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1 Introduction

The arguments that the quantum theory of gravity should have a holographic description

are rooted in black-hole thermodynamics. The latter is as true in asymptotically flat

spacetimes as in the asymptotically anti-de Sitter spacetimes. And yet, we don’t have a

holographic description of quantum gravity in asymptotically flat spacetimes. In such a

situation, it is reasonable to take our cue from the bottom-up approach to the established

AdS/CFT dictionary [1, 2] and ask if something of the kind exists for quantum gravity in

asymptotically flat spacetimes.

For quantum field theories in Minkowski space, S-matrix is a holographic observable by

definition. Thus there is a huge effort to calculate the S-matrix without going through the

conventional Feynman calculus involving integrals in the bulk spacetime [3]. On the other

hand, recently there has been a flurry of activity following the realization by Strominger [4,

5] that Weinberg’s soft theorems of gauge theories and gravity can be seen as the tree-level

Ward identity for a symmetry of the S-matrix [6–10]. For gravity, the symmetry in question

is a certain diagonal subgroup of the product group of supertranslations on the future and

past null infinity, I + and I −, which comprise the null boundary of asymptotically flat
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spacetimes. For gauge theories, the symmetry in question is a certain diagonal subgroup

of the product group of gauge transformations on I + and I −. Strominger has further

conjectured on the form of the subleading terms in the soft-theorem, and it was verified in

ref. [8]. The analogous terms in the case of Yang-Mills theories were found in refs. [11, 12].

The precursor of these developments was the proposal by Barnich and Troessaert [13–

16] (see also refs. [17–19]) that the group of asymptotic symmetries of asymptotically

flat spacetimes should include the infinite dimensional Virasoro subgroup. Therefore, a

general expectation is that the techniques familiar from two-dimensional conformal field

theories could be imported in developing a holographic description of quantum gravity in

asymptotically flat space.

With holography in flat space as the main motivation, in this paper we revisit the

Weinberg’s soft-photon theorem in Abelian gauge theories with massless charged matter

studied in refs. [4, 6] and formulate it in terms of the quantities defined intrinsically on the

null boundary of a conformally compactified asymptotically flat spacetime. Our goal in this

paper is to systematically study the asymptotic symmetries of the radiative phase space;

to quantize the phase space and; following refs. [4, 6], to derive the soft-photon theorem

as a Ward identity related to large gauge-symmetry of the radiative phase space. In line

with the holographic motivation, our work will be exclusively on the null boundary I of

spacetime and the bulk is discarded after the construction of the radiative phase space.

For studies related to the construction of a theory living on I that calculates the tree level

amplitudes in supergravity see refs. [20, 21].

Our derivation of the soft-theorem as a Ward identity is a slight generalization of the

derivations in refs. [4, 6] in the sense that ours is applicable even when the bulk spacetime

is not exactly flat but is “close” to Minkowski in some sense. We, however, do not consider

the backreaction, thus the bulk is still non-dynamical. During this study we will uncover

an interesting subtlety related to the Poisson brackets on the radiative phase that was also

noted in ref. [22]. This would lead us to identify soft-photons as “edge states” on I .

This paper is organized as follows — in section 2 we review the definition of asymptotic

flatness and the geometry of null infinity I ; in section 3 we review Weinberg’s soft-photon

theorem and express it in terms of the coordinates intrinsic to I ; in section 4 we introduce

the radiative phase space of electromagnetism and quantize it; in section 5 we review

Strominger’s proposal for new symmetries of the scattering problem in massless quantum

electrodynamics; in section 6 we impose the invariance of the S-matrix under large gauge

symmetry to derive the Weinberg’s soft-photon theorem. We conclude with a summary

and outlook in section 7. A brief review of the symplectic formulation of field theory, and

the example of free Maxwell field, is provided in the appendix.

We will be working in four-dimensional bulk with the metric-signature (−+ ++). The

variation symbol δ will represent the exterior derivative on phase space. We will leave the

“∧” symbol implicit in the differential forms on phase space.
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2 Geometry of null infinity

In this section we review the geometry of null infinity I . Since I arises as the conformal

boundary of asymptotically flat spacetimes [23], we begin with the definition of asymptotic

flatness. We will be following the recent review in ref. [24].

A spacetime (M̂, ĝab) is said to be asymptotically flat at null infinity if there exists

a manifold M with boundary, ∂M := I , equipped with a smooth metric of signature

(−+++) such that the interior M−I is diffeomorphic to M̂ , and the following conditions

are satisfied:

1. there exists a smooth function Ω on M such that gab = Ω2ĝab on M̂ , with Ω = 0 and

∂aΩ 6= 0 on I ,

2. I is topologically S2 × R, the vector field na := gab∂bΩ on I is complete and the

space of its orbits is diffeomorphic to S2,

3. ĝab satisfies the Einstein equation in the intersection of M̂ with a neighborhood of I

in M and Ω−2T̂ab extends smoothly to I .

The intrinsic geometry of I is described by a degenerate metric qab and the null generator

na. There is a conformal freedom in the choice of the rescaled metric gab,

Ω→ ωΩ , Lnω = 0, (2.1)

which leads to the following freedom in the intrinsic metric and the null generator of I ,

{qab, na} → {ω2qab, ω
−1na}. (2.2)

Therefore, the universal structure at I consists of the equivalence class {qab, na} ∼
{ω2qab, ω

−1na}. The vector fields on I that respect this universal structure are the in-

finitesimal generators of the asymptotic symmetry group of asymptotically flat spacetimes.

This group is called the BMS1 group after the founders Bondi, van der Burg, Metzner [25]

and Sachs [26]. The vector fields ξa that generate the BMS group satisfy,

Lξqab = 2βqab and Lξna = −βna, (2.3)

where β is a scalar on I such that Lnβ = 0. Those ξa which are of the form ξa = f na,

where f is a function such that Lnf = 0, generate the normal subgroup of the BMS

group and are called supertranslations (ST). These vector fields generating ST form a Lie

ideal, in the sense that their commutator with any BMS vector field is again a ST. The

quotient group BMS/ST is generated by the conformal isometries of S2 and is isomorphic

to the Lorentz group. As originally formulated in refs. [25, 26] the conformal isometries

of S2 were assumed to be complete vector fields. Recently, Barnich and Troaessart [13–

16] have proposed that the singular vector fields should also be allowed and in that case

the quotient BMS/ST is no longer the finite dimensional Lorentz group, but it is the

1The bold B with respect to ’MS’ is to emphasize that B stands for the names of two authors.
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infinite dimensional Virasoro group. This observation implies that the techniques from

two-dimensional conformal field theories could play an important role in the physics of

four dimensional asymptotically flat spacetimes.

We will work in the Bondi gauge, so that qab is the metric of a unit S2, ds2 = dθ2 +

r2 sin2 θ dφ2. By using stereographic projection from the North-pole of S2 to the equatorial

plane, we can label the coordinates on the unit S2 by a complex number ζ = cot(θ/2)eiφ.

Thus we represent a point on the unit S2 by coordinates {ζ, ζ̄}, and we view ζ̄ not as a

complex conjugate of ζ but as an independent coordinate. The cartesian components of a

point {x = sin θ cosφ, y = sin θ sinφ, z = cos θ} on the unit S2 are then given by

x =
ζ + ζ̄

ζζ̄ + 1
, y =

1

i

ζ − ζ̄
ζζ̄ + 1

, z =
ζζ̄ − 1

ζζ̄ + 1
. (2.4)

The metric on unit S2 in terms of the coordinates {ζ, ζ̄} is given by

ds2 =
4

(1 + ζζ̄)2
dζdζ̄. (2.5)

3 Amplitudes with soft-photon insertion

In this section we first review Weinberg’s soft-photon theorem in section 3.1. Our treatment

follows that of ref. [27].2 Then in section 3.2 we rephrase the soft-factor that appears in

the soft-photon theorem in terms of the quantities defined intrinsically on I .

3.1 Weinberg’s soft-photon theorem

Weinberg’s soft-photon theorem [27, 29] is a universal formula that gives the amplitude

for emission of arbitrary number of very low-energy photons in a process α→ β involving

any number of higher-energy charged particles of any kind in the initial state α and the

final state β. In particular, the amplitude M µ
α→β for emitting a single soft-photon with

four-momentum q and polarization index µ in the process α→ β is given in the soft limit

(i.e., the limit in which the energy of the photon ω → 0) as

lim
ω→0

M µ
α→β(q) = Mα→β

∑
n∈β

en
pµn
q · pn

−
∑
n∈α

en
pµn
q · pn

 , (3.1)

where pn and en are the four-momentum and the charge of the nth particle in the in

(out) state α (β), ω and q are the energy and four-momentum of the emitted soft-photon,

and the dot “·” stands for the index- contraction. The quantity in parenthesis on the

right-hand-side is the tree-level soft-factor at the leading order.

One interesting implication of eq. (3.1) is obtained by contracting it with the pho-

ton four-momentum q and demanding that the result should vanish in order to pre-

serve the Lorentz-invariance (since the polarization “vector” is not really a four-vector

2For the derivation of soft-factors in gauge theories using the soft-collinear effective field theory please

see ref. [28].
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and we could choose it upto the addition of the photon’s four-momentum). This gives∑
n∈β en =

∑
n∈α en, i.e., the total charge of the system is conserved.

We will be interested in the amplitude for emitting a soft-photon for a particular

polarization, say ε
(+)
µ , which is obtained by contracting eq. (3.1) with ε

(+)
µ ,

lim
ω→0

M
(+)
α→β(q) = Mα→β

∑
n∈β

en
ε(+) · pn
q · pn

−
∑
n∈α

en
ε(+) · pn
q · pn

 . (3.2)

The amplitudes appearing on the two sides of eq. (3.2) are asymptotic observables, i.e., their

natural habitat is I . We therefore turn to recast the soft-factor in terms of the quantities

intrinsically defined on I so that the soft-theorem could be expressed intrinsically on I .

3.2 Soft-factor on I

In this sub-section, we rewrite the soft-factor, which appears on the right-hand-side of

eq. (3.2), in the Bondi gauge and in terms of the stereographic coordinates on the S2

cross-sections of I introduced in section 2.

Denote the four-momentum of a particle as pµ = {E, ~p}. For a massless particle,

E = |~p|. Hence, pµ = E{1, p̂} for a massless particle. But p̂ points in the direction of

motion of the particle. If we assume that the scattering happens at the center of the two-

sphere at infinity then the direction of motion of all the particles involved is radial. In this

approximation, p̂ can be characterized in terms of the point on the unit S2 cross-section

of I where the particle finally hits. The latter is coordinatized by {ζ, ζ̄}. Thus the four-

momentum of the massless particle can be encoded using the stereographic coordinates as

{E, ζ, ζ̄}.
The dot product between two null-momenta p1 = {E1, ζ1, ζ̄1} and p2 = {E2, ζ2, ζ̄2} can

be calculated using eq. (2.4) to be,

p1 · p2 = −2E1E2
(ζ1 − ζ2)(ζ̄1 − ζ̄2)

(1 + ζ1ζ̄1)(1 + ζ2ζ̄2)
. (3.3)

For a photon we also need polarization vectors corresponding to a given four-momentum.

Following ref. [6], we take the two independent transverse polarization vectors correspond-

ing to the photon q = {ω, ζ, ζ̄} to be

ε(+)µ =
1√
2
{ζ̄, 1,−i, ζ̄}, (3.4a)

ε(−)µ =
1√
2
{ζ, 1, i, ζ}. (3.4b)

Projecting the polarizations (3.4) on the conformal S2 at I using εa =

{
∂xµ

∂ζ
εµ,

∂xµ

∂ζ̄
εµ

}
we get the induced polarizations on S2,

ε(+)
a =

{
0,

√
2

(1 + ζζ̄)

}
, (3.5a)

ε(−)
a =

{ √
2

(1 + ζζ̄)
, 0

}
. (3.5b)
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The dot-product between the polarization vectors and null momenta p = {z, z̄} can be

calculated by writing the momenta explicitly in terms of its components using eq. (2.4).

Then, using eqs. (3.3) and (3.4a), for the soft-factor in eq. (3.2) we obtain,∑
n∈β

en
ε+ · pn
q · p

−
∑
n∈α

en
ε+ · pn
q · p

 =
(1 + ζζ̄)√

2ω

∑
n∈β

en
1

ζ − zn
−
∑
n∈α

en
1

ζ − zn

 , (3.6)

where the nth charged particle with four-momentum pµn has coordinates {En, zn, z̄n}. If we

label the asymptotic momenta in the ingoing (outgoing) states α (β) by their corresponding

stereographic coordinates on S2 at I + (I −) and their asymptotic energy as {E, z, z̄}, then

the soft-theorem gets expressed in terms of quantities defined intrinsically on I as

lim
ω→0

M
(+)
α→β(q) = Mα→β

(1 + ζζ̄)√
2ω

∑
n∈β

en
1

ζ − zn
−
∑
n∈α

en
1

ζ − zn

 . (3.7)

Thus the natural habitat of the soft-theorem is also I . Eq. (3.7) is the form of Weinberg’s

soft-photon theorem that we will derive in section 6.

4 QED with massless matter

In this section we first review the construction of the phase space of radiative modes in

classical electrodynamics with massless matter, then we quantize it. Our classical consier-

ations follow ref. [30] (see also, ref. [31]). Quantization of radiative modes on a null surface

was also studied in ref. [32].

4.1 Classical phase space

Let’s denote the pullback of the electric field Ea = Fabn
b and the rescaled matter current

Ω2Ja to I + as Ea and ja, respectively. Let Aa be a vector potential for the pullback

to I + of the field tensor Fab. These quantities determine the electromagnetic field Fab
everywhere in (M, gab), the conformal completion of (M̂, ĝab) [30]. Since, Eana = 0, we

have only two independent components in Ea. We recognize these components as the two

radiative modes of the Maxwell field. The symplectic structure is given by

Ω =
1

4π

∫
I +

(3)ε qab δEa δAb. (4.1)

In the gauge Aan
a = 0, using that Dan

b = 0, we also have that Ea = LnAa. Note that

unlike ref. [30] we do not require that Aa → 0 at the future and past boundary of I (I +
± ).

We still have the residual gauge freedom Aa → Aa + Daλ, where Lnλ = 0, i.e., λ is a

function on the space of generators of I +. This gauge freedom is a genuine symmetry

and not merely a redundancy in our description. The vector field Xλ =
∫
I +

(3)ε Daλ
δ

δAa
,

which corresponds to the residual gauge freedom, is not a degenerate direction of Ω. To
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see this, let us calculate the inner product

iXλΩ =
1

4π

∫
I +

(3)ε qab [Ln(Daλ) δAb − δEa Dbλ]

=
−1

4π

∫
I +

(3)ε qab Ln(δAa) Dbλ

=
−1

4π

∫
I +

(3)ε qab Ln(δAa Dbλ )

=
−1

4π

(∫
I +

+

−
∫
I +
−

)
(2)ε qab δAa Dbλ, (4.2)

where in the first step we have used that Ea = LnAa; in the second that Lnλ = 0,Lnqab = 0

and Dan
b = 0; and in the third we have used the Stokes theorem to get the integrals at

the future and the past boundaries of I + that, following Strominger in ref. [4], we have

denoted by I +
+ and I +

− , respectively. Finally, the charge Qλ that generates the residual

gauge transformation with gauge parameter λ can be calculated by integrating iXλΩ = δQλ.

This gives,

Qλ =
−1

4π

(∫
I +

+

−
∫
I +
−

)
(2)ε qab Aa Dbλ. (4.3)

The gauge transformations which are non-vanishing at infinity, in particular at I + are

called the large gauge transformations [4]. We thus see that the large gauge transformations

are the symmetries of the phase space. Henceforth, we will call it the large gauge-symmetry.

Following ref. [6], we now assume that the field strength vanishes at boundaries I +
+

and I +
− , i.e., the vector potential is pure gauge there. Let

Aa = Daφ+ at I +
+ (4.4)

Aa = Daφ− at I +
− . (4.5)

We can map I +
− to I +

+ by following the integral curves of the null-generator na. Thus we

can think of φ− as a function on S2 at I +
+ and hence write the charge as

Qλ =
−1

4π

∫
I +

+

(2)ε qab Da(φ+ − φ−) Dbλ, (4.6)

=
1

4π

∫
I +

+

(2)ε λ qab DaDb(φ+ − φ−), (4.7)

where in the second line we integrated by parts. The charge can also be written as an

integral over the whole of I + as

Qλ =
−1

4π

∫
I +

(3)ε qab Ea Dbλ. (4.8)

The algebra of generators of the large gauge-symmetry is abelian, essentially because Ea is

gauge invariant,

{Qλ1 , Qλ2} = 0. (4.9)
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In the Bondi gauge, using integration by parts in eq. (4.7) we can also write the charge as

Qλ =
−1

2π

∫
I +

du d2ζ
√
q qζζ̄ Eζ Dζ̄λ. (4.10)

Now plugging in the explicit form of metric, choosing the gauge parameter λ as λ = 1
ζ−z ,

and using the identity ∂z̄(1/(z − ζ)) = 2πδ(z − ζ, z̄ − ζ̄) in eq. (4.10) we get

Qλ= 1
ζ−z

= −
∫
I +

du Ez(u, z, z̄), (4.11)

which is the form that we will eventually use for quantizing this operator in section 4.4. It

is clear from eq. (4.11) that the generator of large gauge-symmetry for the gauge parameter

λ = 1
ζ−z is the zero mode of the z-component of E [6]. Similarly, the generator of large

gauge-symmetry for the gauge parameter λ = 1
ζ̄−z̄ is the zero mode of the z̄ component

of E .

Before moving on to quantize the phase space, for the sake of completeness and for

potential future use, we study the action of the BMS symmetry on the radiative phase

space.

4.2 Action of BMS symmetry

Let ξa be a BMS vector field. Hence,

Lξqab = 2βqab and Lξna = −βna, (4.12)

where β is a scalar such that Lnβ = 0. The vector field ξ induces a vector field Xξ on the

phase space that is given by

Xξ =

∫
I +

(3)ε LξAa
δ

δAa
. (4.13)

To calculate the charge generating the motion along Xξ we calculate

δQξ = iXξΩ (4.14)

=
1

4π

∫
I +

(3)ε qab [Ln(Lξ)AaδAb − δEa LξAb] , (4.15)

which can be integrated using that Ea → 0 on both the boundaries I +
± of I + , and that

Lξ (3)ε = 3β (3)ε, to get the charge as noted in ref. [31],

Qξ =
−1

4π

∫
I +

(3)ε qab LnAa LξAb. (4.16)

In particular, for the vector fields generating supertranslations, i.e., ξa = fna where f is

some function such that Lnf = 0, the corresponding charge is

Qξ =
−1

4π

∫
I +

(3)ε f qab LnAa LnAb (4.17)

=
−1

4π

∫
I +

(3)ε f qab Ea Eb. (4.18)
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We have also checked that the BMS charge algebra is closed, i.e., for two BMS vector fields

ξ1 and ξ2 we have,

{Qξ1 , Qξ2} = Q[ξ1,ξ2], (4.19)

where [·, ·] is the Lie-bracket. The bracket between the generators of large-gauge symmetry

and BMS charges can also be calculated and is given by,

{Qλ, Qξ} = QLξλ, (4.20)

where λ is a large gauge parameter. In particular, large gauge-symmetry generator com-

mutes with the generator of supertranslations. Furthermore, large-gauge symmetries and

BMS transformations together form a Lie algebra, with large-gauge transformations form-

ing another abelian ideal, one being the supertranslations.

4.3 Quantization: A-representation

It is tempting to read-off the Poisson brackets for the vector potential from the symplectic

structure in (4.1) as

{Aa(u, ζ, ζ̄), Ab(u
′, ζ ′, ζ̄ ′)} =

~
4πi

qab ∆(u− u′)δ(ζ − ζ ′; ζ̄ − ζ̄ ′), (4.21)

where ∆ is the step-function. But we now demonstrate that the Poissson bracket between

A’s is in fact not well-defined. This was also noted in ref. [22] in the gravitational context

in the study of the sub-leading soft-graviton theorem. For the ease of presentation, we

consider the simple toy model given in ref. [22] by ignoring the angular variables in the

symplectic structure (4.1).

A toy model

Consider a field theory with the following symplectic structure,

Ω =

∫
du δφ δφ̇, (4.22)

such that the field φ and its variation δφ do not vanish as u→ ±∞, while φ̇(u) does vanish

as u→ ±∞. Here overdot stands for the derivative with respect to u. It should be noted

that, modulo the angular dependence, this is essentially the same symplectic structure as

we have on the radiative phase space in section 4.1 with φ for Aa and φ̇ for Ea. In order

to find the Poisson bracket {φ(u′), φ(u′′)} we first need to calculate the Poisson bracket

between two functionals {F [φ], G[φ]}, where

F [φ] =

∫
du f(u)φ(u),

G[φ] =

∫
du g(u)φ(u),

and then put f(u) = δ(u− u′) and g(u) = δ(u− u′′). We now show that if we do this then

it would lead to a contradiction.
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Let XF be the vector field generated by the function F [φ] on phase space, i.e.,

XF =

∫
du X(u)

δ

δφ(u)
.

By definition, we have δF = iXFΩ. This gives∫
du f(u)δφ(u) = X(u) δφ(u)|+∞−∞ − 2

∫
du Ẋ(u) δφ(u).

Since δφ(u) is arbitrary, with δφ(±∞) 6= 0, we must have that

X(±∞) = 0 and f(u) = −2Ẋ(u),

=⇒
∫ +∞

−∞
du f(u) = 0.

But this is not compatible with f(u) being a delta function δ(u − u′), which we need to

calculate the bracket {φ(u′), φ(u′′)}. We conclude that this Poisson bracket is not well-

defined. It can also be checked that the Poisson bracket between φ̇(u) is actually well-

defined since φ̇(u) → 0 as u → ±∞. In the same vein, Poisson bracket between vector

potentials in our massless abelian theory is also not well-defined, but the Poisson bracket

between electric fields is well-defined. Thus it is not surprising that a naive extraction of the

Poisson bracket between vector potentials from the symplectic structure yields ambiguous

results, such as the “factor of 1/2” problem encountered in refs. [6, 7]. One way to cure this

problem is to enlarge the phase space by introducing new degrees of freedom so that the

contradiction noted above is avoided. These degrees of freedom are also called the “edge

states” (see, for e.g., refs. [33, 34]). This is the procedure followed in refs. [6, 7]. Let us

now see how it works in our toy model.

We introduce a new degree of freedom φ−, which is really the boundary value of the

field φ at u → −∞ (hence the name — edge state). Let us take as its symplectic partner

φ+, which is the boundary value of φ at u → +∞. Symplectic structure on the enlarged

phase space is now taken to be

Ω =

∫
du δφ δφ̇+ δφ−δφ+.

In this enlarged phase space, δF = iXFΩ gives∫
du f(u)δφ(u) = X(u) δφ(u)|+∞−∞ − 2

∫
du Ẋ(u) δφ(u) +X(−∞)δφ+ −X(∞)δφ+,

= −2

∫
du Ẋ(u) δφ(u) + (X(∞) +X(−∞)) (δφ+ − δφ−).

If we impose anti-periodic boundary conditions on X(u) then we are left with f(u) =

−2Ẋ(u) as before, which after integration gives
∫ +∞
−∞ du f(u) = −2(X(∞) − X(−∞)).

Since X(±∞) is not constrained to vanish anymore, we can choose its value consistent

with the choice of delta function for f(u). On the enlarged phase space, the Poisson

bracket {φ(u′), φ(u′′)} can be read-off from the symplectic structure without causing any
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inconsistency anywhere. This is the procedure followed in refs. [6, 7], where the new degree

of freedom (the edge state) φ− is identified as the Goldstone mode.

We are going to follow another route. In the original phase space, although the Poisson

brackets between A’s is not well defined, the Poisson brackets between the electric field E ’s

is well-defined. Therefore, without further ado we move on to quantize the phase space in

the E-representation.

4.4 Quantization: E-representation

Following ref. [30] (see also ref. [32]), commutation relations of E ’s can be read-off from the

symplectic structure in eq. (4.1) as

[
Ea(u, ζ, ζ̄), Eb(u′, ζ ′, ζ̄ ′)

]
=

1

4πi
qab δ(ζ − ζ ′, ζ̄ − ζ̄ ′) ∆(u− u′), (4.23)

where ∆ is the step function. We expand the electric field in the positive- and negative-

frequency Fourier modes,

Ea(u, ζ, ζ̄) =

∫ ∞
0

dω ω
[
ε̄αa aα(ω, ζ, ζ̄) e−iωu + εαa bα(ω, ζ, ζ̄) eiωu

]
, (4.24)

where we take the polarizations to satisfy ε̄αa ε
β
b δαβ = qab, and ε̄αb is defined such that

ε̄±a = ε∓a . The reason for choosing the multiplicative factor of ω with operators aα, bα is

that we want to associate these operators with the creation/annihilation of photons, which

are particles corresponding to the vector-potential Aa. Since Ea = LnAa, the expansion

of the operator Aa would not have such a multiplicative factor of ω. Now we impose the

following commutation relations among the operators aα and bα,

[aα, aβ] =0 = [bα, bβ],

[aα(ω, ζ, ζ̄), bβ(ω′, ζ ′, ζ̄ ′)] = δαβ
δ(ω − ω′)

8π2ω3
δ(ζ − ζ ′, ζ̄ − ζ̄ ′).

(4.25)

Then using the integral representation of the step function∫ ∞
−∞

dω

ω
eiω(u−u′) = 2πi∆(u− u′), (4.26)

we find that the commutation relations (4.25) ensure that the canonical commutation

relations of E ’s in eq. (4.23) are obeyed.

The relation between the operators a and b is obtained by imposing an appropriate

hermiticity condition. Since we are working in the stereographic coordinates {ζ, ζ̄}, we

require that (Eζ)† = Eζ̄ . Then using the reality of polarization vectors given in eq. (3.5)

we get

b+ = a†−,

b− = a†+.
(4.27)
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Therefore, using eqs. (4.23), (4.24), (4.27), (3.5) we finally get the explicit form of the ζ

and ζ̄ components of the electric-field operator as

Eζ =

√
2

(1 + ζζ̄)

∫ ∞
0

dω ω
[
a+(ω, ζ, ζ̄) e−iωu + a†−(ω, ζ, ζ̄) eiωu

]
,

Eζ̄ =

√
2

(1 + ζζ̄)

∫ ∞
0

dω ω
[
a−(ω, ζ, ζ̄) e−iωu + a†+(ω, ζ, ζ̄) eiωu

]
.

(4.28)

From eqs. (4.10) and (4.28), after doing the integral over u, we get the quantum operator

generating the large gauge symmetry with gauge parameter λ as

Qλ =
−1

2π

∫
S2

d2ζ
√
q qζζ̄ Dζ̄λ

√
2

(1 + ζζ̄)

∫ ∞
0

dω ωδ(ω)
[
a+(ω, ζ, ζ̄) + a†−(ω, ζ, ζ̄)

]
. (4.29)

In particular, choosing the gauge parameter as λ = 1
ζ−z and plugging in the metric (2.5),

either in eq. (4.11) or in eq. (4.29), we get

Qλ= 1
ζ−z

= −
√

2

(1 + zz̄)

∫ ∞
0

dω ωδ(ω)
[
a+(ω, ζ, ζ̄) + a†−(ω, ζ, ζ̄)

]
. (4.30)

The explicit form of the gauge generator in eq. (4.30) indicates that it creates/annihilates

a photon with vanishing small energy. In the vacuum defined by a±|0〉 = 0, we see that the

state obtained by the action of Qλ is not normalizable. Thus the large gauge symmetry is

spontaneously broken in this vacuum. Soft photons are then the Goldstone modes of the

spontaneously broken large gauge symmetry [4, 6].

5 Promoting phase-space symmetry to the symmetry of S-matrix

So far we have constructed the charge operator that generates the large gauge-symmetry on

the radiative phase space constructed on I +, i.e., it transforms one set of given initial data

on I + to a new initial dataset. We could also have defined the initial data on the I − and

there would be a corresponding generator of large gauge-symmetry on the corresponding

phase space. Let us denote by G+ (G−) the group of large gauge symmetries at I + (I −).

Let the corresponding generators be Qout (Qin). Each of these generators consists of a

matter piece Qmatter
λ and a radiation piece Qλ,

Qout
λ = Qmatter

λ +Qλ, (5.1)

and similarly for Qin
λ . The action of matter part on a state is given by

Qmatter
λ |α〉 = −

∑
n∈α

en λ(zn, z̄n) |α〉, (5.2)

where the sum involves the charge e and the location z (hence momentum) of each particle

in the state |α〉.
There is, in general, no relation between the gauge parameter on I + and that on I −,

we are free to choose them independently. Thus neither G+ nor G− is the symmetry of the
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S-matrix. In order to promote the symmetry of the phase space to the symmetry of the

S-matrix, Strominger suggested to first identify the null generators of I + and I − by the

antipodal mapping of the S2 cross-sections and then equate the gauge parameters on I +

and I − along the identified generators [5]. This can clearly be done in Minkowski space

because an ingoing null ray originating at a point of S2 of I − will hit the antipodal point

of S2 at I +. Presumably, this can also be done in spacetimes which are “sufficiently close”

to Minkowski [35] (see also ref. [36]). Identifying the generators of I + and I − in this way,

and equating the gauge parameters on I + and I − we promote the diagonal subgroup

Gdiag ⊂ G+ × G− of the large gauge-symmetry of phase space defined via the initial- and

final-data surface to the symmetry of the S-matrix. Thus we obtain the following Ward

identity [5]

〈β| Qout
λ S − SQin

λ |α〉 = 0. (5.3)

In the next section we will see that this Ward identity is equivalent to Weinberg’s soft-

photon theorem as written in eq. (3.7). In what follows, we will suppress the tags out/in.

It would be clear from the state on which the operator is acting whether it is the out or

in type.

6 Ward identity ⇐⇒ Weinberg’s soft-photon theorem

Separating the matter and radiation piece of Q in eq. (5.3) we get,

〈β|Qλ S − S Qλ |α〉 = −〈β|Qmatter
λ S − S Qmatter

λ |α〉. (6.1)

Using eq. (4.29) and the crossing symmetry 〈β|S a†−(ω, ζ, ζ̄) |α〉 = 〈β| a+(−ω, ζ, ζ̄)S |α〉,
the left-hand-side of eq. (6.1) becomes,

〈β|Qλ S − S Qλ |α〉 =

−1

2π

∫
S2

d2 ζ
√
q qζζ̄ Dζ̄λ

√
2

(1 + ζζ̄)

∫ ∞
−∞

dω ωδ(ω)〈β| a+(ω, ζ, ζ̄)S |α〉.

=
−1

2π

∫
S2

d2 ζ
√
q qζζ̄ Dζ̄λ

√
2

(1 + ζζ̄)
lim
ω→0
〈β|ωa+(ω, ζ, ζ̄)S |α〉, (6.2)

while the right-hand-side of eq. (6.1) gives

−〈β|Qmatter
λ S − S Qmatter

λ |α〉 =

∑
n∈β

en λ(ζn, ζ̄n)−
∑
n∈α

en λ(ζn, ζ̄n)

 〈β|S |α〉. (6.3)

Now plugging in the metric (2.5) and choosing the gauge parameter λ(ζ, ζ̄) = 1
ζ−z in

eqs. (6.2), (6.3), the Ward identity eq. (5.3) becomes,

√
2

(1 + zz̄)
lim
ω→0
〈β|ωa+(ω, z, z̄)S |α〉 =

∑
n∈β

en
1

z − ζn
−
∑
n∈α

en
1

z − ζn

 〈β|S |α〉. (6.4)

– 13 –



J
H
E
P
0
2
(
2
0
1
5
)
0
6
0

Rearranging, we get,

lim
ω→0
〈β| a+(ω, z, z̄)S |α〉 = lim

ω→0

(1 + zz̄)√
2ω

∑
n∈β

en
1

z − ζn
−
∑
n∈α

en
1

z − ζn

 〈β|S |α〉, (6.5)

and recognizing that limω→0〈β| a+(ω, z, z̄)S |α〉 = limω→0 M
(+)
α→β(q) we get the soft-photon

theorem in the form written in terms of quantities defined intrinsically on I as in eq. (3.7).

This shows that Ward identity in eq. (5.3) implies the soft-photon theorem in eq. (3.2).

Finally, we invoke the observation of ref. [4] that any gauge parameter λ(ζ, ζ̄) can be

written as

λ(ζ, ζ̄) =
1

2π

∫
S2

d2 z
√
q qzz̄ λ(z, z̄)Dz̄

1

z − ζ
,

to show that starting from eq. (6.4), we can multiply both sides by Dζ̄ λ(ζ, ζ̄) and retrace

the steps back. Thus the Ward identity in eq. (5.3) for general large gauge parameter

follows from the soft-photon theorem in eq. (3.7).

7 Summary and outlook

In this paper we have derived the Weinberg’s soft-photon theorem for massless Abelian

gauge theory as a Ward identity corresponding to the diagonal subgroup of the group of

large gauge symmetries acting on the radiative data on I + and I −. Our derivation is a

slight generalization of that of refs. [4, 6] because it also applies when the bulk spacetime

is close to being Minkowskian, but is not exactly flat. Our calculations are done on the

conformal boundary I of the spacetime. We have worked throughout with the quantities

defined intrinsically on I . While this is in line with our motivation, which is holography

for asymptotically flat space, it is far removed from the known examples of holography.

For example, in AdS/CFT the boundary values of the bulk fields source the dual operators

in the boundary gauge theory. One doesn’t simply take the boundary values of the fields

and quantize them. Nonetheless, we believe that our treatment of soft-theorem and Ward

identity with a clean separation of the role of bulk and the boundary will be useful in

developing holography in flat space.

We have not discussed the subleading terms in the soft-photon theorem [37, 38]. It

is known that the subleading soft-photon theorem implies a Ward identity [9]. But what

is the symmetry that this Ward identity corresponds to is not known. There could be

a possibility that BMS and large-gauge transformations interact in such a way so as to

generate more interesting symmetries that could account for the subleading terms in the

Ward identity. But the algebra formed by BMS generators together with the generators

of large-gauge symmetry discussed in section 4.2 does not seem to have a rich structure to

support this point of view. The question thus remains open at the moment. The expression

of BMS generators (also given in ref. [31]) would nevertheless be useful in the study of the

relationship between the soft-theorem and the electromagnetic memory effect as recently

suggested in ref. [39]. The work along this direction is in progress and will be reported

elsewhere.
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We noted in section 4.3 that when the large gauge-symmetry is admitted, the Poisson

bracket of A’s is not well defined. We traced back the “factor of 1/2” problem noted in

refs. [6, 7] to the ambiguity in the Poisson bracket of A’s due to the presence of large

gauge-symmetry. Although one could avoid this problem by choosing electric field as the

fundamental variable as we did in section 4.4, we considered it instructive to explain the

resolution of this problem as provided in refs. [6, 7] via a toy model. The toy model makes

it clear that one advantage of the approach in refs. [6, 7] is that it easily leads us to identify

the soft-photons as edge states. In any case, one would need the operator corresponding

to the vector potential in order to quantize, say, the BMS generators. Furthermore, the

identification of soft-photons as edge states could potentially have important consequences.

We can not resist the temptation to speculate on the role of soft-modes in Hawking radi-

ation and information loss in black-hole evaporation. The edge states carry entanglement

entropy [40–42]. Could it be that when one takes the entropy of the soft modes (say, of

soft-gravitons) into account then the Hawking radiation is not thermal after all? We em-

phasize that this proposal is very different from the edge states associated to the presence

of horizon (see, for e.g., refs. [43, 44]) where one associates the edge states to be localized

on the horizon to account for the horizon entropy, i.e., horizon is the edge. Our suggestion,

instead, is to calculate the contribution of soft modes to the entropy of Hawking radiation.

The edge states in this case are the soft modes and they lie on the boundary of I +, i.e.,

on the “edge of infinity” in some sense.

Finally, it should not be too difficult to extend our analysis to non-Abelian gauge

theories and gravity.
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A Symplectic formulation of field theory

In this appendix we give a lightening review of the covariant phase space formulation of

field theory in the the symplectic language. We refer the reader to refs. [45, 46] for a

detailed description.

The covariant phase space Γ is a symplectic manifold equipped with a closed two-form

Ω called the pre-symplectic structure. Each point of Γ is the solution of the equation of

motion and thus represents the entire history of the system. Degenerate directions of Ω

are the gauge transformations of the theory. The degenerate directions can be shown to be

integrable. One can quotient Γ by these integral manifolds and obtain the reduced phase
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space (also denoted by Γ) which now inherits a non-degenerate symplectic structure (also

denoted by Ω).

The observables of the theory are represented by certain functions on Γ. Every ob-

servable f defines a flow on the phase space by specifying a vector field Xf associated to

it as

δf = iXfΩ, (A.1)

where δ denotes the exterior derivative on the phase space. Given two functions f and g,

the Poisson bracket between them is defined as

{f, g} := Ω(Xf , Xg). (A.2)

Poisson bracket satisfies the Jacobi identity, i.e, for three observables, f, g, h we have

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (A.3)

The vector field Xf generated by a function f acts on a function g as

Xf (g) := {f, g}. (A.4)

Hence, by definition, we have Xf (g) = −Xg(f). The Lie bracket between the vector fields

can be calculated using the Jacobi identity and we get

[Xf , Xg] = X{f,g}. (A.5)

Those vector fields on the phase space which Lie- drag Ω are called the symmetries of the

theory. That is, a vector field Xh on phase space is said to generate a symmetry if

LXhΩ = 0. (A.6)

Since, Ω is closed we have that LXhΩ = δiXhΩ, where we have used the identity LXh =

δiXh +iXhδ. A necessary and sufficient condition for this to vanish is that iXhΩ be an exact

form, i.e., there is a function h on phase space such that

δh = iXhΩ. (A.7)

Thus, the symmetries are associated with certain functions on the phase space. These

functions thus associate a conserved quantity to each history, for e.g., the energy associated

to a spacetime is the value of the Hamiltonian function.

An example: free Maxwell field. Let us now see how it all works out in the free

Maxwell field. The action is given by

S =
−1

4

∫
d4x
√
−g FµνFµν , (A.8)

where Fµν is the field strength of the U(1) gauge field Aµ. Variation of the action is given by

δS =

∫
d4x
√
−g δAν ∇µFµν −

∮
d3x
√
hnµF

µν δAν , (A.9)
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where h is the determinant of the induced metric hµν on the boundary and nµ is its

covariant normal. Bulk term yields the equation of motion ∇µFµν = 0. Integral of the

boundary integrand on a constant time-slice Σ defines the symplectic potential,

Θ = −
∫

Σ
d3x
√
hnµF

µν δAν . (A.10)

Pre-symplectic structure is now given by the exterior derivative of the symplectic poten-

tial as

Ω = δΘ, (A.11)

= −
∫

Σ
d3x
√
h δEµ δAµ, (A.12)

where δEµ := nµδF
µν . We thus see that the phase space is coordinatized by {Aµ, Eµ}.

Now, consider the vector field on the phase space given by

XΛ =

∫
d4x∇µΛ

δ

δAµ
(A.13)

where Λ is a spacetime scalar. If iXΩ = 0 then this is the gauge direction of Ω. Calculating

iXΛ
Ω =

∫
d3x
√
h δEµ∇µΛ. (A.14)

Now from the definition of the Electric field we see that nµE
µ = 0, hence the derivative of Λ

is really only in the direction orthogonal to nµ. Denoting the intrinsic covariant derivative

on the slice Σ as Dµ, we get after integration by parts

iXΛ
Ω = −

∫
d3x
√
h(Dµ δE

µ) Λ +

∮
d2x
√
q mµδE

µΛ, (A.15)

where mµ is the covariant normal to the boundary of Σ at infinity. Now, projecting the

equation of motion ∇µFµν on the slice Σ we get the Gauss law DµE
µ = 0, which is

interpreted as a constraint in the canonical theory. In the covariant phase space of course

there are no constraints. Using the linearized equation DµδE
µ = 0, we get

iXΛ
Ω =

∮
d2x
√
q mµδE

µΛ. (A.16)

Thus we see that only when Λ vanishes on the boundary of Σ that XΛ is a degenerate

direction of Ω and the motion along XΛ is to be interpreted as gauge. If Λ does not vanish

on the boundary of Σ then we define the hamiltonian or charge QΛ as δQΛ = iXΛ
Ω where

QΛ is given by

QΛ =

∫
d2x
√
q mµE

µ Λ. (A.17)

The charge QΛ generates the transformation Aµ → Aµ +∇µΛ on the phase space. For the

algebra of charges, we find that {QΛ1 , QΛ2} = 0, hence the charge algebra is abelian.
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