bi, i ∈ {1, 2, 12} as in eq. (2.19) and

a2(s) = (1− s)y2 + s
∑
k∈X2

xk, (2.27a)

a12(s) = (1− s)y12 + s
∑
k∈X12

xk. (2.27b)

Taking a closer look at eq. (2.24), we see that the denominator is dominated by µ2

if rs and (1 − r)t both vanish, i.e. the logarithmic dependence is associated with three

parameters.12 In the limit r → 1, which in view of eqs. (2.19) and (2.22) corresponds to

a1 → 0, the integrand should be integrable because we required the worst, i.e. logarithmic

divergency to be at a1 → 1. The balance between numerator and denominator both

vanishing in this limit will still be present after the transformation of variables.

To eventually construct the auxiliary integrand, we replace the denominator

D = (1− r + r d(s))
(
µ2 + c1rs+ c2(1− r)t

)
+ e(r, s, t) (2.28)

by

D̃ = (1− r + r d(0))
(
µ2 + c1rs+ c2(1− r)t+ rs2(b2 + b3)2

)
(2.29)

= D +O
(
rsµ2, r2s2, rs(1− r)t, (1− r)2t2

)
. (2.30)

In the numerator one should drop terms of O
(
rsµ2, r2s2, rs(1− r)t, (1− r)2t2

)
as well, but

this must be done in such a way that the behavior in the limit r → 1 is not spoilt.

The subtraction and evaluation of the integrals can be performed analogously to the

one-loop case except that the integrations over r,s, and t of the auxiliary integral must be

performed analytically.

3 Applications

To test our approach for the one-loop case, one can simply calculate single integrals and

compare to MS-renormalized results, taking into account a possible finite part of the sub-

tracted vacuum integral.13 At the two-loop level, however, this one-to-one correspondence

between FDR and DR integrals is lost [2]. Thus we are forced to calculate physical observ-

ables in order to be able to compare to DR results.

12In special cases, for which we refer the reader again to ref. [12], not all of the three parameters r, s,

and t need to be present.
13In ref. [12] this is shown to work for the massive bubble, where above threshold the auxiliary integral

is analytically continued to the physical region, while the difference is integrated numerically using an

appropriate contour deformation.
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For this purpose we choose NLO QCD corrections to the decay rate of scalar and

pseudoscalar Higgs bosons into two photons in the heavy-top limit and to the ρ parameter.

Both quantities can be calculated with external momenta set to zero, i.e. only vacuum

integrals need to be evaluated. Amongst other simplifications, this has the advantage

that no thresholds or pseudo-thresholds will be present so we do not need to perform any

analytic continuation or contour deformation in this first test of our method.

Before presenting results for these observables in sections 3.2 and 3.3, we briefly de-

scribe the setup of the calculation.14

3.1 Setup

In order to generate the amplitudes related to the observables we wish to compute, we

make use of the following tools:

• qgraf [16] for the generation of the diagrams,

• q2e/exp [17, 18] for topology matching, performing the asymptotic expansion [19, 20]

in small external momenta and inserting the Feynman rules, and, where necessary,

• MATAD [21] to evaluate the vacuum integrals in DR for comparison.

The next step is to interpret the integrals in the amplitude within the FDR approach

and derive the splitting into divergent and finite contributions, which is done in an au-

tomated way in FORM [22–24] by systematic power counting and repeated application of

eq. (2.4). Our FORM routines also introduce Feynman parameters and express the result

in terms of integrals of the type shown in eqs. (2.15) and (2.24). Factors involving the

loop momentum in the numerator are taken into account by calculating derivatives of in-

termediate Schwinger parameters [13], where the derivatives are performed algebraically,

i.e. using relations of the type
[
∂
∂x , f(x)

]
= f ′(x).

Then we switch to Mathematica, which is used to evaluate the required auxiliary

integrals case by case for a given set of exponents, and write out the amplitude in terms of

functions of the remaining variables as c++ code. To perform the numerical integrations we

make use of the CUBA library [25], where we choose the deterministic Cuhre algorithm [26],

which turns out to perform best for the type of functions that occur in our approach, at

least in absence of thresholds. To optimize the computation time we adjust the required

precision for the individual integrals dynamically depending on their contribution to the

final result.

3.2 Higgs decay into two photons at O (ααS)

The decay of a Higgs boson into two photons in the limit of an infinite top-quark mass

already served as a test example for FDR at the two-loop level in ref. [2], where agreement

with the DR result [27, 28] was found. We will reproduce this result with our method and

supplement it with the case of a pseudoscalar Higgs boson, which is of particular interest

because it is linked to the axial anomaly [29], as explained in ref. [30].

14More details can be found in ref. [12].
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γ
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γ

γ

tφ

γ

γ

tφ

γ

Figure 1. Two-loop QCD corrections to φ→ γγ, φ ∈ {h,A}.

In terms of the momenta q1,2 and the polarization vectors ε1,2 of the photons the

amplitude for the decay of a scalar (pseudoscalar) Higgs boson h (A) can be written as

Mh→γγ = (Mh,t +Mh,b +Mh,W ) (q1 · q2 ε1 · ε2 − q1 · ε2 q2 · ε1) or (3.1a)

MA→γγ = (MA,t +MA,b) εµνρσq
µ
1 q

ν
2ε
ρ
1ε
σ
2 , (3.1b)

respectively, and in general receives contributions from heavy quarks and, in the scalar

case, W bosons. Here we consider only NLO QCD corrections to the top-loop contribution,

Mφ,t =M(0)
φ,t +

αS
π
M(1)

φ,t +O
(
α2
S

)
, φ ∈ {h,A}, (3.2)

for which typical diagrams are shown in figure 1.

Writing the top-quark couplings to the Higgs bosons generically as

〈htit̄j〉 : ightt̄
Mbare
t

v
δij , (3.3a)

〈Atit̄j〉 : igAtt̄
Mbare
t

v
γ5δij , (3.3b)

the renormalized DR amplitudes read15

Mh,t(Mt →∞) = −2
α

π
Q2
t

ghtt̄
v

(
1− αS

π
+O

(
α2
S

))
, (3.4a)

MA,t(Mt →∞) = −3i
α

π
Q2
t

gAtt̄
v

(
1 +O

(
α2
S

))
. (3.4b)

With the setup described in the previous section we obtain in FDR (without any

renormalization necessary)

M(1)
h,t(Mt →∞)

M(0)
h,t(Mt →∞)

= (1.9± 3.3) · 10−6M
2
t

s
−
{

1 + (2.7± 0.7) · 10−6
}
, (3.5a)

M(1)
A,t(Mt →∞)

M(0)
A,t(Mt →∞)

= (0.1± 0.8) · 10−6, (3.5b)

i.e. we find numerical agreement to the level of 10−6. Note that in contrast to DR the

usage of γ5 is unproblematic in FDR. In the calculation of eq. (3.5b) we simply evaluated

the fermion trace in four dimensions.
15In the limit Mt → ∞, the result is independent of the renormalization scheme chosen for Mt. For

the case of the pseudoscalar Higgs, we treat γ5 according to the scheme of ref. [31], which requires a finite

renormalization to remove spurious axial anomalies.
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t, b
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Z

W

b

W

t

W

b

W

t

W

b

W

t

Figure 2. Heavy-quark corrections to the W and Z propagator contributing at O (GF ) and

O (GFαS).

3.3 Corrections to the ρ Parameter at O (GFαS)

As another physical application we calculate the ρ parameter [32] to O (GFαS) in FDR. Its

deviation from unity δρ, defined by

ρ =
M2
W

cos θ2
wM

2
Z

= 1 + δρ, (3.6)

can be expressed in terms of the transverse parts of the weak gauge boson polarization

functions ΠV V , V ∈ {W,Z}, at zero momentum:

δρ =
ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

(3.7)

Typical diagrams contributing up to O (GFαS) are shown in figure 2.

The DR result [33] depends on the renormalization scheme for Mt and reads in the MS

and in the on-shell scheme

δρMS =
3GF

(
MMS
t

)2

8
√

2π2

[
1 +

αS
π

(
2− 4

3
ζ2 + 2L

)
+O

(
α2
S

)]
and (3.8a)

δρpole =
3GF

(
Mpole
t

)2

8
√

2π2

[
1 +

αS
π

(
−2

3
− 4

3
ζ2

)
+O

(
α2
S

)]
, (3.8b)

respectively, where L = ln
(
µ2

M2
t

)
.

With our numerical FDR setup we obtain at first

δρFDR =
3GF

(
MFDR
t

)2
8
√

2π2

[
1 +

αS
π

(2L+ 0.4734216(3))
]

=
3GF

(
MFDR
t

)2
8
√

2π2

[
1 +

αS
π

(
2L+

8

3
− 4

3
ζ2 + (4± 3) · 10−7

)]
, (3.9)
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where the top-quark mass is interpreted to be in the FDR scheme, which is related to other

schemes via a finite renormalization [2, 5]:

MFDR
t

MMS
t

=
ZFDR
m

ZMS
m

= 1− αS
3π

+O
(
α2
S

)
, (3.10a)

MFDR
t

Mpole
t

= 1 +
αS
π

(
−L− 5

3

)
+O

(
α2
S

)
(3.10b)

Inserting either of these relations into eq. (3.9) we find agreement with eq. (3.8) up to the

level of 10−7.

4 Conclusions

In this paper we have proposed a method to evaluate IR-finite FDR integrals numerically

up to two-loop order based on the subtraction of auxiliary integrals, which are constructed

by linearizing parts of the denominator in the Feynman parameter representation. The

method has been applied successfully to two-loop problems with vanishing external mo-

menta, adding the decay of a pseudoscalar Higgs boson into two photons in the heavy-top

limit as well as QCD corrections to the ρ parameter to the list of observables recalculated

in FDR. As expected, the treatment of γ5 was found to be unproblematic in FDR, at least

for these examples.

The application to problems with finite external momenta, which is left for future inves-

tigations, poses several challenges. Unfortunately, the relations (2.4) lead to a large number

of tensor integrals in the presence of external momenta. Thus it is essential to reduce the

number of integrals as much as possible, which could be achieved by the application of

integration-by-parts methods [34, 35] as proposed in ref. [36]. Furthermore, the introduc-

tion of additional massless propagators may increase the number of pseudo-thresholds with

presumably disadvantageous effects on the stability of the numerical integration.
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