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1 Introduction

Recently, there has been a great deal of progress in the understanding of the dynamical and

static properties of the quark-gluon plasma (QGP). The current theoretical interpretation

of heavy-ion collision experiments at RHIC and CERN consists of a hydrodynamical de-

scription of the evolution of the fireball, see e.g. the reviews [1, 2]. This relies on the QGP

medium thermalising after a very short time of less than 1 fm/c; the subsequent evolution

is then modelled by viscous hydrodynamics, until hadronisation.

The input parameters in the hydrodynamic evolution equations are the equation of

state and, for the nonideal case, transport coefficients, such as viscosities and conductiv-

ities. These quantities capture the dynamics from the underlying theory and hence are

determined by QCD. A first-principles determination must face the challenge of strong

coupling: it is now widely accepted that dynamics in the QGP is strongly coupled, typi-

cally expressed via the statement that the ratio of the shear viscosity to entropy density

η/s is close to the value obtained in models with holographic duals [3].

Besides the shear and bulk viscosities, there is an increasing interest in another trans-

port coefficient, namely the electrical conductivity, due to the role it plays in heavy-ion

phenomenology. For instance, the conductivity has recently been discussed in the context of

charge density fluctuations [4] and the evolution of strong electromagnetic fields produced

in noncentral collisions [5–10]. It has also been suggested that experimental information

on conductivity can be extracted from flow parameters in heavy-ion collisions [11].
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Using linear response theory, transport coefficients can be related to current-current

spectral functions in thermal equilibrium, via the celebrated Kubo relations [12, 13]. This

opens up the possibility to apply lattice QCD at finite temperature as the nonperturbative

tool of choice, provided that the analytical continuation from Euclidean to real time, or

from Euclidean correlators to spectral functions, can be carried out reliably [14]. In recent

years several results have been obtained along these lines. Refs. [15, 16] contain the first

(theoretically controlled) results for the shear and bulk viscosity, see also the review [17].

The best-studied transport coefficient is however the electrical conductivity, since the cor-

responding Euclidean correlator can be computed numerically with high precision. The

first results were obtained using the staggered fermion formulation [18, 19] in quenched

QCD. Since then the study of the systematic uncertainties and the extension to Wilson-

type quarks have taken a central role, in quenched QCD [20, 21] and in dynamical QCD

with Nf = 2 and 2 + 1 flavours [22, 23]. All studies [19–23] are in qualitative agreement:

around T = 1.5Tc, where Tc is the crossover temperature, the conductivity is of the order

of σ = 0.2− 0.4CemTc, where Cem is an electromagnetic prefactor depending on the quark

charges (see section 5 below). Recent non-lattice studies include refs. [24–31].

The most detailed lattice study so far can be found in ref. [23], where the temperature

dependence of σ/T across the deconfinement transition was studied for the first time,

over a range of temperatures corresponding to 0.63 − 1.9Tc. In that analysis we used

a QGP with Nf = 2 + 1 flavours but only included the light quark contribution to the

conserved vector current. Here we improve upon those results by also including the strange

quark contribution and comparing the relative contributions. Moreover we compute various

susceptibilities, including the charge susceptibility χQ, which allows us to compute for the

first time the charge diffusion coefficient D = σ/χQ in a self-contained calculation. Since

the diffusion coefficient can also be computed in strongly coupled theories that permit a

holographic prescription, with the characteristic result that D = 1/(2πT ) in N = 4 Yang-

Mills theory at nonzero temperature [32–34], this direct computation allows us to compare

QCD with strongly coupled gauge theories which have a dual formulation.

The remainder of the paper is organised as follows. In the next section we start with

the information on the lattice action and ensembles used in this work, followed by a de-

termination of the crossover transition temperature using the renormalised Polyakov loop

and the chiral susceptibility in section 3 and the baryon, isospin and charge susceptibilities

in section 4. In section 5 we turn to the electrical conductivity, and present the Euclidean

correlators and their corresponding spectral functions determined via the Maximum En-

tropy Method. The systematics in this construction are discussed in some detail. Finally,

our results for the diffusion coefficient, obtained using the results from the two preceding

sections, are presented in section 6. We summarise our findings and provide a brief outlook

in section 7.

2 Nf = 2 + 1 lattice details

In this work we follow the Hadron Spectrum Collaboration [35] and use a Symanzik-

improved anisotropic gauge action with tree-level mean-field coefficients and a mean-field–
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gauge coupling β 1.5

bare gauge anisotropy γg 4.3 as = 0.1227(8) fm

bare fermion anisotropy γf 3.4 a−1
τ = 5.63(4) GeV

spatial clover coefficient cs 1.5893 ξ = as/aτ = 3.5

temporal clover coefficient cτ 0.9027 Mπ = 384(4) MeV

bare light quark mass m̂ud −0.0840 Mπ/Mρ = 0.446(3)

bare strange quark mass m̂s −0.0743

Table 1. Lattice parameters.

improved Wilson-clover fermion action with stout-smeared links [36]. The anisotropy, with

a reduced temporal lattice spacing aτ < as, is crucial to obtain a better resolution of the

correlation functions, especially at higher temperatures. This will be discussed further

below. Anisotropy introduces two new bare parameters in the action, the bare gauge and

fermion anisotropies, which are nonperturbatively tuned to give the desired renormalised

anisotropy, ξ = as/aτ , common to the gauge and fermionic degrees of freedom. The en-

sembles employed here are part of our “2nd generation” data set [37] and were previously

used for a determination of the conductivity (from two light flavours only) [23] and the

bottomonium spectrum at nonzero temperature [38].

The gauge action takes the form

SG =
β

γg

∑
x,i 6=i′

[
5

6u4
s

Pii′(x)− 1

12u6
s

Rii′(x)

]
+ βγg

∑
x,i

[
4

3u2
su

2
τ

Pi4(x)− 1

12u4
su

2
τ

Ri4(x)

]
,

(2.1)

where P and R are the 1 × 1 plaquette and 2 × 1 rectangular Wilson loops, us(τ) are the

spatial (temporal) mean links, γg is the bare gauge anisotropy and, as usual, β = 2Nc/g
2

with Nc = 3 colours.

The fermion action (for a single flavour) reads

SF =
∑
x

ψ(x)

[
m̂0 + γ4∇4 −

1

2
∇2

4 +
1

γf

∑
i

(
γi∇i +

1

2
∇2
i

)
− 1

2
cτ
∑
i

σ4iF4i −
cs

2γg

∑
i<i′

σii′Fii′

]
ψ(x), (2.2)

where m̂0 = aτm0 is the bare fermion mass, γf the bare fermion anisotropy, ∇µ covariant

finite differences, σµν = i
2 [γµ, γν ], and the clover coefficients

cτ =
1

2

(
γg
γf

+
1

ξ

)
1

ũ2
s

, cs =
γg
γf

1

ũ3
s

. (2.3)

The spatial gauge links in the fermion action have been stout smeared [36] with smearing

weight ρ = 0.14 and nρ = 2 iterations, and ũs is the mean value of the spatial stout-

smeared links.

The choice of bare parameters is given in table 1 and follows the tuning by the Hadron

Spectrum Collaboration [35]. The resulting renormalised anisotropy is ξ = 3.5. The two
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Ns Nτ T [MeV] T/Tc NCFG NSRC

24 32 16 352 1.90 1059 4

24 20 281 1.52 1001 4

24 32 24 235 1.27 500 4

24 32 28 201 1.09 502 4

24 32 32 176 0.95 501 4

24 36 156 0.84 501 4

24 40 141 0.76 523 4

32 48 117 0.63 601 4

24 128 44 0.24 401 1

Table 2. Details of the ensembles. The lattice size is N3
s ×Nτ , with the temperature T = 1/(aτNτ ).

NCFG (NSRC) denote the number of configurations at each volume (the number of source positions

within the volume) used for the analysis of the conductivity.

degenerate light quarks yield Mπ = 384(4) MeV (2.8 times larger than the physical pion),

corresponding to Mπ/Mρ = 0.446(3) [39], while the third flavour is tuned to the strange

quark mass [35].

Details of the finite-temperature ensembles are given in table 2. Note that there are

five ensembles in the hadronic phase and four in the quark-gluon plasma phase. The de-

termination of the pseudo-critical temperature Tc is discussed in the next section. In order

to look for finite-size effects, we have generated configurations with two spatial volumes

at four different temperatures, with spatial extents of ∼ 2.9 respectively 3.9 fm (Ns = 24

and 32). Access to the zero-temperature configurations (Nτ = 128) has been kindly pro-

vided to us by the Hadron Spectrum Collaboration. The ensembles were generated using

the Rational Hybrid Monte Carlo (RHMC) algorithm with multiple timescale integration

and Hasenbusch preconditioning for the light quarks, using the Chroma software suite [40]

with Bagel routines [41]. For further details about the algorithm, we refer to refs. [35, 39].

After 1000 thermalisation trajectories (2000 for the 323×24 ensemble), configurations were

sampled every 10 RHMC trajectories, except for the 323×48 ensemble where the sampling

frequency was every 5 trajectories. The plaquette and Polyakov loop autocorrelation times

were found to be between 2 and 30 trajectories.

3 Deconfinement and chiral transition

After a determination of the lattice spacing, the temperature can be specified in MeV very

precisely using the standard relation T = 1/(aτNτ ). However, it is desirable to express

the temperature in units of Tc, the crossover temperature, especially since the two light

quarks are heavier than in Nature (for a lattice study of the transition with physical quark

masses, see e.g. ref. [42]). In order to do so, we use the renormalised Polyakov loop as an

indicator of the deconfinement transition, following closely the renormalisation procedure

described in ref. [43].

– 4 –
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Figure 1. Renormalised Polyakov loop LR as a function of temperature as defined by the procedure

explained in the text. Three renormalisation schemes are considered, A: LR(Nτ = 16) = 1.0, B:

LR(Nτ = 20) = 1.0 and C: LR(Nτ = 20) = 0.5. Solid (open) symbols use a spatial volume of

323 (243). The data points are connected with curves obtained by cubic splines; their derivatives,

depicted by the dashed curves, represent the Polyakov loop susceptibility. The vertical lines indicate

the peak of the susceptibility in each scheme.

The Polyakov loop expectation value L is related to the free energy of a static quark

F via

L(T ) = e−F (T )/T . (3.1)

However, F is only defined up to an additive renormalisation constant ∆F , which depends

on the gauge coupling and other bare parameters but not on the temperature. Expressing

the renormalised free energy FR as FR = F+∆F allows us write the renormalised Polyakov

loop as

LR(T ) ≡ e−FR(T )/T = e−(F (T )+∆F )/T = ZNτL L(T ), (3.2)

which defines the multiplicative renormalisation constant ZL. Following ref. [43], we impose

a renormalisation condition at a reference temperature TR, by requiring that

LR(TR) ≡ constant, (3.3)

which fixes ZL.

Figure 1 shows the Polyakov loop with three different renormalisation schemes corre-

sponding to different choices of TR and the constant in eq. (3.3), as detailed in the figure

– 5 –
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caption. The data are interpolated using cubic splines, with the statistical uncertainty

given by the thickness of the three interpolating curves; it can be seen to be negligible. We

then obtain the Polyakov loop susceptibility as the derivatives of the interpolating curves

for the Polyakov loop in each of the three schemes. The peak positions are indicated

with the vertical lines in figure 1 and give us the point of inflection at N crit
τ = 30.4(7) or

1/N crit
τ = aτTc = 0.0329(7), where the error reflects the systematic error coming from the

spread of the three renormalisation schemes. This corresponds to a deconfinement critical

temperature of Tc = 185(4) MeV. We note that neither chiral nor continuum extrapolations

have been performed in our analysis.

In the limit of massless quarks, QCD becomes classically invariant under chiral trans-

formations. This symmetry is spontaneously broken at low temperature. For physical

masses, even if the chiral symmetry is explicitly broken, the associated order parame-

ter shows a clear transition signal at a certain temperature. The chiral condensate and,

in particular, its susceptibility χc are commonly used to define the crossover transition

temperature. We have determined the chiral susceptibility due to the two light flavours,

using [44–46]

χc =
T

V

∂2 lnZ

∂m2
= χdisc + χconn,

χdisc =
4T

V

[〈(
TrM−1

)2〉− 〈TrM−1
〉2
]
, (3.4)

χconn = −2T

V

〈
TrM−1M−1

〉
,

where Z is the partition function, M the fermion matrix, V the spatial volume and m

the degenerate light quark mass. Moreover, we introduce here the connected χconn and

the disconnected χdisc contributions to the susceptibility. The traces in eq. (3.4) are de-

termined using 16 noise vectors for the disconnected contribution and 4 for the connected

one. Because we change the temperature by changing the value of Nτ rather than the

lattice spacing, the (additive and multiplicative) renormalisation of χc is the same for all

temperatures. A peak in the susceptibility occurs therefore at the same temperature for

the renormalised and unrenormalised χc. We hence show the bare susceptibility and are

only interested in the overall shape, rather than the absolute value.

The results are plotted in figure 2. The connected contribution is not singular while the

disconnected contribution shows a peak. Because the determination of the disconnected

term is particularly expensive at low temperature, we could not determine the chiral critical

temperature very precisely. Our best estimate is Tχc ≈ 170(20) MeV, which is somewhat

lower than the value obtained from the Polyakov loop. In the following we will use the

value for Tc determined from the Polyakov loop as this has been obtained with a better

precision.

4 Susceptibilities

Fluctuations of conserved charges are sensitive probes both of the thermal state of the

medium and of its critical behaviour. They are quantified by susceptibilities, defined as

– 6 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
6

100 150 200 250 300 350

T [MeV]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-Connected
Disconnected

0.75 1.00 1.25 1.50 1.75 2.00

T/Tc

Figure 2. Disconnected and minus the connected contributions to the (unrenormalised) chiral

susceptibility χc, computed on the 243 ×Nτ ensembles.

second (and higher) derivatives of the free energy with respect to the chemical potential

associated with the investigated charge. In QCD, assuming three active light flavours,

charges that can be studied include baryon number, electric charge and strangeness. Their

susceptibilities probe the actual degrees of freedom that carry such charges, i.e. quarks

or hadrons. Experimentally, fluctuations can be used to probe quark confinement [47] by

studying event-by-event fluctuations of charged particle ratios [48]. Susceptibilities show

a rapid rise in the crossover region: at low temperature they are small since quarks are

confined; at high temperature they are larger and they approach the ideal gas limit. They

have been studied by many groups in the past [49–54]. Notably, so far, lattice studies have

mainly employed staggered fermions. Here instead we use clover-improved Wilson fermions.

For an earlier study using Wilson fermions see ref. [55]. The charge diffusion coefficient D

and the electrical conductivity σ are related via the well-known relation D = σ/χQ, where

χQ is the charge susceptibility [13]. In this section we determine χQ and various other

(second-order) susceptibilities, defined as second derivatives of the free energy with respect

to the chemical potential associated with a conserved charge.

We introduce the quark number density and the quark number susceptibilities

nf =
T

V

∂ lnZ

∂µf
, χff ′ =

T

V

∂2 lnZ

∂µf∂µf ′
=
∂nf
∂µf ′

, (4.1)

where Z is the partition function, V the spatial volume, and µf the quark chemical poten-
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tials for flavours f ∈ {u, d, s}. Baryon (B), isospin (I) and electrical charge (Q) chemical

potentials are related to the quark chemical potentials as

µu =
1

3
µB +

2e

3
µQ +

1

2
µI , µd =

1

3
µB −

e

3
µQ −

1

2
µI , µs =

1

3
µB −

e

3
µQ. (4.2)

In general we denote the electrical charge of the quark as eqf , with e the elementary charge

and qf = 2/3 or −1/3 its fractional charge.

All desired quantities can now be expressed in terms of nf and χff ′ . The baryon

number density and baryon number susceptibility are given by

nB =
T

V

∂ lnZ

∂µB
=

1

3

∑
f

nf , χB =
∂nB
∂µB

=
1

9

∑
f,f ′

χff ′ , (4.3)

the isospin density and its susceptibility are given by

nI =
T

V

∂ lnZ

∂µI
=

1

2
(nu − nd) , χI =

∂nI
∂µI

=
1

4
(χuu + χdd − 2χud) , (4.4)

and finally the electric charge density and its susceptibility are

nQ =
T

V

∂ lnZ

∂µQ
= e

∑
f

qfnf , χQ =
∂nQ
∂µQ

= e2
∑
f,f ′

qfqf ′χff ′ . (4.5)

To proceed we denote the fermion matrix on the lattice with M and introduce the

quark chemical potential µf in the usual way, i.e. as a constant imaginary vector potential

in the temporal direction [56]. We then encounter the following derivatives [57]

R
(1)
f =

T

V

〈
Tr

[
M−1 ∂M

∂µf

]〉
, R

(3)
ff ′ =

T

V

〈
Tr

[
M−1 ∂M

∂µf

]
Tr

[
M−1 ∂M

∂µf ′

]〉
,

R
(2)
f =

T

V

〈
Tr

[
M−1∂

2M

∂µ2
f

]〉
, R

(4)
f =

T

V

〈
Tr

[
M−1 ∂M

∂µf
M−1 ∂M

∂µf

]〉
, (4.6)

where all expectation values are evaluated at vanishing chemical potentials, µf = 0. It

follows from symmetry that nf = R
(1)
f = 0. The diagonal and off-diagional susceptibilities

are then written as

χff = R
(3)
ff +R

(2)
f −R

(4)
f , χff ′ = R

(3)
ff ′ (f 6= f ′), (4.7)

where we used the fact that the fermion matrix is the direct product of the fermion matrices

for each flavour. Denoting the degenerate light quarks with ` = u = d, we find finally that

9χB = 4R
(3)
`` +R(3)

ss + 4R
(3)
`s + 2

(
R

(2)
` −R

(4)
`

)
+R(2)

s −R(4)
s ,

(9/e2)χQ = R
(3)
`` +R(3)

ss − 2R
(3)
`s + 5

(
R

(2)
` −R

(4)
`

)
+R(2)

s −R(4)
s ,

2χI = R
(2)
` −R

(4)
` . (4.8)

We note that for two degenerate light flavours the isospin susceptibility χI does not depend

on the disconnected term R(3), while this term contributes more strongly to the baryon
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Figure 3. Disconnected (R(3), top) and connected (R(2,4), below) contributions to the suscepti-

bilities, for the light (`) and strange (s) quarks, versus temperature.

susceptibility χB than to the charge susceptibility χQ. Note that for three degenerate

flavours, χQ is also independent of R(3), since R
(3)
`` = R

(3)
`s = R

(3)
ss . The disconnected

term is numerically the most expensive quantity to be computed and it dominates the

uncertainty of the final results.

We have determined the susceptibilities numerically on our Ns = 24 ensembles, see

table 1. The traces in eq. (4.6) are estimated stochastically, using Nv = 9 noise vectors for

the connected terms R(2,4). For the disconnected term R(3), we use Nv = 200 noise vectors

in the Nτ = 40 case and Nv = 100 at the other temperatures. More technical details can

be found in ref. [57].

In figure 3 we present the results for R(2,3,4), for both light and strange quarks. We

observe that at high temperature, the dominant contribution comes from R(2) and that R(3)

is compatible with zero within errors, for both the diagonal and off-diagonal components.

In this context we note that in hard thermal loop (HTL) perturbation theory [58] the off-

diagonal susceptibility is nonzero, showing a clear correlation between different flavours.

Also recent lattice calculations [53] have shown a clear dip for the off-diagonal term in the

crossover region. Our result might be due to the relatively heavy sea quark masses.

The various susceptibilities χI , χQ and χB are presented in figure 4 (left), where all

observables are normalised with the corresponding quantities for free lattice fermions, with

– 9 –
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χ
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B

Figure 4. Isospin, charge and baryon number susceptibilities (left) and quark number susceptibil-

ity for light and strange quarks (right), normalised with the corresponding quantity for free lattice

fermions, denoted as χSB.

the same lattice geometry [57]. In the free case the bare fermion anisotropy is set equal

to the renormalised value for our ensembles, while the bare quark mass is set to zero. We

have evaluated the effect of the uncertainty in the determination of ξ, see ref. [59], on our

final results and found it to be a systematic effect of the order of 5%. In figure 4 we clearly

see a steep increase above 150 MeV, and for T & 250 MeV the value of the susceptibilities

is around 85% of the Stefan-Boltzmann value, i.e. the free case. The result for χQ will be

used in section 6 to determine the diffusion coefficient. The baryon number susceptibility

behaves qualitatively in a similar way to the other two, but has larger errors due to the way

the various terms combine, see eq. (4.8). Our results appear consistent with the findings of

other lattice groups [53, 54] and also with resummed perturbation theory [60], in particular

concerning the deviation from unity at the highest temperatures.

Finally, in figure 4 (right) we show separately the quark number susceptibilities for

light and strange quarks, again normalised with the corresponding quantity for free lattice

fermions. We see some indication for “flavour separation” during the QCD crossover tran-

sition, as discussed in ref. [61] and reported in ref. [62], where a continuum extrapolated

lattice QCD calculation was performed (see, however, ref. [63]).
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5 Conserved vector currents and conductivity

We consider the electromagnetic current for three flavours,

jem
µ =

∑
f

(eqf )jfµ =
2e

3
juµ −

e

3
jdµ −

e

3
jsµ , (5.1)

where jfµ are the vector currents for each flavour and eqf are the corresponding electric

charges. The Euclidean current-current correlator Gem
µν (τ) is then defined, at zero spatial

momentum, as

Gem
µν (τ) =

∫
d3x

〈
jem
µ (τ,x)jem

ν (0,0)†
〉
. (5.2)

This correlator admits a spectral representation of the form

Gem
µν (τ) =

∫ ∞
0

dω

2π
K(τ, ω)ρem

µν (ω), (5.3)

with the kernel

K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh[ω/2T ]
, (5.4)

where ρem
µν (ω) is the spectral function.

Application of linear response theory [13] yields the Kubo formula for the electrical

conductivity σ,

σ

T
=

1

6T
lim
ω→0

ρem(ω)

ω
, ρem(ω) =

3∑
i=1

ρem
ii (ω) , (5.5)

where the spectral function ρem(ω) has to be obtained from the Euclidean correlator

Gem(τ) =
∑

iG
em
ii (τ) by inverting eq. (5.3).

It will be useful to normalise the electromagnetic observables by the sum of the square

of the individual quark charges,

Cem = e2
∑
f

q2
f , (5.6)

which equals 2e2/3 for three flavours. We then define

Gem(τ) = CemG(τ), ρem(ω) = Cem ρ(ω), (5.7)

and consider G(τ) and ρ(ω) from now on. Where the light/strange quark contributions

are shown separately, the corresponding correlators and spectral functions are normalised

with the electromagnetic prefactor for two light quarks/one strange quark respectively.

5.1 Correlators

We use the exactly conserved vector current on the lattice as an interpolator for jem
µ , since

it is protected from renormalisation under quantum corrections. It is defined as

V C
µ (x) = cµ

[
ψ̄(x+ µ̂)(1 + γµ)U †µ(x)ψ(x)− ψ̄(x)(1− γµ)Uµ(x)ψ(x+ µ̂)

]
, (5.8)
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Figure 5. Conserved vector current correlator G(τ) in lattice units as a function of euclidean

time τT at different temperatures for light (left) and strange (right) quarks.

where c4 = 1/2, ci = 1/(2γf ) and Uµ(x) are the gauge links. The two connected diagrams

that contribute to the correlator (5.2) are〈
V C
µ (x)V C

ν (y)†
〉

= 2cµcν Re Tr
[
S(y + ν̂, x+ µ̂)U †µ(x)Γ+

µS(x, y)Uν(y)Γ̃+
ν

− S(y, x+ µ̂)U †µ(x)Γ+
µS(x, y + ν̂)U †ν (n)Γ̃−ν

]
, (5.9)

where S(x, y) = 〈ψ(x)ψ̄(y)〉 is the fermion propagator, Γ±µ = 1 ± γµ, Γ̃±µ = 1 ± γ̃µ, and

γ̃µ = γ4γµγ4. In the following we neglect the disconnected pieces, which is expected to

have a small effect, since their contribution is identically zero in the (degenerate) Nf = 3

case (since
∑

f qf = 0). We note that the same choice has been made in all previous

studies [18–22]. Finally, as we have shown in section 4, the contribution from disconnected

diagrams to the charge susceptibility is negligible.

We have computed the conserved vector current correlator G(τ) =
∑

iGii(τ) for the

ensembles presented in table 2. In figure 5 the results are shown for the light quarks (left)

and strange quark (right) at all the temperatures, as a function of Euclidean time. Note

that we present the correlators at the different temperatures as a function of τT , which

has the effect of separating them, even when they have identical decay. The correlators are

symmetric about τT = 1/2.

To study the effect of increasing the temperature, we show in figure 6 the vector

correlators normalised by the free (noninteracting) correlators on the lattice, again for both
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Figure 6. Conserved vector current correlator G(τ), normalised by the corresponding correlator

for free lattice fermions, for light (left) and strange (right) quarks, at different temperatures.

the light and strange quarks. We observe a clear difference between the low temperature

phase, where this ratio decreases with increasing τ , and the high temperature region where

the ratio is relatively constant and close to unity, demonstrating that the quarks are quasi-

free. The effect of the heavier strange quark mass is clearly visible, both below and above

Tc. For the light quarks, we observe that all four correlators above Tc follow the same

pattern and exceed the free correlator by about 7%. This may partly be due to the choice

of bare parameters in the free lattice calculation, where we choose the bare anisotropy

equal to the renormalised one and the bare quark mass m̂0 = 0. On the other hand, a

similar enhancement above the free correlator has been observed analytically in a next-to-

leading order perturbative calculation [64]. For the strange quark, the ratio at the highest

temperatures is consistent with 1.

At four temperatures, three above and one below Tc, we have access to different spatial

volumes, namely Ls ∼ 2.9 respectively 3.9 fm, or Ns = 24 and 32. To study the finite-size

effects, we show in figure 7 the ratio of the Ns = 32 to the Ns = 24 correlators. We observe

that finite-size effects are at the percent level or less and decrease at higher temperature.

5.2 Spectral functions and conductivity

To obtain the spectral functions and conductivity from the correlators, the spectral repre-

sentation (5.3) has to be inverted. For this we follow the same procedure as in our previous

work [19, 23], namely the Maximum Entropy Method (MEM) [65]. Other possibilities in-
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Figure 7. Estimate of finite-size effects: ratio of the conserved vector current correlator G(τ) for

Ns = 32 and Ns = 24, for four temperatures.

clude the use of a physically motivated Ansatz for the spectral function, with a number of

parameters to be determined [20–22], as well as alternative inversion methods [66–68].

Since the implementation of MEM has been presented in previous works [19, 23, 65],

we summarise here only the main ingredients. At large ω and nonzero τ , the kernel K(τ, ω)

is exponentially suppressed, hence one may impose an upper limit ω < ωmax. The finite

interval 0 ≤ ω < ωmax is then discretised using Nω points. Typical values are aτωmax = 3

and Nω = 1000. Eq. (5.3) has the form of a generalised Laplace transform, the inverse

of which is known to be an ill-posed problem. In MEM one extracts the most probable

spectral function ρ(ω), given some prior knowledge H and the data D. This is expressed

as a conditional probability, via Bayes theorem,

P [ρ|DH] =
P [D|ρH]P [ρ|H]

P [D|H]
∝ exp(−L+ αS), (5.10)
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Figure 8. Spectral functions ρ(ω)/ω2 for light (left) and strange quarks (right) for three temper-

atures. The filled area is the statistical error from jackknife. The vertical dashed lines indicate the

mass of the corresponding vector meson [39].

where L = 1
2χ

2 is the standard likelihood function and S is the Shannon-Jaynes entropy,

S =

∫ ∞
0

dω

2π

[
ρ(ω)−m(ω)− ρ(ω) ln

ρ(ω)

m(ω)

]
. (5.11)

Here m(ω) is the default model which implements the prior information on ρ(ω) in the

absence of the data D. The result for ρ(ω) is then obtained by extremising P [ρ|DH]. To

do this, we use a modification [19] of Bryan’s algorithm [69] which cures the 1/ω instability

of the kernel K(τ, ω) at small ω. The default model we use is [19]

m(ω) = m0(b+ ω)ω, (5.12)

where m0 is an overall normalisation set by fitting the correlator to the trial function

obtained by using m(ω) in the convolution integral (5.3). This default model is chosen

because it matches the perturbative ω-dependence at large ω in the continuum theory (on

the lattice this behaviour is modified due to the finite Brillouin zone [70, 71]) and allows

a nonzero value of ρ(ω)/ω as ω → 0 and hence a nonzero conductivity σ according to the

Kubo relation (5.5). As always, it is essential to check that the spectral functions obtained

are independent of the choices made in the MEM procedure, including the choice of default

model and its parameters. This is discussed in some detail in the next subsection, after

presenting the results.

The spectral functions obtained with MEM are shown in figure 8, normalised as

ρ(ω)/ω2. The spectral functions are shown for light (left) and strange (right) quarks

– 15 –
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Figure 9. Spectral functions ρ(ω)/ωT for the light (left) and the strange quarks (right) for three

temperatures. The filled area is the statistical error from jackknife. The intercept is proportional

to σ/T .

at three representative temperatures spanning the entire range. We always use the largest

volume, Ns = 32, when available. The vertical dashed lines correspond to an estimate of

the mass of the ground state in the corresponding vector channel at zero temperature [39].

The MEM analysis indeed indicates a peak at this value below Tc, which becomes less

pronounced and disappears as the temperature increases. The divergence at small ω at

the higher temperatures is due to the transport peak. This is emphasised in figure 9 where

ρ(ω)/ωT is shown. According to the Kubo relation (5.5), the intercepts are proportional

to σ/T . We observe a conductivity which is clearly nonzero above Tc and which depends

on the quark mass.

The final results for the conductivity are shown in figure 10 as a function of the

temperature. We present the result as C−1
emσ/T where Cem was defined in eq. (5.6). The

results are shown for the light and strange quarks separately and for all three quarks

combined. Note that we always first construct the electromagnetic current operator with

the correct weighting of the quark charges and then apply MEM to the resulting correlators.

The systematic uncertainty due to the choice of the parameter b in the default model (5.12)

is represented by the vertical size of the filled rectangles. This is discussed further below.

The statistical uncertainty due to the finite number of configurations is represented by the

upper and lower whiskers emanating from the rectangles, so that the total spread of values

(statistical and systematic) is given by the size of the error bars.

We observe that the contributions from the light and the strange quarks are compa-
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Figure 10. Temperature dependence of C−1
emσ/T for light and strange quarks separately, slightly

shifted for clarity (above) and combined (below). The vertical size of the rectangles reflects the

systematic uncertainty due to changes in the default model, while the whiskers depict the statistical

jackknife error on top of this.

rable, except in the crossover region, where the strange quark contribution is suppressed.

Note, however, that in the total conductivity the strange quark contribution is in any case

suppressed with respect to the light quarks, due to the different electromagnetic prefactors:
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Figure 11. Dependence of the conductivity on the parameter b in the default model for the light

quarks.

C`em = 5e2/9 versus Csem = e2/9.

5.3 Systematics

In order to have confidence in the results, it is necessary to study the systematic uncer-

tainties in the MEM analysis. As in our previous work, the sensitivity to ωmax is modest,

provided that 3 . aτωmax . 5. Here we show results from tests varying the b parameter

in the default model, excluding intermediate time points, and varying the choice of time

range included in the analysis.

In figure 11 we show the dependence of the conductivity on the default model parameter

b. The results are stable provided b & 0.4. We therefore use the range 0.3 ≤ b ≤ 1.0 to define

the systematic error coming from the default model in our conductivity determination, see

figure 10.

On our anisotropic lattices, the temporal lattice spacing is smaller than the spatial one,

with ξ = as/aτ = 3.5. Hence we have more time slices available for the MEM analysis than

on an isotropic lattice with the same spatial lattice spacing. One may question how this

improves the results, if at all. We test this by including in the MEM analysis either all time

slices (always discarding the first four), or one in two, or one in three. With our specific
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Figure 12. Dependence of the conductivity on the inclusion of Euclidean time points: all, 1 in 2,

or 1 in 3, always starting at τ = 4aτ , for the light quarks.

value of ξ, the latter is roughly equivalent to the isotropic case. The results are shown in

figure 12. We observe that at the lower temperatures the results are manifestly stable and

consistent and hence an isotropic lattice would suffice. On the other hand, at the higher

temperatures the benefit of the anisotropy is clearly visible: while not affecting the central

value substantially, it greatly reduces the systematic uncertainty in the reconstruction.

These results indicate the robustness of the results and the necessity of using anisotropic

lattices.

Finally, we assess the uncertainty arising from the choice of time window used in

the MEM analysis. Since we work at a fixed lattice spacing, increasing the temperature

implies having fewer time slices available. Hence, one possibility could be that the observed

temperature dependence of the conductivity is simply an artefact due to the different

number of time slices available and hence not physical. We test this by using MEM with

restricted time windows at various temperatures, see figure 13. In each row we consider

three temperatures. We always perform the MEM analysis starting at τ/aτ = 4. We

then include either all time slices available (filled and open symbols in the left plots), or

constrain the number of time slices by the highest temperature in each row (filled symbols

only). In this way we can study the effect of adding more time points as the temperature is

decreased. The resulting conductivities are shown on the right. Here the filled symbols are

obtained using the restricted MEM analysis, while the open symbols indicate the results

with all available time slices used. The results are remarkably stable, with agreement

between open and filled symbols at each temperature, including the highest one shown.
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Figure 13. Stability tests, for light quarks, discarding the last time slices in the correlators, for

three sets of temperatures in each row. See main text for details.

We hence conclude that the observed dependence of the conductivity on the temperature

is a thermal effect, rather than a bias introduced in our method.
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Figure 14. Diffusion coefficient D multiplied by 2πT as a function of the temperature T , using

D = σ/χQ. The vertical size of the rectangles represents the systematic uncertainty due to the

uncertainty in the estimate of the conductivity (see figure 10), while the whiskers indicate the

statistical jackknife error from both σ and χQ.

6 Diffusion coefficient

We are now in the position to combine the results for the conductivity σ and the charge

susceptibility χQ to obtain the charge diffusion coefficient D = σ/χQ. This ratio is inde-

pendent of the electromagnetic factor Cem. We present the result for the dimensionless

combination 2πTD in figure 14. The vertical size of the rectangles represents the system-

atic uncertainty coming from the determination of the conductivity, while the whiskers

indicate the statistical uncertainty in both σ and χQ.

The first observation we make is that the diffusion coefficient is of the order of 1/(2πT ).

In order to judge whether this is a sensible result, we note that in strongly coupled theories,

in particular those which can be treated with holography, this is exactly the magnitude that

is expected. For instance, the diffusion coefficient for R-charge in N = 4 Yang-Mills theory

at nonzero temperature equals 1/(2πT ) [32–34]. On the other hand, in weakly coupled

theories the diffusion coefficient, being proportional to the mean free path, is large and

diverges as the interactions are turned off. Hence our results are consistent with strongly

coupled real-time dynamics in the quark-gluon plasma in this temperature range and in

the hydrodynamic regime.
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The second observation is a dip in the diffusion coefficient in the transition region. This

can be understood as follows. We first note that at high temperature DT is expected to

rise, since the conductivity is expected to increase, due to the diverging mean free path at

weak coupling, while the susceptibility is of the order of the Stefan-Boltzmann value. Their

ratio will hence grow large. On the low-temperature side we note that the susceptibility

drops rapidly in the confined phase. On the other hand, we expect the conductivity to be

nonzero, since it can be assumed that a pion gas at low temperature is a conductor rather

than an insulator. Hence the ratio will again lead to a rise of DT . This then naturally

leads to a minimum around Tc, as in the case of the ratio of the shear viscosity to entropy

density [3, 72]. As a side remark we note that a successful numerical evaluation at very

low temperature along the lines followed here will be unlikely, since D involves the ratio of

two suppressed quantities in the confined phase.

We note here that a plot similar to figure 14 was constructed in ref. [4], by combining

the conductivity results for the two light flavours from ref. [23] with the (continuum-

extrapolated) susceptibility results from ref. [53]. The conductivity and (quark number)

susceptibility have also been computed in ref. [20] for quenched QCD and in ref. [22] for

QCD with Nf = 2 flavours, but the resulting diffusion coefficient was not given. Note that

the latter also contains a comparison with N = 4 Yang-Mills theory.

Finally, we remark that an attempt to determine the charm diffusion coefficient can

be found in ref. [73] using quenched lattice simulations on large and fine isotropic lattices,

with the finding that D ∼ 1/(πT ) in the deconfined phase. For very heavy quarks vari-

ous diffusion coefficients are being determined using heavy-quark effective theory, see e.g.

refs. [74–76] and references therein.

7 Conclusion

The main result in this paper is the determination of the electrical conductivity and charge

diffusion coefficient at nonzero temperature in QCD with Nf = 2 + 1 quark flavours, using

anisotropic lattice QCD simulations.

Our results for the conductivity σ confirm our previous findings where only the u and

d quark contributions were taken into account: σ/T increases by a factor of 5–6 in our

temperature range, which spans the chiral and deconfinement transition. We note that

the results for the conductivity at the lowest temperature should be treated with caution,

since a possible narrow transport peak resulting from hadronic interactions would not be

detectable with our methods. We find that the diffusion coefficient is of the order of

1/(2πT ) and has a dip around the transition temperature between the confined and the

deconfined phase. This is consistent with a strongly-coupled quark-gluon plasma in the

hydrodynamic regime.

In order to reach this result, we have used the Maximum Entropy Method to construct

spectral functions from the numerically determined Euclidean correlators of the conserved

vector current. The conductivity then follows from the linear behaviour of the spectral

functions at small energies. Independently we have determined various second-order sus-
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ceptibilities and found agreement with previous results. The diffusion coefficient is given

by the ratio of the electrical conductivity to the charge susceptibility.

As an outlook, we note that there are various things that can be improved. Besides

MEM, it might be useful to apply other recently developed inversion methods [66–68].

It should be stated that our results are robust against variation of several systematic in-

put variables, most notably those related to the Euclidean time interval and number of

Euclidean time points included. Here we found that the anisotropy is essential at the high-

est temperatures. Concerning our ensembles, we note that the spatial lattice is relatively

coarse and that the light quarks are heavier than in nature, which affects the transition

temperature. Hence it is worthwhile to repeat the analysis with lighter quarks on finer

lattices. An increase of the anisotropy on the other hand will allow for even better control

on systematics of the inversion. We hope to address some of these issues in the future.
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