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1 Introduction

Twenty years ago today, Seiberg discovered [1] that certain pairs of four dimensional N = 1

SU(N) gauge theories exhibit an IR duality, namely they flow to the same theory at low

energies (and, in particular, to the same superconformal field theory at the origin of moduli

space). In the following years this was generalized to many other examples of gauge theories

with four supercharges in four, three and two space-time dimensions. In three dimensions

dualities were first found for U(N) gauge groups rather than SU(N) groups. These dualities

were first discovered for theories with F chiral multiplets in the fundamental representation

and F̃ = F in the anti-fundamental representation [2]. This was then generalized to the

case where there is also a Chern-Simons (CS) level k [3], and then to arbitrary values of

N,F, F̃ and k for which the theory preserves supersymmetry [4], subject to the Z2-anomaly

constraint [5–7]

k + (F − F̃ )/2 ∈ Z . (1.1)

All of these dualities do not have any rigorous derivation so far, but they pass many

consistency checks, and they are all related to each other by various flows.

The 3d dualities for SU(N) gauge theories were only discovered relatively recently [8, 9],

and were studied so far only in some special cases such as the non-chiral case F = F̃ or

the purely chiral case F̃ = 0. Our goal in this note is to derive dualties for general values

of N,F, F̃ and k 6= 0, subject to (1.1). The method we will use is to start from the known

duality with F = F̃ , and to add real masses for some of the flavors in the fundamental

representation to reach the theories with F 6= F̃ . By following the same flow in the dual

theory, we will find the desired duals.

Note that for F = F̃ one can derive the 3d SU(N) duality by compactifying the

corresponding 4d duality on a circle and carefully flowing to low energies [8], but this

method is not available for F 6= F̃ since the corresponding 4d theories would be anomalous.

In this note we do not discuss the duals for SU(N) theories with F 6= F̃ and k = 0.

Presumably they can be found by similar methods, or by flowing from the finite k dualities

that we describe here, along the lines of [10–12].
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We begin in section 2 by describing the flow in theory A, and then in section 3 we

describe the same flow in the dual theory B, leading to our desired dual. Finally, in

section 4 we perform a simple test of the duality by comparing the baryonic flat directions

on both sides.

This note is based on [13], which contains additional details.

2 The flow in theory A

We will not review here the background material on 3d N = 2 gauge theories and their

known dualities; all the necessary background may be found in [8, 10, 14] and references

therein.

We begin with the SU(N) duality for F = F̃ [8]. Theory A is an SU(N)k Yang-Mills-

Chern-Simons theory with F chiral superfields Qi in the fundamental representation F

and F̃ = F chiral superfields Q̃ĩ in the anti-fundamental representation F. For simplicity,

from now on we take k > 0; results for k < 0 can be obtained by a parity transformation.

Theory A is dual to theory B which is an SU(F −N + k)−k ×U(1)F−N gauge theory, with

F fundamental chiral superfields qi and F̃ = F anti-fundamental chiral superfields q̃ĩ, and

with F × F singlets M i
ĩ
, coupled by the superpotential W = M i

ĩ
qiq̃

ĩ. M i
ĩ

map to QiQ̃ĩ in

theory A. The duality can be written in short as:1

SU(N)k ←→ SU(Ñ)−k ×U(1)Ñ−k , (2.1)

where Ñ = F −N + k. Theory A has a supersymmetric vacuum only for F −N + k ≥ 0.

The symmetries of theory A are summarized in the following table:

SU(N) SU(F )L SU(F )R U(1)A U(1)B
Q N F 1 1 1

Q̃ N 1 F 1 −1

We want to turn on a real mass for Fm chiral flavors, in order to flow to a theory with

general values of F 6= F̃ . Without loss of generality, we give mass to fundamental flavors,

and then integrate them out. Equivalent results for mass flows involving anti-fundamental

flavors can be achieved via a charge conjugation symmetry transformation.

Turning on real masses is equivalent to turning on background scalars in vector su-

perfields corresponding to the global symmetry currents of the global symmetry group

SU(F )L × SU(F )R × U(1)B × U(1)A. For simplicity, we turn on an equal mass for Fm

flavors in the fundamental representation. The mass matrices then have the form:

m̂Q =

(
m1Fm

0 · 1F−Fm

)
,

m̂Q̃ = 0 .

(2.2)

1We ignore here the global structure of the gauge group on the right-hand side, which is that of U(Ñ).

This is important for the consistency of the duality but will not play any role in this paper.

– 2 –



J
H
E
P
0
2
(
2
0
1
5
)
1
6
2

The mass deformation breaks SU(F )L → SU(F−Fm)×SU(Fm)×U(1). In order to translate

this to theory B it is useful to write it in terms of the background global symmetries: using

m̂Q = mSU(F )L +mU(1)A · 1F +mU(1)B · 1F , (2.3)

m̂Q̃ = −m†SU(F )R
+mU(1)A · 1F −mU(1)B · 1F , (2.4)

we can write (2.2) as:

mU(1)A = mU(1)B =
Fm

2F
·m, (2.5)

mSU(F )L =
Fm

F

(
F−Fm
Fm

1Fm

−1F−Fm

)
·m, (2.6)

mSU(F )R = 0 , (2.7)

with Tr(mSU(F )L) = 0 as required.

Classically it is clear that the D-term equations have a solution at Q = Q̃ = 0,

with a vanishing scalar in the vector multiplet. In this vacuum Fm chiral superfields in

the fundamental representation are massive and may be integrated out. We expect that

for many values of N,F, Fm and k this supersymmetric vacuum will survive also in the

quantum theory; as usual in IR dualities this is expected to happen whenever the rank of

the dual group is non-negative (while otherwise we expect no supersymmetric vacuum).

At low energies, in this vacuum we obtain an SU(N)k+∆k Chern-Simons theory, coupled to

F − Fm fundamentals and F anti-fundamental chiral superfields, with a shifted CS level:

∆k =
Fm sign (m)

2
. (2.8)

Note that the low-energy theory still satisfies (1.1), as required for consistency. This

vacuum preserves the full global symmetry preserved by the mass deformation, but only

SU(F −Fm)×SU(F )R×U(1)B×U(1)A acts non-trivially on the low-energy theory (where

the U(1)’s are some linear combinations of the original U(1)’s and the one coming from

SU(F )L).

Theory A also has various other flat directions, and in particular flat directions that

involve taking some eigenvalues of the scalar φ̂ in the SU(N) vector multiplet to scale with

m. These vacua are infinitely far away in the m → ∞ limit and we will not discuss them

here; presumably they can also be matched to theory B, as in the U(N) analysis of [15].

3 The flow in theory B

Theory B before we turn on the mass deformation is an SU(F −N+k)−k×U(1)F−N gauge

theory with F, F̃ = F fundamental and anti fundamental fields q, q̃ (charged under both

SU(F −N +k) and U(1)) and F ×F singlets M , coupled by the superpotential W = Mqq̃.

We denote Ñ = F −N + k, and as previously mentioned we take k > 0.
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The quantum numbers of these fields are as follows:

SU(Ñ)×U(1) SU(F )L SU(F )R U(1)A U(1)B
q Ñ1 F 1 −1 N

F−N
q̃ Ñ−1 1 F −1 − N

F−N
M 1 F F 2 0

where the U(1)B charges are chosen as in [8] such that the monopoles do not carry this

charge (in general one can mix this symmetry with U(1)gauge, under which the monopoles

are charged due to the CS coupling).

To analyze the corresponding flow to the one we did in theory A, we need to transform

the mass matrices to theory B. Using the fact that now

m̂q = −m†SU(F )L
−mU(1)A · 1F +

N

F −N
mU(1)B · 1F , (3.1)

m̂q̃ = mSU(F )R −mU(1)A · 1F −
N

F −N
mU(1)B · 1F , (3.2)

we find

m̂q = m

([
Fm

2(F−N) − 1
]
1Fm

Fm
2(F−N)1F−Fm

)
, (3.3)

m̂q̃ = − mFm

2(F −N)
1F . (3.4)

The mesons M i
ĩ

with i = 1, · · · , Fm also acquire a real mass.

We would like to find a vacuum of this mass-deformed theory which matches the one we

discussed in theory A — the global symmetry should not be broken, the mesons M i
ĩ

should

have vanishing expectation value, and the global symmetry SU(F−Fm)×SU(F )R×U(1)B×
U(1)A should act non-trivially on the low-energy theory. Since the fields that SU(F −Fm)

and SU(F )R act on have a real mass in theory B, it is clear that we only get light charged

particles if this is canceled by a vacuum expectation value for some of the eigenvalues of

the scalar field φ in the SU(Ñ)×U(1) vector multiplet, that should be equal to −m Fm
2(F−N) .

So, we want to try to find consistent supersymmetric vacua with this property. We will do

this by solving the classical equations of motion, assuming that in the range of parameters

where the theory does not break supersymmetry every classical solution corresponds to a

quantum vacuum as well.

We begin with the simplest ansatz in which φ = −m Fm
2(F−N)1Ñ , such that the quarks

charged under SU(F − Fm)× SU(F )R all remain massless, while the other Fm quarks are

massive. The D-term equation coming from the U(1) factor, including the contributions

from the CS term and from the Fayet-Iliopoulos (FI) term induced by integrating out the

massive quarks, is (we use the conventions of [10, 16])

− (F −N)
mFm

4π(F −N)
+
Fmm sign (m)

4π
−

Ñ∑
c=1

[ F∑
f=Fm+1

qcfq
∗f
c −

F∑
f=1

q̃fc q̃
∗c
f

]
= 0 . (3.5)
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Clearly this has a solution with unbroken flavor symmetry for the light quarks if and only

if m > 0. In this case the shift in the CS level of the low-energy theory from integrat-

ing out the massive quarks is ∆k = −Fm
2 sign (m) = −Fm

2 , so we get at low energies an

SU(Ñ)−k−Fm
2
× U(1)F−N−Fm

2
gauge theory with F − Fm fundamentals and F anti fun-

damentals (and still with the same W = Mqq̃ superpotential for the massless fields). We

match it with the low-energy theory we found in theory A for m > 0, and obtain the

following duality:

SU(N)k+Fm
2

←→ SU(Ñ)−k−Fm
2
×U(1)F−N−Fm

2
. (3.6)

For m < 0 the ansatz we made does not give vacua that are dual to the one we want,

so we need to take a more complicated ansatz. We guess that interesting solutions may be

found if some of the eigenvalues of φ are such that some of the components of the quarks

on which SU(Fm) acts remain massless. So the next simplest ansatz we try is of the form

φ = m

(
− Fm

2(F−N)1C×C

−
[

Fm
2(F−N) − 1

]
1P×P

)
, (3.7)

with C + P = Ñ . This ansatz breaks U(Ñ) to U(C)×U(P ). The SU(C)× SU(P ) factors

obviously have CS level (−k), but the U(1) factors come from a combination of the original

U(1) ⊂ U(Ñ) and a generator of SU(Ñ), so we need to compute their CS levels by taking

the appropriate combinations. We find that the U(1) ⊂ U(C) has a CS level (C − k), the

one in U(P ) has a CS level (P − k), and there is also a mixed CS term mixing the two

U(1)’s, of level one. Including the CS contributions and the appropriate induced FI terms

in the vacuum (3.7), this leads to the following D-term equations for the two U(1)’s:

U(1) ⊂ U(C) : −(C − k)
mFm

4π(F −N)
− mP

2π

(
Fm

2(F −N)
− 1

)
+
Fmm sign (m)

4π
−

C∑
c=1

[ F∑
f=Fm+1

qcfq
∗f
c −

F∑
f=1

q̃fc q̃
∗c
f

]
= 0 , (3.8)

U(1) ⊂ U(P ) : −(P − k)
m

2π

(
Fm

2(F −N)
− 1

)
− mC

2π

Fm

2(F −N)

−Fmm sign (m)

4π
−

Ñ∑
c=C+1

Fm∑
f=1

qcfq
∗f
c = 0 , (3.9)

where we included vacuum expectation values (VEVs) just for the fields that remain mass-

less in the vacuum (3.7). Note that for P = 0 (3.8) reduces to the previous case.

Now, we find that there is no solution with vanishing expectation values for the quarks

charged under SU(F − Fm)× SU(F )R when m > 0, but there is a solution for m < 0 and

P = Fm, if Fm ≤ k and Fm ≤ Ñ . In this vacuum we get at low energies a U(Ñ − Fm)

gauge theory with a shifted CS level ∆k = Fm
2 and with F − Fm, F flavors; the U(Fm)

sector is broken due to non-zero VEVs for the quarks. Matching the low-energy theory

with theory A now gives:

SU(N)k−Fm
2

←→ SU(Ñ − Fm)−k+Fm
2
×U(1)F−N−Fm

2
. (3.10)
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In terms of the low-energy theories, the two cases we discussed until now give precisely

the same duality

SU(N)k̃ ←→ SU(Ñ)−k̃ ×U(1)Ñ−k̃ (3.11)

between theories with F̂ fundamental and ˆ̃F anti-fundamental flavors, where k̃ is the CS

level of the low-energy theory, we have F̂ × ˆ̃F mesons on the right-hand side coupled by a

W = Mqq̃ superpotential, Ñ = F̂+ ˆ̃F
2 + k̃−N , and where in both derivations Fm = |F̂ − ˆ̃F |

obeys Fm ≤ 2k̃. As usual we expect that this duality makes sense, and our classical

solutions lead to quantum vacua, when Ñ ≥ 0, while otherwise the theory on the left-hand

side breaks supersymmetry.

We still did not find any solution in theory B when m < 0 and Fm > k, so in this case

we need to take a more complicated ansatz. We assume that φ has an additional block

with some eigenvalue (−mχ), namely that

φ = m

−
Fm

2(F−N)1C×C

−
[

Fm
2(F−N) − 1

]
1P×P

−χ1Ñ−C−P

 . (3.12)

The gauge group is now broken as

U(Ñ)→ U(C)×U(P )×U(Ñ − C − P ) . (3.13)

As before, we find that the CS level for the U(1) factor in each block of size L is

(L− k), and that there is a mixed CS coupling for the U(1)’s in each pair of blocks. The

U(1) D-term equations, taking into account the CS terms and the induced FI terms, are

thus now:

U(1)⊂U(C) : −(C−k)
mFm

4π(F−N)
−mP

2π

(
Fm

2(F−N)
−1

)
−mχ

2π
(Ñ−C−P )

+
Fmm sign (m)

4π
−

C∑
c=1

[ F∑
f=Fm+1

qcfq
∗f
c −

F∑
f=1

q̃fc q̃
∗c
f

]
= 0 ,

(3.14)

U(1)⊂U(P ) : −(P−k)
m

2π

(
Fm

2(F−N)
−1

)
−mχ

2π
(Ñ−C−P )−mC

2π

Fm

2(F−N)

−Fmm sign (m)

4π
−

P∑
c=C+1

Fm∑
f=1

qcfq
∗f
c = 0 ,

(3.15)

U(1)⊂U(Ñ−C−P ) : −(Ñ−C−P−k)
mχ

2π
− mFmC

4π(F−N)

−mP
2π

(
Fm

2(F −N)
−1

)
+
Fmm sign (m)

4π
·G = 0 ,

(3.16)
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where G is given by:

G =

(
Fm

2(F −N)
− χ− 1

)
sign

(
Fm

2(F −N)
− χ− 1

)
−
(

Fm

2(F −N)
− χ

)
sign

(
Fm

2(F −N)
− χ

)
.

(3.17)

In order to get the desired flavor symmetries, we are looking for a solution of the form

q = q̃ = 0 in (3.14). We find that when the third block is present, the only consistent case

is precisely the missing case Fm > k, m < 0 and then there is a solution when P = 0 and

χ < Fm
2(F−N) − 1. The equations then give C = F −N , so the χ block is of size k.

At low energies we get in this block a SU(k)−k×U(1)0 theory with no charged matter

fields, where the SU(k)−k part is at low energies a trivial decoupled theory. The U(1)

part has a mixed CS level with the U(F − N) sector. Thus, we get at low energies a

SU(F − N)−k+Fm
2
× U(1)F−N−k+Fm

2
× U(1)0 theory, where the matter is charged under

the first two factors, and the third is coupled to the second by a mixed CS coupling.

By considering the low-energy theories, the duality for this case can be written as (still

with mesons on the right-hand side coupled by a W = Mqq̃ superpotential):

SU(N)k̃ ←→ SU(Fmax −N)−k̃ ×U(1)Fmax−N−k̃ ×U(1)0 , (3.18)

with F̂ , ˆ̃F flavors, where Fmax = max(F̂ , ˆ̃F ) and Fm = |F̂ − ˆ̃F | > 2k̃, where k̃ is the CS

level of the low energy theory.

As in theory A, there are also various other supersymmetric vacua, which generally

give purely topological theories at low energies. We expect these to exactly match with

the extra vacua of theory A, but we did not explicitly verify this.

To summarize, our main result is that for an SU(N)k Chern-Simons gauge theory with

k > 0 and F, F̃ fundamental and anti-fundamental flavors, the dual theory is:

SU(Ñ)−k ×U(1)Ñ−k , ∆F ≤ 2k

SU(Fmax −N)−k ×U(1)Fmax−N−k ×U(1)0 , ∆F > 2k
(3.19)

with F, F̃ fundamental and anti-fundamental flavors, where ∆F = |F − F̃ |, we have F × F̃
mesons coupled by a W = Mqq̃ superpotential, in the first line the rank Ñ = F+F̃

2 +k−N ,

and in the second line Fmax = max(F, F̃ ) and there is a mixed CS term coupling the two

U(1)’s of level one. For F̃ = 0 this gives a different dual than the previously known one [8],

and we expect the relation between the two to be similar to other cases with two different

duals discussed in [8].

At the end of the day, the dualities we find are very similar to the U(N) dualities of [4].

This suggests that it may be possible to derive them by ‘ungauging’ the U(1) in the U(N)

dualities, along the lines discussed in [8, 9]. However, because of the Chern-Simons term

for the U(1) ⊂ U(N), it is not obvious exactly how to do this. Note that in the U(N)

duality of [4] there are extra terms in the superpotential involving monopole operators

when |∆F | = 2k, related to the fact that in that case there is an uncharged monopole.

However, for SU(N) this does not happen.
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4 A test of the duality

Most tests of the new duality (3.19) work in a straightforward way. In this section we

describe in detail how the baryonic flat directions match, since this is less trivial.

For simplicity, we discuss only the vacua where the gauge-invariant fields M = 0, while

one component of the baryons (B = QN or B̃ = Q̃N in theory A) is turned on. Note that

B can be non-zero only for F ≥ N , while B̃ can be non-zero only for F̃ ≥ N .

Recall that for F = F̃ the baryonic flat directions were matched in [8]. In theory B

they involve giving a VEV of rank k to the vector multiplet, such that Bk maps to the

monopole operator

Bk ' q(F−N)k exp

(
φ1 + · · ·+ φk

g2
+ i(a1 + · · ·+ ak)

)
. (4.1)

Here the φi’s are the eigenvalues of φ, and the ai’s are the duals to the photons when the

gauge group is broken to its Cartan subgroup. We want to study how this mapping works

for the general F 6= F̃ case.

In theory A, it is obvious that the SU(N) D-term equations (when we do not turn on

a VEV for the vector multiplet)

αδcc′ =

F∑
f=1

Q∗cf Q
f
c′ −

F̃∑
f=1

Q̃f
c′Q̃
∗c
f , (4.2)

for c, c′ = 1, · · · , N , have a solution with non-zero B when F ≥ N , and with non-zero B̃

when F̃ ≥ N . Note that on the baryonic branch the gauge group is broken at a high scale

if the VEVs are large, so the classical analysis of the vacua is valid.

The form of the corresponding solutions in theory B depend on the relative value of

∆F ≡ |F − F̃ | and of the CS level k. Without loss of generality we assume F < F̃ (the

other case is related to this by charge conjugation).

We start with the |∆F | ≤ 2k case. Theory B is given on the first line of (3.19). Given

the form of the matching of the baryonic branches in the ∆F = 0 case, we expect that we

should turn on a non-zero block in φ. So we use the following minimal ansatz:

φ =

(
χ1C

0 · 1P

)
, (4.3)

where C + P = Ñ . The D-term equations for the two U(1)’s are derived by an analysis

similar to the one in the previous section,

0 = (C − k)
χ

2π
− ∆F χ sign (χ)

4π
, (4.4)

0 =
Cχ

2π
−

Ñ∑
c=C+1

[ F∑
f=1

q∗fc qcf −
F̃∑

f=1

q̃cf q̃
f∗
c

]
. (4.5)
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It is clear that indeed we must have a non-trivial block (C > 0), since otherwise we need

to turn on both q and q̃ to have a non-trivial vacuum. From here we obtain equations for

C and P :

C = k +
∆F

2
sign (χ) , P = F −N +

∆F

2
− ∆F sign (χ)

2
. (4.6)

If we turn on a VEV for the q’s then χ > 0 and P = F −N ; we have a one dimensional

branch that satisfies (in order to satisfy the SU(P ) and U(1) D-terms) F ≥ F −N ≥ 0 in

agreement with theory A, in which the rank of φ is equal to k + (F̃ − F )/2. If we turn on

a VEV for the q̃’s then χ < 0, P = F̃ −N and the SU(P ) rank inequality F̃ ≥ F̃ −N ≥ 0

must hold, again in agreement with theory A. In this case the rank of φ is k+ (F − F̃ )/2.

All in all we find in this case a straightforward generalization of the ∆F = 0 case.

Next we consider the ∆F > 2k duality on the second line of (3.19), which gives

Ñ = F̃ − N . We denote by η the VEV of the scalar in the vector multiplet of the last

U(1). If φ = 0 then the D-term equation of the last U(1) is trivially satisfied, and the first

one gives

0 =
kη

2π
−

Ñ∑
c=1

[ F∑
f=1

qf∗c qcf −
F̃∑

f=1

q̃cf q̃
f∗
c

]
. (4.7)

If we want to turn on q̃ we find that due to the SU(Ñ) equations, this is possible whenever

F̃ ≥ Ñ = F̃ − N ≥ 0, as in theory A. However, if we try to turn on a VEV for the q’s

we find that this is possible only when F ≥ F̃ −N ≥ 0, which does not cover all the cases

where this branch exists in theory A.

Thus, for the other cases we need to take φ 6= 0, such that the dual to the baryon

includes a monopole operator. The D-term equation of the last U(1) implies tr(φ) = 0, so

the minimal ansatz in this case requires two non-zero blocks:

φ =

χ1C

χ̃1C̃

0 · 1P

 . (4.8)

The D-term equations are now

0 = Cχ+ C̃χ̃ ,

0 = (C − k)
χ

2π
+
C̃χ̃

2π
+
kη

2π
− ∆F χ sign (χ)

4π
,

0 = (C̃ − k)
χ̃

2π
+
Cχ

2π
+
kη

2π
− ∆F χ̃ sign (χ̃)

4π
,

0 =
Cχ

2π
+
C̃χ̃

2π
+
kη

2π
−

Ñ∑
c=C+C̃+1

[ F∑
f=1

qf∗c qcf −
F̃∑

f=1

q̃cf q̃
f∗
c

]
.

(4.9)

We get equations for C and C̃, for which the simplest solution is:2

C =
∆F

2
+ k , C̃ =

∆F

2
− k , P = F −N . (4.10)

2We take without loss of generality χ > 0, χ̃ < 0.
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And, we find that we can turn on a VEV for the q’s, with η > 0. The rank condition that

we find using the SU(P ) equations, F ≥ F −N ≥ 0, is consistent with theory A.

Thus, the baryonic flat directions match in all cases. It would be interesting to precisely

match also the baryonic operators, but we leave this to future work.
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