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finement) transitions in the Rényi entropies, where defect operators and Wilson loops are

known to act as order parameters.

Keywords: Wilson, ’t Hooft and Polyakov loops, Gauge-gravity correspondence, AdS-

CFT Correspondence, 1/N Expansion

ArXiv ePrint: 1407.8191

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)100

mailto:hartnoll@stanford.edu
mailto:rm89@stanford.edu
http://arxiv.org/abs/1407.8191
http://dx.doi.org/10.1007/JHEP02(2015)100


J
H
E
P
0
2
(
2
0
1
5
)
1
0
0

Contents

1 Introduction and objective 1
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1 Introduction and objective

Holographic duality [1] implies that the gravitational Hawking-Page transition is a decon-

finement phase transition in a dual large N gauge theory [2]. Deconfinement is the gauge

theory dual of the gravitational dynamics par excellence — the formation of black holes.

In recent years it has been understood that the gravitational thermodynamics of black

hole event horizons can be substantially generalized by considering entanglement entropy in

the dual field theory [3, 4]. The entanglement entropy of a spatial region in the ‘boundary’

field theory is universally given by the area of a bulk minimal surface that ends on this

boundary region. Black hole entropy arises as a special case. These minimal surfaces

provide a direct probe of the bulk geometry.

Consider the entanglement entropy of two disconnected regions in the quantum field

theory. In theories with holographic gravity duals, there are two different candidates for

the minimal surface whose area will give the entanglement entropy. Firstly there are

disconnected bulk surfaces that end on the two boundary regions separately. Secondly

there may be a single bulk surface that connects the two boundary regions through the

bulk. The two possibilities are illustrated in figure 1 below. When the boundary regions

are close together, the connected bulk surface typically has lower area and ‘wins’, whereas

when the boundary regions are far apart the disconnected bulk surfaces dominate. This is

a rather robust phase transition in the bulk ‘soap bubble’. It manifests itself in the fact

that the mutual information between the two regions vanishes (to leading order at large

N [5, 6]) in the case where the disconnected surfaces dominate.
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Figure 1. Connected and disconnected bulk minimal surfaces, ending on a disconnected boundary

region.

Our objective is to give a simple gauge-theoretic characterization of the phase tran-

sition in the bulk minimal surfaces. The main results are equations (6.1), (6.2) and (6.3)

below. Equation (6.2) is the more fundamental of these statements. The statements in-

volve the reduced density matrices formed with and without certain defect operator and

Wilson loop insertions. The defect operator separates the two components of the entan-

gled spatial regions, while the Wilson loop operator nontrivially links (i.e. threads) them.

We show that the reduced density matrices with and without the defect operator inser-

tion are perfectly distinguishable if and only if the Ryu-Takayanagi surface is connected.

Meanwhile, the reduced density matrices with and without the Wilson loop insertion are

perfectly distinguishable if and only if the Ryu-Takayanagi surface is disconnected. Per-

fectly distinguishable density matrices have infinite relative entropy. Thus in theories with

classical gravity duals, the vanishing or not of the mutual information can be captured

in a precise gauge-theoretic way. Our strategy will be to relate the ‘soap bubble’ phase

transition to the Hawking-Page transition, following [7].

2 Rényi entropies and Hawking-Page transitions

The reduced density matrix associated to a spatial region A of a quantum field theory in,

say, the vacuum is given by the Euclidean functional integral

ρ[φ+(x), φ−(x)] =
1

Z

∫
Dφ e−S[φ]δ

(
φA(0+, x)− φ+(x)

)
δ
(
φA(0−, x)− φ−(x)

)
. (2.1)

Here φA(t, x) is the restriction of the field φ to the region A at time t. The reduced density

matrix is a function of the field data on the region A.

The Rényi entropies are

Sn ≡
1

1− n
log trρn , (2.2)

and the entanglement entropy

S = lim
n→1+

Sn = −tr (ρ log ρ) . (2.3)

The Rényi entropies are equal to the partition function of the theory on an n-fold cover of

the original space. In particular

trρn =
Zn
Zn1

. (2.4)

Here Z1 = Z is the partition function on the original space.
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Figure 2. Nontrivial cycles on the n-fold cover. For illustration we have taken a two fold cover

(above and below the central dashed line) of three dimensional spacetime with the entangled region

given by two disconnected d = 2 dimensional discs (shaded). The different sheets of the cover are

glued together across these discs. The left hand figure illustrates the nontrivial 2-cycle. The right

hand figure illustrates the nontrivial 1-cycle.

In the n-fold cover, n copies of the original spacetime are glued together along the region

A. Let us consider the case in which A is given by two disconnected d-dimensional spatial

regions in a d + 1 dimensional spacetime. In this case, the n-fold cover is a topologically

nontrivial spacetime. In particular, there are n−1 nontrivial d-cycles (we can think of these

as d-spheres that enclose one of the regions on each sheet) and also n−1 nontrivial 1-cycles

(which we can think of as circles transversing the two regions). These cycles are illustrated

in figure 2. In counting the nontrivial cycles, each sheet is compactified at infinity.

In (2.4) the nth Rényi entropy is expressed as the partition function of the gauge

theory on the n-fold cover, which we have seen is topologically nontrivial. To evaluate this

partition function holographically in the semiclassical large N limit, one needs to find the

bulk solution whose boundary manifold is the n-fold cover geometry. When the boundary is

topologically nontrivial, there are distinct topological possibilities for the bulk, depending

on whether the various nontrivial boundary cycles are contractible in the bulk or not. This

is illustrated in figure 3 below for the case where the boundary is S1 × S2, the original

Hawking-Page transition [8]. With one nontrivial 1-cycle and one nontrivial 2-cycle, this

boundary geometry is topologically the same as the double cover geometry illustrated above

in figure 2 (although the double cover geometry has singularities at the boundary of the

region A).

When a nontrivial boundary 1-cycle is trivialized in the bulk, then one can consider a

Euclidean fundamental string worldsheet wrapping the corresponding bulk ‘cigar’ geometry

(i.e. a surface in the bulk whose only boundary is the boundary 1-cycle). This string has a

finite renormalized on shell action. A string worldsheet ending on the boundary computes

the expectation value of a Wilson loop operator in the dual gauge theory [9, 10]. When the

1-cycle is contractible in the bulk, the Wilson loop around the boundary 1-cycle is nonzero.

If the 1-cycle remains nontrivial in the bulk, then no such finite action string worldsheet

exists and the Wilson loop is zero. This Wilson loop is therefore an order parameter for

the bulk topology [2].
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Figure 3. The Hawking-Page transition. Two possible bulk topologies for an S1 × S2 boundary

geometry. In the left hand figure, the S1 remains topologically nontrivial in the bulk whereas the S2

is contractible (thermal AdS4). In the right hand figure, the S1 contracts but the S2 is nontrivial

(Schwarzschild-AdS4).

To apply an analogous argument to a nontrivial boundary d-cycle in the n-fold cover, we

need a d+1 dimensional bulk object that can wrap a corresponding d+1 dimensional bulk

‘cigar’ when the boundary cycle is contractible in the bulk. While less generically defined

than the Wilson loop, the required objects typically exist in theories with holographic

duals. Specifically, the d + 1 dimensional boundary field theory describes the low energy

excitations of a stack of coincident Dd-branes (possibly originating from higher dimensional

branes wrapped on internal cycles). Euclidean Dd-branes can therefore be used in the bulk,

and end on d-cycles on the boundary. In the boundary, this corresponds to inserting d-

dimensional defect operators [11, 12]. The defect operators are higher dimensional (for

d > 1) cousins of ’t Hooft loops, e.g. [13]. Following the logic of the previous paragraph,

these operators are field-theoretic order parameters for the bulk topology. In particular,

if the boundary d-cycle is not contractible in the bulk, then the expectation value of the

defector operator on the cycle will vanish.

For the special case in which the boundary theory is 1 + 1 dimensional, then we can

use Wilson loops — dual to fundamental strings — as order parameters for both types of

boundary cycle.

So far we have described two types of phase transitions: Hawking-Page type transi-

tions, illustrated in figure 3, that can occur in the Rényi entropies, and phase transitions

in the holographic entanglement entropy, illustrated in figure 1. It was argued in [7] that

the ‘soap bubble’ transitions in the entanglement entropy are in fact the n → 1+ limit of

the Hawking-Page transitions. This connection can be shown for 1+1 dimensional CFTs

with gravity duals by explicitly constructing the bulk geometries dual to the n-fold covers,

in a way that allows continuation to non-integer n [14, 15]. It suggests that an order pa-

rameter for the entanglement entropy transitions can be obtained by taking an appropriate

n → 1+ limit of the Wilson loop and D-brane order parameters for the Rényi transitions.

This will be seen to be true. We will also see, however, that the fundamental underlying

fact, distinguishability of certain density matrices, can be deduced from the integer Rényi

entropies, without needing any analytic continuation.
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3 Distinguishability of defect operators

Consider first the case of d-dimensional defect operators. The Wilson loop case will be

described in the following section. We start by writing down the density matrix associated

to the region A in the presence of such an operator, call it WΣ, where Σ is the worldvolume

of the Euclidean defect:

ρWΣ [φ+(x), φ−(x)] =
1

〈WΣ〉

∫
DφWΣ e

−S[φ]δ
(
φA(0+, x)− φ+(x)

)
δ
(
φA(0−, x)− φ−(x)

)
.

(3.1)

The expectation value 〈WΣ〉1 = 〈WΣ〉 appearing in the normalization is nonzero, there is no

topology with a single sheet. While the reduced density matrix (2.1) is obtained from the

vacuum of the field theory, the reduced density matrix described by (3.1) corresponds to

the state created by the (Lorentzian analytic continuation of the) defect operator insertion

in the path integral. For instance, in the 1 + 1 dimensional case in which WΣ can be

taken to be a Wilson loop operator, it is the state created by dragging a heavy external

quark along the (analytic continuation of the) worldline Σ. The worldvolume Σ should be

symmetric about the t = 0 time slice.

An order parameter for a phase transition in the Rényi entropies is, as we discussed

above, the expectation value of the defect operator around a nontrivial d-cycle in the n-fold

cover. We take the defect worldvolume to surround one component of the region A on only

one of the n sheets, for instance as illustrated in figure 2. We will write this operator

as W
(1)
Σ , by which we mean that the worldvolume Σ is entirely on the first sheet. This

expectation value can conveniently be normalized as

Wn ≡
Z1

〈WΣ〉1
〈W (1)

Σ 〉n
Zn

=
tr
(
ρWΣρn−1

)
trρn

. (3.2)

For all integer n > 1, this quantity is zero when the boundary d-cycle does not contract in

the bulk and nonzero if it does. We are interested in the analytic continuation to n→ 1+,

note that W1 = 1 always, and therefore consider

− lim
n→1

d

dn
Wn = tr

[(
ρ− ρWΣ

)
log ρ

]
= ∆〈H〉 = S(ρWΣ ‖ ρ) + ∆S . (3.3)

In the final line we expressed the quantity in two ways. Firstly, as the change in the

expectation value of the modular Hamiltonian: ρ ≡ e−H/tr(e−H). So ∆〈H〉 = tr(ρWΣH)−
tr(ρH). Secondly, we introduced the relative quantum entropy of ρWΣ with respect to ρ,

S(ρWΣ ‖ ρ) ≡ tr
(
ρWΣ log ρWΣ

)
− tr

(
ρWΣ log ρ

)
, (3.4)

as well as the difference in entanglement entropy upon insertion of the Wilson loop,

∆S = S(ρWΣ)− S(ρ) . (3.5)

A useful discussion of quantum relative entropy can be found in [16]. Klein’s inequality

states that S(ρWΣ ‖ ρ) ≥ 0, vanishing only when ρ = ρWΣ . Both the relative entropy and

the difference in entanglement entropy are UV finite quantities.
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In the remainder we show that the quantity S(ρWΣ ‖ ρ) + ∆S in (3.3) indeed

captures holographic phase transitions in the mutual information — of the type illustrated

in figure 1. We will show that the topology of the Ryu-Takayanagi minimal surface as

n→ 1+ is determined by the topology of the spacetimes that compute the Rényi entropies

at integer n. This ties together the Hawking-Page transitions to the entanglement entropy

transition. We must also explain how to analytically continue the holographic computation

of the defect operator 〈W (1)
Σ 〉n to non-integer n.

Independently of how the defect operators are analytically continued in detail — to be

described below — a simple argument shows that if two density matrices satisfy tr
(
ρAρB

)
=

0, then tr
(
ρA(ρB)x

)
= 0 for all x > 0 and furthermore S(ρA||ρB) is infinite. Work in a basis

in which ρB is diagonal, so that ρB = diag(λ1, λ2, . . .). Then tr
(
ρAρB

)
=
∑

i ρ
A
iiλi = 0.

The positive semi-definite property of density matrices implies that λi, ρ
A
ii ≥ 0 for all i.

Thus for every i either ρAii or λi vanishes. It follows that tr
(
ρA(ρB)x

)
=
∑

i ρ
A
iiλ

x
i = 0

for all x > 0. Furthermore, the fact that trρA = 1 requires at least one of the ρAii to be

nonzero. The corresponding λi must therefore vanish. It follows that
∑

i ρ
A
ii log λi, and

hence S(ρA||ρB), is infinite. Applying this logic to our case we have

〈W (1)
Σ 〉n = 0 ⇒ tr

(
ρWΣρn−1

)
= 0 ⇒ S(ρWΣ ‖ ρ) =∞ . (3.6)

The change in entanglement entropy in (3.3) is finite, as we recall after equation (6.1)

below. Therefore, it is the infinite relative entropy in (3.6) that carries the signature of

the vanishing Rényi entropies Wn with defect operator insertions to n→ 1+. Very näıvely

we can think of this as the infinite negative derivative of dWn
dn at n = 1 as it jumps from

W1 = 1 to Wn = 0 for n > 1. However, the conclusion (3.6) connects vanishing defect

operators at integer n, e.g. tr
(
ρWΣρ

)
= 0 at n = 2, directly to the relative entropy without

need of analytic continuation.

A slightly stronger statement follows from tr
(
ρWΣρ

)
= 0. Because both density matri-

ces are positive semi-definite Hermitian matrices, we can write ρWΣ = AA† and ρ = BB†,

for some Hermitian matrices A and B. It follows that tr
[
(A†B)†(A†B)

]
= 0. This last

statement implies A†B = 0 as a matrix equation. Consider a basis in which ρWΣ and hence

A are diagonal. The result A†B = 0 now implies that Bik = 0 for all i in the support of

the diagonalized A. Hermiticity of B then gives Bki = 0. It follows that suppA ⊂ kerB.

Therefore A and B, and hence ρWΣ and ρ, have orthogonal support.

Orthogonal support implies the infinite relative entropy of equation (3.6), but is a

stronger condition in general. An important consequence of orthogonal support is that

the density matrices are perfectly distinguishable. Consider a measurement described by

POVM elements corresponding to (i) projection onto the support of ρWΣ , (ii) projection

onto the support of ρ, and (iii) projection onto the intersection of the kernels of ρWΣ and ρ.

If the state is given by ρWΣ then the first element is observed with probability one whereas

if the state is given by ρ, then the second element is observed with probability one. The

third element is never observed. Therefore:

tr
(
ρWΣρ

)
= 0 ⇒ ρWΣ and ρ perfectly distinguishable. (3.7)

– 6 –
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The result (3.7) is well known (and elementary) in the context of quantum information

theory. We have included a derivation here for completeness.

4 Distinguishability of Wilson loops

In section 2 we noted that the n-fold cover geometries that compute the Rényi entropies

for two disjoint spatial regions typically had nontrivial 1-cycles and d-cycles. See figure 2.

The previous section 3 has discussed the nontrivial d-cycles. We now return to the 1-cycles.

The 1-cycles can be wrapped by Wilson loop operators. Wilson loops are more univer-

sally defined than the defect operators we have discussed so far. On the other hand, as we

see in figure 2, the nontrivial 1-cycles necessarily straddle more than one of the sheets. At

first sight this might appear to complicate expressing the expectation value of the Wilson

loop as a trace involving density matrices. For instance, consider a Wilson loop along a

nontrivial curve C that is supported on the first two of n sheets (with n ≥ 2), as illustrated

in figure 2. We can write this as

〈WC〉n
Zn

=
〈W+〉1〈W−〉1

Z2
1

tr
(
ρ+ρ−ρn−2

)
trρn

. (4.1)

The prefactor 〈W+〉1〈W−〉1/Z2
1 comes from the normalizations of the density matrices

in (2.1) and (3.1). Here ρ± are defined analogously to the ρWΣ that we considered previously

in (3.1). However, the difference is that now the Wilson loop WC must be split up into two

parts W±. The Wilson line W+ is the part of WC on the first sheet while W− is the part of

WC on the second sheet. This means that ρ± are not generally positive semidefinite density

matrices because they are not constructed from a state times its hermitian conjugate.

Instead, requiring that W+ is obtained from W− by reflecting about the t = 0 time slice,

we must write

ρ+ = CD† , ρ− = DC† , (4.2)

for matrices C and D. Therefore ρ± = (ρ∓)
†
. This representation follows from writing the

pure states with and without the W+ insertion as

|vac〉 =
∑
ij

Dij |i〉A|j〉Ac , |W+〉 =
∑
ij

Cij |i〉A|j〉Ac , (4.3)

and then tracing over the compliment Ac of the entangled region A to obtain

ρ+ = trAc |W+〉〈vac| , ρ− = trAc |vac〉〈W+| . (4.4)

Unlike the defect operator case in (3.2), the expression (4.1) is not naturally expanded

about n = 1. However, a more useful perspective exists. Define the density matrices

ρ̂ = trA|vac〉〈vac| = (D†D)T , ρ̂WC = trA|W+〉〈W+| = (C†C)T . (4.5)

Note that these density matrices are defined by integrating over the degrees of freedom

inside rather than outside the spatial region A. As we illustrate in the following figure 4,

if we build the Rényi entropies associated to these density matrices, then the Wilson

– 7 –
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Figure 4. The double cover geometry for two different density matrices. Left: The double cover

geometry for the density matrix inside the region A (the two disks). The Wilson loop spans the

two sheets. Right: The double cover geometry for the density matrix outside the two disks. The

Wilson loop is now entirely on the first sheet. In both cases the sheets are glued along the shaded

grey regions.

loop is now on purely the first sheet. In terms of these new density matrices, we can

compute the expectation values of Wilson loops on the first sheet of an n-fold cover using

〈ŴC〉n ∼ tr
(
ρ̂WC ρ̂n−1

)
. These formulae are now entirely analogous to those in (3.2) for

defect operators, and the n→ 1+ limit can be taken in exactly the same way.

Throughout this paper we will stick with the n-sheeted covers discussed in earlier

sections, associated with the density matrices ρ and ρWΣ and built by integrating out

degrees of freedom outside the spatial region A. However, the previous paragraph shows

that by instead integrating out degrees of freedom inside the spatial region A, exactly the

same logic can be applied to the density matrices ρ̂ and ρ̂WC . Even using the ‘wrong’

covers for the discussion of Wilson loops, we can obtain the desired result concerning

distinguishability of ρ̂ and ρ̂WC . Suppose that the boundary 1-cycle in the n = 2 cover

does not trivialize in the bulk. Then we have

〈WC〉2 = 0 ⇒ tr
(
ρ+ρ−

)
= 0 ⇒ tr

(
ρ̂ ρ̂WC

)
= 0 . (4.6)

The final step uses the definitions (4.2) and (4.5). But ρ̂ and ρ̂WC are now honest, positive

semi-definite, density matrices. Therefore, by the arguments of the previous section we

can conclude that when 〈WC〉2 vanishes, then ρ̂ and ρ̂WC have orthogonal support, are

perfectly distinguishable, and have infinite relative entropy.

Taking the present and previous sections together, we have shown that:

d-cycles not trivialized in bulk ⇒ ρ, ρWΣ perfectly distinguishable , (4.7)

1-cycles not trivialized in bulk ⇒ ρ̂, ρ̂WC perfectly distinguishable . (4.8)

The result (4.7) relates the bulk topology to the question: Can an observer outside the

region A be certain about the presence of a pair of quarks entangled between the two

components of A? Once again, these results can be obtained directly from expectation

values of Wilson loop and defect operators on the double cover geometry. The next step is

to relate which cycle is trivialized to the connectedness of the Ryu-Takayanagi surface.

– 8 –
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5 Topology of the Ryu-Takayanagi surface

The boundary geometry, prior to inserting the defect operator, admits a Zn ‘replica’ sym-

metry that rotates the n planes of the cover. Following [4] we assume that this symmetry

extends to the bulk spacetime Mn. While unproven, this assumption has so far led to

correct physical answers.1 We can therefore take the quotient to obtain the spacetime

M̃n ≡Mn/Zn . (5.1)

The spacetime M̃n has a conical defect in the bulk along the fixed point locus of the Zn
action. On the asymptotic boundary of Mn, the fixed points of the Zn action are the

boundaries of the spatial region A (the regions over which the n sheets are glued). We

can see this by considering a small loop that links the boundary of the spatial region A.

This loop needs to encircle the boundary of the region n times in order to close. We can

parametrize this circle by a coordinate τ with period 2πn. The Zn quotient then acts by

identification τ ∼ τ +2π. These circles shrink to zero at the boundary of the spatial region

A, which is therefore a fixed point locus of Zn. The (d− 1)-dimensional fixed point locus

of the boundary extends to a d-dimensional conical defect in M̃n. The key observation

of [4] is that the space M̃n with a conical defect can be defined for any n, not just integers,

and furthermore that as n → 1+, the conical defect surface becomes precisely the Ryu-

Takayanagi minimal surface in the n = 1 bulk spacetime. We proceed to argue that the

topology of the conical defect surface in M̃n — and hence the Ryu-Takayanagi surface in

the limit n → 1+ — is determined by the topology of the bulk spacetime Mn. The result

of this section is shown in figure 9 and equations (5.2) and (5.3) below.

To illustrate the general argument, we consider first in some detail the case of two

disjoint intervals in 1+1 dimensions. In particular, for the case of a CFT, it is convenient

(following e.g. [4, 17]) to perform a Weyl transformation on the n-fold cover boundary

geometry that sends the (four) fixed points to infinity. This renders the boundary geometry

smooth and easier to visualize. Figure 5 below illustrates this map.

Consider in particular the n = 2 geometry. The boundary geometry is Z2 symmetric.

We can shade half of the boundary; this half is mapped into the other half by the Z2 action.

See figure 6 below. The bulk is also Z2 symmetric (by assumption), and hence it must be

possible to extend this shading into the bulk. The shaded and non-shaded regions of the

boundary in figure 6 are separated by two circles. One circle goes through the points c and

d and the other goes through the points a and b. These two circles must therefore extend

into the bulk as boundaries of the shaded and non-shaded halves of the bulk. Thus there

must be a surface S in the bulk whose boundary ∂S = S1 ∪ S1. This bounding surface

is itself identified under the Z2 action, and will contain the line of fixed points/conical

defects. By constraining the topology of this surface we will constrain the topology of the

line of fixed points.

There are two topologically distinct ways to fill in the boundary torus, corresponding

to trivializing different boundary cycles. We can think of this as either filling in the inside

1While the boundary geometry is an n-fold cover of the n = 1 geometry, this is typically not the case in

the bulk. I.e. the bulk is not simply n copies of the n = 1 spacetime [4, 7].
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Figure 5. Weyl transformation of the n-fold cover (for n = 1, 2, 3) of two intervals in 1+1

dimensions to a space in which the fixed points of the Zn action (labelled a, b, c, d) are mapped

to infinity. These spaces are respectively a sphere, torus and genus two Riemann surface, all with

four points deleted. The boundaries joining a and b need to be sewn together in the obvious way,

namely, the vertical lines are to be pairwise identified.

Figure 6. Division of the boundary geometry, for n = 2, into halves that are mapped into each

other by the Z2 action. One half has been shaded. The boundary of the shaded region is two

circles, one going through a and b and the other through c and d. These circles are themselves each

identified under the Z2 action, with a, b, c, d as fixed points.

or the outside of the torus. The filling will be determined dynamically and transitions

between the two possible fillings as a function of the modular parameter of the boundary

torus are Hawking-Page transitions. Consider first the case in which the interior of the torus

in figure 6 is to be filled in. We must therefore determine the possible embeddings of the

bounding surface S (separating two halves of the interior of the torus that are to be mapped

under the Z2 action). The simplest possibility is that S = D2 ∪D2, i.e. it is the union of

two discs with boundaries given by the two circles described in the previous paragraph.

This corresponds to the obvious shading of the bulk in which we shade half of the interior

of the torus. The alternative possibility for the bounding surface is S = S1 × [0, 1]. These

two possibilities are illustrated in figure 7 below.

Of the two possibilities shown in figure 7, the surface S = S1 × [0, 1] cannot in fact

separate the bulk into two halves that are mapped into each other under an extension of
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Figure 7. Two possible extensions of the boundary shading to the bulk. The surface S separating

the bulk (a filled in torus) into two parts is shown in black. In the left figure S = D2 ∪D2. In the

right figure S = S1 × [0, 1].

the boundary Z2 symmetry. Consider the two loops on the boundary that are shown in the

figure (the two circles that separate a and d on either side of d). These are mapped into

each other under the Z2 action on the boundary. However, under the division of the bulk

by the surface S = S1 × [0, 1], one of these loops is contractible within its corresponding

bulk region while the other is not (this argument is made before taking the Z2 quotient of

the bulk). Therefore the homotopic contractions of the two loops cannot be mapped into

each other, and hence this particular division of the bulk cannot correspond to an extension

of the Z2 symmetry on the boundary. Only the other other division, with S = D2 ∪ D2

is admissible.

We have just seen that there is a topologically unique extension of the Z2 symmetry

into the bulk. The conical defect lines are contained within the bounding surface S. Under

the Z2 action, each disc D2 is folded on itself, leaving a line of fixed points running along

the diameter of the disc. It follows that there are two lines of fixed points in the bulk:

one running from the boundary fixed point a to the boundary fixed point b and another

running from c to d. Therefore we have fixed the topology of the bulk conical defect lines

for n = 2 and for a filled in torus.

The argument is immediately extended to the case of the n-fold cover. Here we shade

the boundary in n different colors. The extension of the Zn symmetry, and hence the

coloring, to the bulk is again topologically unique and given by the obvious generalization

of the n = 2 case. A slight difference in making the argument for the n > 2 cases is that

one must keep track of the line of fixed points itself in the bulk, as this is where multiple

surfaces (each analogous to S above) separating differently shaded regions must meet. The

fixed point lines in the bulk must again run from a to b and from c to d.

We can now consider the case in which the n = 2 torus is ‘filled out’ rather than ‘filled

in’ (i.e. the opposite boundary cycle is trivialized in the bulk). In this case the only possible

bounding surface extending the boundary Z2 action into the bulk (i.e. the outside of the

torus) has topology S = S1 × [0, 1]. This surface is illustrated in figure 8. However, there

is now no topological argument excluding this surface from separating two regions that are

mapped into each other under a Z2 action. Indeed, a bulk surface with topology D2 ∪D2

does not exist in this case. Therefore, in this case, the fixed point lines in the bulk, which

lie in the surface S, must connect a to d and b to c.2 Note that the Z2 again acts on S itself,

2One might also think of connecting a to c and b to d in this case. This, however, would lead to

intersecting geodesics in the n → 1+ limit. Arguments along the lines of those in [18] show that the
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Figure 8. Extension of the boundary shading to the bulk in the case when the bulk is the exterior

of the torus. The bounding surface is shown in dark grey and has topology S = S1 × [0, 1].

so the only true boundary to M̃2 = M2/Z2 will be the lines of fixed points. As before, this

argument can be extended to n > 2.

In the above arguments it is important that, whichever the filling, the boundary cycles

have been trivialized in a Zn invariant way. This allows us to avoid considering more

complicated bulk geometries beyond the simple ‘interior’ or ‘exterior’ fillings (see e.g. [14]).

This will be important in the following section when we compute the expectation value

of certain defect operators. The two Zn symmetric fillings are of course more invariantly

characterized by which cycles on the n-fold cover are trivialized in the bulk (i.e. the 1-cycles

or the d-cycles).

The Ryu-Takayanagi minimal surface is the n → 1+ limit of the lines of conical de-

fects [4]. We now observe that, for a given boundary geometry and choice of regions to

entangle, the two possible bulk geometries (interior and exterior fillings) do not exchange

dominance as a function of n. This was known to hold for the entanglement of two inter-

vals in 1 + 1 dimensions [14, 15]. More generally, it follows from the arguments around

equation (3.6) above. Namely, the vanishing of the defect operator (or Wilson loop) in the

n = 2 geometry implies the orthogonality of density matrices with and without the defector

operator insertion. But, as in equation (3.6), this orthogonality of density matrices now

implies vanishing of the defect operator for all n > 1. The vanishing of the defect operator

characterizes the topology of the filling. Therefore the dominant filling cannot change as

a function of n. Given that there is no change in filling as a function of n, the topology

of the defect lines in M̃n can be unambiguously continued to n → 1+. In particular we

can conclude that the Ryu-Takayanagi surface will be connected when the exterior fillings

dominate and disconnected when the interior fillings dominate. This is the main result of

this section so far and is in agreement with explicit computations in [7, 14]. We illustrate

the relation in figure 9 below.

Theories in general higher dimensions follow the same logic. We will restrict ourselves

to the case in which there are two disconnected spatial regions, each with the topology of a

disc Dd in the d+1 boundary spacetime dimensions. As above, we can start by considering

the n = 2 geometry. The topology of the n = 2 cover of the boundary geometry is S1×Sd.
This can be seen by considering an S1 that transverses the spatial regions as shown on the

right hand side of figure 2. The geometry is then swept out by an Sd at each point on the

S1. These Sds become increasing pancake-like as they approach the disc regions. For the

intersecting geodesics will not be minimal. Therefore it is the configuration described in the main text that

is relevant.
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Figure 9. The filling of the boundary n-fold covers determines the topology of the Ryu-Takayangi

surface.

case of a CFT, it is again natural to perform a Weyl transformation that maps the conical

singularities to infinity or otherwise ‘unflattens’ the Sds at the disks.

As in the 1 + 1 dimensional case, discussed in detail above, the Z2 action divides the

boundary S1×Sd geometry into two halves that are mapped into each other. These halves

are divided by Sd ∪ Sd, generalizing the S1 ∪ S1 that we encountered before. Once again

the question is how to extend this division into the bulk. Extending this division requires

us to identify an appropriate bulk surface S with boundary ∂S = Sd ∪ Sd.
The geometry S1×Sd is the boundary of both D2×Sd and S1×Dd+1. These are the

two possible fillings. Exactly the same logic as previously leads to the conclusions that

S1 filled in ⇒ bulk bounding surface S = [0, 1]× Sd

⇒ conical defect surface connected. (5.2)

Sd filled in ⇒ bulk bounding surface S = Dd+1 ∪Dd+1

⇒ conical defect surface disconnected. (5.3)

The discussion of the previous few paragraphs extends straightforwardly to the higher

cover case with n > 2. While the geometry is no longer globally a direct product, it is

still locally (almost everywhere) of the form an interval times Sd. This is again seen by

considering a one dimensional curve of Sds that foliate the cover. For instance, for the

case of n = 3 the geometry can be described as a figure 8 curve of Sds. For d = 1 this is

just the usual way one would draw a genus two Riemann surface. One possible filling is

clearly to fill in the Sds everywhere. In this case one recovers the conclusion in (5.3), now

generalized to all n ≥ 2. The other filling is again the ‘exterior’ filling that trivializes the

fundamental group. This filling is seen to generalize (5.2) to all n.

6 Results

The remaining step is to give a holographic definition of the expectation value of defect

operators and Wilson loops on nontrivial cycles that is suitable for analytic continuation

to non-integer n. The analytically continuation is achieved following the ideas in [4]. We

describe the analytic continuation in the appendix, focussing on the defect operator case.

This shows that the required analytic continuation exists. Having defined an analytic

continuation of 〈W (1)
Σ 〉n/Zn to non-integer n, we can take the n → 1+ limit described in
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Figure 10. Defect worldvolume Σ(1). When the torus is filled in, then this loop becomes

contractible in the bulk. If the torus is considered as the boundary of its exterior, then this loop is

not contractible in the bulk. This loop computes tr
(
ρWΣρ

)
.

equation (3.3) above. However, we will not need the explicit continuation to establish

our results.

Consider first the defect operator case. We know that the expectation value 〈W (1)
Σ 〉n

of the defect operator will be zero if and only if the d-cycle that it wraps is not contractible

in the bulk. This occurs when the boundary n-fold cover is filled ‘out’ rather than in,

as illustrated in figure 10 below. In the previous section, in figure 9 and equations (5.2)

and (5.3), we concluded that the exterior filling of the boundary geometry corresponded to

the case in which the Ryu-Takayanagi surface was connected. We saw in equations (3.3)

and (3.6) that the appropriate continuation of the function that was zero for n > 1 and

unity at n = 1 has infinite derivative at n = 1. If we furthermore assume that nonzero defect

operator expectation values at integer n analytically continue to have a finite derivative at

n = 1 (as would seem to be generic — close to n = 1 the D-brane embedding should be

entirely within one sheet of the bulk and therefore insensitive to the disappearance of the

conical defect as n→ 1, see the appendix), then we can conclude that to leading order at

large N :

S(ρWΣ ‖ ρ) = ∞ ⇔ RT surface connected.

S(ρWΣ ‖ ρ) <∞ ⇔ RT surface disconnected. (6.1)

This is our first result. Recall that the relative entropy was defined in section 3 above. There

we also discussed the change in the entanglement entropy. The change in the entanglement

entropy due to insertions of defect operators is finite, see e.g. [19–22]. The entropy change

is therefore subleading in (3.3) and we can focus on the relative entropy. Also from (3.3) we

see that the change in expectation value of the modular Hamiltonian is infinite when the

relative entropy is infinite. This can perhaps be thought of as an entanglement analogue

of the infinite energy cost to add a single external quark into a confined phase. The

entanglement is ‘confining’ relative to the defect operator insertion.

Applying the above logic to equations (4.7) and (4.8) we can also conclude that

ρWΣ and ρ perfectly distinguishable ⇔ RT surface connected.

ρ̂WC and ρ̂ perfectly distinguishable ⇔ RT surface discconnected. (6.2)

These are the main results of this paper. When a spatial region A is has disconnected

components, we can entangle quarks that are in distinct components of A. The above

results determine when an observer who only has access to the space outside A can know
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that the entangled quarks are present. This perfect distinguishability of a defect operator

or Wilson loop insertion is a distinct — gauge theoretic — observable than the mutual

information between the two disconnected regions. A nonzero mutual information and

perfect distinguishability of the large N density matrices have been tied together by gauge

theoretic physics on topologically nontrivial backgrounds (arising in the computation of

Rényi entropies).

Perfectly distinguishability implies infinite Rényi entropy. Furthermore, adapting the

analytic continuation of the appendix to the density matrix ρ̂ for the exterior rather than

the interior of the regions A (see section 4 above) we obtain the “converse” of (6.1)

S(ρ̂WC ‖ ρ̂) = ∞ ⇔ RT surface disconnected.

S(ρ̂WC ‖ ρ̂) <∞ ⇔ RT surface connected. (6.3)

7 Final comments

A connected Ryu-Takayanagi surface geometrizes the large N mutual information between

boundary regions. Our results link this fact to a statement about the Hilbert space of the

theory. Namely, a geometrized (or not) mutual information is shown to be equivalent to two

particular density matrices being perfectly distinguishable, with orthogonal support. This

fact would seem to be of relevance for future microscopic formulations of the emergence of

spacetime from entanglement. The rôle of Rényi entropies in our argumentation, placing

the theory on spacetimes with nontrivial topology, is reminiscent of the characterization of

topological order. In fact, as we have seen, the transition in the Ryu-Takayanagi surface is

closely related to the deconfinement transition in the theory. The deconfinement transistion

is sensitive to the entire spectrum of states and yet is visible here in a probe computation

about e.g. the ground state.

Codimension one defect operators have played a key rôle in our discussion. Similar

codimension one defects have recently been proposed to quantify the complexity of holo-

graphic quantum states [23]. The main point for us is that these operators can surround, in

Euclidean spacetime, a component of a spatial region that is to be entangled. The discus-

sion in [23] involves space filling defects at a fixed instant in time in black hole geometries.

As we have described, the n = 2 Rényi entropy for two disconnected regions is the partition

function of the theory on a space with topology S1×Sd. The defect operators we have con-

sidered (surrounding one of the regions) lift to defects wrapping the Sd in this space. These

seem to be closely related to the defect insertions studied in [23]. Connections between

defect operators and entanglement of disconnected regions was also considered in [24].

Most of our topological derivations have effectively been via ‘proof by pictures’. It

would clearly be desirable to have a more mathematically sophisticated treatment of these

topics, especially for the higher dimensional case. This might allow a general result for

general topology of the entangled spatial region (i.e. beyond the case of two disconnected

disks that we have considered).
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Figure 11. D-brane worldvolumes in M̃2. The thick black lines are the fixed points of the Z2

action. Arrows denote the identification of would-be boundaries of M̃2 by the Z2 action (the only

true interior boundaries are the lines of fixed points). Left: M̃2 for the interior filling (cf figure 7).

Right: M̃2 for the exterior filling (cf figure 8). The light and dark grey components in the left plot

together make out the full worldvolume. The darker region is obtained by projecting down the

part of the original worldvolume on the second sheet of M2. The candidate worldvolume in the

right plot is different in that each intersection with the lines of fixed points involves only a single

component (rather than two components in the left plot). This will be excluded by our boundary

conditions at the conical defect.
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A Analytic continuation of defect operators

In this appendix we give a holographic definition of the expectation value 〈W (1)
Σ 〉n/Zn

in (3.2) that is suitable for analytic continuation to non-integer n. The expectation value of

such defect operators can be analytically continued following the ideas in [4]. For integer n,

the defect operator expectation value is given by the on-shell action of a classical D(d+ 1)-

brane configuration Υ in the background spacetime dual to the n-fold cover boundary

geometry. Thus

〈W (1)
Σ 〉n
Zn

= e−Sd+1[∂Υ=Σ(1)] . (A.1)

The bulk surface Υ corresponding to the D-brane worldvolume should not be confused with

the Ryu-Takayanagi soap bubble. The relation ∂Υ = Σ(1) means that the surface ends on

the boundary theory defect operator worldvolume Σ(1).

Consider the case in which a D-brane worldvolume Υ satisfying the asymptotic bound-

ary conditions exists in Mn. Then, because of the Zn symmetry, we can simply project

the worldvolume down to a worldvolume Υ̃ in M̃n = Mn/Zn. It is important that we

include the entire surface in Mn projected into M̃n. This is illustrated in figure 11 below

for the case of a 1+1 dimensional boundary. The higher dimensional cases are analogous.

Locally the background spacetime, D-brane worldvolume, and hence action are unchanged
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by this projection. The projected worldvolume can intersect the conical defect surface in

M̃n if the original worldvolume in Mn crosses any of the bounding surfaces S discussed

in the previous section. This does not complicate the evaluation of the on shell action.

In particular, we can recover the answer for the action by directly finding the worldvol-

ume Υ̃ in M̃n with the following boundary conditions: (i) Υ̃ must end on (one copy of)

Σ at the asymptotic boundary and (ii) at any intersection with the conical defect sur-

face, there must be two components of the worldvolume meeting at the intersection. See

the left hand part of figure 11, where the two components are shown in different shades

of grey. Requiring two components to meet captures the fact that in the cover Mn (for

integer n), Υ continues on the other side of the bounding surface S. For such a surface

Sd+1[∂Υ = Σ(1)] = Sd+1[∂Υ̃ = Σ]. This reformulation is well defined for any n, including

non-integer n, and therefore provides the required analytic continuation.

We must check that the analytic continuation of the previous paragraph has the prop-

erty that when a D-brane doesn’t exist in the full space Mn, then it also doesn’t exist in

the quotient space M̃n = Mn/Zn. These are the cases where the expectation value of the

defect operator vanishes. For integer n > 1, if a solution in existed in M̃n — in particular

satisfying the boundary condition that two components of the worldvolume must meet at

any intersection with the surface of conical defects — then we could uplift it to a solution

in Mn, obtaining a contradiction. Therefore a solution does not exist in M̃n. However,

we noted above that upon analytic continuation, the topology of M̃n, and in particular

the topology of the conical defect surface in M̃n, does not change as a function of n for

n > 1. Therefore the expectation value remains zero for all n > 1, because a contractible

bulk cycle on which we could wrap the D-brane does not exist. This is in agreement with

the general expectation from (3.6). In the right hand side of figure 11 we illustrate how

D-brane worldvolumes that might seem to exist in this case do not satisfy the condition of

having two components meet at intersections with the conical defects. At n = 1, there is

no conical defect surface. There is no topological constraint in this case. This is again in

agreement with the general discussion around equation (3.6) above.

The above method can also be used to analytically continue the Wilson loop expecta-

tion value tr
(
ρ̂WC ρ̂n−1

)
discussed in section 4.
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