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1 Introduction

One-loop multi-leg diagrams are the building blocks for the construction of the next-to-

leading order (NLO) amplitudes in the Standard Model and beyond. Within the standard

approach, based on IBP reduction, these diagrams are expressed in terms of the one-loop

master integrals. Scalar pentagon integral is somewhat special among them because it

is the last and the most complicated piece needed for calculations of NLO multi-particle

amplitudes with external legs lying in four-dimensional linear space.

Another reason to study one-loop pentagon integral is the Bern-Dixon-Smirnov (BDS)

ansatz [1]. This ansatz relates MHV multiloop amplitudes in the planar limit of N = 4

supersymmetric Yang-Mills theory to the one-loop amplitude with the same number of

legs. The ansatz is violated for amplitudes with more than five legs, therefore, the five-leg

amplitudes are the most complicated ones which satisfy the ansatz. The massless pentagon

integral in d = 4 − 2ε also appears in the calculation of the Regge vertices for the multi-

Regge processes of QCD in the next-to-leading order [2]. The one-gluon production vertex

in the NLO must be known at arbitrary d for the calculation of the NLO Balitskii-Fadin-

Kuraev-Lipatov (BFKL) [3] and Bartels-Kwiecinski-Praszalowicz (BKP) [4] kernels.

In the present paper we consider the one-loop pentagon integral with massless internal

lines and onshell external legs, which we call below the pentagon integral for brevity. In

ref. [5], it was shown that through ε0 order the pentagon integral in d = 4− 2ε dimensions

can be expressed via the box integrals with one offshell leg. However, deriving higher orders

in ε appeared to be a much more difficult task. In ref. [5], it was shown that higher-order

terms are related to the expansion of the same pentagon integral in 6 − 2ε dimensions. In

ref. [6] the Regge limit of the pentagon integral in 6 − 2ε dimensions was considered. The

coefficients of expansion through ε2 were presented in terms of the Goncharov’s polyloga-

rithms. In ref. [7] a rather complicated representation for the pentagon integral has been
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obtained using dimensional recurrence relation [8, 9]. The integral was expressed in terms

of the Appell function F3 and hypergeometric functions pFq. The expression was obtained

for the region where all kinematic variables were negative and ordered in a specific way.

In a sense, the goal of the present paper is the same as that of ref. [7], but the method is

different and the result obtained is strikingly simple, see eq. (2.6). We apply the approach

first introduced in ref. [10], based on the reduction of the differential equations for master

integrals to the Fuchsian form with factorized dependence of the right-hand side on ε (ε-

form). If this form is achieved simultaneously for the differential systems with respect to

all variables, it is automatically possible to rewrite these systems in a unified d log form,

which essentially simplifies the search for the solution. After finding d log form we choose

not to follow conventional strategy of finding ε-expansion order by order, but to obtain the

result exactly in the dimension of space-time. The result appeared to have a remarkably

simple form and provides a one-fold integral representation of arbitrary order of ε expansion

‘out-of-the-box’. Firstly we consider the integral in Euclidean region and then perform the

analytical continuation to all other regions with real kinematic invariants.

2 Definitions and result

The pentagon integral is defined as

P (d) (s1, s2, s3, s4, s5) =

∫
ddl

i πd/2
∏4
n=0 (l2n + i0)

, (2.1)

where

ln = l −
n∑
i=1

pi , (2.2)

and pi are the incoming momenta,

p2
i = 0 ,

5∑
i=1

pi = 0 , (2.3)

and the invariants si are defined as

sn = 2pn−2 · pn+2 . (2.4)

Here and below we adopt cyclic convention for indices, e.g. sn±5 = sn. We introduce the

following notation

rn =

4∑
i=0

(−1)isn+isn+i+1 , ∆ = det (2pi · pj |i,j=1,...4) =

5∑
i=1

riri+2 , S = 4s1s2s3s4s5/∆ .

(2.5)

Using techniques described in detail in the succeeding sections, we obtain the following

exact in d representation for P (6−2ε) for real si (of arbitrary signs)

P (6−2ε) (s1, s2, s3, s4, s5) =
C(ε)

ε

[
Θ (sisj > 0)

2π3/2Γ [1/2− ε]
Γ [1− ε]

√
∆

(−S − i0)−ε
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+
5∑
i=1

(−si − i0)−ε
∞∫

1

dt

t
tε Re

1

bi(t)

{
arctan

bi(t)

ri
− arctan

bi(t)

ri+2
− arctan

bi(t)

ri−2

+
π

2
[sign ri+2 + sign ri−2 − sign ri − sign (ri+2 + ri−2)]

}]
, (2.6)

where bi(t) =
√

(St/si − 1) ∆ + i0 (obviously, +i0 can be replaced by −i0),

C(ε) =
2Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
, (2.7)

and Θ (sisj > 0) equals to 1 if si are all of the same sign (either all negative or all positive),

and zero otherwise. By Re arctan(
√
x+i0/r)√

x+i0
we understand the function

f(x, r) =


arctan(

√
x/r)√

x
, x > 0

1
2
√
−x log

∣∣∣ r+√−x
r−
√
−x

∣∣∣ , x < 0
(2.8)

The ε-dependence in the integrand of (3.27) is confined to the factor tε. Therefore, any

order of ε-expansion can be trivially written as a one-fold integral of elementary functions.

In the appendix A we explain how to rewrite this integral in terms of the Goncharov’s

polylogarithms. We also demonstrate the cancellation of O(ε−1) terms.

In order to crosscheck our result, we have performed comparison with the numerical

results for pentagon obtained using Fiesta 3, ref. [11], and found perfect agreement. Some

results of the comparison are presented in table 1.

3 Differential equations in ε-form

In this section, unless the opposite is explicitly stated, we consider integrals in d = 4− 2ε

dimensions in “Euclidean” region

s1 < 0 , s2 < 0 , s3 < 0 , s4 < 0 , s5 < 0 . (3.1)

We use IBP reduction, as implemented in LiteRed package, ref. [12], to obtain the

system of partial differential equations for the pentagon integral P and ten simpler master

integrals, see figure 1.

Introducing the column-vector

J = (P, B1, B2, B3, B4, B5, R1, R2, R3, R4, R5)T , (3.2)

we may represent the system in the matrix form

∂

∂si
J = Mi(s, ε)J , i = 1, . . . , 5 , (3.3)

where Mi(s, ε) are upper-triangular matrices of rational functions of sj and ε. We benefit

from knowing simpler masters, which are the bubbles

Ri = R(si) =

∫
ddl

i πd/2l2i+1l
2
i+3

=
C(ε)

2ε(1− 2ε)
(−si)−ε (3.4)
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s1 s2 s3 s4 s5 Our result (A.1) Fiesta 3

0.331 0.846 0.346 0.512 0.243
−15.20480

+[−69.2882 − i47.767]ε

−15.2046(3) + i0.000(2)

+[−69.288(1) − i47.77(1)]ε

0.899 0.068 0.455 0.253 -0.478
−2.191 + i33.760

+[−100.38 + i146.37]ε

−2.12(9) + i33.77(9)

+[−100.0(6) + i146.8(6)]ε

0.294 0.716 0.467 -0.109 -0.552
17.759 + i34.223

+[21.331 + i165.766]ε

17.9(1) + i34.3(1)

+[22.4(6) + i166.2(6)]ε

0.317 0.932 -0.233 0.206 -0.114
29.001 + i35.675

+[77.733 + i208.091]ε

29.2(1) + i35.7(1)

+[79(1) + i209(1)]ε

0.036 0.573 -0.896 -0.467 -0.753
9.005 − i25.175

+[85.619 − i92.931]ε

9.05(6) − i25.16(6)

+[86.1(4) − i93.0(4)]ε

-0.007 -0.254 0.241 -0.056 0.545
206.941 − i44.552

+[1246.582 − i119.587]ε

208(1) − i45(1)

+[1253(8) − i118(8)]ε

0.629 -0.973 -0.155 -0.219 -0.452
−0.0835 − i22.7366

+[8.7037 − i96.9259]ε

−0.06(4) − i22.74(4)

+[8.9(3) − i96.9(2)]ε

-0.164 -0.792 -0.312 -0.753 -0.590
−12.731

−57.351ε

−12.731(3) − i0.000(2)

+[−57.35(1) − i0.00(1)]ε

Table 1. Comparison of the ε-expansion of eγεP (6−2ε) with numerical results obtained using Fiesta

3 (γ = 0.577 . . . is the Euler constant). Our result is obtained by numerical integration of eq. (A.1).

p1

p2

p3 p4

p5P B1 B2 B3 B4 B5

R1 R2 R3 R4 R5

Figure 1. Pentagon, box and bubble integrals.

and the massless box integrals with one off-shell leg

Bi = B(si+2, si−2, si) =

∫
ddl

i πd/2
∏6
k=3 l

2
i+k

. (3.5)

The representation of the box integral in terms of the hypergeometric function obtained in

ref. [5] has the form

B(si+2, si−2, si) =
C(ε)

ε2si+2si−2

[
(−si)−ε 2F1

(
1,−ε; 1− ε; 1− (si − si+2)(si − si−2)

si+2si−2

)
(3.6)

− (−si+2)−ε 2F1

(
1,−ε; 1−ε; 1− si−si+2

si−2

)
−(−si−2)−ε 2F1

(
1,−ε; 1−ε; 1− si−si−2

si+2

)]
.
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This representation should be treated with care since the arguments of the hypergeometric

functions may exceed 1 and one must take care of direction the arguments approach the cut.

One may check that the correct analytical continuation to the whole region si+2 < 0, si−2 <

0, si < 0 is given by replacing in eq. (3.6) each 2F1(α, β; γ;x) with Re 2F1(α, β; γ;x) =
1
2

∑
± 2F1(α, β; γ;x± i0).

Next, we find appropriate basis in order to reduce the system to ε-form, [10]. For our

one-loop case the problem of finding the basis appears to be very simple and straightfor-

ward. In particular, we do not use much of the recipes given in refs. [13, 14]. We do use

though the basic idea of first reducing the diagonal blocks (1 × 1) and then reducing the

off-diagonal matrix elements. We end up with the basis J̃ = (P̃ , B̃1, . . . R̃5)T , which is

related to (3.2) as follows

P = C(ε)

√
∆

s1s2s3s4s5

(
P̃ −

5∑
i=1

1

2

(
1− ri√

∆

)
B̃i

)
, (3.7)

Bi =
C(ε)

si+2si−2
B̃i , Ri =

C(ε)ε

2(1− 2ε)
R̃i . (3.8)

Note that ∆ > 0 in Euclidean region, so that
√

∆ is real. The differential equations in the

new basis can be written in d log ε-form

dP̃ = −ε
{
P̃ d
(
logS

)
+

5∑
i=1

[
−B̃id

(
log

(
1+

ri√
∆

))
+R̃id

(
log

(
√

∆ + ri)(ri+2 + ri−2)

(
√

∆+ri+2)(
√

∆+ri−2)

)]}
,

dB̃i = −ε
{
B̃id

(
log

si−2si+2

si−2 + si+2 − si

)
− R̃id

(
log

(si − si−2)(si − si+2)

(si−2 + si+2 − si)si

)
+ R̃i−2d

(
log

si−2 − si
si−2 + si+2 − si

)
+ R̃i+2d

(
log

si+2 − si
si−2 + si+2 − si

)}
,

dR̃i = −εR̃id(log si) . (3.9)

Let us now split the above differential system into five separate systems of dimension five.

In view of possible further applications, we describe the splitting of sparse systems in some

detail. Given a system dJ̃ = dM J̃ we schematically depict the matrix dM by replacing

each its nonzero element with “∗”. For the system (3.9) we have

dM =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 0 0 0 ∗ 0 ∗ ∗ 0

0 0 ∗ 0 0 0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 0 ∗ 0 ∗ 0 ∗
0 0 0 0 ∗ 0 ∗ ∗ 0 ∗ 0

0 0 0 0 0 ∗ 0 ∗ ∗ 0 ∗
0 0 0 0 0 0 ∗ 0 0 0 0

0 0 0 0 0 0 0 ∗ 0 0 0

0 0 0 0 0 0 0 0 ∗ 0 0

0 0 0 0 0 0 0 0 0 ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗


. (3.10)

Then we interpret this schematic form as adjacency matrix of the directed graph, with

“∗ij” denoting directed edge i→ j. In general, the node i is said to be an ancestor of the

node j if there is a directed path from i to j. A leaf is a node which is not an ancestor
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of any other node. To each leaf we associate the subgraph consisting of the leaf itself

and of all its ancestors. For each such subgraph, we search for a solution of the original

system having the form of the column vector with zeros put in all entries except the ones

corresponding to the nodes of the subgraph. Then the general solution of the differential

system is written as the sum over different leaves.1

For our present case we have five leaves, Ri; i = 1, . . . , 5. The subgraph of ancestors

of Ri contains P̃ , B̃i, B̃i+2, B̃i−2, R̃i. In particular, for i = 1 it means that we search for

the solution in the form

J̃
(1)

= (P̃ (1), B̃
(1)
1 , 0, B̃

(1)
3 , B̃

(1)
4 , 0, R̃

(1)
1 , 0, 0, 0, 0)T . (3.11)

Then the general solution is J̃ = J̃
(1)

+ . . .+ J̃
(5)

. Explicitly,

P̃ = P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) + P̃ (5) , (3.12)

B̃i = B̃
(i)
i + B̃

(i+2)
i + B̃

(i−2)
i , (3.13)

R̃i = R̃
(i)
i . (3.14)

From eq. (3.6) it is easy to identify functions B̃
(i)
i , B̃

(i+2)
i , and B̃

(i−2)
i as

B̃
(k)
i = ε−2(−1)(k−i)/2(−sk)−ε Re 2F1

(
1,−ε; 1− ε; sk

S

(
1− r2

i

∆

))
, k = i , i± 2 . (3.15)

One can check explicitly that B̃
(k)
i satisfy required equations provided d log(si − si±2) is

understood as (dsi − dsi±2)P 1
si−si±2

. Here P 1
x = 1

2

∑
±

1
x±i0 denotes the principal value

prescription.

Using expression for B̃
(k)
i from (3.15) and the integral representation for hypergeomet-

ric function, see, e.g., [15, eq. 9.111],

Re 2F1(1,−ε; 1− ε;x+ i0)− 1=− εx

1−ε Re 2F1(1, 1− ε; 2− ε;x+ i0)=−εx
∫ ∞

1
dttε−1P 1

t−x ,
(3.16)

we arrive at the following differential equation for P̃ (i):

d
(
(−S)εP̃ (i)

)
= H

(i)
i dai +H

(i)
i+2dai+2 +H

(i)
i−2dai−2 , (3.17)

H
(i)
i = H

(i)
i (ai, ai+2, ai−2) = −

(
S

si

)ε[
(1− ai)

∫ ∞
1
P dt tε−1

S
si
t− 1 + a2

i

]
, (3.18)

H
(i)
i±2 =H

(i)
i±2(ai, ai+2, ai−2)=−

(
S

si

)ε[
(1−ai±2)

∫ ∞
1
P dt tε−1

S
si
t−1+a2

i±2

− 1

ε(ai+2+ai−2)

]
. (3.19)

The right-hand side of eq. (3.17) depends only on three dimensionless variables an = rn√
∆

,

(n = i, i± 2). In particular, S/si = 1 + ai−2ai+2 − ai(ai−2 + ai+2). It is easy to check that

the right-hand side of (3.17) is a total differential, i.e.,

∂H
(i)
j

∂ak
=
∂H

(i)
k

∂aj
(j, k = i, i± 2) . (3.20)

1The notion of a leaf should be generalized in an obvious way in the case when some lowest non-zero

sectors have several master integrals.
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Then from the differential equation ∂
∂ai

(
(−S)εP̃ (i)

)
= H

(i)
i we have

(−S)εP̃ (i) =

∫ ai

−∞
H

(i)
i (a, ai+2, ai−2)da+ g(ai+2, ai−2, ε) , (3.21)

where g(ai+2, ai−2, ε) is some function to be fixed. Using the equations ∂
∂ai±2

(
(−S)εP̃ (i)

)
=

H
(i)
i±2 and relation (3.20), it is easy to check that g depends only on ε. Indeed,

∂

∂ai±2

(
(−S)εP̃ (i)

)
=

∫ ai

−∞

∂H
(i)
i

∂ai±2
dai +

∂g(ai+2, ai−2, ε)

∂ai±2
,∫ ai

−∞

∂H
(i)
i

∂ai±2
dai =

∫ ai

−∞

∂H
(i)
i±2

∂ai
dai = H

(i)
i±2 −H

(i)
i±2(ai → −∞) = H

(i)
i±2 ,

(3.22)

where we used the asymptotics H
(i)
i±2(ai → −∞) = ε−1(−ai)ε(ai−2 + ai+2)ε−1 → 0. There-

fore ∂
∂ai±2

g(ai+2, ai−2, ε) = 0, or g = g(ε). Substituting the explicit form of H
(i)
i , we have

(−S)εP̃ (i) = −
∫ ai

−∞
(1− a)da

∫ ∞
1

dt

t

(
K(a)t

)εP 1

K(a)t− 1 + a2
(3.23)

where K(a) = 1 + ai−2ai+2 − a(ai−2 + ai+2). Note that K(a) > 0 in the whole integration

domain. Making the substitution t → t/K(a) and changing the order of integration we

have

P̃ (i) = P̃
(i)
0 − P̃

(i)
1 + (−S)−εg(ε) (3.24)

P̃ (i)
n = −(−S)−ε

∫ ∞
S
si

tε−1dt

∫ ai

1−t+ai−2ai+2
ai−2+ai+2

da anP 1

t− 1 + a2

= −(−si)−ε
√

∆ Re

∫ ∞
1

tε−1dt

∫ ri

ri+2si−1si+1(1−t)

[
r∆−

1
2

]n
dr(

S
si
t− 1

)
∆ + r2 + i0

. (3.25)

It is remarkable that the integrals over a and t in P̃
(i)
1 can be taken in terms of 2F1.

Moreover, it appears that P̃
(i)
1 reduces to the sum of box functions B̃

(i)
k , eq. (3.15):

P̃
(i)
1 =

1

2

(
B̃

(i)
i (s) + B̃

(i)
i+2(s) + B̃

(i)
i−2(s)

)
. (3.26)

Hence, using equations (3.7), (3.24) and (3.26), we can write the solution for pentagon

integral in the form

P = C(ε)

√
∆

s1s2s3s4s5

( 5∑
i=1

P̃
(i)
0 + g(ε) (−S)−ε

)
+

5∑
i=1

ri
2si−1sisi+1

Bi(s) , (3.27)

In order to fix the constant g(ε), we notice that the condition ∆ = 0 implies the existence

of linear relation between p1, . . . , p4. Therefore, using partial fractioning, we can express

the pentagon integral at ∆ = 0 in terms of the box integrals. Moreover, ∆ = 0 is not a

branching point of P . The only way to satisfy these two conditions is to require that

5∑
i=1

P̃
(i)
0 + g(ε) (−S)−ε

∆→0−→ 0 . (3.28)

– 7 –
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In order to calculate the limit ∆ → 0 from within Euclidean region, we assume that s2−5

are subject to the constraint s2s3 − s3s4 + s4s5 = 0. Then

∆ = s2
1(s2 − s5)2 + 4s1s2s5(s3 + s4) . (3.29)

In the limit s1 → 0 we have

P̃
(1)
0 ∼ P̃ (2)

0 ∼ P̃ (5)
0 ∼ ∆

1
2
−ε → 0 ,

P̃
(3)
0 ≈ P̃ (4)

0 → −π 3
2

Γ(1/2− ε)
Γ(1− ε) (−S)−ε .

Therefore from eq. (3.28) we obtain

g(ε) = 2π
3
2

Γ(1/2− ε)
Γ(1− ε) . (3.30)

Equations (3.27) and (3.30) determine P (4−2ε).

Let us consider now the dimensional recurrence relation

P (4−2ε) =
ε∆

s1s2s3s4s5
P (6−2ε) +

5∑
i=1

ri
2si−1sisi+1

B
(4−2ε)
i , (3.31)

This relation is known since ref. [5] and can be routinely obtained with the LiteRed.

Comparing (3.31) and (3.27), we obtain

P (6−2ε) =
C(ε)

ε
√

∆

[
5∑
i=1

P̃
(i)
0 + 2π

3
2

Γ(1/2− ε)
Γ(1− ε) (−S)−ε

]
. (3.32)

4 Analytical continuation

Let us now discuss the analytical continuation of the result obtained in the Euclidean

region. The analytical continuation of a two-fold integral as a function of parameters is a

highly nontrivial problem. Fortunately, the inner integral over r in eq. (3.25) can be taken,

and we represent P̃
(i)
0 in the form

∆−
1
2 P̃

(i)
0 = (−si)−ε

∫ ∞
1

dt tε−1Gi(s, t) . (4.1)

The left-hand side of eq. (4.1), including the factor ∆−1/2, is just the combination which

enters eq. (3.32) and which requires the analytical continuation, and

Gi(s, t) =

ri∫
ri+2si+1si−1(1−t)

dr Re

{
− 1

(St/si − 1) ∆ + r2 + i0

}
(4.2)

= −1

2

∑
±

{
1

ri
f

(
r2
i

∆ S
si
t−∆± i0

)
− 1

ri + 2si−1si+1(1− t)f
((

ri + 2si−1si+1(1− t)
)2

∆ S
si
t−∆± i0

)}
.

– 8 –



J
H
E
P
0
2
(
2
0
1
6
)
0
2
1

Here f(z) =
√
z arctan (

√
z) is a function defined on the complex plane with a cut going

from −∞ to −1. The Riemann surface, corresponding to the multivalued function F (z)

with the main branch defined by F (0)(z) = f(z), is glued of a set of sheets numbered by

n ∈ Z with two cuts, one going from −∞ to −1 and the other going from 0 to ∞. On the

n-th sheet the function is defined as

F (n)(z) = −
√−z

2
ln

1 +
√−z

1−√−z + iπn
√
−z , n ∈ Z , (4.3)

where
√• and ln(•) denote the main branches of the corresponding functions. The gluing

rules are

F (n)(x± i0) =


√
x arctan(

√
x)± πn√x = F (−n)(x∓ i0) , x > 0

−1
2

√−x ln 1+
√
−x√

−x−1
+ iπ(n± 1/2)

√−x = F (n±1)(x∓ i0) , x < −1 .
(4.4)

The integrand of (4.1) has the following branching points on the real axis of t:

• t = 0 is a branching point of the tε,

• tai = 1− (si+2−si)(si−2−si)
si+2si−2

, where the argument of the first function becomes −1,

• tbi = 1 − si+2−si
si+1

and tci = 1 − si−2−si
si−1

, where the argument of the second function

becomes −1,

• t0i = 1 + ri
2si+1si−1

, where the argument of the second function becomes 0,

• t∞i = si
S , where arguments of both functions become ∞.

The sum over ± signs in eq. (4.2) translates into the sum over two different integration

contours over t in eq. (4.1).

In general, the analytical continuation depends, in a highly non-trivial way, on the path

in C5 space of (s1, . . . , s5) connecting a point in Euclidean region with the point of interest.

However, the problem is essentially simplified if we restrict ourselves by the paths lying in

the region D = {s| Im si > 0}. Using Feynman parametrization, it is easy to see that any

two paths connecting a given pair of points and lying in D are equivalent. Therefore, the

choice of a convenient path is totally in our hands provided that it lies in D. To reduce the

number of the regions to be considered we have used the cyclic symmetry of the integral

and also the identity

P (6−2ε) (s) = eiπε
[
P (6−2ε) (−s)

]∗
. (4.5)

following from, e.g., Feynman parametrization. Then we have only four non-equivalent

regions:

I. (−−−−−), II. (−−−−+), III. (−−−+ +), IV. (−−+−+), (4.6)

where each region is marked by the list (sign s1, sign s2, sign s3, sign s4, sign s5).

Let us consider the analytical continuation of P̃
(i)
0 integrals from the region (−−−−−)

to the region (−−−−+). We put s5 = |s5|eiφ and change φ from π to 0. While changing φ,
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we track the motion of the braniching points tai, tbi, tci, t0i, t∞i and deform the integration

contours over t in such a way that they do not cross these points (and t = 0). We should

also track the changing of the argument of F in the end point t = 1. In what follows we

assume, for definiteness, that s1 < s2 < s3 < s4 < s5.

Let us explain our method on the example of the integral

1

2

∑
±

∫ ∞
1

dt tε−1 1

r1(t)
F (0)

(
[r1(t)]2

D(t)± i0

)
, (4.7)

where r1(t) = r1 + 2s5s2(1− t) and D(t) = ∆ S
s1
t−∆. In figure 2 we show the movement of

the poles of the integrand upon changing φ. In the final position, when φ = 0, the integral

is written as

1

2

{ tb1∫
1

dt tε−1F
(−1)

r1(t)
+

0∫
tb1

dt tε−1 F
(0)

r1(t)
+

tc1∫
0

dt (t+ i0)ε−1 F
(0)

r1(t)
+

t∞1∫
tc1

dt (t+ i0)ε−1F
(0−)

r1(t)

+

tc1∫
t∞1

dt (t+ i0)ε−1F
(0+)

r1(t)
+

0∫
tc1

dt (t+ i0)ε−1 F
(0)

r1(t)
+

tb1∫
0

dt tε−1 F
(0)

r1(t)
+

∞∫
tb1

dt tε−1F
(0−)

r1(t)

+

tb1∫
1

dt tε−1 F
(0)

r1(t)
+

∞∫
tb1

dt tε−1F
(0−)

r1(t)

}
(4.8)

where we suppressed the argument [r1(t)]2/D(t) of F (n). The superscript (n±) denotes

the argument lying on the n-th sheet on the upper/lower bank of the cut. The first two

lines correspond to the contribution of the upper contour and the last line corresponds to

that of the lower contour in figure 2. Using eq. (4.3), we reduce the above expression to

the form

tb1∫
1

dt tε−1 F
(0)

r1(t)
+

1

2

∞∫
tb1

dt tε−1F
(0+) + F (0−)

r1(t)
− iπ

2

 tc1∫
t∞1

+

∞∫
1

 tε−1dt√
−D(t)

(4.9)

Considering in the same way all the integrals appearing in P̃
(1−5)
0 , we have

P̃
(1)
0 (s ∈ R)√

∆
= (−s1)−ε

∞∫
1

dt tε−1G1(s, t)−(−s1)−ε
iπ

2
√

∆

 ∞∫
t∞1

dt tε−1√
1− S

s1
t

+

tc1∫
t∞1

dt tε−1√
1− S

s1
t

 ,

P̃
(2)
0 (s ∈ R)√

∆
= (−s2)−ε

∞∫
1

dt tε−1G2(s, t)−(−s2)−ε
iπ

2
√

∆

 ∞∫
t∞2

dt (t+ i0)ε−1√
1− S

s2
t

+

ta2∫
t∞2

dt (t+ i0)ε−1√
1− S

s2
t

 ,

P̃
(3)
0 (s ∈ R)√

∆
= (−s3)−ε

∞∫
1

dt tε−1G3(s, t)−(−s3)−ε
iπ

2
√

∆

 ∞∫
t∞3

dt (t+ i0)ε−1√
1− S

s3
t
−

ta3∫
t∞3

dt (t+ i0)ε−1√
1− S

s3
t

 ,
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1 (0−) tb1 t01 tc1 t∞1

1 (0+) tb1 t01 tc1 t∞1

t∞1 tc1 t01 0 1 (−1) tb1

1 (0)

tb

tb1

Figure 2. Motion of the branching points of the integrand in eq. (4.7) and the corresponding de-

formation of the integration contours. Upper (lower) half corresponds to the +i0 (−i0) prescription

in the denominator of the argument of f . Left half: s5 < 0 (φ = π), right half: s5 > 0 (φ = 0).

Dashed arrows denote the movement of the branching points upon varying φ from π to 0. Notation

(n±) stands for the argument lying on the n-th sheet on the upper/lower bank of the cut.

P̃
(4)
0 (s ∈ R)√

∆
= (−s4)−ε

∞∫
1

dt tε−1G4(s, t)−(−s4)−ε
iπ

2
√

∆

 ∞∫
t∞4

dt tε−1√
1− S

s4
t

+

t∞4∫
tb4

dt tε−1√
1− S

s4
t

 ,

P̃
(5)
0 (s ∈ R)√

∆
= (−s5 − i0)−ε

∞∫
1

dt tε−1G5(s, t) , (4.10)

where

R = {s|s1 < 0, s2 < 0, s3 < 0, s4 < 0, s5 > 0} . (4.11)

Using the relations

tai
si

=
tb(i+2)

si+2
=
tc(i−2)

si−2
, (4.12)

the sum of the underlined terms in eq. (4.10) is transformed to

− 2iπ
S−ε√

∆

∫ ∞
−1

(t+ i0)ε−1dt√
t+ 1

= −2
S−ε√

∆
π

3
2 eiπε

Γ(1/2− ε)
Γ(1− ε) (4.13)

Note that this is exactly the second term in square brackets of eq. (3.32) analytically

continued to the region s5 > 0 and taken with opposite sign. Therefore, the analytical

continuation of P̃ to the region R has the form

5∑
i=1

P̃
(i)
0 (s)√

∆
+ 2π

3
2

Γ(1/2− ε)
Γ(1− ε)

(−S)−ε√
∆

=

4∑
i=1

(−si)−ε
∫ ∞

1
dt tε−1Gi(s, t) + eiπεs−ε5

∫ ∞
1

dt tε−1G5(s, t) . (4.14)
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Analytical continuation to other regions is performed in the same way. The outcome is

that

P (6−2ε) =
C(ε)

ε

[
5∑
i=1

(−si − i0)−ε
∫ ∞
1

dt tε−1Gi(s, t) + 2π
3
2

Γ(1/2− ε)
Γ(1− ε)

(−S − i0)−ε√
∆

Θ (sisj > 0)

]
,

(4.15)

where Θ (sisj > 0) equals to 1 if all si are of the same sign, and zero otherwise. Note that

the coefficient in front of Θ (sisj > 0) has a branching point ∆ = 0. However, when all

si are of the same sign, ∆ is strictly positive. Therefore, eq. (4.15) has no branching at

∆ = 0.2

Finally, we use relation

ri + 2si−1si+1(1− t)
bi(t)

= −
1− ri+2

bi(t)
ri−2

bi(t)
ri+2

bi(t)
+ ri−2

bi(t)

(4.16)

and elementary trigonometric formulas to represent Gi(s, t) in the form

Gi(s, t) = Re
1

bi(t)

{
arctan

bi(t)

ri
− arctan

bi(t)

ri+2
− arctan

bi(t)

ri−2

+
π

2
[sign ri+2 + sign ri−2 − sign ri − sign (ri+2 + ri−2)]

}
. (4.17)

Substituting eq. (4.17) in eq. (4.15), we obtain our main result (2.6).

5 Conclusion

In the present paper we applied the differential equation approach to the calculation of

the pentagon integral P in arbitrary dimension d. Our main result is the one-fold integral

representation, eq. (2.6), valid for any real values of the invariants si. The integral in

eq. (2.6) converges for d > 4 and trivially determines any order of ε expansion near d = 6−2ε

as a one-fold integral of elementary functions, see eq. (A.1). We have demonstrated that

this integral can be expressed via the Goncharov’s polylogarithms.

The simple form of the obtained result (2.6) hints for a possibility to find a similar rep-

resentation for more complicated one-loop integrals. In particular, it would be interesting

to consider the on-shell hexagon and off-shell pentagon integrals.
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A Expansion in ε

First, we note that it is trivial to obtain any order of expansion in ε in terms of a one-fold

integral of elementary functions from eq. (2.6). It simply amounts to writing[
P (6−2ε)

C(ε)

]
εn

= Θ (sisj > 0)

[
2π3/2Γ [1/2− ε]

Γ [1− ε]
√

∆
(−S − i0)−ε

]
εn+1

+

5∑
i=1

∞∫
1

dt

t

lnn+1(−t/si + i0)

(n+ 1)!
Re

1

bi(t)

{
arctan

bi(t)

ri
− arctan

bi(t)

ri+2
− arctan

bi(t)

ri−2

+
π

2
[sign ri+2 + sign ri−2 − sign ri − sign (ri+2 + ri−2)]

}
, (A.1)

where [f(ε)]εn denotes the coefficient in front of εn in the expansion of f(ε) in ε.

Let us explain how to obtain the expansion of P (6−2ε) in terms of generalized polylog-

arithms. We restrict ourselves by the Euclidean region. In order to express the results in

a compact form, we introduce the notation a± for the integration weights

w(a+, x) =
2a

x2 − a2
w(a−, x) =

2x

x2 − a2
(A.2)

These weights are simply the linear combinations of the conventional weights w(a, x) = 1
x−a :

w(a±, x) = w(a, x)∓ w(−a, x) . (A.3)

We define, as usual, see, e.g., ref. [16], the iterated integrals

G(a1, a2, . . . |y) =

y∫
0

dxw(a1, x)G(a2, . . . |x) . (A.4)

In Euclidean region ∆ is always positive,3 and it is convenient to use the variables ai =

ri/
√

∆, which satisfy ∑
i

aiai+2 = 1 , (A.5)

ai > −1 , ai + ai+1 > 0 . (A.6)

Pulling out the overall factor (−S)−ε√
∆

, we obtain

P (6−2ε) (s1, s2, s3, s4, s5)
2Γ(1−ε)2Γ(1+ε)

Γ(1−2ε)ε
√

∆(−S)ε

=

5∑
i=1

[T (ai, yi)− T (ai+2, yi)− T (ai−2, yi)] +
2π3/2Γ [1/2− ε]

Γ [1− ε] ,

(A.7)

3This fact can be proved using the expression of ∆ in terms of ri given in eq. (2.5). Indeed, from

definition of ri given in the same equation, it follows that ri + ri+1 = 2sisi+1 > 0 in the Euclidean region.

Therefore, either no ri is negative, or one of ri is negative, or a pair of nonadjacent ri is negative. In order

to prove that ∆ > 0 in the last two cases, it is sufficient to group, in a proper way, the terms riri+2 in the

definition of ∆. E.g., when r1 < 0 and r2−5 > 0, we use ∆ = (r1 + r2)r4 + (r5 + r1)r3 + r2r5 with each term

being positive. When r1,3 < 0 and r2,4,5 > 0 we write ∆ = (r1 + r2)r4 + (r2 + r3)r5 + r1r3.
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where yi =
√
S/si − 1 and the function T are defined as

T (a, y) = Re

∞∫
1+y2

dt tε−1 1√
t− 1

[
π

2
− arctan

a√
t− 1

]
. (A.8)

Note that replacing in this formula π
2 −arctan a√

t−1
with arctan

√
t−1
a is not valid for a < 0.

When the second argument of the function T is zero, the integral can be taken in terms of

generalized hypergeometric functions

T (a, 0)=
π3/2θ(−a)Γ

(
1
2 − ε

)
Γ(1− ε) − 3F2

(
1
2 , 1, 1; 3

2 , 1 + ε; 1
a2

)
aε

−π|a|
2ε

2F1

(
1
2 − ε, 1− ε; 3

2 − ε; 1
a2

)
a(2ε− 1) sin(πε)

(A.9)

These functions can be readily expanded using standard tools, like HypExp, [17]. In order

to expand the difference T (a, y)− T (a, 0), we pass to the variable τ =
√
t− 1 and expand

under the integral sign:

T (a, y)− T (a, 0) = −
∞∑
n=0

εn Re

y∫
0

dτ
2

1 + τ2

1

n!
lnn(1 + τ2)

[π
2
− arctan

a

τ

]
. (A.10)

Taking into account that

lnn(1 + τ2)

n!
= G({i−}n|τ)

def
= G(i−, . . . , i−︸ ︷︷ ︸

n

|τ) ,

π/2− arctan
a

τ
= πθ(−a)− iG(ia+|τ) ,

and using shuffling relations, we obtain

T (a, y)− T (a, 0) =
∑

εn Re {[G(ia+|y) + iπθ(−a)]G(i+, {i−}n|y)−G(ia+, i+, {i−}n|y)} .
(A.11)

Equations (A.9) and (A.11) allow one to obtain any term of expansion of the pentagon

integral near d = 6. In order to obtain the expansion of the integral near d = 4, one may

use the dimensional recurrence relation (3.31).

The pentagon integral is finite in d = 6, therefore, the 1/ε term should vanish. The

cancellation of the divergencies in individual terms in eq. (A.7) is quite tricky. First, we

note that

T (a, y)|ε=0 = T0 (a, y) = Re

[
1

2
Li2

(
(a− 1)(y + i)

(a+ 1)(y − i)

)
+

1

2
Li2

(
(a− 1)(y − i)
(a+ 1)(y + i)

)
− Li2

(
a− 1

a+ 1

)
− arctan2 y +

π2

4

]
(A.12)

We want to prove that

5∑
i=1

[T0(ai, yi)− T0(ai+2, yi)− T0(ai−2, yi)] + 2π2 = 0 (A.13)
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in the whole Euclidean region. Let us first show that the left-hand side is constant. The

differential of the left-hand side is

5∑
i=1

Re

{
2dyi

1 + y2
i

[
π

2
+ arctan

ai
yi
− arctan

ai+2

yi
− arctan

ai−2

yi

]
(A.14)

+ log

(
y2
i + a2

i

y2
i + 1

)
dai

1− a2
i

− log

(
y2
i + a2

i+2

y2
i + 1

)
dai+2

1− a2
i+2

− log

(
y2
i + a2

i−2

y2
i + 1

)
dai−2

1− a2
i−2

}
The differential dyi can be expressed via dai, dai+2, dai−2, but we may

refrain from doing it thanks to the following remarkable fact: the quan-

tity Re y
[
π
2 + arctan a

y − arctan b
y − arctan c

y

]
vanishes after the substitution y =

√
bc− ab− ac. Then, the coefficient in front of dai

1−a2i
becomes

Re log

(
a2
i + y2

i

) (
y2
i+2 + 1

) (
y2
i−2 + 1

)(
y2
i + 1

) (
a2
i + y2

i+2

) (
a2
i + y2

i−2

) (A.15)

Substituting yi =
√
S/si − 1 and ai = ri/

√
∆, we verify that this coefficient is zero.

Therefore, in order to prove the identity (A.13), we need to calculate the left-hand side in

any specific point (s1, s2, s3, s4, s5) in the Euclidean region. We choose symmetric point

s1 = s2 = . . . = s5 = −1, where ak = 1√
5

and yk = i√
5
. Then

T0

(
1√
5
,
i√
5

)
=

1

2
Li2

(√5− 3

2

)2
− Li2

(√
5− 3

2

)
+
π2

3
+ arctanh2

(
1√
5

)

= Li2

(
3−
√

5

2

)
+
π2

3
+ arctanh2

(
1√
5

)
=

2π2

5
. (A.16)

The last transition is due to one of the eight remarkable values of dilogarithm, see, e.g.,

ref. [18]. Using this identity, it is easy to see that eq. (A.13) holds in the symmetric point,

and, therefore, in the whole Euclidean region. Similar analysis shows the cancellation of

ε−1 terms in eq. (2.6) in all regions.
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