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1 Introduction
Lifshitz scaling is an anisotropic scaling of the time ¢ and space z* coordinates
t — N°t, ' — A\, i=1,...,d. (1.1)

z is a dynamical exponent that measures the anisotropy. When z = 1 the spacetime
symmetry can be enhanced to include the Lorentz group, and when z = 2 the Galilean
group. For all other values of z, boost invariance is explicitly broken. Relativistic conformal
field theories have z = 1.

Lifshitz scaling symmetry is realized in various theoretical and experimental setups.
Scaling symmetry arises naturally in the study of quantum field theories close to a second
order phase transition. A special class of phase transitions are those that occur at zero
temperature, and are driven by quantum fluctuation rather than thermal fluctuations. The
boundary between the two phases is called a quantum critical point (QCP) [1]. Quantum
critical points are characterized by an anisotropic scaling of space and time (1.1). Quantum
critical points are believed to underlie the exotic properties of heavy fermion compounds
and other materials including high 7. superconductors. These materials have a strange
metal metallic phase, whose properties cannot be explained within the ordinary Landau-
Fermi liquid theory. The dynamical exponent z emerges as the ratio of the power law



exponent of the characteristic energy scale to that of the quantum correlation length, when
the tuning parameter approaches its critical value near the quantum critical point [1]. The
dynamics in the critical regime is valuable to the understanding of scaling properties of
transport coefficients and thermodynamic quantities of strange metals [2, 3]. Quantum
critical systems have a hydrodynamic description with broken boost invariance, and new
novel transports [4-6].

Lifshitz scaling is a property of certain covariant gravity theories that break local
Lorentz invariance at the microscopic level, and have been proposed as potential gravi-
tational theories with a controlled UV behaviour [7]. The black hole dynamics in these
theories exhibits a flux of the spin zero helicity perturbation across a universal horizon,
corresponding to the new dissipative transport in Lifshitz field theory hydrodynamics [8].
Lifshitz scaling shows up also in certain solutions to Einstein gravity with matter (e.g. [9]),
and in deformations of Anti-de-Sitter [10].

Quantum anomalies refer to classical symmetries, that are broken at the quantum
level. Anomalous Lifshitz scaling is characterised by the weighted trace of the stress-
energy tensor 2T + T} obtaining a non-zero expectation value on a curved background.
Here, we will need in addition to introduce the foliation data. This is a generalization of
trace anomalies [11-15]. The latter have attracted a renewed interest recently in relation to
the four-dimensional a theorem [16] generalization of the two-dimensional c-theorem [17].

The aim of this paper is to present a general analysis of scale anomalies in Lifshitz field
theories.! We will formulate the cohomological calculation as the relative cohomology of
the scaling operator with respect to foliation preserving diffeomorphisms. We will construct
a detailed framework to perform the calculation for any number of spatial dimensions, and
for any value of the dynamical exponent, and present explicitly the complete cohomologies
for various examples in one, two and three space dimensions for several values of the
dynamical exponent. Our calculations indicate that all the Lifshitz scale anomalies are
trivial descents, called B-type in the terminology of conformal anomalies. However, not
all the trivial descents are cohomologically non-trivial. This is unlike the conformal case,
where all Weyl invariant densities have been argued to be anomalies [14, 15].

We end the paper with a comparison of the z = 1 Lifshitz anomalies to the case of
conformal anomalies. In both cases we consider the expectation value of the trace of the
stress-energy tensor on a curved background, however, the anomalies are different. The
cohomological calculation in the conformal case involves the relative cohomology of the
scaling operator with respect to all diffeomorphisms, and not only the foliation preserving
ones as in the Lifshitz case. Thus, for instance, there are no conformal anomalies in 2 + 1
space-time dimensions but one can have z = 1 Lifshitz anomalies.

The paper is organized as follows. In section 2 we briefly review the cohomological
calculation of scale anomalies in conformal field theories, and define the cohomological
calculation of scale anomalies in Lifshitz field theories. In this section we present our general
prescription for finding the possible forms of the Lifshitz scale anomalies. In section 3,
section 4 and section 5 we present our results in 141, 2+1 and 3+1 dimensions respectively,

!Lifshitz scale anomalies have been studied in particular cases in [18-24].



for various values of the dynamical exponent z. In section 6 we detail some results which are
valid for a general dimension and a general value of the dynamical exponent z. In section
section 7 we compare our results of z = 1 Lifshitz anomalies to the conformal anomalies.
In section 8 we briefly summarize the results and discuss open problems. In appendix A
we detail the notations and conventions used throughout the paper. In appendices B-E we

provide proofs and derivations for various statements used throughout the text.

A note concerning notation: throughout the paper, we will sometimes use AZ(-nT’nS me) o,
denote the i-th anomaly with ny time derivatives, ng space derivatives and n. Levi-Civita

tensors in the Lifshitz cohomology with specific values of d and z.

2 The cohomological problem

In this section we present a general procedure for constructing the possible forms of Lifshitz
scaling anomalies allowed by the Wess-Zumino (WZ) consistency conditions in Lifshitz field
theories of a given dimension d and dynamical critical exponent z, using cohomological
methods. We begin by reviewing these methods for the case of standard (isotropic) scaling
symmetry (Weyl symmetry) in conformal field theories. We then present the new tools
needed for the study of the problem in the case of Lifshitz scaling symmetry. We provide
a detailed recipe for constructing the possible anomalies.

2.1 Cohomological description of Weyl anomalies
2.1.1 Wess-Zumino consistency conditions and the BRST ghost

Using the description of quantum anomalies by an effective action, one can derive the so-
called Wess-Zumino consistency conditions. These are relations that must be satisfied by
the anomalous Ward identities. Given a theory with the classical symmetries:

where x* are the gauge parameters, {F'} a set of background fields, {¢} the set of dynamic
fields in the theory, and S the classical action, and given the corresponding anomalous
Ward identities:

o W({F}) = Axa({F}), (2.2)
where W is the effective action (obtained after integrating out the dynamical fields), the

anomalies must satisfy:

5XaAXB - 6XBAXQ = A[Xa’xﬁ], (23)

where [x®, x?] are the commutation relations between the classical symmetries. A trivial
solution to these conditions is the appropriate transformation of some functional G({F'})
which is local in the background fields:

Ay = 8,G({F)). (2.4)

Such a solution can be cancelled by an appropriate counter-term, and as such is not physi-
cally relevant. The space of possible physical anomalies consists of the space of all solutions
to the conditions (2.3), modulo the space of expressions of the form (2.4).



An equivalent description of the conditions, which we will use throughout the paper, is
in terms of a BRST-like ghost (see e.g [25, 30]). In this description the variation parameter
is replaced by a Grassmannian ghost, and its action on the fields is defined such that it
becomes nilpotent:

(6,)* =0. (2.5)

The form of the WZ consistency conditions thus becomes:
0yAy =0, (2.6)
where x here is the Grassmannian ghost. Similarly, the form of trivial solutions becomes:
Ay = 5,G({F)). (2.7)

where G({F'}) is a local functional of the background fields (of zero ghost number). The
problem of finding the physical anomalies is then mapped to the problem of finding the
non-trivial terms in the cohomology of the operator §, — the space of d,-closed terms (or
cocycles) with ghost number 1, modulo the space of §,-exact terms (or coboundaries).

2.1.2 The cohomology of conformal anomalies — a brief review

In the case of conformal theories, the relevant background field is the metric g, on the
manifold on which the theory is defined, or equivalently the vielbeins e®,. The relevant
symmetries are:

1. Diffeomorphism: 5§Dgw = V& + Vi, (5§De“# =E"'Vyet, +V, 8%,

2. Local Lorentz® (in the case of vielbeins): dLe?, = —ae®

o u (where oy = —apq),

3. Weyl (conformal): 6% gy = 209, 0¥ e, = ce?,.
The Ward identities corresponding to these symmetries are (respectively):
1. From diffeomorphism invariance: V,TH" =0,
2. From local Lorentz invariance: — T7,,) =0,
3. From Weyl invariance: T}, =0,

where the stress-energy tensor is defined as

2 98 1 )
™ = —— = —e% . (2.8)
V=909, e der,
Anomalies of the theory are the breaking of these ward identities by the effective action.
After replacing the symmetry parameters with BRST-like ghosts, the problem of finding

the allowed anomaly terms is mapped to determining the structure of the cohomology of

the total operator:
§=060 + ok +4Y. (2.9)

2Rotations in the tangent frame.



When discussing the cohomological structure of an operator given as a sum of several
operators, the classification theorem due to Bonora et al. [26] allows one to split the non-
trivial cocycles of the total cohomology into two sets:

1. Non-trivial terms in the relative cohomology w.r.t. one of the symmetries — terms
which are closed but not exact under one of the symmetries, when considering only
the space of terms invariant under all the rest. In this case, the relative cohomology
of the Weyl operator w.r.t. diffeomorphisms and local Lorentz transformations is
composed of terms A, that satisfy:

- 0V A, = 5£DAU =0kA, =0,
— No local functional G (of zero ghost number) exists such that 4, = §% G and
ska = (5§D G =0.

2. Non-trivial terms in the cohomology of one of the operators, which admit a “partner”
in the cocycle space of another, such that their sum is a cocycle of the total operator.
In this case, these would be terms A,, A, and A which satisfy:

— A¢ + A, is a non-trivial term in the cohomology of 5§D + ok
~ WA, =0,
- (55 +5§+5§V)(A5 + Ap+ Ay) = 0.

In what follows we will restrict the discussion to the anomalous structure of the relative
cohomology of the Weyl operator with respect to diffeomorphisms/local Lorentz transfor-
mations. The anomalies in this relative cohomology are the ones commonly referred to as
Weyl or conformal anomalies.

In order to study this structure, one has to look at diffeomorphism invariant expressions
that have the right global Weyl dimension, that is all possible independent contractions
of the Levi-Civita tensor, the Riemann tensor and its covariant derivatives of the correct
scaling dimension. Out of these expressions one constructs the appropriate terms of ghost
number 1 (multiplying by the ghost and integrating over space), and applies the Weyl
operator to them. One then finds those combinations that vanish under the action of
the Weyl operator, taking into consideration the Grassmannian nature of ¢ — these are
the cocycles of the Weyl operator. The space of trivial terms (coboundaries) is found
by applying the same operator to terms of ghost number 0 constructed from the same
expressions. Finally, the anomalies are given by the quotient space of the cocycles over the
coboundaries. In two space-time dimensions for example, only one anomaly exists in the
relative cohomology which is proportional to:

/ oR, (2.10)

and there are no coboundary terms. In four space-time dimensions [29-31], the possible
scalar expressions of dimension 4 are:

R% RuR"™, Ru,R"", PPR,.sR" s, OR. (2.11)



The ghost number 1 combinations that vanish under the Weyl operator (the cocycles) are
the Weyl tensor squared:

/0W2 = /a {(Jwyw,,o)2 —2(Ruw)? + ;RZ} : (2.12)

the Euler density:
/0E4 = /a [(Ruvpo)® — 4(Rw)* + R?], (2.13)

the Hirzebruch-Pontryagin term:

/0P1 = /0 (EaﬂwRumﬁRuwé) , (2.14)

and [ o(OR). Applying the Weyl operator to zero ghost number expressions, the last term
turns out to be trivial (a coboundary). Therefore one ends up with three anomalies, two
in the parity even sector and one in the parity odd sector.

It has been shown [14, 15, 32] that in general, in odd dimensions no Weyl anomalies
exist, while in even dimensions there are in general two types of anomalies: the Euler
density of the appropriate dimension (type A anomaly), and the various Weyl invariant
scalar densities (type B anomalies).

2.2 Lifshitz scale anomalies

In Lifshitz field theories the time direction plays a major role. Since time generically scales
differently than space, one has to consider the time direction separately in the construction
of anomalous structures, by foliating spacetime into equal-time slices. When consider-
ing a theory defined over a general curved manifold, this structure is generalized to a
codimension-1 foliation defined over the manifold. The foliation structure over a manifold
can be locally represented by a 1-form ¢, defined on the manifold, the kernel of which is
the tangent space to the foliation leaves (so that a vector V¢ is tangent to the foliation if
and only if it satisfies ¢,V = 0). Due to the Frobenius theorem, such a 1-form (locally)
defines a codimension-1 foliation if and only if it satisfies the condition:

tAdt =0, (2.15)

or equivalently in index notation:

t1agt,) = 0. (2.16)

Since the 1-form ¢, is not unique (any locally rescaled 1-form ft, represents the same
foliation), the foliation is in fact represented by an equivalence class of 1-forms under
rescaling. We may then choose any representative of this equivalence class. In particular,
when a metric is defined, we can choose the normalized 1-form:

na = ta/1/19%7tst] . (2.17)

Note, that the definition of ¢, and the foliation associated to it does not depend on the
metric, while the definition of n,, does. The background fields of a Lifshitz field theory can



be taken to be the metric g, and the foliation 1-form ¢, (in which case the action must
be invariant under rescaling of t,), or alternatively n,. When using vielbein formalism, we
often find it convenient to express the foliation 1-form in the local frame coordinates, so
that the background fields will be taken to be e®, and t* (or the normalized n?).

When discussing Lifshitz field theories defined on curved space, there are two sym-
metries that must be considered. The first relevant symmetry is foliation-preserving-
diffeomorphisms (FPD). Since the time direction in the theory is unique, there is no longer
boost invariance over flat space — only rotation invariance remains. On a curved manifold
this translates into FPD invariance. That is, invariance under a coordinate transformation
that preserves the foliation structure — either a coordinate transformation inside each foli-
ation leaf, or a change in the foliation parameter. In the notation of subsection 2.1.2, these
are the diffeomorphisms with those ¢ that obey L¢t, o< to. If we denote ¢ - the foliation
parameter and x the coordinates inside each leaf, these are transformations of the form:

t— f(t), x — g(x,t). (2.18)

However, we can easily extend this symmetry back to any & by having the foliation
1-form itself transform appropriately in addition to the metric (or the vielbeins). The
infinitesimal form of the transformation rules will then become:

08 g = Viuby + Vily,  68ta = Leta = EVata + Va&lts, (2.19)
or in vielbein formalism:
0% = €'V e + Ve, 5Pt = €YVt

2.20
(5£eau = —a“bebu, (5£t“ = —a%th. ( )

The second relevant symmetry is an anisotropic Weyl invariance.® The Lifshitz sym-
metry transformation (1.1) in curved space can be generalized to an appropriate local
transformation of the metric components parallel and normal to the foliation 1-form:

6Wto =0,
5gv(ga5tatﬁ) = _QUz(gaﬂtatﬁ)v
5XVPQB = 20P,3,

Wy = zong, oW n® = —zon?,

(2.21)

where P, = g,, + nyun, is the projector tangent to the foliation. Or alternatively using
the vielbeins:
5§V (nae®,) = zonge®,,
o (Paeb ) = oPteb,,
oWt = —zot?,
5§an = 0.

3With a slight abuse of terminology, we will often refer to the transformation in (2.21) as anisotropic
Weyl transformation, even for z = 1.



Note, that when using the BRST description, one also has to define the action of 5? ,
6L and 6% on the Grassmannian parameters %, a%, and o such that § = 5§D + 0L+ 6% is
nilpotent, as follows:

0LE" = "V, €, 00", = €'V, Po = £'V,0,
Sy =0, Ea%y = —auaty, ko =0, (2.23)
oWer =, oWat, =0, Wo=0.

2.2.1 Lifshitz Ward identities

In this subsection we detail the classical Ward identities corresponding to foliation preserv-
ing diffeomorphisms and the anisotropic Weyl scaling. The full derivation can be found in
appendix B. Assume a classical action depending on the metric and foliation S(g,., ta, {¢})
(where {¢} are the dynamic fields), or alternatively S(e?,,t*,{¢}). Define the symmetric
stress-energy tensor associated with the metric by:

o _ 2 05
(9) vV —9 6guu
or alternatively, the stress-energy tensor associated with the vielbeins:

148
T(e)ﬂa =

: (2.24)

to=const.

(2.25)

o Soa
e de K 1te=const.

In addition define the variation of the action with respect to the foliation 1-form:
1 65 14, 0S

= V—g tq < b

Note that J¢ is tangent to the foliation (J“t, = 0). We also define a normalized version

of J%:
J =\ [|ght it T (2.27)

Note also that in cases where one can use either the metric or the vielbein descriptions,

«

(2.26)

guv=const. e®,, =const.

the following relation exists between T’ (‘; l)', T(‘; ')j = T(e)*ae™ and J:

WY v oz
Ty =T + Jh. (2.28)

With these definitions, the Ward identities corresponding to invariance under the ex-
tended form of FPD (2.19) are given by:

VTl = JVn, =V, (Jn,) = —ny [V + 20, (2.29)

(9)
where a, = n"V,n, and V is the covariant derivative projected on the foliation, or equiv-
alently in terms of T(’z ')/:
Loy = ) (2.30)
VTt = JH'Vun,. (2.31)

The Ward identity corresponding to anisotropic Weyl symmetry is given by:

TV Py — 2Tl nymy, = T Py, — 2T n,m,, = 0. (2.32)

In field theories in which the above symmetries are anomalous, these Ward identities are
subject to quantum corrections.



2.2.2 Foliation preserving diffeomorphism invariance

As with the standard Weyl scaling, we will restrict the discussion to the anomalous structure
of the relative cohomology of the anisotropic Weyl operator with respect to FPD.* That
is, when studying the cohomology, we will only consider terms with Weyl ghost number
one which are invariant under foliation preserving diffeomorphisms. These are the terms
which are:

— closed: 0%V A, = (5§DA(7 =0,
— but not exact: A, # 5% G for any local G that satisfies 6§DG =0,

where o(x) is the Grassmannian local parameter of the anisotropic Weyl transformation.
In the following we explain in detail how to build all the foliation preserving diffeomor-
phism (FPD) invariant expressions of a certain dimension. That is, scalars, constructed
from the metric g,, and the foliation 1-form t, which are invariant under (2.19) (in fact
it will be more convenient to work with the normalized version n,). We would like to
pick the independent objects O for our construction such that they scale uniformly under
anisotropic Weyl scaling transformation (2.21) with a certain scaling dimension d,:

WO = (dy)oO + (d0), (2.33)

where Jo represents any term proportional to derivatives of the ghost . For example for
Na, n* and P,g, the scaling dimension d, is z,—z and 2 respectively (see (2.21)). These
expressions are covariant under anisotropic Weyl transformations, i.e. their transformation
law (2.33) does not contain derivatives of the ghost.

It is clear that the terms in the cohomology (which arise as a variation of the effective
action) should have a total Weyl scaling dimension of 0. They would thus be composed
of scalars of dimension —(d + z) (where d is the number of space dimensions), integrated
over spacetime. In order to find expressions with a uniform scaling dimension, one must
decompose any tensor into components in the direction of the foliation and in the direction
normal to it. For example, the metric g,, or the Riemann tensor R,,,, don’t have a
uniform scaling dimension, while the components of the metric P, and n,n, do.

A tensor fa,@v... is tangent to the foliation if

nafam” - nﬁ’fam, = ...=0. (2.34)

We claim that, in general, any scalar expression may be written as a sum of scalar expres-
sions built by contractions of tensors that are tangent to the foliation and have a uniform
scaling dimension. These basic tangent tensors are:

— The projector on the foliation: P, = g, + n,n,,

— The acceleration: a, = L, n, =n"V,n,,

4These are the anomalies analogous to the standard Weyl anomalies in the Lifshitz case. Anomalies of
the second set as mentioned in subsection 2.1.2 would accompany anomalies of FPD invariance which are
analogous to gravitational anomalies in the conformal case and are outside the scope of this discussion.



— The extrinsic curvature: K, = %En P, = P[j Vonu,
— The intrinsic Riemann curvature of the foliation: R, 0,
— The intrinsic Levi-Civita tensor of the foliation: é*“f = n,e**P,

— The Lie derivatives (temporal derivatives) of any of the above tensors in the direction
of n®, for example L, K,,,,, L, Ly a, etc.,

— The foliation projected (spatial) covariant derivatives of any of the above tensors, for
example VoK, Vo VgL, ay,

where we define the foliation projected covariant derivative (which we refer to as spatial
derivative) of a foliation-tangent tensor as follows:

6ufa,8..‘ = Pﬁlpglpgl ce V,u’j;a’ﬁ’.., . (235)

Note, that this is the covariant derivative that is compatible with the metric induced on
the d-dimensional leaves of the foliation, i.e. 6pPW =0.

In order to prove this claim, we use the following statements, which can be easily
established from the normalization n®n, = —1, the Frobenius condition (2.15) and the
definitions given above for the acceleration and extrinsic curvature:

The acceleration and extrinsic curvature are both tangent to the foliation: n*a, = 0,
nt K, =0,

— The extrinsic curvature is symmetric: K,, = K,

The spatial derivative of the acceleration is symmetric: V,a, = V,a,,

— The covariant derivative of the foliation 1-form n, may be decomposed in the the
following way: V,n, = K, — a,ny,

— If some tensor Taﬂ... is tangent to the foliation, then L, Ta[gm is also tangent to the
foliation.

The proof of the first part of the claim regarding the ability to decompose any FPD invari-
ant scalar in terms of the aforementioned basic tangent tensors, can be found in appendix C.
The last part of the claim is that these basic tangent tensors have a uniform scaling di-
mension. This will be proven in one of the following subsections. Here we summarize their
scaling dimensions:

do[Pu) = 2, d,[P*] = -2, do[Ryupo) = 2,
doléap.] = d, dy[eP+] = —d, do[Ku) =2 — 2, (2.36)
do[aa] =0, do[ﬁn Taﬁ...] = da[faﬁ...] -z, da[%afaﬁ...] = do[faﬁ...]a

where Tagm is any tangent tensor with uniform scaling dimension.

We conclude that in order to build all FPD invariant expressions with uniform scaling
dimension, one has to form scalars from the previously defined basic tangent tensors in all
possible ways.

~10 -



2.2.3 Identities for tangent tensors

In this section we present various useful identities that relate expressions built from the
basic tangent tensors. In all the formulas below Tag_._ denotes a general tensor that is
tangent to the foliation, whereas é, V are Riemann tensor and the covariant derivative
compatible with the induced metric P,g. All the other quantities are as defined above.

We begin with formulas for exchanging derivatives (these formulas can be derived from
the definition of the curvature and the Gauss-Codazzi relations, see appendix D):

Ly ﬁufaﬁ'y... = ﬁ,uﬁn fazﬁ'y... + a,uﬁn fa,@’y...
+ [(%y+ay> K;wc_ (6(1_}‘@04) K/u/_ <%u+au> Koa/} fl/ﬁy..."’_- B

[ﬂ, ?,,} Tas.. = oo 5. + ... . (2.38)

The cohomological calculation involves integrating by parts over the full spacetime
manifold. Since we are using foliation tangent expressions, it is useful to have the following
formulas for integrating by parts in terms of the foliation tangent expressions:

[vravidi=o= [v= 9.0 =~ [ V=507,

(2.39)
[vEa vy o= [v=gL.0=- [ V=5 Ko,
where JH is any vector tangent to the foliation, ¢ is any scalar and K = K.
Other than the Bianchi identities for }Nﬁ,\gw and its spatial derivative, the Bianchi
identities for the full (d + 1)-dimensional Riemann curvature® also imply the following
relation between L, E)\UW and other foliation tangent tensors (this can also be derived
from identities (2.37) and (2.38), see appendix D):

L Royw = RapuwK§ — Ropu KL
+ (§u + aﬂ) (65 + aﬂ) Ko — <%u + au) (§a + aa) K,z (2.40)
— (ﬁ, + ay) (% + aﬁ)Kﬂa + (ﬁ, + ay) (% + aa> K,p.
Two more useful relations give the temporal derivative of the projector P, and the

foliation tangent totally anti-symmetric tensor €,4... as a direct consequence of the definition
of the extrinsic curvature K, :

Ly P, =2K,,,

. 3 (2.41)
ﬁn €ap... = Keag.__.

Finally, we reiterate the fact that both the extrinsic curvature and the spatial derivative
of the acceleration are symmetric (as a consequence of the Frobenius condition), i.e. K, =
K,, and V,a, = V,a,.

SHere by d + 1 dimensional we mean the Riemann tensor of the full spacetime manifold.
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2.2.4 Anisotropic Weyl transformation laws

In this subsection we derive the anisotropic Weyl transformations of the basic tangent
tensors as defined in subsection 2.2.2. Given some foliation tangent tensor 7i,3.., the Weyl
transformation of its temporal derivative is given by:

oW (L Top..) = 03 (”“(%Taﬁ-.. + Oan"Typ... + O Togu.. + .. ) - (2.42)
= —ZJﬁn fa/@,,, + [:n (5}?/1’:04/3... .

If we define:
8y Tap... = do[T)oTap.. + 0'Tup..., (2.43)

where d, [T] is the scaling dimension of fag__ and §' Tvaﬁ_, depends only on derivatives of o,

then we obtain:
1l (cn Tag,_.) - (dg [T] — z) 0Ly Top. + do[T)(Ln0)Tap.. + Ln 6 Tag.,  (244)

s that:
d, [ﬁn ﬂ —d, m _2,

2.45
8Ly Tp.. = d [ﬂ (L1 0)T .. + L T, (24
nLag... — Uo n ap... n ap... -

Similarly, the Weyl transformation of the spatial derivative of Talgm is given by:
Pl (%faﬁ,,) L (aﬁaﬁm T T —. ) -

S (T ) — (VT) Fos 4

where fZa are the Christoffel symbols associated with the foliation tangent covariant deriva-
tive V. Using:

VT = (Vo) P2+ (Voo ) PY = (V,0) P Poa, (2.47)
we get:
Y (97 ) = T (o) — 1 [T](F0) T
~ (Vo) Tus... + (Vo) PuaT?s. (2.48)
— (65(7) fau... + <6p0> Puﬁfapm -,
where [ [f] is the number of indices of Tagm. Applying the definition (2.43) we obtain:
d, [VT| = d, [T],
0 (ViTup..) = (do [T] = 1[T1) (Vo) Tus.. (2.49)

— (%aa> Tvug,,, + (6,)0) P#afp/gm -

- 12 —



Turning to the basic tangent tensors P, K., au, Rupe and €,4..., we have from the
definition (2.21):
5}7/VPW =20P,,,
oW pH = _25 P, (2.50)
6W/—g = (d+2)o/—g.

From the definition of the extrinsic curvature along with (2.42) we have:

WK, =(2—2)0Ku + (L£n0)Pu, (2.51)
WK =6V (P"EK,,)=—20K +d(L,0). (2.52)

From the definition of the acceleration:
oW a, =6 (n®0amny + 8unng) = 2n°n, 060 + 20,0 = 2Py 0q0 = z%ua. (2.53)

From the definition of the intrinsic curvature and (2.47) we get:

5XVEWPU = QUR/W[,U + PW%V%IDU — Pupﬁyﬁga + Pl,p%uﬁga - PV, V,0o,
SW R, = (2—d)V,V,0 — P,0o, (2.54)
6 R=—20R —2(d—1)0o.
Finally, the Weyl transformation law for the Levi-Civita tensor is given by:
Wens =doéas., Ve = —dgerh (2.55)

The scaling dimensions (2.36) can easily be extracted from the above formulas.

2.2.5 Comparison to the ADM decomposition

It is common in the literature to phrase the anisotropic Weyl symmetry in terms of the
ADM decomposition. In this section we compare our terms and conventions with those of
the ADM decomposition. In the ADM decomposition, one chooses coordinates (t, z*) such
that the leaves of the foliation are given by the constant time slices t = const, and z* for i =

1,...,d are coordinates in each leaf. Written in these coordinates the metric takes the form:
git = —N? + N'N;, gti = Ni 9ij = Vij»
w_ L tHo_ ﬁ i i N'NJ (2.56)
- N27 g - N27 g - ’7 N2 I

where ;; is the induced metric on the foliation leaves, N ¢ is the shift vector and N is the
lapse function.® The covariant volume element in these coordinates is given by:

V=gd¥ Y = N/~ dt d%. (2.57)

5The 4, 4, ... indices are raised and lowered by the metric Yij -
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The timelike normal to the foliation is given by:

n, = N(-1,0), ( )
1 , 2.58

= —(1,—N").

n N( ) )

In these conventions the Frobenius condition is automatically satisfied. Note that the
foliation projector with upper indices P*” is nothing but the foliation induced metric 7%,
therefore any foliation tangent tensors can be contracted using 7% .

The basic tangent tensors defined in subsection 2.2.2 can be written in terms of the
ADM decomposition as follows. The spatial components of the extrinsic curvature are
given by:’

Ki]’ at%j - %lN] - 6]Nl) s (259)

_ 1 (
2N
where V is the covariant derivative defined on the foliation leaves and compatible with ;;.
The spatial components of the acceleration vector are given by:

VN
ai = ;V : (2.60)

The intrinsic Riemann and Levi-Civita tensors are those associated with the metric ;;.
Given a tangent tensor Tjjx.., the spatial components of its temporal derivative are

given by:
~ 1 ~ 1 (-~
Ly Tiji... = NatTijk... - Nﬁgv)Tijk...a (2.61)
where EE;) is the Lie derivative inside the foliation leaf in the direction of the shift vector N®.

Finally, we note that the transformation of the metric components under anisotropic
Weyl is given by:

6N = zoN,
6WN; = 20N;, (2.62)

8y Yij = 207ij -

2.2.6 Restrictions and classification by sectors

Using the scaling dimensions (2.36) and some combinatorics one can derive various con-
straints on the possible terms in the cohomology and their properties for generic values of
z and d. As previously mentioned, the various terms in the cohomology all have the form
f VvV —g¢, where ¢ is a scalar of uniform scaling dimension —(d+ z), built from contractions
of the basic tangent tensors defined in subsection 2.2.2. Suppose that ng, ngq, ng, ne, v
and n, are the number of extrinsic curvature, acceleration, intrinsic Riemann curvature,

"The temporal components of tangent tensors are completely determined by the spatial components
according to the formula:
Topg~s... = N'Tigys....

For this reason we only present spatial components of tangent tensors.
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Levi-Civita tensor,® spatial derivative and temporal derivative instances that appear in ¢
respectively, and np the number of induced metric instances required to contract them.
For the scaling dimension to be correct we require:

(2= z)ng — zne +2ng +dne — 2np = —d — 2. (2.63)
For all indices in ¢ to be contracted in pairs we require:
2ng + ng +nv + 4ng + dne = 2np. (2.64)
From requirements (2.63) and (2.64) we obtain the conditions:

zng + zng +ng +ny +2ng = d + z, (2.65)

ng +nv +dn. s even. (2.66)

Defining np = ng + ng as the total number of time derivatives (when writing the
expression in terms of the ADM decomposition) and ng = ny + ng + 2ng as the total
number of spatial derivatives in the expression, we unsurprisingly get the following form
for these conditions:

znp +ng =d+ z, (2.67)
ns + dne is even. (2.68)

A notable property of (2.65) is that all the coefficients are positive (assuming z > 0), and
so as expected the number of possibilities is limited.

From the transformation formulas in subsection 2.2.4, it can be easily checked that the
numbers nr, ng and n. remain unchanged when applying the Weyl operator 6V to any
tangent tensor, i.e.:

ng [61?/115“_] =ng [Tag] ,
nr [5%&5,_] = nr ['Tvaﬁn_] , (2.69)
Ne [(5?/115._,] =N, [Tag] .

Additionally, identities relating different tangent tensors such as the ones in subsection 2.2.3
always relate expressions with the same values of ng, ny and n.. Thus the linear space
of expressions of the form [ \/=g¢ that satisfy the conditions (2.67) and (2.68) is a direct
sum of subspaces (which we refer to as sectors), each corresponding to specific values of
(ng,nr,n) that satisfy these conditions. Since expressions remain in the same sector when
applying the Weyl transformation, we conclude that when studying the Lifshitz cohomology
problem for given d and z, we may focus on each sector separately.

Two important properties that can be deduced from these numbers are concerned
with the behaviour under parity and time reversal transformations of the expressions we

8Tt is enough to consider ne =0 or 1.
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build. Under time reversal, in addition to the regular behaviour of the different tensorial
expressions, the normalized foliation 1-form changes sign (assuming one defines it such that

n® points “forward” in time), so that:

n® Ly _po N ER —Ngy P, x, Py
T T > T 3
K/U/ — —KM/V/ Qu — Gy lepg — RM/,//p/J/ (2.70)
. T . ~ T ~ = 5 T = =
€ap... = €. LnTap.. — —T7 LnTwp .. ViTop.. = TV Twp ...
where o/, ', ... denote the transformed coordinate frame, and T denotes the sign of the

tangent tensor T, under time reversal. Under parity, though, the foliation 1-form doesn’t

change sign, so we have:

no Py ol e s P L Py
P P R LNy
KHV SN K;U/V/ ay — a,y R/u/po — R,u’l/p’a" (271)
. P . ~ P 7 V. T.: 5pP-v.T
Eap.. — —Earpr.. LnTap.. = PpLnTwp .. ViTop.. = PpVuTagp..

where Py is the sign of Tva/g_._ under parity. Thus in general, the sign of a scalar built from

the basic tangent tensors under time reversal and parity is given by:
T=(-1)"7, P =(=1)". (2.72)

Various constraints on the possible properties of anomalies can be derived using the
above considerations (2.65), (2.66), (2.72) and known properties of the underlying field
theory. For example, if we know that the field theory is time reversal invariant it can be
shown that anomalies (or in general scalar terms in the cohomology) are only possible for

the following values of z and d:
1. Rational (non-integer) z = p/q satisfying p < d with ¢ odd, p even.
2. Rational (non-integer) z = p/q satisfying p < d with ¢, p, d odd.
3. Even integer z.
4. Odd integer z, odd d.

Here p/q should be a reduced fraction and can be greater then 1. This can be used to show
e.g. that for d = 2, z = 1 the only possible anomalous terms are time reversal breaking.
Another interesting conclusion is, that given a specific number of space dimensions d,
there is generally a finite number of z > 1 values that allow for sectors with more than
one time derivative. The rest allow only for sectors with np = 0 (purely spatial sectors) or

np = 1 (universal sectors, that exist for any value of z).
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2.2.7 A prescription for finding the anomalous terms

In this subsection we use the previous results to give a detailed prescription for finding the
anomalous terms in the relative cohomology of the anisotropic Weyl operator for any given
value of z and d. The prescription is as follows:

1. As mentioned above, the various sectors of given np, ng and n. do not mix, so that
it’s possible to apply the prescription to each sector separately. Therefore the first
step is to identify the different sectors consistent with conditions (2.67), (2.68).

2. For each of these sectors, build all possible FPD invariant expressions from the basic
tangent tensors of subsection 2.2.2 with the proper values of ny, ng and ne (by
contracting their indices in all possible manners).

3. Find an independent basis of these expressions: ¢;, ¢ = 1,...,n.,,, taking into
account:

— The identities of section 2.2.3.

— Additional dimensionally dependent identities due to anti-symmetrising any set
of more than d indices, e.g for d = 2 we have €C”K5 — €B'YK§‘ =K.

4. To find the cocycles of the relative cohomology:

— Build the integrated expressions of ghost number one: I; = [ /=g o¢;?

— Apply the Weyl operator % to each of these terms to obtain ghost number two
expressions.

— Use integration by parts (identities (2.39)) and the Grassmannian nature of o
to reduce each of them to a linear combination of independent expressions of
the form: L; = [/—gx;00%*o, j =1,...,m, where 0?***!o represents an
odd number of derivatives (either temporal or spatial) applied to o, and yx; is
any expression constructed from tangent tensors (not necessarily a s.cadar).10

Suppose these linear combinations are given by: 5?’[1- = —M;;L;.

— Find all linear combinations of the basic ghost number one expressions £ = C;I;
(where C; are constants) that satisfy § E = 0, by solving the linear system of
equations:

The space of solutions is the cocycle space. Let F;, ¢ = 1,...,n. be some basis
for this space, where n. is its dimension.

Any expression with ghost number one of the form [ /=g (0*c)x (k > 0), where 0*c involves any
number of spatial or temporal derivatives of o, can be written as a linear combination of the expressions I;
using integration by parts.

10 Any expression with an even number of derivatives acting on ¢ can be written as a linear combination
of expressions with lower odd number of derivatives, using the integration by parts identities (2.39), the
derivative exchange formulas (2.37), (2.38) and the Grassmannian nature of o.
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5. To find the coboundaries of the relative cohomology:

— Build the integrated expressions of ghost number zero: G; = [ \/=g¢;.

— Apply the Weyl operator 6V to each of these to obtain ghost number one ex-
pressions.

— Use integration by parts to reduce each of them to a linear combination of the
expressions I;.!! Suppose these combinations are given by: 6% G; = Sijl;. The
span of these combinations is the coboundary space. Let F;, i = 1,...,ng be
some basis for this space, where n., is its dimension.

6. Finally, to find the anomalous terms in the cohomology, check which of the cocycles I;
are not in the span of the coboundaries F; (or, stated differently, find the expressions
that complete the basis of coboundaries into a basis of the whole cocycle space).
We denote these by A;, i = 1,...,n4,, Where ng, = nNe — Nep 18 the number of
independent anomalies.

Examples for the application of this prescription will be given in the following sections.

A useful fact that is worth mentioning is that a coboundary term must always be a
total derivative. This can be explained as follows. Assume that F is a coboundary density.
This is the case if:

[vaer = [v=g0, (2.74)

where [ /=g ¢ is some local functional of the background fields which must be of global
scaling dimension 0. If we then set the transformation parameter to be a constant we
should find:

c/\/?gfzag”/\/fggz):o, (2.75)

for any choice of the background fields. F is therefore a total derivative.

As noted in the introduction, in the following we will sometimes use Ei(nT’nS’ne),

F‘(nTvnSJle) or A(nT7”57ne)

; i to denote the i-th cocycle, coboundary or anomaly, respectively,

in the sector with np time derivatives, ng space derivatives and n,. Levi-Civita tensors in
the Lifshitz cohomology with specific values of d and z.

2.2.8 Classification of Lifshitz scale anomalies
In the study of the algebraic structure of Weyl anomalies in conformal theories, they have
been classified into two types (see e.g. [14, 15, 29-32]):

1. The type A anomaly, consisting of the (integrated) Euler density of the manifold,

2. The type B anomalies, consisting of strictly Weyl invariant scalar densities. Some
of these are simply various contractions of products of the Weyl tensor, while others
have a more complicated structure involving the Riemann tensor and its covariant
derivatives.

1Note that the expression 6% G; must be a linear combination of the cocycles E;, since any coboundary
is also a cocycle due to the nilpotence of 6%. This can be used as a check for the calculation.
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This classification has been shown to be valid for any even dimension. The feature dis-
tinguishing between the two types of anomalies has been presented from different points
of view. The authors of [14, 15] gave a general argument for this structure using dimen-
sional regularization, emphasizing the scale dependence of the effective action. In this
view, type A anomalies are characterized by the scale independence of the action, which
is equivalent to the vanishing of the integrated anomaly. They are, therefore, related to
topological invariants (as is the case with the integrated Euler density). Type B anomalies
then correspond to effective actions that contain a scale.

In [32, 33|, the author presents a general cohomological argument for the aforemen-
tioned classification, in terms of descent equations. He distinguishes between the type B
anomalies, that satisfy a trivial descent of equations (i.e. Weyl invariant densities), and
type A anomalies that have non-trivial descent. He shows that the unique anomaly with
non-trivial descent is the Euler density, and as such is the counterpart of the non-abelian
chiral anomaly.

For the analogous problem of classifying the Lifshitz anomalies, we choose here the
latter approach, of trivial versus non-trivial descent.'? We will, therefore, be interested in
the space of cocycles of the form E = [ /=go¢, where ¢ satisfies:

5% (V=g6) = 0. (2.76)

We will refer to them as trivial descent cocycles. One can find them using a procedure sim-
ilar to the one outlined in subsection 2.2.7 for finding the cocycles, but without performing
integration by parts in determining the independent ghost number two expressions. One
then obtains a linear system of equations, the solutions of which form the trivial descent
cocycles space. We denote the basis for this space by H;, ¢ = 1,...,n;g where nyg is its
dimension. We also denote by n;qe the dimension of the trivial descent coboundaries space
(the intersection of the trivial descent cocycles space and the coboundaries space).

If A is an anomaly of the Lifshitz cohomology, we will refer to it as a trivial descent
anomaly, or type B, if it belongs to the same cohomological class as a trivial descent cocycle,
so that:

A=H+F, (2.77)

where H is some trivial descent cocycle and F' is some coboundary term.

Unlike the conformal case, we found in all of the examples studied of the Lifshitz co-
homology, that all anomalies are trivial descent anomalies (in the sense of (2.77)). Equiv-
alently, in all of the examples studied the following holds:

Qcc = ch + Qtda (278)

where Q¢., Qp, 2:q denote the spaces of cocycles, coboundaries and trivial descent cocycles
respectively. Our conjecture is that this may be true for the Lifshitz cohomology for any
dimension and any value of the dynamical exponent z.

2The two approaches don’t align in all cases. For example, if we take into account parity violating
theories in the conformal case, the Pontryagin term (2.14) is a possible anomaly in the theory, and it is
both a topological term and a Weyl invariant density. Thus, it can be considered both as type A and type
B. Our results for the Lifshitz cohomology contain terms with a similar issue.
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We also note in our results an additional difference compared to the conformal case:
in many examples there are coboundaries which have trivial descents (i.e. nie > 0), so
that not all of the (anisotropic) Weyl invariant densities are actually anomalies. This is in
contrast to the conformal case, where all Weyl invariant densities have been argued to be
anomalies [14, 15].

3 Lifshitz scale anomalies in 1+1 dimensions

In this section we detail our results for Lifshitz scale anomalies in 1+1 dimensions for
various values of z. We begin with a detailed derivation of the z = 1 case followed by a
list of results for other values of z. The z = 1 case is of special importance since it can
be compared to the conformal case (which also obeys the same scaling relation). In the
Lifshitz theory however, we lack the boost invariance and special conformal transformations
characteristic of a completely conformal theory.

3.1 The z =1 case

We follow step by step the prescription given in the previous section. The first step is to
identify the different sectors consistent with equations (2.67), (2.68). These are all values
of nr, ng, n. consistent with:

nr+ng = 27
(3.1)
ng + ne even.

We list them below:
- nr=2,ng =0, n=0,
- npr=0,nsg=2,n=0,
-nr=1,ng=1,n.=1.

We will now address each of these sectors separately.

3.1.1 Parity even sector with two time derivatives

In the d = 1 case the extrinsic curvature has only one independent component, let us take
it to be its trace K. The independent FPD invariant terms are therefore:

& = K2, o =L, K. (3.2)
The associated expressions of ghost number 1 are:
11:/¢?gaK2, Igz/ﬁaznzf. (3.3)
The Weyl variation of each can be calculated using the rules of subsection 2.2.4:13
oW = —/\/fg o 2K L, 0],

6XV 12:/\/90 [fKEnO’vLEnQU].

3Note that 67 and o anticommute.
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We can now use (2.39) to relate [v/—g o L, 20 to an expression with an odd number of
derivatives acting on the ghost o:

/\/fgazn%z—/\/TgaKﬁna—/\/fg(ﬁna)Qz—/\/fgaKzna, (3.5)

where we used the Grassmannian nature of o to set (£, )% = 0. If we now define the
independent ghost number 2 quantity L1 = [ /=g 0 KL, o we can express the Weyl
variation as:

oW I = —2L4,
W (3.6)
0, I2 =2L4.
We see immediately that the cocycle space contains only one term (n.. = 1):
E1_11+I2—/\/—90'|:K2+£7LK]. (37)

To find the coboundaries of the relative cohomology, we build the zero ghost expressions:

Glz/\/?g K2, Gzz/\/?g L, K. (3.8)

Their Weyl variations are given by:

bjen :/Fg 2K L, o],

(3.9)
5y Gy = /\/—g [ KLno+ Ln0].
We can integrate by parts to obtain:
WG =— / V=9 20[L, K + K?] = —2[I; + 1],
(3.10)

(5}7/1/ Gy = /\/—g 2J[£nK+K2] = 2[[1+12]

Therefore, the coboundary space is spanned by F} = I; + I> and its dimension is n., = 1.
A useful consistency check is to make sure that all the coboundaries are in the cocycle span
(which is indeed the case here).

As we can see, the cocycle space (spanned by Fj) is contained in the coboundary space
(spanned by F7) and so we have no anomalies in this sector ng, = ne —ngp =1—1=0.
Note, that there are no trivial descent cocycles in this sector.

3.1.2 Parity even sector with two space derivatives

We now turn to the second sector which contains two space derivatives and no € tensor.
In the d = 1 case the intrinsic Riemann tensor is equal to zero. The independent FPD
invariant terms are therefore:

(Z)l = CL2, ¢2 = %H(Zu. (311)
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The integrated expressions of ghost number 1 are given by:

I = /\/?g oa?, I= /\/jg o V,at. (3.12)

The Weyl variation of each can be calculated using the rules of subsection 2.2.4:
65‘/[1:—/\/520(1“6#0,

N N (3.13)
oW I =— / V—go [—a"vua + DU} .

where 0 = 6#6“. We can integrate by parts to express [/—g o Oo as an odd order
derivative acting on one of the ghosts o:

/\/—79 o 0o =— / V=g o a"V,0. (3.14)

Defining L1 = [ /=g o af‘%ﬂa we can express the Weyl variation as:

oW I = —2L4,

3.15
oW I = 2L, (3.15)

The cocycle space contains only one term (nq = 1):

Ei=DL+1D— /,/—g o [aQ n %aﬂ} . (3.16)

To find the coboundaries of the relative cohomology, we build the ghost number zero
expressions:

Glz/\/fg a2, ng/\/fg V,a. (3.17)

Their Weyl variations are given by:

WG = /\/g 2 a”%ua,

N N (3.18)
5y Gy = / V=9 [—a“VMU + Da] .
We can integrate by parts to obtain:
§Y Gy = —/\/—g 20 [a2 + %ua“} = =211 + I3],
(3.19)

6V Gy = /\/—g 20 {aQ + %Ma“} =2[ + I].

Therefore, the coboundary space is spanned by Fy = I; + I> and its dimension is ng = 1.

As we can see, the cocycle space is contained in the coboundary space and so we have
no anomalies in this sector ng, = 0. Just as before, there are no trivial descent cocycles in
this sector.
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3.1.3 Parity odd (universal) sector with one space and one time derivative

In this subsection we will detail the computation for the sector with one time derivative, one
space derivative and an € tensor. We will regard z as a general parameter (not necessarily
z = 1). The reason for that is that this sector is universal. That means that the same
sector with the exact same terms exists for general values of z in 1 4+ 1 dimensions.

The FPD invariant terms in this sector are:

o= K &a,,  do=V,K,  ¢3=2e" Loa,. (3.20)
The integrated ghost number 1 expressions:
I = /\/ng K &a,,  Ip= /\/ng & V,K,  I3= /\/?g o & Lpa,. (3.21)
The Weyl variations:
W= —/\/Tg o [g“au Ena—l—nguﬁua} ,
oW Iy = / V=90 |8 VLo — 2K V0], (3.22)
oW I3 =— / V—gozéL, 6#0.

We can use integration by parts and equations (2.37), (2.41) to prove that
[/=g0e" L,V 0 = [\/=go€e*|V Lo+ a,Ly o] = 0. Defining:

L, = /\/—g oéla, Ly o0, Ly = /\/—g oK e 6,%7, (3.23)
we can express the Weyl variation as:
52:[/ I = *(Ll + ZLQ),
oW Iy = Ly + zLo, (3.24)
oW Iy = 0.
The cocycle space is the span of the two following terms (n. = 2):
Ei=0L+1= /\/—g o [K ea, + & %K] ,
By =13 = /\/—g o é Lyay.
To find the coboundaries of the relative cohomology, we build the zero ghost expressions:
G = /\/—g K é'a,, Go = /\/—g & VK, Gs = /\/—g e Lna,.  (3.26)
Their Weyl variations are given by:
oW Gy = /\/7—9 [E“au Lo+ 2Ke" %a} :
3V Gy = / V=g [eﬂ VLo —zKeé %a} : (3.27)

sV Gs = / V=g 2 &L,V 0.

(3.25)

~ 93 -



We can integrate by parts to obtain:

o Gi=— [z + 2l + T3],
5?/ Gy = [Zfl + zIy + 13] , (3.28)
5 Gz =0.

Therefore, the coboundary space is spanned by Fy = z(I; + I3) + I3 and its dimension is
ne = 1. It is useful to check that the coboundaries are in the cocycle span which is easily
verified here.

As we can see, we are left with one cocycle which is not in the coboundary span
Nagn = Nee — Nep = 1. We choose it to be:

401D :/ /=g o & Lna,. (3.29)

We, therefore, see that the z = 1 case has only one anomaly Agl’l’l).

Note, that the space of trivial descent cocycles (Weyl-invariant scalar densities) here
is of dimension nyy = 1, and is proportional to:

H; :]3—2(11 +IQ). (330)

The anomaly is, therefore, trivial descent (up to the addition of coboundary terms):
A g Ly 1
1 = 3—5( 1+ F). (3.31)

3.2 Other integer values of z

In this subsection we study the relative cohomology of the anisotropic Weyl operator in
141 dimensions for general integer z greater than one. We identify only two sectors for
this case:

— Parity odd sector with one time and one space derivative: np = 1, ng = 1, n = 1.
This is the same universal sector studied in the previous subsection and it contains

one anomaly: [ /=g o & Lya,.

— Sector with z 4 1 space derivatives: ng = z+ 1, np = 0. This sector should be parity
odd for even z (ne = 1) and parity even for odd z (n. = 0).

Since we have already studied the first sector in the previous subsection, we will now focus
on the second (purely spatial) sector. In 141 dimensions there is no need to carry indices
or Levi-Civita tensors explicitly. We can write all expressions in terms of a and its spatial
derivatives. We have developed several formulas specific to the 141 dimensional case which
can be found in appendix E. We used a script to perform the calculation up to z = 12
and found no anomalies in this sector. We list in table 1 the number of cocycles and
coboundaries for each value of z as well as the explicit form of the coboundaries for z < 4.
We conjecture that there are no anomalies in this sector for any integer z. We leave the
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Z | Nppp | Mee | Meb | Nan cocycles/coboundaries

1 2 | 1]1]0 Va + a2

21 3 | 1]1]0 a(2Va + a?)

3 5 2120 a2(3Va + a?), 4a®Va + 4(Va)? + 7aV2a + 3V3a
41 7 | 2| 2| 0 |d@AVa+a?),5a3Va+ 9a2V2a + 12a(Va)? 4 4aV3a + 8Va
50 11 [ 4|40

6| 15 | 4| 4|0

712 7|70

8| 30 | 8|8 |0 a*1(a® + zVa), ...

9| 42 12|12 0

10| 56 [ 14|14 | 0

11| 77 [21]21| 0

12| 101 [ 24|24 | 0

Table 1. Summary of results for the purely spatial sector in 141 dimensions. z is the Lifshitz
dynamical exponent. n.., Nee; Nep a0d Mgy are the number of independent FPD invariant expres-
sions, cocycles, coboundaries and anomalies for each value of z, respectively (see subsection 2.2.7
for more details).

proof of this statement for future work. Note also, that there are no trivial descent cocycles
in this sector up to z = 12.

We have not identified an obvious general structure for all the cocycles and cobound-
aries in this sector for general values of z. However, it is interesting to note that

Ei = [V—yg a(% +a)a* = [/=goa* 1 (a® + z%a) is both a cocycle and a coboundary
term for any z. The Weyl variation of F; is given by:

& <az’1 [aZ + z%a]) =2 [azﬁa + (2 — 1)a*"*VaVo + azflﬁ%] . (3.32)
i < / J=goa*! [a2 + z%aD —0, (3.33)

where we have used integration by parts in the last equality. We, therefore, find that E; is a
cocycle in the relative cohomology. To show that it is also trivial (a coboundary term) use:

G = /\/Tgaz“, (3.34)

whose variation is given by:

WG = /\/ng(z—i—l)az%a = —z(z+1)/¢fgaaz_1<a2 + z%a) = —2(z+1) Ey. (3.35)

4 Lifshitz scale anomalies in 2-+1 dimensions

In this section we detail our results for Lifshitz scale anomalies in 2+1 dimensions for
various values of z. We begin with detailed results for the universal sectors (for which
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Z ny | Ng | e | Nppp | Mee | Meb | Mtd | Mtdeb | Man Anomalies
Universal | 1 2 0 11 4 4 2 2 0 —
1{21] 6 2 | 2 |1 1 0 —
1 3100 5 2 | 2 |1 1 0 —
3 /001 1 1|0 |1/ 0 1 EVPKAL, Ko
2 2 0|0 3 2 |1 |1 0 1 Tr(K?) — K>
0|40 12 6|5 2] 1|1 (E + %aaa) ’
041 3 0] 010 0 0 —
2/3 4 lofof| 11 | 6| 4]3 1 2 | See (4.46)(4.47)
4 1o|1]| 2 111 1 0 —
4 0|6 |0 4 | 18| 16 | 4 2 2 | See (4.48)(4.49)
06 |1 20 |3 ]3]0 0 0 —

Table 2. Summary of results for the Lifshitz cohomology in 241 dimensions. z is the Lifshitz
dynamical exponent. np, ng and n. are the number of time derivatives, space derivatives and Levi-
Civita tensors in each sector, respectively (see subsection 2.2.6 for more details). N, Nees Tch, Ntds
N¢dep and Ny, are the number of independent FPD invariant expressions, cocycles, coboundaries,
trivial descent cocycles, trivial descent coboundaries and anomalies in each sector, respectively (see
subsection 2.2.7 for more details). Note that the z = 3/2 and z = 3 cases contain only the universal
sector and thus no anomalies.

we conclude there are no anomalies) and the important cases of z = 1 (which can be
compared to the conformal case) and z = 2 (which was previously studied in [18-22]). We
then present results for several other values of z: z = 2/3 and z = 4."* A summary of the

results can be found in table 2.

4.1 The universal sectors

The universal sectors are the ones with values of np, ng, n. that satisfy equa-
tions (2.67), (2.68) for any value of z. In 2+1 dimensions, these are the two following
sectors:

7nT:17nS:27n€:07
-nr=1,ng=2,n.=1.

4.1.1 Parity even sector with two space and one time derivatives

In d = 2 spatial dimensions, the intrinsic curvature contains only one independent compo-
nent, which we take to be the intrinsic Ricci scalar R. Taking into account all the identities

The cases of z = 3 and z = 3/2 contain only the universal sectors.
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in subsection 2.2.3, the ny = 1, ng = 2, n. = 0 sector contains n,,, = 11 independent
FPD invariant expressions:

¢1 = KCL2, ¢2 = Kaﬁaaaﬁa ¢3 = K‘§7 ¢4 = Kﬁaaaa
05 = K%V ag, ¢6 = A"V, K, ¢7 = VK,  ¢s=0K, (4.1)
b9 = VaVsK*® 10 =0a"Ly aq, b11 = L Vaa®.

The integrated expressions of ghost number one are given by I; = [ /—go¢;. After apply-
ing the Weyl operator to I; and performing integration by parts, we obtain linear combi-
nations of the following 9 independent expressions:

Ly Z/\/jgaﬁaal(ao‘, Lzz/v—gU%,BUaaKaﬁ, L3:/\/TQU€aU€QK7
Ly :/\/jgaﬁﬁJ%aKa'Ba Ls :/ —ga%o‘gﬁn Qos L6:/\/j90£n oa?, (4.2)
L7:/\/jgaﬁn06aaa, Lg z/\/—gaﬁnoﬁ, L9=/\/—790£n50‘

The matrix M;;, as defined in subsection 2.2.7, is given by:

2z 0 0 0 0 2 0 0 0

0 2z 0 0 0 1 0 0 0

2 0 2 0 0 0 0 2 0

—z 0 —z 0 0 0 2 0 0

1 —2-2 0 —z 0 0 1 0 0
—z—1 2 z 0 -1 -2 -1 0 0 (4.3)

-3 —z43 0 z -z -1 -3 0 0

z —4 —z-2 0 2 2 0 0 2

1 —4+z -1 -z 1 1 0 0 1

-3z oz 0 0 1z 0 -3z 0 0

0 0 0 0 0 0 —2 0 z

The solution space to the cocycle equations (2.73) is of dimension n.. = 4, and we
choose the following basis for it:

1 1 1
B =—=zI 1— =z Iy —zIg— =zIg+ T
1 22 1+< 22> 4 — 2lg 228+ 11,

1 1 1 1
Eo=|=-4=2z |1 —Is+ —zIy + =zl + Iig,
2 2 2 2 (4.4)

1 1 1
E3—§I1—Iz+§f4—f5—§fs+197

1 1 1
FEy=—=1 I — =1 Is — =1 1.
4 21+2 24+5 26+7

The integrated expressions of ghost number zero are given by G; = [ \/—g¢;. Applying
the Weyl operator to these expressions and integrating by parts we obtain the coboundaries,
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written as linear combinations of the expressions I;. The span of these expressions is the
coboundary space. It can be shown to be of dimension n., = 4 as well, and we choose the
following basis for it:

Fy =06V Gy = (=2 —22)I1 + 4, — 2214 — 2215 — 411y,

Fy =06 Gy =~ + (2 — 22) 15 — 2215 — 2217 — 2110,

F3 =6 Qs = 2I) — 41y + 21, — 415 + 4l — 817 + 21z — 4y,
Fy =06V Gy = 2D + (2 —2)I; + 221 + zIg — 2I1;.

It can be directly checked that all of the cocycles found are indeed linear combinations
of the coboundaries:

1
El__§F47
1
E2__ZF17
1 1 1 (4.6)
Fy=—-F34+ ~-F — —F
3 1 3+ -1 DPREE
1 1
E ——F F
4 P 2+4 1

We conclude that there are no anomalies in this sector.

Note, that the space of trivial descent cocycles (Weyl-invariant scalar densities) here
is of dimension n;y = 2, with the basis:

Hy = By + 2Ey,

(4.7)
Hy = zFE3 + (2Z — 2)E4

4.1.2 Parity odd sector with two space and one time derivatives

In the np =1, ng = 2, ne = 1 sector in d = 2 spatial dimensions, the following dimension-
ally dependent identity has to be taken into account (as a result of the anti-symmetrisation

of 3 indices):

KD - K =K. (4.8)

With this in mind, the sector contains n = 6 independent FPD invariant expressions,

FPD
which we choose to be:

¢1 = Kgﬁaaa,ﬂv ¢2 = VaVBK367 ¢3 = gaﬁaaﬁn ag,

N _ o (4.9)
¢1 =K Vaag,  ¢5=VaK ag, ¢ =PVaKag,

where

1
K9 = 5(60”[(5 + &K, (4.10)
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The independent integrated ghost number one expressions are given by I; = [\/—go¢i,
whereas the independent integrated ghost number two expressions are:

L= / V=90V, 0Kt a,, Ly = / V=90V, VaKg",
Lg = / V=90V, Kaq, Ly = / V=90V, 08V, K, (4.11)
L. = / VG0V 408 Ly g

The matrix M;; that corresponds to the cocycle equations turns out to be:

2z 0 0 0 0
z—2 —z 0 0
3

0 0 0 0 52 (4.12)

—z—2 -z 0 0 0

2—z z 0 0 0

0 0 —z —z -1

The cocycle space is of dimension n.. = 2, and we choose the basis:
By =1+ I5,

P (4.13)

FEo=1+4 14+ I5.

The integrated expressions of ghost number zero are again G; = f v/—g¢;. The
coboundary space is of dimension n., = 2, with the basis:

P =0YGy = =221 — 221, — 2215,

W (4.14)
Fy = (50 Gy = (Z — 2)[1 — 2zl + (Z — 2)[4 — 215.
We can check that all the cocycles are coboundaries:
1 1 /2
E12—7F2+27 (_1>F17
Z1 Z\F (4.15)
Ey=——F).
2 911

Thus there are no anomalies in this sector.
The space of trivial descent cocycles in this sector is of dimension ny;g = 1, and consists
of expressions proportional to:

Hy =zFE) + (2 — 2)Es. (4.16)
4.2 The z =1 case

In addition to the two universal sectors detailed in subsection 4.1, the d = 2, z = 1 case
contains two additional sectors with:

-npr=3,ng=0,n=0,

- nr=3,ng=0,n=1.
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4.2.1 Parity even sector with three time derivatives

In this sector for d = 2, the following identity is always satisfied:
1 3
5K3 + Tr(K?) — 5K Tr(K?) =0, (4.17)

where we define Tr(K?2) = K Kog, Tr(K?%) = KLKJKS.

Taking this identity into account, we are left with n = 5 independent, FPD invariant

FPD
expressions:

¢1 = TF(K3), ¢2 =K TI‘(K2), ¢3 = Kaﬁﬁn Ka,@a (4 18)
¢4:KﬁnK7 ¢5:£n2K. )

We define the independent integrated ghost number one expressions I; = [ /—god;,
and the independent integrated ghost number two expressions:

Ly :/\/—goﬁno Tr(K2), ng/\/—goﬁnoKz,

(4.19)
ng/\/ngﬁnUﬁnK, L4:/\/jg0£n3a.
The matrix M;; is given by:
30 00
22 00
5—-1 00 (4.20)
0-3 00
01 —22

Solving the cocycle equations, we obtain a cocycle space of dimension n.. = 2, with the
basis:

1
Ey=-2I + 512 + I3,
5 (4.21)
Ey=—-I + 512 + 1.

We define the integrated expressions of ghost number zero G; = [ \/—g¢;, and obtain
a coboundary space of dimension n., = 2, with the basis:

Fy =6V Gy =121, — 31, — 613,

4.22
Fy =06 Gy =121} — 815 — 4I3 — 414, (4.22)
All of the cocycles are indeed coboundaries:
1
E,=—-F,
¢ (4.23)
Ey=—-F+ -F
2 172 + g i

and therefore there are no anomalies in this sector. The space of trivial descent cocycles
in this sector is of dimension n;y = 1, and consists of expressions proportional to:

Hy = —-2F; + E». (424)
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4.2.2 Parity odd sector with three time derivatives
Interestingly, due to the symmetry of the extrinsic curvature, there is only one possible
FPD invariant expression in this sector (that isn’t identically zero):

¢ = EPKIL, Kop. (4.25)

The only integrated ghost number one expression is then I} = [ /=go¢1, and there are no
ghost number two expressions. The cocycle space is thus one dimensional (n. = 1), with
I, the only independent (and trivial descent) cocycle. Since there are no coboundaries, it’s
an anomaly as well:

AP =1y = / V=g ot KLy Ko, (4.26)

We conclude that there is only one anomaly in 241 dimensions for z = 1 which is given in
equation (4.26).

4.3 The z =2 case

The d = 2, z = 2 case is of particular importance, as certain condensed matter systems
have been shown to exhibit a Lifshitz scaling symmetry with this value of the dynamical
critical exponent [34]. The parity even sector for this case has been extensively studied in
the literature (see e.g. [18-22]). Here we repeat the cohomological analysis of this case in
our terms for comparison. We also show that in the parity odd sectors there are no possible
anomalies.

In addition to the universal sectors detailed in subsection 4.1, this case contains 4
additional sectors:

- nr=2,ng =0, n=0,
-nr=2,ng=0,n=1,
- nr=0,ng =4, n. =0,
- ny=0,ng =4, n.=1.

However, the second sector above (np = 2, ng = 0, ne = 1) is clearly empty and contains
no FPD invariant expressions at all, due to the symmetry of the extrinsic curvature. We
are, therefore, left with only 3 sectors.

4.3.1 Parity even sector with two time derivatives

This sector contains the following FPD invariant expressions (ng,, = 3):
¢1=Tr(K?), ¢o2=K?  $3=LyK, (4.27)

where Tr(K?) = KaﬁKaﬂ. The integrated ghost number one expressions are I; =
| v/=go¢i. The only independent ghost number two expression is

Ly = /\/?gaﬁn oK. (4.28)
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The matrix M;; is then given by:

2
4 (4.29)
4

The cocycle space is 2 dimensional (n. = 2), with the basis:

E,=1 — 112,
2 (4.30)
Ey =15+ I3.

Defining the integrated ghost number zero expressions G; = [ /=g¢;, the coboundary
space is of dimension n., = 1, with the basis:

P =6YG = -2, - 2Is. (4.31)
The second cocycle is a coboundary:

1
By =—3F, (4.32)

and we are left with 1 anomaly (ng, = 1) in this sector, given by:

1
AP = = [ =g ) - 52 (4.33)

Note, that the trivial descent cocycle space here is also of dimension n;y = 1, and spanned

by the anomaly Agz,o,o). This is the same result previously obtained for this sector, e.g.

in [18].

4.3.2 Parity even sector with four spatial derivatives

There are 12 independent, FPD invariant expressions in this sector (n,,, = 12):

(bl = ﬁZa (ZSQ = E(J,Q, ¢3 - aaea}/\i ¢4 = E%aaa7
¢5 = OR, b6 = a’, d7 = a®Va(a?), ds = a’Vaa®, (4.34)
d9 = (Vaa®)?, b10 = VaasVed’, b1 = a®VoVgd®, b1z = OV 4a®.

The integrated ghost number one expressions are then I, = [\/=go¢;. We choose the
independent, integrated ghost number two expressions to be:

Ly = /V—igaﬁaaﬁaa, Lo :/\/jgaﬁaaﬁaﬁ,
Ly = /\/Tgaﬁaoao‘%gaﬁ, Ly :/\/—;gaﬁaaao‘aa

Ls = /\/Tgaﬁaoﬁa(cﬂ), Lg = /\/—79060‘06,16136/3,
L= [ v=goB¥acac.

(4.35)
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The matrix M;; is given by:

o O

|
)

(4.36)

|
=
|
(@)
[N}
(@)
N O O O OO = O

2 0 —4
The cocycle space has dimension n.. = 6, and we choose the basis:

Ey =1 +2I3+ 1y + I5,
Eo = Is + I7 + Ig,

Es =1+ 214 + Iy,

1 3 (4.37)
E,=1 + 5[2 + 214 + Ig + 5]7—}-[10,

Es=—-L+1+ 13— 14— Ig — I7 + 111,
Ee¢ =11 — 215 — 213 + I + I7 + I12.

The coboundary space in this sector has dimension n., = 5, and we choose the basis:

Fy =06V Gy = —4I, — 813 — Al — 45,

Fy =0 Gy = —6Iy — 4I3 — 414 — 2Ig — 4I7 — 2Ig — 4119 — 4111,

F3; = 5§VG3 =4Iy + 214 — 215 + 21 + 417 + 41g + 219 + 411¢ + 8111 + 2149, (4.38)
Fy =06 G¢ = —8I — 8I; — 81,

Fs =0V Gy = —2I, 4 61 + 47 + 1013 + 4y — 414,

where G; = f v/—g®;. We conclude that there is ng, = 1 anomaly in this sector, which is
given by (up to coboundary terms):

~ ~ 2
AP0 — By = / V—go (R + Vaaa) : (4.39)
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We can check that all other cocycles are indeed linear combinations of the anomaly term
A§0’4’0) (which we abbreviate here as A1) and the coboundaries Fj:

1
EIZ_ZFD
1
E2:_§F4a
Bl A —im - 2R (4.40)
4= A= 385 = qehe .
1 3 1
Fr=—-A - I Y — 1)
5 1+4 5+84 152
1 5 1 1
=A — -Fs— -Fy+ - ~ 2R,
Es = Ay 2F5 8F4+2F3+F2 i

This is the same result previously obtained for this sector in e.g. [18].
We note that the space of trivial descent cocycles here has dimension n;,y = 2, with

the basis:
Hi=FE3= A,
P (4.41)
H2 :E1+E2+2E5—|—E6.

The anomaly in this sector is thus also a trivial descent (up to coboundary terms), and
there is a one dimensional space of trivial descent coboundaries, proportional to Hy + Ho.

4.3.3 Parity odd sector with four spatial derivatives

In this sector, we note the following identity (that comes into play when considering the
independent ghost number two expressions):

NV af — @V 0% = PV a0 (4.42)
There are 3 independent FPD invariant expressions (n,,, = 3):
1= €°‘Baaa7€5a~,, P2 = €O‘5aa€5§, ¢3 = eaﬁaa%%cﬂ. (4.43)

The integrated expressions of ghost number one are again defined as I; = [\/—go¢;.
Taking into account the previously mentioned identity, the independent integrated ghost
number two expressions are:

Ll == —g U%aaéa'ga (12, L2 = 1/—9 U%aaéaﬂa % (IPY,
g BV

Ly = /\/—gaﬁop?”aﬁ%yaﬁ, Ly = /\/—gaﬁaa?ﬂ%gﬁyaw,

(4.44)
Ls = /\/—g oVao €a6aﬁR, Lg = /\/—g oVao Eaﬂv[gR,
L; = /\/—gaﬁaﬁaéaﬁag.
The matrix M;; corresponding to the cocycle equations is:
204000 0
000022 2 (4.45)
020200 -2
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The only solution to the cocycle equations in this case is 0. Therefore, there are no cocycles
in this sector and the cohomology is empty.

4.4 Several other values of z

In this subsection we present our results for the Lifshitz cohomology for several other values
of the dynamical critical exponent z. These calculations were performed using a script that
implements the prescription outlined in subsection 2.2.7.

We begin with z = 2/3. Field theories with z < 1 may not be realized in low energy
physical systems. Nevertheless, studying their corresponding cohomologies can give valu-
able mathematical insight into the possible structure of Lifshitz cohomologies. Aside from
the universal sectors studied in subsection 4.1, this case contains two other sectors:

- nr =4, ng = 0, ne = 0: this sector contains n,,, = 11 independent FPD invariant
expressions. There are n.,. = 6 independent cocycles, n, = 4 coboundaries and
nig = 3 trivial descent cocycles. We are left with n,, = 2 independent anomalous
terms, both of which are trivial descents (up to addition of coboundaries), given by:

4800 _ / Vg0 [2 To() — LKCTH(K®) 4 Te(K) Tr(K 2>] : (4.46)

152 4
A0 = / V=go [_27 Te(KY) + o K Te(K?) = 2L, Koply K

—gK;/KO‘BLn Kgy + (L, K)? + ;Tr(KQ)En K} . (4.47)

where Tr(K?) = K* K5, Te(K?) = K§KY K3 and Te(K*) = K§KY K] K],

- nr =4, ng = 0, ne = 1: this sector contains n,,, = 2 independent FPD invariant

expressions. There is only n.. = 1 independent cocycle, which is also a trivial descent
and a coboundary. Therefore, no anomalies appear in this sector.

The case of z = 4 contains two sectors other than the universal ones:

- nr =0, ng = 6, n. = 0: there are n,,, = 44 independent FPD invariant expressions
in this sector. The cocycle space turns out to have dimension n.. = 18, with n., = 16
independent coboundaries, and n;g = 4 trivial descent cocycles. We find ng, = 2
anomalies, both of which are trivial descents:

~ ~ 3
AS0) / V=go [2R + Vaa‘”‘} : (4.48)
4060) _ / JGo [ R4 4aC RV B4 gaaé(%%aﬁ) AV RVOR
+ 4(VaVa®)(VOR) + a>R(V ga®)
+2(a°VaR)(Va?) + a®(VaV,ya)(Vga?)

1 ~ ~ ~ ~ ~
+Za2(vaaa)2+(vﬁvaaa)(VN%V) : (4.49)
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z ny | ng | Ne | Nppp | Nee | Neb | Mtd | Ntdeb | Man Anomalies
Universal | 1 | 3 | 1 7 3 2 2 1 1 See (5.1)

1 4 1010 13 7 5 4 2 2 See (5.2)—(5.3)
2 1210 47 | 23 | 17 | 13 7 6 See (5.4)—(5.9)
0410 15 8 6 3 1 2 | See (5.10)—(5.11)
31 |1 5 3 2 3 2 1 See (5.12)

2 2 1] 1 1 0 1 0 1 See (5.13)
0|5 1] 4 |[2]1]1] 0 |1 See (5.14)

3 21010 3 2 1 1 0 1 See (5.15)
06 |0 76 | 33 | 28 | 10 5 5 | See (5.16)—(5.20)

3/2 31010 6 3 2 2 1 1 See (5.21)

Table 3. Summary of results for the Lifshitz cohomology in 3+1 dimensions. z is the Lifshitz
dynamical exponent. nr, ng and n. are the number of time derivatives, space derivatives and Levi-
Civita tensors in each sector, respectively (see subsection 2.2.6 for more details). nupp, Nees Mebs Mtds
Ntdep and ng, are the number of independent FPD invariant expressions, cocycles, coboundaries,
trivial descent cocycles, trivial descent coboundaries and anomalies in each sector, respectively (see
subsection 2.2.7 for more details).

- nr =0, ng = 6, n. = 1: this sector contains n.,, = 20 independent FPD invariant
expressions, n.. = 3 independent cocycles, n., = 3 independent coboundaries and no
trivial descent cocycles. We therefore find no anomalies in this sector.

We finally note that the z = 3/2 and z = 3 cases contain only the universal sectors,
and thus no anomalies. All Our results in 2 + 1 dimensions are summarized in table 2.

5 Lifshitz scale anomalies in 3+1 dimensions

In this section we detail our results for the Lifshitz scale anomalies in 34+1 dimensions for
several values of z i.e. z =1, z =2, z = 3 and z = 3/2. The calculation turned out to be
quite involved and we used a script to perform it. In this section we describe our results
with less detail than those of the previous sections. For each value of z we list the various
sectors. For each sector we list the number of independent FPD invariant terms, cocycles,
coboundaries, anomalies and trivial descent cocycles. We then list the explicit expressions
for the anomalies only. The results are summarized in table 3. We begin with the universal
sector which is common to all values of z.

5.1 TUniversal sector

This sector which is common to all values of z has ny = 1 time derivative, ng = 3
space derivatives and n. = 1. This sector contains n.., = 7 independent FPD invariant
expressions. There are n.,. = 3 independent cocycles, nyg = 2 coboundaries and ny = 2
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trivial descent cocycles. We are left with n,, = 1 independent anomalous term which is
trivial descent (up to addition of coboundaries), and is given by:'®

z—1

A(11,3,1) _ (1 _ Z)aaga'yéK/B’yEﬁé + aaga’y&K/B(s%’Ya/B

z

1 ~ o o~ ~ ~
+ ;aaaﬁgﬁwvéfm + 285, RPVOK, + €3,5VPa*VO K, (5.1)

5.2 The 2z =1 case

In this subsection we specify all the non-universal sectors in the calculation of the z = 1
Lifshitz cohomology.

Parity even sector with four time derivatives. This sector has np = 4 time deriva-

tives, ng = 0 space derivatives and n. = 0. This sector contains n = 13 independent

FPD
FPD invariant expressions. There are n.. = 7 independent cocycles, n., = 5 coboundaries
and nyg = 4 trivial descent cocycles. We are left with ng, = 2 independent anomalous

terms, both of which are trivial descents (up to addition of coboundaries), and read:

A0yt gKTr(KS) 4T (K?) Tr(K?), (5.2)
A0 — gty %KTr(KS) +Tr K*L, K
+ (Ln K)? = 3L, Kogly K% — 3K VKPL, K, (5.3)

Parity even sector with two space and two time derivatives. This sector has
np = 2 time derivatives, ng = 2 space derivatives and n. = 0. This sector contains
Nepp = 47 independent FPD invariant expressions. There are n.. = 23 independent
cocycles, nyg = 17 coboundaries and n;g = 13 trivial descent cocycles. We are left with
Nan = 6 independent anomalous terms, all of which are trivial descents (up to addition of
coboundaries), and are given by:

~ 1 1~
./452’2’0) = (K2 —3Tr (K2)) <vaaa - 5@2 + 4R> ) (54)
1 3
Ag2,2,0) _ §a2K2 + Kao‘aﬁKag _ 5aaaﬁKOﬂKB7 + a? Tr(Kz)
1 ~ 1 ~ 3 = o
— ZK2R + Z TI“(Kz)R - EKa’yKaﬁRﬁ’y + KK,B’YR/B’Y
1 No L« B, a 3 2 VL
-5 Tr(K*)Vaa® + KKogV7a® — §Ka KpyVPa®, (5.5)
2 2 g
A§’2’2’0) = — §a2K2 + 4KaaaﬁKa/3 -6 aaaﬁKawKﬁv + gKaaVaK

~ 1 ~ ~ ~
—2a°K,V3K — G VsKVPK — 2Ka®V, K, "

~ 3~ ~ ~ ~
+6a°K," V., Kg" — 5 Vol AV, Kg" + VKV, K5, (5.6)

1511 this section we specify anomaly densities A; which are related to the anomalies by A; = JV/=goAs.
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1
AP0 = §G2K2 —4Ka%a’ Kop + 6a%a’ Ko Ky + 30 Tr K

2 e ~ le =
— 3 Ka"VaK + 20° KNV o Kg, — §VBKV5K

+ 40O KPPV K g — 40°K PV K + VK o(g VYK, (5.7)
4 2
./4?’2’0) = — §a2K2 + 2Kaaa5Ka5 - GaQQBKOﬂKM + gKao‘ﬁn Qo

—2a°KgLy a® + %Kao‘%aK — %Ln a®V . K

- gaaKf%K + L, a®VK,’ + %%K%f?[(

— Ka®V K, + 4a“ K,V K5 — %%Kaﬁﬁffﬂx (5.8)
AéQ’Q’O) = éaQK2 + 4@‘)‘@6[(0[“*[(/37 — gKaO‘L’n Qe

+ Ly aoLya® 4 20" KogL, a® + %Kao‘%al(

2 ~ 4 ~ ls =
= 3Lna® VoK — gaO‘KaﬁvﬁK - §V5KV5K. (5.9)

Parity even sector with four space derivatives. This sector has ny = 0 time deriva-
tives, ng = 4 space derivatives and n. = 0. This sector contains n,,, = 15 independent
FPD invariant expressions. There are n.. = 8 independent cocycles, n, = 6 cobound-
aries and ny;g = 3 trivial descent cocycles. We are left with ng,, = 2 independent anomalous
terms, both of which are trivial descents (up to addition of coboundaries), and are given by:

(07470) _ « 1 2 ]‘~ 2
AP = (Vaa® = 5a® + (R ) (5.10)

3., 3,5 5= P
AQLAD St = (@R — LR 4 2% Rag + Rag R — S RV aa®

+ 2aaa56gaa — a265a6 + 2]§a565aa + 604@5%5@&. (5.11)

Parity odd sector with one space and three time derivatives. This sector has
nr = 3 time derivatives, ng = 1 space derivative and n. = 1. This sector contains n,,, =5
independent FPD invariant expressions. There are n.. = 3 independent cocycles, ng = 2
coboundaries and n;y = 3 trivial descent cocycles. We are left with ng,, = 1 independent
anomalous term which is trivial descent (up to addition of coboundaries), and is given by:

A(13’1’1) = 25,36uKa6K7667Kau + g’yéuKavKaﬁeuKﬁa' (5.12)

5.3 The z =2 case

In this subsection we specify all the non-universal sectors in the calculation of the z = 2
Lifshitz cohomology.

Parity odd sector with one space and two time derivatives. This is the sector with
nr = 2 time derivatives, ng = 1 space derivative and n. = 1. It contains only n,,, =1
FPD invariant expression, which results in n.. = 1 cocycle, that is trivial descent (nig = 1)
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and no coboundaries. There is thus ngy, = 1 anomaly in this sector, which is trivial descent
and given by:
AP = gy S KOPVIK,. (5.13)

Parity odd sector with five space derivatives. This sector has ny = 0 time deriva-
tives, ng = 5 space derivatives and n. = 1. There are n,, = 4 independent FPD invariant
expressions in this sector. We find n.. = 2 independent cocycles, n, = 1 independent
coboundary and n;; = 1 trivial descent cocycle. We then have ng,, = 1 anomaly in this
sector, which is trivial descent:

1 . S e
ALSD = 50" 0 €05V Ra) + 2855 ROV R + 85,V a* VIR, (5.14)

5.4 The z = 3 case

In this subsection we specify all the non-universal sectors in the calculation of the z = 3
Lifshitz cohomology.

Parity even sector with two time derivatives. This sector has ny = 2 time deriva-

tives, ng = 0 space derivatives and n. = 0. There are n = 3 independent FPD invariant

FPD
expressions in this sector. There are n.. = 2 independent cocycles, n, = 1 coboundary
and nyg = 1 trivial descent cocycle. We conclude that there is only ng,, = 1 anomaly in

this sector, which is trivial descent (up to addition of coboundaries), given by:
AROO — g2 3Ty(K2), (5.15)

Parity even sector with six space derivatives. This is the sector with np = 0
ppp = (0
independent FPD invariant expressions. We find n.. = 33 independent cocycles, n., = 28

time derivatives, ng = 6 space derivatives and n. = 0. This sector contains n

independent coboundaries and n;g = 10 trivial descent cocycles. We are left with ng, = 5
independent anomalous terms, all of which are trivial descents, that are given by:

- 1 3\
A080) _ <Vaa“ Ly R> 7 (5.16)
2060 _ Lo Lap Lame 3 ape B emY. Taaf
2 = 81 9 4 4 @ aVp

9~ ~o ~ 1 o 2 e
+ 1 VoAV R — gaaaﬁRVﬂaa + §a2RvBa5
oS OBt ad & 4. Bl a 8T AT
+a"V,RVga +§a VaV,a'Viga +§a a”Vqa'Vga,
1y g =~ 3 o~ s =~ 1 oo 5o ~
— Ea%ﬁvg}% — 5aa}::aﬁvﬁ}z — 5a“vaaﬁvgz%
2, g 2 o e o 2 ~
— gachBVgVA,a“Y — gaavacﬁVgVa,aV + 2—7a2a5a7vva/5
4 -~ 4 -~ 4 g e
- 2—7a4V7a”’ - §ao‘aBVgaaV7a7 + §a2V5a’BV7cﬂ
+ 3604%5@0‘67337 - ao‘ﬁoﬂﬁwﬁﬁaﬁ
+ V5Vaa®V, VP, (5.17)
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AéO,G,O)

AiO,ﬁ,O)

A(O,G,O)

Lifshitz cohomology.

Parity even sector with three time derivatives.

S — 'R+ 2R+ 2R 24vaPRR
516% T TR Ty g @ ftitap
81
1

9 g =g 2=y ~ =
- QaszRﬁ” + 1—6R2vaaa +6a%a’Rg, Vaa?

FlRus B + 900" B Ry + 27RO T,

— gao‘ab’ﬁ%gaa + Za?i%%aﬁ + %PV 4a"V sa,

~ T RR\p¥7a" + 0TR Ry V20 — RV a5 ¥70
R, V'V + - a* V0" + V00"V a5V 0,

— 3a2ﬁm§vaﬂ — %a2€5a767aﬁ,

_ é%aﬁﬁaé Vs Ry VIR 4V Ras VIR,

8—71a6 - ga4ﬁ - 115(12§2 +3a%¢’ RRyp + ?aQa'Ba”’ﬁm
700’ Ra? By + 1R, B — S0t BV TR
+6a*RPV o Rg, — a*RV,Vga” + 8a*RP1V,V,ap

_ %%aﬁaﬁ PRV pae — 202V g — a®V RV g
+ 200 V0a Vg, — La?a? VR~ DaRSVR

— gao‘ﬁaaﬁﬁgﬁ — gaQQ’B%/g%w” — 24V 4’V V,a?

+ %OaQaﬁcﬂ%,yag — ga‘l%ycﬂ — gao‘aﬁﬁgaaﬁvav

+ 2000V, Rag + 180 BRIV, R

3V V0, By + 00?00, Ve — 40 R, V0
+ 8a2ﬁﬁy€7aﬂ + 4a0‘6a§57§7a5 + 4aa€a65a767a5
420950, V70”4 80"V s Ry V0 4 9V Ry 97 R

6V Ry, VIV + VoV ga, VTV

5.5 The z =3/2 case
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(5.18)

(5.19)

(5.20)

In this subsection we specify the non-universal sector in the calculation of the z = 3/2

This sector has np = 3 time deriva-
tives, ng = 0 space derivatives and n. = 0. There are n,,, = 6 independent FPD invariant
expressions in this sector. It has n.. = 3 independent cocycles, ny = 2 coboundaries and



nyg = 2 trivial descent cocycles. There is then n,, = 1 anomaly in this sector, which is
trivial descent and given by:

ABO0) g3 gK Tr(K?) + gTr(K?’). (5.21)

6 General examples

In this subsection we detail some results that are valid for general values of d and z. The
examples we present do not consist of a full analysis of the anomalies in the cases under
consideration. Rather, it is a study of particular sectors that could be either fully solved,
or that we have something general to say about their anomalous structure.

6.1 The z = d purely temporal sector

When the number of space dimensions d equals the value of the dynamical exponent z we
have a universal sector whose structure does not depend on the value of d (or z). This
sector contains 2 time derivatives, zero space derivatives and is parity even.

We have the following FPD invariant terms:

¢ =Tr(K?), da=K>  ¢3=LoK,. (6.1)

The associated expressions of ghost number 1 are I; = [ \/=go¢;. The Weyl variation of
each can be calculated using the rules of subsection 2.2.4:

oW = —/\/—g o 2KL, o],
oW I =— / V—g o [2dKL,, o], (6.2)
53‘/ I3 = /\/g o [72K£n0'+dﬁn20'] .

Defining L = [ /=g 0 KL, o we get after integrating by parts (remember that d = z):

oW I = —2L4,
5};‘/ 12 == *QZLl, (63)
(ng 13 = 22’L1.

There are two independent cocycles (nq. = 2):

By =1 — 112 = /\/—g o [Tr (K?) — 1K2] ,
: : (6.4)
Ey = 12+13:/\/—90[K2+£7ZK].

The second of them turns out to be a coboundary term (ny = 1). Notice that for the
special case of z = 1 the first cocycle identically vanish and then we have no anomalies in
this sector. There is one (trivial descent) anomaly for z # 1 (ng, = 1):

AP0 = / V=g o [Tr (K?) 1K2] . (6.5)

z
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Note that this structure is consistent with what we got in equations: (4.33), (5.15), for
the specific cases of d = z = 2 and d = 2z = 3 respectively. A similar analysis could be
performed for any d = nz where n is some integer. Similar conclusions can then be drawn
regarding the sector with n 4+ 1 temporal derivatives.

6.2 General purely spatial anomaly for even d + z

For general even d + z (where d > 2), a parity even purely spatial sector always exists
in the cohomology (with np = 0, ng = d + z and n. = 0). While a full analysis of the
cohomology in this sector seems to require solving for each d and z individually, we noted
that the anomalies in this sector always contain the following expression:

(0,2+d,0) _ — S 4 d—=2, z =
A} /\/ go (Vua 5, ¢ +2(d—1)R

(d+2)/2
) (6.6)
This is the case of the anomalies in equations: (4.39), (4.48), (5.10), (5.16).

It can be easily checked using the transformation rules of subsection 2.2.4 that the
Weyl variation of the density associated with the above expression vanishes. It is therefore
a trivial descent cocycle. Since this scalar density is not a total derivative, it cannot be a
coboundary in the cohomology, and must represent an anomaly.

We believe that additional general structures can be identified in the other sectors,
which we leave for future work.

7 Comparison to the conformal case

In this section we compare the Lifshitz scale anomalies with z = 1, to the well known
cases of conformal anomalies in 1+ 1, 2+ 1 (no anomalies) and 3 + 1 dimensions. We find
that the Euler density, which always represents an anomaly in the conformal case in even
dimensions, becomes a coboundary term in the Lifshitz z = 1 case, and thus no longer an
anomaly. We also explain the relation between the parity odd Lifshitz anomaly in 1+ 1

dimensions and gravitational anomalies.

7.1 Comparison of the cohomologies

Since conformal theories obey a scaling symmetry of the type (1.1) with z = 1, it is possible
to regard them as Lifshitz theories with z = 1, with the addition of an arbitrary foliation
of spacetime (where the classical action is independent of this arbitrary foliation). We can
then compare their cohomologies.

Since in the Lifshitz case we do not require full diffeomorphism invariance but only FPD
invariance, there are many more allowed terms in the cohomology. It is clear however that
any diffeomorphism invariant term that may appear in the conformal cohomology may also
appear in the Lifshitz one.'® In addition we expect the conformal cocycles and coboundaries
to be contained in the Lifshitz cocycles and coboundaries respectively. In particular, since

1More precisely, assuming we restrict the discussion to the relative cohomology of the Weyl operator with
respect to diffecomorphisms, the diffeomorphism invariant effective action of the conformal picture Weont[e® ]
may also function as an FPD invariant effective action in the Lifshitz picture Wyi¢[e® ., t*] = Weont[e® 1]
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the Weyl operator does not mix between Lifshitz sectors, the projection of each conformal
cocycle on each of the sectors should also be a cocycle of the Lifshitz cohomology. While any
conformal coboundary is also a coboundary in the Lifshitz cohomology, the opposite is not
necessarily true. Therefore anomalies of the conformal case may now become coboundaries
in the Lifshitz cohomology. This is due to the fact that the counterterms needed to cancel
them may not be fully diffeomorphism invariant but merely FPD invariant. We show below
how this is manifested in the different dimensions.

In 1+1 dimensions. We have in the conformal case one anomaly of the form (2.10). In
foliation projected terms it reads:

/ V—goR = / V—go [2 (K?+ L, K) -2 (a2 + %aﬂ)} = 2p300 _opl0:20) 7 )

where Ei(nT’nS ime) represents the i-th cocycle in the sector that corresponds to ny time
derivatives, ng space derivatives and n. Levi-Civita tensors. Thus we observe that the
conformal anomaly is indeed a cocycle in the Lifshitz cohomology, but unlike the conformal
case, it is now a coboundary. It can be removed by adding an appropriate counterterm to
the action:

Wes = / V=g (K*-a?). (7.2)

Note, that adding this counterterm to the action also breaks the diffeomorphism invariance
(while FPD invariance is preserved), thus “shifting” the Weyl anomaly into a diffeomor-
phism anomaly.

Recall that we also found in the 1 + 1, z = 1 Lifshitz cohomology an apparently
new anomaly of the form (3.29). However, in the next subsection we show that this
anomaly is actually related to the Weyl “partner” of the gravitational anomaly in the 1+ 1

conformal case.!”

In 2 + 1 dimensions. In the conformal picture there are no Weyl anomalies since no
invariant of the right dimension can be constructed. In the z = 1 Lifshitz case we have one
new anomaly (4.26) in the parity odd sector.

In 3 + 1 dimensions. In the conformal picture there are two parity even anoma-
lies (2.12), (2.13) and one parity odd anomaly (2.14). By writing these expressions in
foliation projected terms we verified that they are indeed linear combinations of cocycles
in the appropriate sectors of the 3 + 1, z = 1 Lifshitz cohomology. The FEuler density
and the Weyl tensor squared are a linear combination of cocycles of the parity even sec-
tors (np,ng,ne) = (4,0,0), (2,2,0) and (0,4,0), whereas the Pontryagin term is a linear
combination of cocycles from the parity odd sectors (3,1,1) and (1,3,1). Both the Weyl
tensor squared and the Pontryagin term are anomalies in the Lifshitz cohomology as well,
and can be decomposed as a combination of the anomaly expressions that were specified

" Weyl “partner” as defined in the classification theorem mentioned in subsection 2.1.2.
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in section 5 as follows:

2 (4000 2 ,400) . 32 (220 4 (220
W2 = SAPOY S A AR Sy

(2,2,0) (2,20) 2 (0,4,0) (0,4,0) (73)
— 4 AP 4 AP0 - AP 24040
P = 16403 4 (7.4)

where “...”

stands for coboundary terms. Note that the Pontryagin term consists only of
the universal sector anomaly (plus coboundaries from both parity odd sectors). The Euler
density, however, again turns out to be a coboundary in the Lifshitz cohomology. It is
therefore not an anomaly of the z = 1 Lifshitz cohomology, and can be removed by adding

the following counterterm to the action:

401 22
W,y = /\ﬁ{ a*L, nK - s K0 L, K—;RE K+ (L K)?
@ ) a B 4~aﬁ

— —/Ln ao Ly a® — ?a a” L, Kog — ?R Ly, Kop
2 221 2

+ 3 L, KagﬁnKO"B—i——ao‘L VoK - 2r % oV K
63 42 7
332 ~ 260

— 510" Ln VeK.? — 0plon V2a® — —a VAV K
391 ) 68 115

a1 a n a 7KO[B n2Ka I n2 o o
21 L, %ay + 63 L 8 13 L,V a

28 ~ ~ ~ =
- @cn K — 3 Ln@*VaK + 2RVaa® - 20V oV ga”

AV TR ATV 0 4 28000V o

220 ~ 512
TR a*VK," — TR KopVPa®

94 ~ ~ 68 .
+7V7KQ5V“’K“5 + 7K°“£V”V7Ka5 : (7.5)

We also note that in the Lifshitz case we have many anomalies that are independent from
the projections of the Weyl tensor squared and Pontryagin term to the various sectors (7
in the parity even and 1 in the parity odd sectors).

In conclusion, in the examples studied, the Euler densities turned out to consist of
coboundary terms only, while the rest of the conformal anomalies are still present as
anomalies in the Lifshitz cohomology. We propose that this might be the case for all even
spacetime dimensions. We also found additional anomalies in the Lifshitz cohomology that
are not diffeomorphism invariant.

7.2 Relation to gravitational anomalies in 141 dimensions

When the conformal theory contains gravitational anomalies, its description in terms of
a z = 1 Lifshitz theory will not in general be FPD invariant and is therefore outside the
scope of our discussion. In 1+ 1 dimensional theories, however, we can always extend the
conformal effective action to an FPD invariant Lifshitz one. This is done by “shifting” the
anomalies into a foliation dependence. Assume that the conformal (non diffeomorphism
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invariant) action takes the form Weonele®,] = Weont[€®, €!,,], where Weops is invariant under
spacetime coordinates transformations but not under local Lorentz transformations.'® We
can define the Lifshitz effective action as follows:

Wit [eaua ta] = Weont [_ea,unaa eauﬁa] = Weont [_nua ﬁu] ) (7'6)

where 1% = %

ny. This effective action is clearly FPD invariant, and coincides with the
original Weoys for the “flat” foliation n® = (1,0). It represents a choice of a local Lorentz
frame which is aligned with the arbitrary foliation.'® Indeed, in terms of this Lifshitz
action, the Lorentz non invariance has been converted to a foliation dependence.?’ The
anomalous Ward identities that correspond to the Lorentz anomaly in conformal theories

are well known, and given by (see e.g. [25, 27, 28]):

T(e) uv] = aREuVy (77)
VHT(’EI)/ = aRe®w o,
T(i)u = —2ae®V W o, (7.9)

where a is a model dependent anomaly coefficient. Note, that this anomaly belongs to
the second set in the classification theorem mentioned in subsection 2.1.2. Identity (7.9)
represents the Weyl “partner” of the Lorentz anomaly.

Written in terms of the previously defined Lifshitz effective action, the corresponding
anomalous Ward identities are:

J, = —2aRmn,, (7.10)

Tl = 40 (Lpa, — apk = V,K) | (7.11)

along with the (non anomalous) Ward identities (2.30) and (2.31). The identity (7.10)
corresponds to the anomalous independence of the action on the foliation. It can be derived
from (7.7) and (2.30). Identity (7.11) is the Weyl “partner” of this foliation independence
anomaly, and can be derived from (7.9) by replacing the vielbeins 60“, el u by —ny, and ny,
respectively (according to (7.6)), as follows:
T(i)u = — 2aeabvuw“ab = —4aV, leo, VV'er"] —
—4aV, [0, V'n"] = —4ae”’n,V,, [KP[)‘ — apn”] (7.12)

= 4qeP (En a, — (apK + 6,)[()) .

It can be easily checked that expression (7.11) is a linear combination of the anomaly found
in the parity odd sector of the 1 4+ 1, z = 1 Lifshitz cohomology in subsection 3.1.3, and a

8By adding an appropriate counterterm one may always shift the gravitational anomaly to a pure Lorentz
anomaly [25, 35].

YSince the theory is classically invariant under local Lorentz transformations, Wi, differs from Weon by
a local term and therefore the actions are equivalent.

20Note that there is only one anomalous gravitational degree of freedom in 141 dimensional field theories,
which is known to be associated with area preserving diffeomorphisms (i.e. 9, = 0). This is consistent
with the anomalous degree of freedom of the foliation dependence in the Lifshitz field theories.
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coboundary term:
/ V=goTly, =4a <2A§2’0’1) = Fl(m”) . (7.13)

We therefore see that in the case of a conformal theory, the anomaly we found in the 1+ 1
Lifshitz cohomology functions as the Weyl part of the gravitational anomaly in the theory.
We do not expect this to be the case for higher dimensions, since the anomalous degrees
of freedom of diffeomorphism invariance would in general contain not only the foliation
degrees of freedom, but those of FPD invariance as well. One would therefore need to
consider non FPD invariant expressions in order to account for all possible gravitational
anomalies.

8 Summary and outlook

In this work we presented a detailed prescription for finding the general anomalous struc-
tures associated with scaling symmetry in Lifshitz field theories. One has to consider a
foliation one form as a background field in addition to the spacetime metric. It is then
possible to check, which non-trivial foliation preserving invariants can be built that are
consistent with the Wess-Zumino consistency conditions.

We performed the analysis for various values of z and d. Our results are summarised in
table 4 below. In general we found that all the anomalies are type B in the sense explained
in subsection 2.2.8. We suspect that this might be the case for general d and z. We leave
this for future study. We also noted that as opposed to the conformal case not every Weyl
invariant scalar density is an anomaly.

For z = 1 we compared our results to the conformal Weyl anomalies. We showed that
the Euler densities in 1+1 and 341 dimensions become trivial. This is due to the variety
of new counterterms, which are FPD invariant but not fully diffeomorphism invariant. We
suggest that this may be the case for any number of dimensions. In 1+1 we related the
single parity odd anomaly to gravitational anomalies. In 2 + 1 dimensions, as opposed to
the conformal case, we found various anomalies. This is again due to the rich structure
induced by the foliation. In 3 + 1 we found a larger number of anomalies than in the
conformal case.

We found two specific examples of anomaly expressions that are valid for general d and
z. This suggests the possibility that more general structures like these may be found, or
even a full cohomological analysis that would be valid for any dimension and any value of
the dynamical exponent. In particular, since we noted that in 1+ 1 dimensions, other than
the anomaly in the universal sector, there are no further anomalies in any of the integer
values of z up to 12, it would be interesting to see if this can be proven for any z.

We worked out the relative cohomology w.r.t. foliation preserving diffeomorphisms.
Another interesting extension of this work would be to study the full cohomology, including
anomalies of FPD invariance. Among other things, it may enable us to find a more general
relation between the known gravitational anomalies in the conformal case and anomalies
in Lifshitz field theories.
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d z Nan Anomalies

1+1 [ 1-12 | 1 See (3.29)
241 | 1 | 1 See (4.26)
2 2 See (4.33), (4.39)
3 0 -
4 2 See (4.48)—(4.49)
2/3 | 2 See (4.46)~(4.47)
3/2 | 0 -
3+1 1 12 See (5.1)—(5.12)
2 | 3 | See (5.1), (5.13)(5.14)
3 7 | See (5.1), (5.15)—(5.20)
3/2 | 2 See (5.1), (5.21)
general | — — See (6.5)—(6.6)

Table 4. Summary of the results. d, z and n, are the space dimension, dynamical exponent and
number of anomalies respectively.

The anomaly terms allowed by the WZ consistency conditions in 2 4+ 1 dimensions
with z = 2 have been shown to appear both in field theory [18] and holographic [18—22]
calculations. It would be interesting to similarly reproduce the other anomaly terms that
we found in the Lifshitz cohomology for 1 + 1, 2+ 1 and 3 4+ 1 dimensions in field theory
or holographic models, and calculate the associated coefficients.

Two other interesting research directions follow from our work. Studying the behaviour
of the coefficients associated with the Lifshitz scale anomalies along RG flows can shed light
on RG flows in non-Lorentz invariant field theories. A derivation of the contribution of
Lifshitz anomalies to the entanglement entropy in Lifshitz field theories, as has been done
in the conformal case in [36], can also give valuable insights to non-Lorentz invariant field
theories. We leave these for future work.
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A Notations and Conventions

This appendix serves as a quick reference for our notations, conventions and definitions.
We work with a d + 1 dimensional spacetime manifold, where d is the number of space
dimensions. The manifold is foliated into d dimensional leaves. We use Greek indices
a, B, ... for the d+1 dimensional spacetime coordinates. We use the Latin indices ¢, j, k, . . .
for coordinates on a d dimensional foliation leaf. We use a, b, ¢, ... as indices in the local
Lorentz frame of the spacetime manifold (when using vielbeins).

We use a metric g, with a Lorentzian signature of {—1,1,1,...}. The vielbeins e%,
then satisfy g’“’eaueby = n® where n°° = —1 and p!!' = 5?2 = ... = 1. We assume that
the foliation leaves are spacelike and the foliation 1-form is timelike, so that the normalized
foliation 1-form n, satisfies: n,n* = —1.

For the Levi-Civita tensor (of the full spacetime) we use the definition:

1
Eaﬁ... = éaﬂ...’ (Al)

where é*8- is the totally antisymmetric symbol, defined such that é012 = 1.
We use the standard torsionless metric compatible connection on the spacetime man-
ifold, with the following convention for the associated Riemann curvature:

V., V[V =R, V7, (A.2)
where V¢ is some vector, and the following conventions for the Ricci tensor and scalar:
Ry, = R pov, R=g¢"R,,. (A.3)
When working with vielbeins we use the following convention for the spin connection:
wuy = —ep"V ey, (A.4)

where the covariant derivative here operates only on the spacetime indices. Also note that
we define the temporal derivative of a tensor Tg‘llﬁa;”"" to be its Lie derivative in the direction
of the normalized foliation n*:

LnTglg? =nt,Tgle% — Oun™ TE ™ — -+ Ogynt TAM + ... (A.5)

We end this appendix with table 5, summarizing the various notations used throughout
this work.

B Derivation of the Lifshitz Ward identities

In this appendix we derive the form of the classical Ward identities corresponding to foli-
ation preserving diffeomorphisms and the anisotropic Weyl scaling as presented in subsec-
tion 2.2.1.

Assume a classical action depending on the metric and foliation S(g.v,ta, {¢}) (where
{¢} are the dynamic fields), or alternatively S(e?,,t’, {¢}), along with the definitions of
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Tr(K™)
Ryvpor Ruv, R
cHVp-..

Vi

Top...

nr, ng, Ne

nFPD

Ncey Neby Nan

Ntd, Nitded

bi

I;

L;

G;

E,[:(nT7nS7n€) or E’Z
E;(nTvn57ne) or E
A(nT,ns,ne) or A;

)

H;
AZ('TLT’”S:TLG) or A’L

Number of space dimensions

Lifshitz dynamical exponent

Non-normalized /normalized foliation 1-form

Diffeomorphism/local Lorentz/Weyl transformations parameter/ghost
Diffeomorphism/local Lorentz/Weyl operator

Stress-energy tensor defined by variation w.r.t. metric/vielbeins
Non-normalized /normalized  “foliation current” (action variation
w.r.t. ty)

Global Lifshitz scaling dimension

Foliation projector P, = g, + nun,

Acceleration associated with the foliation a, = £, n, =n"V,n,
Extrinsic curvature of the foliation K, = %En P, = P[Z Von,

Trace of the foliation extrinsic curvature, K = K},

Trace of the product of n extrinsic curvatures, Tr(K™) = KE‘K,? ... KE
Intrinsic Riemann tensor/Ricci tensor/Ricci scalar of the foliation
Intrinsic Levi-Civita tensor of the foliation, i.e. e#VP = n,e*HVP--
Spatial (foliation projected) covariant derivative

Any tensor tangent to the foliation

Total number of time derivatives/space derivatives/Levi-Civita tensors
in an expression or in a sector of the Lifshitz cohomology

Number of independent FPD invariant expressions in a given sector
Number of independent cocycles/coboundaries/anomalies in a sector
Number of independent trivial descent cocycles/coboundaries in a sector
The i-th independent FPD invariant expression in a given sector

The i-th independent integrated expression of ghost number one in a
given sector I; = [ \/—go¢;

The i-th independent integrated expression of ghost number two in a
given sector

The i-th integrated expression of ghost number zero in a given sector
Gi= [v=g%i

The ¢-th independent cocycle in the sector corresponding to the values
(np,ng,ne)

The ¢-th independent coboundary in the sector corresponding to the
values (np,ng, ne)

The i-th independent anomaly in the sector corresponding to the values
(nr,ng,ne)

The i-th independent trivial descent cocycle in a given sector

The i-th independent anomaly density in the sector corresponding to
the values (np, ng,ne), related to the i-th anomaly by A4; = [ /—goA;

Table 5. Notations and definitions.
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subsection 2.2.1. Since the foliation 1-form is defined only up to rescaling, the action must
be invariant under rescaling of the 1-form:

S( G tar {0}) = S(guvs fla, {9})- (B.1)

Applying an infinitesimal rescaling, we obtain for any d f:

08 = /(5t = /\/—gJO‘tach =0, (B.2)
so that J% is tangent to the foliation:
J%%q = 0. (B.3)

Starting with invariance under the extended form of FPD (2.19), we apply the trans-

formation operator to the action (using the metric formalism):!

5S
D
55 S = / 5§ Juv + St 5§ lo =
1 v v v
— [V 5TV + V) + THE Tt 9,60 =
= / V=g ¢ [—VHT(;)V + IVt — vﬂ(my)] . (B.4)

Requiring that 5£D S = 0 for any ¢ we obtain the Ward identity:

V,.T"

l = TVt = V(). (B.5)

Using J* as defined in equation (2.27), this identity can be written as in equation (2.29):

VT = 'V n, — V() = —n, [V, JH + 2J7a,], (B.6)

(9)

where a, = n"V,n, and V is the covariant derivative projected on the foliation. Al-
ternatively, using the vielbein formalism, we apply first the local Lorentz transformation
operator, giving:

oLs = / Le, 5555#—
T 5t

_/ {T(e) aabe —Jozbtb}—

= /6 aab [_T(e)ba — Jatb] . (B7)

Requiring 6% = 0 for all a® such that a® = —a®?®, we get the Ward identity:

T = Jiutv- (B.8)

= 0 and don’t contribute to the

2'We assume here that the dynamic fields {¢} satisfy the E.O.M
variation.
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We then apply the diffeomorphism operator:

0S p
D a _
665 / ge “+5t7a5§t

_ / ¢ [T(e)“a(f”vl,e““ F V%) + TV, 1] =
= /6 & [—VMT(E)‘“,, -I-T(e) Vet pwtJaV ta] (B.9)
By requiring (5§D S = 0 for any &, we obtain the identity:

VHT(e)Ml/ = T(e)“avyea# + Javl/ta == ( )wyab + J V t
= J"Cwyap + JaVut® = J,Dt" = J'V ,t,,, (B.10)
where we used (B.8), and D, represents the covariant derivative with respect to local

Lorentz transformations. Using the normalized foliation 1-form, identities (B.8) and (B.10)
can be written in the form of equations (2.30)—(2.31):

Tieypuw) = Jfumu); (B.11)
VTt = J*Vyn,, . (B.12)
Turning to the anisotropic Weyl symmetry, applying the Weyl operator to the action we
have:
08 08 v
DS / 5 W(Swgw, + Eégvta = /\/—gQJT(’;)(PW — Znuny), (B.13)
or, using veilbein formalism:
08 08 a “ a
558 = / Se, 7 e &aéth = /e ol a(Py — 2zn np)e’, . (B.14)

Requiring that 6)'S = 0 for any o, we obtain the Ward identity equation (2.32):

T(’;l)'PW — zT(%n“nl, = T(’él)’PW — zT(‘g)/n“nl, =0. (B.15)

C Decomposition to basic tangent tensors

In this appendix we present a proof for the statement of subsection 2.2.2, that any FPD
invariant scalar expression may be written as a sum of scalar expressions built by contract-
ing the basic tangent tensors: P, a,, K., éuypg, €uvp... and their temporal derivatives
L, and spatial derivatives %# (as defined in subsection 2.2.2).

As a first step in the proof, we note that any tensorial expression T;,5... may be decom-
posed as a sum of terms of the form

ToB.. .. ZTag NNy, ... (C.1)

where Taﬁ... are either tensors tangent to the foliation, or scalars. We refer to these tensors
as the foliation tangent components of Ti,5... It can be easily seen that any scalar built by
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contracting all the indices of any number of tensors can thus be written as a sum of scalars
built by contracting the indices of the tangent components of these tensors. Therefore, in
order to prove our claim it is sufficient to show that the tangent components of any tensor
built from the metric and foliation 1-form are polynomials in the previously mentioned
basic tangent tensors.

The metric, the foliation 1-form and the Levi-Civita tensor clearly satisfy this condi-
tion, with the following decompositions:

Ng = Na,
Jap = Paﬁ — NaNg, (C2)
€apBys... = *nagﬁwé... + nﬁgavd... — nfygaﬁd... + ...,

As previously noted, the covariant derivative of n, also satisfies it:
Vo = Ky — ayny,. (C.3)
The Riemann tensor satisfies it due to the Gauss-Codazzi relations:
P[Lll Pll// Ppp Pg R,u’l/’p’a’ = R,uz/pU + KupKz/a - KMO'KI/pv
n BY PV PY Ry yor = Vo Kyp — Vo Ky, (C.4)
0" PY'nf P Ryt ot = —Lon Kyo + Ko K& + Voa, + a,a,.
It remains to show that given a tensor that satisfies the above condition (all its tangent

components are polynomials in the basic tangent tensors), its covariant derivative also
satisfies it. Suppose then that T,z is such a tensor, with the decomposition (C.1). Then:

VoTos..pw... = Z (foaﬁ...) NNy -+ Taf;m(vpnu)n,, R (C.5)

Since T, ap... and V,n, both satisfy the condition, it is enough to focus on the expression
V,T4p.... In general we can always write:

vpfaﬁ..‘ = (Pppl - npnp/) (PSI - nana’) (P/g/ - ngnﬂ/) R vplfalﬂlm

= P}’; Pg Pg .o 'vp’Talﬁ’...
+ nana/(. .. )zﬁé'."'vplTa/glm + nﬂnﬁl(. .. )g;afj“vp/Ta/g,,_ + ... (C6)
—npnplpglpgl ...Vp/Tva/B/m '

= %pfaﬁ — navpxna/(. .. )gﬁﬁfalﬁl + ...

— ing/Pg/ ... (,Cn falgl,_ + va/na”fa//@m + Vﬁ/nﬂnfalgum . ) ,
where the terms of the form (... )Z/aa/ represent various products of the foliation projector
Pgl and the normalized foliation 1-form n,. The last expression is clearly a polynomial in
P.g, na, Vang, Taﬂ...7 ﬁpfaﬂ“ and L, Taﬁ...; and therefore satisfies the condition that all
its tangent components are polynomials in the basic tangent tensors. Thus our statement
is proven.
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D Derivation of identities for tangent tensors

In this appendix we detail the derivation of some of the identities of subsection 2.2.3.
The derivation of the temporal and spatial derivative exchange formula for tangent
tensor T3, (equation (2.37)) is as follows:

LoV Tup. = Ly [Pﬁ/PO?/Pg' . .vu,fa%,,_]
— L, (P;;’) PYPY . Ny Twgy.. + Pl Ly (Pg’) Py Twp o+ ...
+ PYPY P L0V Ty
= au PSPy Ny Twg. + aaPl Py 0Ny Targr . + ..
+ PP P [nvvyvulfww,,. + (V") Vy Ty
+ (Vo)W Togmy. + |
= a,PY P ¥V Ty — aaPLPY (vwna’) Torgrr. — ...
+ PRSP [V gy + 1 Rty T+ |
+ PP P (V! )V Tapry. + PEPY P KV Tg
= au PP L Tagy. — KTy .|
~aoPl PY K Tagy. — ...
+ PP P [vul (nyvﬁafw,,,) n (%K#,a, —%Q,KH,,)) TPoy. +.. }
+PYPY P KNV Ty
= a, [Ln Tor.. — K'Typy.. — .. } — 4K Ty — ...
+ PP P Vy (La Targy.. = (K2 = ane) Ty ... )
+ (%,KW - ?aKﬂp) TP 4+ KV, Typy + ...
=a,Lly, Taﬁ'y... — auKZTVBv.-- — = aaKZTVB'Y“' —-...
+VuLn Tapy.. — Y, (Kg iﬁv) et KTy + .
+ (%pKlwc - 6aKW) fpﬁ%- +ot Kgﬁuft/ﬁ%- +..
= 6# (ﬁn Tam“_) +auly Taﬂv...
+ [(% + ay) Ko — (%a + aa) K — (ﬂ + aﬂ> Km,} T4,

where we used the Gauss-Codazzi relations (C.4) and the fact the the Lie derivative of a
tangent tensor is also tangent to the foliation.

The derivation of the temporal derivative of the Riemann curvature equation (2.40) is
as follows. Use the commutation relation for two space derivatives:

[%, %} Vo = RuvapV?, (D.1)
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and apply a temporal (Lie) derivative to both sides. Exchanging the temporal derivative
with both the spatial derivatives on the Lh.s. of (D.1) using equation (2.37) gives:

LoV, VyVa =R’ Lo Vy — Ra? 1K p5V? — RgP 1 Kpo VP
+ | (Vi 0) (Vo + ap) Ko — (Vi + ap) (Vo + aa) Kyp — (14 ) | VP
Applying the temporal derivative to the r.h.s. of (D.1) we obtain:
Lo (RuvaVy) = Lo Ruva” - Vo + Ruva” - Lo V.
We therefore end up with:

En ﬁa,@;w = fiocpuVKg - EﬁpﬂVKg
+ (eu + au)(ﬁﬂ +ag)Kya — (6/1 + aﬁ(%a + aa)Kyp (D.2)
— (%V + (IV)(%/B + aﬁ)Kua + (%II + al/)(%a + aa)KNﬁ’

which is precisely (2.40)
One can use this to derive similar identities for the temporal derivatives of the Ricci
tensor:

Ln Eau = = éaﬁupKﬁp + ﬁﬂqu

+ (Vi +au)(Vp + ap) KE = (Vi + au)(Va + aa) K (D-3)

— (Vo + ap) (VP + ") Ko + (Vy + a,) (Vo + aa) K2,

and the Ricci scalar:

LoR= — 2K Ry +2(Vy+a,)(Vy+ a,) KPP —2(V, +a,)(VP +a’)K.  (D.A4)

E Useful formulas for the spatial sector in 1+ 1 dimensions

In this appendix we present two useful formulas relevant to the purely spatial sector in
1 4+ 1 dimensions for a general integer value of the dynamical exponent z. We suppress
indices in the formulas below since they are not needed in 1+1 dimensions as explained in
subsection 3.2.

The variation of any number of lower indexed derivatives acting on the acceleration
vector is given by:

n—1
5V (F7a) = ST a) - ¥ T 0 = 2o (” ' 1) ShaTrbe. (B.1)
k=0

For integration by parts of an expression of ghost number two with an even number of
derivatives acting on one of the ghosts, we have the following identity:

/\/jgfoﬁzna =— Z (Z) /V—ig(e +a)kf oV Fe. (E.2)

k=1
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