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1 Introduction

Among integrable quantum spin chains, the su(2)-invariant spin-s Heisenberg chain is par-

ticularly interesting due to its relationship to the Wess-Zumino-Novikov-Witten (WZNW)

models [1–4] and lower dimensional super-symmetric quantum field theories [5, 6] such as

the super-symmetric sine-Gordon model [7–9], the fractional statistics [10] and the multi-

channel Kondo problem [11–13] when it couples to an impurity spin. The s = 1 integrable

spin chain model was firstly proposed by Zamalodchikov and Fateev [14]. Its generalization

to arbitrary s cases was subsequently constructed via the fusion techniques [15–19] based

on the fundamental s = 1
2 representations of the Yang-Baxter equation [20, 21]. Those

observations allow one to diagonalize the models with periodic boundary conditions in the

framework of algebraic Bethe ansatz method (for example, see [22–24]). On the other hand,

the discovery of the boundary Yang-Baxter equation or the reflection equation [25, 26] di-

rectly stimulated the studies on the exact solutions of the quantum integrable models with

boundary fields. A striking feature of the reflection equation is that it allows non-diagonal

solutions [27, 28], which leads to the corresponding eigenvalue problem quite frustrated.

Many efforts had been made [29–51] to approach this nontrivial problem. However, in

a long period of time, the Bethe ansatz solutions could only be obtained for either con-

strained boundary parameters [29] or special crossing parameters [30–33] associated with

spin-12 chains or with spin-s chains [52–55].
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Recently, based on the fundamental properties of the R-matrix and the K-matrices

for quantum integrable models, a systematic method for solving the eigenvalue problem

of integrable models with generic boundary conditions, i.e., the off-diagonal Bethe ansatz

(ODBA) method was proposed in [56–59] and several long-standing models [56–61] were

then solved. Subsequently, the nested-version of ODBA for the models associated with

su(n) algebra [62], the application to the integrable models beyond A-type [63] and the

thermodynamic analysis based on the ODBA solutions [64] were developed. We remark

that two other promising methods, namely, the q-Onsager algebra method [65] and the

separation of variables (SoV) method [47–50, 66] were also used to approach the spin-12
chains with generic integrable boundaries. Especially, the eigenstate problem for such kind

of models with generic inhomogeneity was first approached via the SoV method [47–50]. A

set of Bethe states for was then constructed in [67] and a method for retrieving the Bethe

states based on the inhomogeneous T −Q relation [56–59] and the SoV basis [47–50] was

developed in [68]. The latter method allows one to reach the homogeneous limit of the

SoV eigenstates1 and provides a clear connection among the SoV approach, the algebraic

Bethe Ansatz and the ODBA.

The high spin models with periodic [14–19, 22–24] and diagonal [69–71] boundaries

have been extensively studied. Even the most general integrable boundary condition (cor-

responding to the non-diagonal reflection matrix) for the spin-1 model has been known for

many years [72], the exact solutions of the models with non-diagonal boundaries were known

only for some special cases such as the boundary parameters obeying some constraint [52]

or the crossing parameter taking some special value (e.g., roots of unity) [53, 54]. In this

paper, we show that the ODBA method can also be applied to the su(2)-invariant spin-s

chain with generic crossing parameter and generic integrable boundaries.2 The outline of

the paper is the following: section 2 serves as an introduction to some notations and the fu-

sion procedure. In section 3, after briefly reviewing the fusion hierarchy [52] of the high spin

transfer matrices we derive certain closed operator product identities for the fundamental

spin-(12 , s) transfer matrix by using some intrinsic properties of the high spin R-matrix

(R(s,s)(u)) and K-matrices (K±(s)(u)). The asymptotic behavior of the transfer matrix is

also obtained. Section 4 is devoted to the construction of the inhomogeneous T −Q rela-

tions and the corresponding Bethe ansatz equations (BAEs). Taking the spin-1 XXX chain

as an example, we present numerical results for the model with some small number of sites,

which indicate that an arbitrary choice of the derived T −Q relations is enough to give the

complete set of spectrum of the transfer matrix. In section 5, we summarize our results

and give some discussions. In appendix A, we prove that each solution of our functional

equations can be parameterized in terms of a variety of inhomogeneous T − Q relations

1It should be emphasized that the Bethe-type eigenstates of the spin- 1
2

XXX chain with generic bound-

aries had challenged for many years and were conjectured in [67] and derived in [68] very recently after

the discovery of the inhomogeneous T −Q relation in [56–59]. Only together with the very inhomogeneous

T−Q relation, the SoV state [47–50] might be transformed into a Bethe state which possesses a well-defined

homogeneous limit.
2A hierarchy procedure for the isotropic open chain constructed with higher dimensional auxiliary spaces

and each of its N quantum spaces are all spin- 1
2

(i.e., two-dimensional) was proposed in [73].
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and therefore that different T − Q relations only indicate different parameterizations but

not new solutions.

2 Transfer matrices for the spin-s XXX spin chain

2.1 Fusion of the R-matrices and the K-matrices

Throughout, Vi denotes a (2li + 1)-dimensional linear space (C2li+1) which endows an

irreducible representation of su(2) algebra with spin li. The R-matrix R
(li,lj)
ij (u), denoted

as the spin-(li, lj) R-matrix, is a linear operator acting in Vi ⊗ Vj . The R-matrix satisfies

the following quantum Yang-Baxter equation (QYBE) [20, 21]

R
(l1,l2)
12 (u− v)R

(l1,l3)
13 (u)R

(l2,l3)
23 (v) = R

(l2,l3)
23 (v)R

(l1,l3)
13 (u)R

(l1,l2)
12 (u− v). (2.1)

Here and below we adopt the standard notations: for any matrix A ∈ End(V ), Aj is an

embedding operator in the tensor space V ⊗V ⊗· · · , which acts as A on the j-th space and

as identity on the other factor spaces; Rij(u) is an embedding operator of R-matrix in the

tensor space, which acts as identity on the factor spaces except for the i-th and j-th ones.

The fundamental spin-(12 , s)R-matrixR
( 1
2
,s)

12 (u) defined in spin-12 (i.e., two-dimensional)

auxiliary space and spin-s (i.e., (2s+ 1)-dimensional) quantum space is given by [15–19]

R
( 1
2
,s)

12 (u) = u+
η

2
+ η ~σ1 · ~S2, (2.2)

where η is the crossing parameter, ~σ are the Pauli matrices and ~S are the spin-s realization

of the su(2) generators. For the simplest case, i.e., s = 1
2 case the corresponding R-matrix

reads

R( 1
2
, 1
2
)(u) =


u+ η 0 0 0

0 u η 0

0 η u 0

0 0 0 u+ η

 . (2.3)

Besides the QYBE (2.1), the R-matrix (2.3) also enjoys the following properties,

Initial condition : R
( 1
2
, 1
2
)

12 (0) = ηP12, (2.4)

Unitary relation : R
( 1
2
, 1
2
)

12 (u)R
( 1
2
, 1
2
)

21 (−u) = −ξ(u) id, ξ(u) = (u+ η)(u− η), (2.5)

Crossing relation : R
( 1
2
, 1
2
)

12 (u) = V1{R
( 1
2
, 1
2
)

12 }t2(−u− η)V1, V = −iσy, (2.6)

PT-symmetry : R
( 1
2
, 1
2
)

12 (u) = R
( 1
2
, 1
2
)

21 (u) = {R( 1
2
, 1
2
)}t1 t212 (u), (2.7)

Fusion conditions : R
( 1
2
, 1
2
)

12 (±η) = η(±1 + P12) = ±2ηP±12. (2.8)

Here R
( 1
2
, 1
2
)

21 (u) = P12R
( 1
2
, 1
2
)

12 (u)P12 with P12 being the permutation operator and ti denotes
transposition in the i-th space. Using the fusion procedure [15–19] the spin-(12 , s) R-matrix

– 3 –
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R
( 1
2
,s)

12 (u) can be obtained by the symmetric fusion of the spin-(12 ,
1
2) R-matrix3

R
( 1
2 ,s)

a{1···2s}(u) =
1∏2s−1

k=1 (u+( 1
2−s+k)η)

P+
{1···2s}

2s∏
k=1

{
R

( 1
2 ,

1
2 )

a,k (u+(k− 1

2
−s)η)

}
P+
{1···2s}, (2.9)

where P+
{1···2s} is the symmetric projector given by

P+
1,··· ,2s =

1

(2s)!

2s∏
k=1

(
k∑
l=1

Pl k

)
. (2.10)

Similarly, from the spin-(12 , s) R-matrix we can also extend the auxiliary space from 1
2 to

j to obtain the spin-(j, s) R-matrix by the symmetric fusion

R
(j,s)
{1···2j}{1···2s}(u) = P+

{1···2j}

2j∏
k=1

{
R

( 1
2
,s)

k,{1···2s}(u+ (k − j − 1

2
)η)

}
P+
{1···2j}. (2.11)

We remark that theR-matrices in the products (2.11) and (2.9) are in the order of increasing

k. One can demonstrate that the fused R-matrices (2.2) and (2.9) also satisfy the associated

QYBE (2.1) with the help of (2.8). Direct calculation shows that the spin-(s, s) R-matrix

can be given by [15–19]

R(s,s) =
2s∏
j=1

(u− jη)
2s∑
l=0

l∏
k=1

u+ kη

u− kη
P(l), (2.12)

where P(l) is a projector acting on the tensor product of two spin-s spaces and projects the

tensor space into the irreducible subspace of spin-l (i.e., (2l + 1)-dimensional subspace).

In particular, the fundamental spin-(12 , s) and the fused spin-(s, s) R-matrix possess the

following important properties

Unitary relation : R
( 1
2
,s)

12 (u)R
(s, 1

2
)

21 (−u) = −(u+ (
1

2
+ s)η)(u− (

1

2
+ s)η) id, (2.13)

Initial condition : R
(s,s)
12 (0) = η2s(2s)!P12, (2.14)

Fusion condition : R
(s,s)
12 (−η) = (−1)2sη2s(2s+ 1)!P(0). (2.15)

The projector P(0) projects the tensor product of two spin-s spaces to the singlet space,

namely,

P(0) = |Φ0〉〈Φ0|, |Φ0〉 =
1√

2s+ 1

2s∑
l=0

(−1)l|s− l〉 ⊗ | − s+ l〉, (2.16)

where {|m〉, m = s, s − 1, . . . ,−s} spans the spin-s representation of su(2) algebra and

forms an orthonormal basis of it. The very properties (2.13), (2.14) and (2.15) are the

analogues of (2.5), (2.4) and (2.8) for the high spin case.

3It is worth noting that, strictly speaking, after a similarity transformation the fused R-matrices (2.9)

and (2.11) and the fused K-matrices (see below (2.17) and (2.20)) all contain null rows and columns. Once

these rows and columns are removed, the matrices have the correct size.

– 4 –
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Having defined the fused-R matrices, one can analogously construct the fused-K ma-

trices by using the methods developed in [69, 74, 75] as follows. The fused K− matrices

(e.g the spin-j K− matrix) is given by

K
−(j)
{a} (u) = P+

{a}

2j∏
k=1

{[
k−1∏
l=1

R
( 1
2
, 1
2
)

alak (2u+ (k + l − 2j − 1)η)

]

×K−(
1
2
)

ak (u+ (k − j − 1

2
)η)

}
P+
{a}. (2.17)

In this paper we adopt the most general non-diagonal spin-12 K-matrix K−(
1
2
)(u) [27, 28]

K−(
1
2
)(u) =

(
p− + u α−u

α−u p− − u

)
, (2.18)

where p− and α− are some boundary parameters. It is noted that the products of braces

{. . .} in (2.17) are in the order of increasing k. The fused K
−(j)
{a} (u) matrices satisfy the

following reflection equation [25, 52]

R
(j,s)
{a}{b}(u− v)K

−(j)
{a} (u)R

(s,j)
{b}{a}(u+ v)K

−(s)
{b} (v)

= K
−(s)
{b} (v)R

(j,s)
{a}{b}(u+ v)K

−(j)
{a} (u)R

(s,j)
{b}{a}(u− v) . (2.19)

The fused dual reflection matrices K+(j) [26] are given by

K
+(j)
{a} (u) =

1

f (j)(u)
K
−(j)
{a} (−u− η)

∣∣∣
(p−,α−)→(p+,−α+)

, (2.20)

with

f (j)(u) =

2j−1∏
l=1

l∏
k=1

[−ξ(2u+ (l + k + 1− 2j)η)]. (2.21)

Particularly, the fundamental one K+( 1
2
)(u) is

K+( 1
2
)(u) =

(
p+ − u− η α+(u+ η)

α+(u+ η) p+ + u+ η

)
= K−(

1
2
)(−u− η)

∣∣∣
(p−,α−)→(p+,−α+)

, (2.22)

where p+ and α+ are some boundary parameters.

2.2 Fused transfer matrices

In a similar way to that developed by Sklyanin [26] for the spin-12 case, one can construct

a transfer matrix t(j,s)(u) whose auxiliary space is spin-j ((2j + 1)- dimensional) and each

of its N quantum spaces are spin-s ((2s+ 1)-dimensional) following the method in [52], for

any j, s ∈ {12 , 1,
3
2 , . . .}. The fused transfer matrix t(j,s)(u) can be constructed by the fused

R-matrices and K-matrices as follows [26, 52]

t(j,s)(u) = tr{a}K
+(j)
{a} (u)T

(j,s)
{a} (u)K

−(j)
{a} (u) T̂

(j,s)
{a} (u) , (2.23)

– 5 –
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where T
(j,s)
{a} (u) and T̂

(j,s)
{a} (u) are the fused one-row monodromy matrices given by

T
(j,s)
{a} (u) = R

(j,s)

{a},{b[N ]}(u− θN ) . . . R
(j,s)

{a},{b[1]}(u− θ1) ,

T̂
(j,s)
{a} (u) = R

(s,j)

{b[1]},{a}(u+ θ1) . . . R
(s,j)

{b[N ]},{a}(u+ θN ) . (2.24)

Here {θj |j = 1, . . . , N} are arbitrary free complex parameters which are usually called the

inhomogeneous parameters. The QYBE (2.1), the reflection equation (2.19) and its dual

version lead to that these transfer matrices with different spectral parameters are mutually

commutative for arbitrary j, j′, s ∈ {12 , 1,
3
2 , . . .}

[
t(j,s)(u) , t(j

′,s)(v)
]

= 0 . (2.25)

Therefore t(j,s)(u) serve as the generating functionals of the conserved quantities.

3 Fusion hierarchy and operator identities

3.1 Operator identities

Let us fix an s ∈ {12 , 1,
3
2 , . . .}, i.e., each of the N quantum spaces is described by a spin

~S ((2s+ 1)-dimensional). The fused transfer matrices {t(j,s)(u)} given by (2.23) obey the

following fusion hierarchy relation [52, 69, 74, 75]

t(
1
2
,s)(u) t(j−

1
2
,s)(u− jη) = t(j,s)(u− (j − 1

2
)η) + δ(s)(u) t(j−1,s)(u− (j +

1

2
)η),

j =
1

2
, 1,

3

2
, · · · , (3.1)

where we have used the convention t(0,s) = id. The coefficient function δ(s)(u) related to

the quantum determinant is given by

δ(s)(u) =
(2u− 2η)(2u+ 2η)

(2u− η)(2u+ η)
((1 + α2

−)u2 − p2−)((1 + α2
+)u2 − p2+)

×
N∏
l=1

(u− θl + (
1

2
+ s)η)(u+ θl + (

1

2
+ s)η)

×
N∏
l=1

(u− θl − (
1

2
+ s)η)(u+ θl − (

1

2
+ s)η). (3.2)

– 6 –
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Using the recursive relation (3.1), we can express the fused transfer matrix t(j,s)(u) in terms

of the fundamental one t(
1
2
,s)(u) with a 2j-order functional relation as follows:

t(j,s)(u) = t(
1
2
,s)(u+ (j − 1

2
)η) t(

1
2
,s)(u+ (j − 1

2
)η − η) . . . t(

1
2
,s)(u− (j − 1

2
)η)

−δ(s)(u+ (j − 1

2
)η) t(

1
2
,s)(u+ (j − 1

2
)η − 2η) . . . t(

1
2
,s)(u− (j − 1

2
)η)

−δ(s)(u+ (j − 1

2
)η − η) t(

1
2
,s)(u+ (j − 1

2
)η) t(

1
2
,s)(u+ (j − 1

2
)η − 3η)

× . . . t(
1
2
,s)(u− (j − 1

2
)η)

...

−δ(s)(u− (j− 1

2
)η+η) t(

1
2
,s)(u+(j− 1

2
)η) . . . t(

1
2
,s)(u− (j− 1

2
)η+2η)

+ . . . . (3.3)

For example, the first three fused transfer matrices are given by

t(1,s)(u) = t(
1
2
,s)(u+

η

2
) t(

1
2
,s)(u− η

2
)− δ(s)(u+

η

2
), (3.4)

t(
3
2
,s)(u) = t(

1
2
,s)(u+ η) t(

1
2
,s)(u) t(

1
2
,s)(u− η)− δ(s)(u+ η) t(

1
2
,s)(u− η)

−δ(s)(u) t(
1
2
,s)(u+ η), (3.5)

t(2,s)(u) = t(
1
2
,s)(u+

3η

2
) t(

1
2
,s)(u+

η

2
) t(

1
2
,s)(u− η

2
) t(

1
2
,s)(u− 3η

2
)

−δ(s)(u+
3η

2
) t(

1
2
,s)(u− η

2
) t(

1
2
,s)(u− 3η

2
)

−δ(s)(u+
η

2
) t(

1
2
,s)(u+

3η

2
) t(

1
2
,s)(u− 3η

2
)

−δ(s)(u− η

2
) t(

1
2
,s)(u+

3η

2
) t(

1
2
,s)(u+

η

2
)

+δ(s)(u+
3η

2
) δ(s)(u− η

2
). (3.6)

Keeping the very properties (2.13)–(2.15) in mind and following the method developed

in [62, 63], after a tedious calculation, we find that the spin-(s, s) transfer matrix satisfies

the following operator identities,4

t(s,s)(θj) t
( 1
2
,s)(θj − (

1

2
+ s)η) = δ(s)(θj + (

1

2
− s)η) t(s−

1
2
,s)(θj +

η

2
), j = 1, . . . , N. (3.7)

4Alternatively, one can show that there exist some operator identities between t(s,s)(u) and t(s,s)(u) at

some special points. These relations are equivalent to (3.7) in the sense that they give rise to the same

inhomogeneous T −Q relation (see below (4.1)).

– 7 –
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The R-matrix (2.2) and theK-matrices (2.18) and (2.22) imply that the transfer matrix

t(
1
2
,s)(u) possesses the following properties:

t(
1
2
,s)(0) = 2p−p+

N∏
l=1

(θl + (
1

2
+ s)η)(−θl + (

1

2
+ s)η)× id, (3.8)

t(
1
2
,s)(u) |u→∞ = 2(α−α+ − 1)u2N+2 × id + . . . , (3.9)

t(
1
2
,s)(−u− η) = t(

1
2
,s)(u). (3.10)

The analyticities of the spin-(12 , s) R-matrix and spin-12 K-matrices and the prop-

erty (3.9) imply that the transfer matrix t(
1
2
,s)(u), as a function of u, is a polynomial of

degree 2N + 2. The fusion hierarchy relation (3.1) gives rise to that all the other fused

transfer matrix t(j,s)(u) can be expressed in terms of t(
1
2
,s)(u) (see (3.3)). Therefore, the

very operator identities (3.7) lead to N constraints on the fundamental transfer matrix

t(
1
2
,s)(u). Thus the relations (3.7) and (3.8)–(3.10) are believed to completely character-

ize the eigenvalues of the fundamental transfer matrix t(
1
2
,s)(u) (as a consequence, also

determine the eigenvalues of all the transfer matrices {t(j,s)(u)}).

3.2 Functional relations of the eigenvalues

The commutativity (2.25) of the fused transfer matrices {t(j,s)(u)} with different spectral

parameters implies that they have common eigenstates. Let |Ψ〉 be a common eigenstate

of these fused transfer matrices with the eigenvalues Λ(j,s)(u)

t(j,s)(u)|Ψ〉 = Λ(j,s)(u)|Ψ〉. (3.11)

The fusion hierarchy relation (3.1) of the fused transfer matrices allows one to express

all the eigenvalues Λ(j,s)(u) in terms of the fundamental one Λ( 1
2
,s)(u) by the following

recursive relations

Λ( 1
2
,s)(u) Λ(j−1

2
,s)(u−jη) = Λ(j,s)(u− (j− 1

2
)η) + δ(s)(u) Λ(j−1,s)(u− (j+

1

2
)η),

j =
1

2
, 1,

3

2
, · · · . (3.12)

Here Λ(0,s)(u) = 1 and the coefficient function δ(s)(u) is given by (3.2). The very operator

identities (3.7) imply that the eigenvalue Λ(s,s)(u) satisfies the same relations5

Λ(s,s)(θj) Λ( 1
2
,s)(θj− (

1

2
+s)η) = δ(s)(θj +(

1

2
−s)η) Λ(s− 1

2
,s)(θj +

η

2
), j = 1, . . . , N. (3.13)

5It should be emphasized that the operator identities (3.7) are stronger than the functional rela-

tions (3.13) due to the fact that in some extreme case, the transfer matrix cannot be diagonalized (i.e., the

transfer matrix has non-trivial Jordan blocks [76]) and one cannot derive the operator identities (3.7) only

from its eigenvalue version (3.13).
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The properties of the transfer matrix t(
1
2
,s)(u) given by (3.8)–(3.10) give rise to that the

corresponding eigenvalue Λ( 1
2
,s)(u) satisfies the following relations

Λ( 1
2
,s)(0) = 2p−p+

N∏
l=1

(θl + (
1

2
+ s)η)(−θl + (

1

2
+ s)η), (3.14)

Λ( 1
2
,s)(u) |u→∞ = 2(α−α+ − 1)u2N+2 + . . . , (3.15)

Λ( 1
2
,s)(−u− η) = Λ( 1

2
,s)(u). (3.16)

The analyticities of the spin-(12 , s) R-matrix and spin-12 K-matrices and the property (3.15)

imply that the eigenvalue Λ( 1
2
,s)(u) possesses the following analytical property

Λ( 1
2
,s)(u), as a function of u, is a polynomial of degree 2N + 2. (3.17)

Namely, Λ( 1
2
,s)(u) is a polynomial of u with 2N + 3 unknown coefficients. The crossing

relation (3.16) reduces the number of the independent unknown coefficients to N + 2.

Therefore the relations (3.12)–(3.17) are believed to completely characterize the spectrum

of the fundamental spin-(12 , s) transfer matrix t(
1
2
,s)(u).

For the s = 1
2 case, the relations (3.12)–(3.17) are reduced to those used in [56–59] to

determine the spectrum of the corresponding transfer matrix. The eigenstates associated

with each solution of the resulting relations were constructed in [47–50] in the framework

of the SoV method. In such a sense, each solution corresponds to a correct eigenvalue

of the transfer matrix. Since all the eigenvalues of the transfer matrix belong to the

solution set of (3.12)–(3.17), we conclude that in the spin-12 case our functional relations

characterize the spectrum completely. It is remarked that the corresponding Bethe states

were given in [67, 68]. These Bethe states have well-defined homogeneous limits and allows

one to study the corresponding homogeneous open chain directly. For the spin-1 case, the

numerical results in subsection 4.2 for N = 2 case also suggest that the equations (3.12)–

(3.17) indeed give the complete spectrum of the transfer matrix.

4 T − Q relation

4.1 Eigenvalues of the fundamental transfer matrix

Following the method developed in [56–59], let us introduce the following inhomogeneous

T −Q relation

Λ( 1
2
,s)(u) = a(s)(u)

Q(u− η)Q1(u− η)

Q(u)Q2(u)
+ d(s)(u)

Q(u+ η)Q2(u+ η)

Q(u)Q1(u)

+c u(u+ η)
(u(u+ η))mF (s)(u)

Q(u)Q1(u)Q2(u)
, (4.1)
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where m is a non-negative integer and the functions a(s)(u), d(s)(u), F (s)(u) and the con-

stant c are given by

a(s)(u) =
2u+ 2η

2u+ η
(
√

1 + α2
+ u+ p+)(

√
1 + α2

− u+ p−)

×
N∏
l=1

(u− θl + (
1

2
+ s)η)(u+ θl + (

1

2
+ s)η), (4.2)

d(s)(u) = a(s)(−u− η), (4.3)

F (s)(u) =
N∏
l=1

2s∏
k=0

(u− θl + (
1

2
− s+ k)η)(u+ θl + (

1

2
− s+ k)η), (4.4)

c = 2(α−α+ − 1−
√

(1 + α2
−)(1 + α2

+)). (4.5)

The Qi(u) functions are parameterized by 2sN +m parameters {λj |j = 1, . . . , 2sN +m−
2M} and {µj |j = 1, . . . , 2M} (M being a non-negative integer) as6

Q(u) =
2sN+m−2M∏

j=1

(u− λj)(u+ λj + η) = Q(−u− η), (4.6)

Q1(u) =
2M∏
j=1

(u− µj) = Q2(−u− η), (4.7)

Q2(u) =
2M∏
j=1

(u+ µj + η) = Q1(−u− η). (4.8)

One can check that the T − Q relation (4.1) does satisfy the relations (3.14)–(3.16). The

explicit expression (4.4) of the function F (s)(u) implies that

F (s)(θj + (s− 1

2
− k)η)) = 0, for k = 0, 1, . . . , 2s, j = 1, . . . , N.

Combining the above equations and the fusion hierarchy relations (3.12), we can evaluate

Λ(s,s)(u), Λ(s− 1
2
,s)(u) and Λ( 1

2
,s)(u) at the points θj , θj + η

2 and θj − (12 + s)η respectively

Λ(s,s)(θj) =
Q(θj−(s+ 1

2 )η)

Q(θj +(s− 1
2 )η)

2s−1∏
k=0

a(s)(θj +(s− 1

2
−k)η)

Q1(θj +(s− 3
2−k)η)

Q2(θj +(s− 1
2−k)η)

, (4.9)

Λ(s− 1
2 ,s)(θj +

η

2
) =

Q(θj +( 1
2−s)η)

Q(θj +(s− 1
2 )η)

2s−2∏
k=0

a(s)(θj +(s− 1

2
−k)η)

Q1(θj +(s− 3
2−k)η)

Q2(θj +(s− 1
2−k)η)

, (4.10)

Λ( 1
2 ,s)(θj− (

1

2
+s)η) = d(s)(θj−(

1

2
+s)η)

Q(θj +( 1
2 − s)η)Q2(θj +( 1

2 − s)η)

Q(θj−( 1
2 + s)η)Q1(θj−( 1

2 + s)η)
. (4.11)

6One can easily check that the zero points of any Qi(u) must not take the values of {θj +( 1
2
−s+k)η|k =

0, . . . , 2s, j = 1, . . . , N} and their crossing points ({−θj − ( 1
2
− s + k)η − η|k = 0, . . . , 2s, j = 1, . . . , N}).

Otherwise Λ( 1
2
,s)(u) given by (4.1) does not satisfy (3.13).
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The above equations give rise to

Λ(s,s)(θj)Λ
( 1
2
,s)(θj− (

1

2
+s)η) = a(s)(θj +(

1

2
−s)η)d(s)(θj− (

1

2
+s)η)

Q(θj +(12−s)η)

Q(θj +(s− 1
2)η)

×
2s−2∏
k=0

a(s)(θj +(s− 1

2
−k)η)

Q1(θj +(s− 3
2−k)η)

Q2(θj +(s− 1
2−k)η)

= δ(s)(θj +(
1

2
−s)η) Λ(s− 1

2
,s)(θj +

η

2
), j = 1, . . . , N, (4.12)

indicating that the T −Q relation (4.1) indeed satisfies the very functional identities (3.13).

From the explicit expression (4.1) one may find that there might be some apparent simple

poles at the following points:

λj , −λj − η, µk, −µk − η, j = 1, . . . , 2sN +m− 2M, k = 1, . . . , 2M. (4.13)

As required by the regularity of the transfer matrix, the residues of Λ( 1
2
,s)(u) (4.1) at these

points must vanish, which leads to the following BAEs

a(s)(λj)Q(λj − η)Q1(λj)Q1(λj − η) + d(s)(λj)Q(λj + η)Q2(λj)Q2(λj + η)

+c (λj(λj + η))m+1 F (s)(λj) = 0, j = 1, . . . , 2sN +m− 2M, (4.14)

d(s)(µk)Q(µk + η)Q2(µk)Q2(µk + η) + c (µk(µk + η))m+1 F (s)(µk) = 0.

k = 1, . . . , 2M. (4.15)

Finally we conclude that the T −Q relation (4.1) indeed satisfies (3.12)–(3.17) as it is

required if the 2sN+m parameters {λj |j = 1, . . . , 2sN+m−2M} and {µj |j = 1, . . . , 2M}
satisfy the associated BAEs (4.14)–(4.15). Thus the Λ( 1

2
,s)(u) given by (4.1) becomes the

eigenvalue of the transfer matrix t(
1
2
,s)(u) given by (2.23). With the help of the recursive

relation (3.12), we can obtain the inhomogeneous T −Q equations for all the other Λ(j,s)(u)

from the fundamental one Λ( 1
2
,s)(u).

The results of isotropic spin-12 chains [56–59, 73, 77] suggest that fixed m and M can

give a complete set of eigenvalues of the transfer matrix. In appendix A, we prove that each

solution of (3.12)–(3.17) can be parameterized by the inhomogeneous T −Q relation with

fixed m and M . In such a sense, different m and M just give different parameterizations of

Λ(u) but not new solutions of Λ(u).7 Here we list some special forms of the T −Q relations

for particular choices of m and M .

• The case of Q1(u) = Q2(u) = 1. In this case, M = 0 and one can always choose

m = 0 such that the number of the Bethe parameters {λj} takes the minimal value

2sN . The resulting T −Q relation reads

Λ( 1
2
,s)(u) = a(s)(u)

Q(u− η)

Q(u)
+ d(s)(u)

Q(u+ η)

Q(u)
+ c u(u+ η)

F (s)(u)

Q(u)
, (4.16)

7In fact, there are many ways to parameterize a polynomial function, e.g, with its zeros or with its

coefficients. T − Q relation is a convenient one but not the unique one to characterize the eigenvalues of

the transfer matrix. Especially, with a nonzero off-diagonal term, there are more freedoms to construct

inhomogeneous T −Q relations obeying the functional relations.
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where the functions a(s)(u), d(s)(u), F (s)(u) and the constant c are given by (4.2)–

(4.5) respectively and the associated Q(u) function is

Q(u) =
2sN∏
j=1

(u− λj)(u+ λj + η). (4.17)

The 2sN parameters {λj} satisfy the resulting BAEs

a(s)(λj)Q(λj − η) + d(s)(λj)Q(λj + η) + c λj(λj + η)F (s)(λj) = 0, j = 1, . . . , 2sN.

(4.18)

• The case of Q(u) = 1. The minimal value of m in this case does depend on the parity

of 2sN . If 2sN is even, one can choose m = 0 such that the number of the Bethe

parameters {µj} is 2sN . The resulting T −Q relation becomes

Λ( 1
2
,s)(u) = a(s)(u)

Q1(u− η)

Q2(u)
+ d(s)(u)

Q2(u+ η)

Q1(u)
+ c u(u+ η)

F (s)(u)

Q1(u)Q2(u)
, (4.19)

where

Q1(u) =

M1∏
j=1

(u− µj) = Q2(−u− η), M1 = 2sN. (4.20)

The resulting BAEs read

d(s)(µj)Q2(µj)Q2(µj + η) + c µj(µj + η)F (s)(µj) = 0, j = 1, . . . ,M1. (4.21)

On the other hand, if 2sN is odd, the minimal m becomes m = 1 and the corre-

sponding number of the Bethe parameters {µj} is 2sN + 1. The associated T − Q
relation is

Λ( 1
2
,s)(u) = a(s)(u)

Q1(u−η)

Q2(u)
+ d(s)(u)

Q2(u+η)

Q1(u)
+ c u2(u+η)2

F (s)(u)

Q1(u)Q2(u)
, (4.22)

where Q1(u) is still given by (4.20) but with M1 = 2sN + 1 and the resulting BAEs

now become

d(s)(µj)Q2(µj)Q2(µj + η) + c µ2j (µj + η)2 F (s)(µj) = 0, j = 1, . . . , 2sN + 1.(4.23)

It should be remarked that there also exist other choices for the functions a(s)(u),

d(s)(u) and the constant c. For {εi = ±1|i = 1, 2, 3},8 let us introduce

a(s)(u; ε1, ε2, ε3) = ε1
2u+ 2η

2u+ η
(
√

1 + α2
+ u+ ε2p+)(

√
1 + α2

− u+ ε3p−)

×
N∏
l=1

(u− θl + (
1

2
+ s)η)(u+ θl + (

1

2
+ s)η), (4.24)

d(s)(u; ; ε1, ε2, ε3) = a(s)(−u− η; ε1, ε2, ε3),

c(ε1, ε2, ε3) = 2(α−α+ − 1− ε1
√

(1 + α2
−)(1 + α2

+)). (4.25)

8Such discrete variables were used to construct the T −Q relation for spin- 1
2

XXZ open chain [43].
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Similarly as in [43], the three discrete variables {εi} are required to obey the following

relation

ε1ε2ε3 = 1. (4.26)

Alternatively, let us make the following T −Q ansatz for the eigenvalue Λ( 1
2
,s)(u)

Λ( 1
2
,s)(u) = a(s)(u; ε1, ε2, ε3)

Q(u− η)Q1(u− η)

Q(u)Q2(u)
+ d(s)(u; ε1, ε2, ε3)

Q(u+ η)Q2(u+ η)

Q(u)Q1(u)

+c(ε1, ε2, ε3)u(u+ η)
F (s)(u)

Q(u)Q1(u)Q2(u)
, (4.27)

where F (s)(u) is given by (4.4) and the Q-functions are given by (4.6)–(4.8) with m = 0.

It is easy to check that the alternative T −Q relation (4.27) indeed satisfies (3.12)–(3.17)

if the 2sN parameters {λj |j = 1, . . . , 2sN − 2M} and {µj |j = 1, . . . , 2M} satisfy the

similar BAEs as (4.14)–(4.15) but with the functions a(s)(u), d(s)(u) and the constant c

replaced by a(s)(u; ε1, ε2, ε3), d
(s)(u; ε1, ε2, ε3) and c(ε1, ε2, ε3), respectively. Each choice of

{εi} satisfying the constraint (4.26) can give the complete set of the spectrum. Moreover,

if the boundary parameters satisfy the constraint α− = −α+, which corresponds to that

the two K±(u) can be diagonalized simultaneously, the algebraic Bethe ansatz method can

be applied [55]. In this particular case one can choose ε1 = −1, ε2ε3 = −1 and therefore

c = 0. The corresponding T−Q ansatz (4.27), under the similar analysis as that in [56–59],

is naturally reduced to the conventional one [55] obtained by the algebraic Bethe ansatz.

4.2 Spin-1 case

In this subsection we illustrate the completeness of the Bethe ansatz solutions obtained

in the previous subsection. For the case of s = 1
2 , which corresponds to the spin-12 XXX

spin chain and the corresponding transfer matrix is t(
1
2
, 1
2
)(u), our result is reduced to that

obtained in [56–59]. The completeness of the Bethe ansatz solution was already studied

in [56–59, 73, 77]. Here we provide numerical evidence for the s = 1 case, which corresponds

to the isotropic Fateev-Zamolodchikov (or Takhtajan-Babujian) model [14, 22–24] with

general non-diagonal boundary terms. In terms of the basis {|l〉|l = 1, 0,−1} given by

|1〉 = |1
2
〉 ⊗ |1

2
〉,

|0〉 =
1√
2

(
|1
2
〉 ⊗ | − 1

2
〉+ | − 1

2
〉 ⊗ |1

2
〉
)
,

| − 1〉 = | − 1

2
〉 ⊗ | − 1

2
〉,

the corresponding spin-(1, 1) R-matrix R(1,1)(u) defined in (2.11) is
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R(1,1)(u) =



c(u)

b(u)

d(u)

e(u)

g(u) f(u)

e(u)

g(u)

b(u)

a(u)

b(u)

g(u)

e(u)

f(u) g(u)

e(u)

d(u)

b(u)

c(u)


, (4.28)

where the non-vanishing entries are

a(u) = u(u+ η) + 2η2, b(u) = u(u+ η), c(u) = (u+ η)(u+ 2η),

d(u) = u(u− η), e(u) = 2η(u+ η), f(u) = 2η2, g(u) = 2uη. (4.29)

The spin-1 K-matrix defined by (2.17), in terms of the basis {|l〉|l = 1, 0,−1}, is

given by

K−(1)(u) = (2u+ η)

 x1(u) y4(u) y6(u)

y4(u) x2(u) y5(u)

y6(u) y5(u) x3(u)

 , (4.30)

where the matrix elements are

x1(u) = (p− + u+
η

2
) (p− + u− η

2
) +

α2
−
2
η (u− η

2
),

x2(u) = (p− + u− η

2
) (p− − u+

η

2
) + α2

− (u+
η

2
) (u− η

2
),

x3(u) = (p− − u−
η

2
) (p− − u+

η

2
) +

α2
−
2
η (u− η

2
),

y4(u) =
√

2α− u (p− + u− η

2
),

y5(u) =
√

2α− u (p− − u+
η

2
),

y6(u) = α2
− u (u− η

2
). (4.31)

The dual spin-1 K-matrix K+(1)(u) can be given by the above K-matrix through the

correspondence (2.20).

The eigenvalue Λ( 1
2
,1)(u) in the homogeneous limit (i.e., θj → 0) reads

Λ( 1
2
,1)(u) = a(1)(u)

Q(u− η)Q1(u− η)

Q(u)Q2(u)
+ d(1)(u)

Q(u+ η)Q2(u+ η)

Q(u)Q1(u)

+c u(u+ η)
F (1)(u)

Q(u)Q1(u)Q2(u)
, (4.32)
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where we have chosen m = 0 and the functions a(1)(u), d(1)(u), F (1)(u) are given by

a(1)(u) =
2u+ 2η

2u+ η
(
√

1 + α2
+ u+ p+)(

√
1 + α2

− u+ p−)(u+
3η

2
)2N , (4.33)

d(1)(u) = a(1)(−u− η), (4.34)

F (1)(u) = (u− η

2
)2N (u+

η

2
)2N (u+

3η

2
)2N . (4.35)

The constant c is given by (4.5). The three Q-functions are parameterized by 2N parame-

ters {λj |j = 1, . . . , 2N − 2M} and {µj |j = 1, . . . , 2M} (with M a non-negative integer) as

Q(u) =

2N−2M∏
j=1

(u− λj)(u+ λj + η) = Q(−u− η), (4.36)

Q1(u) =

2M∏
j=1

(u− µj) = Q2(−u− η), (4.37)

Q2(u) =

2M∏
j=1

(u+ µj + η) = Q1(−u− η). (4.38)

The 2N parameters {λj |j = 1, . . . , 2N − 2M} and {µj |j = 1, . . . , 2M} satisfy the following

BAEs

a(1)(λj)Q(λj − η)Q1(λj)Q1(λj − η) + d(1)(λj)Q(λj + η)Q2(λj)Q2(λj + η)

+c λj(λj + η)F (1)(λj) = 0, j = 1, . . . , 2N − 2M, (4.39)

d(1)(µk)Q(µk + η)Q2(µk)Q2(µk + η) + c µk(µk + η)F (1)(µk) = 0,

k = 1, . . . , 2M. (4.40)

The eigenvalue Λ(1,1)(u) can be constructed from the fundamental one Λ( 1
2
,1)(u) given

by (4.32)–(4.35) by using the relation (3.12) as follows

Λ(1,1)(u) = Λ( 1
2
,1)(u+

η

2
) Λ( 1

2
,1)(u− η

2
)− δ(1)(u+

η

2
). (4.41)

The Hamiltonian of the spin-1 XXX open chain with the generic non-diagonal boundary
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λ1 λ2 λ3 λ4 En n

0.02022 0.15565− 0.56301i 0.15565 + 0.56301i 1.28344 −2.82985 1

0.01436− 0.14539i 0.01436 + 0.14539i 1.02580− 0.23475i 1.02580 + 0.23475i 0.74454 2

0.00579− 0.12153i 0.00579 + 0.12153i 0.95719− 0.17885i 0.95719 + 0.17885i 1.84509 3

−0.50000 + 0.46805i −0.09323 0.93690 1.18821 3.99277 4

0.06934− 0.91728i 0.06934 + 0.91728i 1.06778− 0.60960i 1.06778 + 0.60960i 4.36850 5

−0.50000 + 0.16632i −0.18832 0.82026 1.19558 5.34163 6

−0.09561 0.89614 1.31281− 0.54820i 1.31281 + 0.54820i 7.59257 7

−0.25439 0.03756 0.73530− 0.09425i 0.73530 + 0.09425i 9.12855 8

−0.18554 0.81124 1.29199− 0.51363i 1.29199 + 0.51363i 9.43905 9

Table 1. Solutions of the BAEs (4.39)–(4.40) for N = 2, M = 0, η = 1, p+ = 0.1, p− = 0.2,

α+ = 0.3 and α− = 0.4. n indicates the number of the energy levels and En is the corresponding

eigenenergy. The energy En calculated from the Bethe roots is exactly the same to that from the

exact diagonalization of the Hamiltonian (4.42).

terms is given by

H = ∂u

{
lnu(u+ η) t(1,1)(u)

}
|u=0

=
1

η2

N−1∑
j=1

[
~Sj · ~Sj+1 − (~Sj · ~Sj+1)

2
]

+
1

p2− − 1
4(1 + α2

−)η2

[
2p−α−S

x
1 + 2p−S

z
1 +

1

2
(α2
−η − 2η)(Sz1)2

−1

2
α2
−η[(Sx1 )2 − (Sy1 )2]− α−η[Sz1S

x
1 + Sx1S

z
1 ]

]
+

1

(3p2+ − 3
4(1 + α2

+)η2)η2
[6p+α+ηS

x
N − 6p+ηS

z
N

+3α+η
2[SxNS

z
N + SzNS

x
N ]− (2p2+ −

3

2
(1− α2

+)η2)(SxN )2

−(2p2+ −
3

2
(1 + α2

+)η2)(SyN )2 − (2p2+ +
3

2
(1− α2

+)η2)(SzN )2
]

+
η(1 + α2

+)

3p2+ − 3
4(1 + α2

+)η2
+

η

p2− − 1
4(1 + α2

−)η2
+ 3N

1

η2
+

4

η
. (4.42)

The eigenvalues of the Hamiltonian (4.42) thus read

E =

2N−2M∑
j=1

4η

(λj + 3η
2 )(λj − η

2 )
−

2M∑
k=1

4(µk + η)

(µk + η
2 )(µk + 3η

2 )
+ E0, (4.43)

E0 =
1

η

3N +
8

3
+

2
√

1 + α2
+ p+η

p2+ −
η2

4 (1 + α2
+)

+
2
√

1 + α2
− p−η

p2− −
η2

4 (1 + α2
−)

 . (4.44)

Numerical solutions of the BAEs and exact diagonalizations of the transfer matrix t(
1
2
,1)(u)

and the Hamiltonian (4.42) are performed for the case of N = 2 and randomly choosing
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µ1 µ2 µ3 µ4 En n

−2.01449 −1.03956 −0.20728− 0.16066i −0.20728 + 0.16066i −2.82985 1

−1.02843 −0.99277 0.08448 9.58424 0.74454 2

−1.24529 −0.75827 0.29385 6.34119 1.84509 3

−0.90627 −0.50220− 0.45722i −0.50220 + 0.45722i 8.15074 3.99277 4

−6.63560 −1.41141 −0.58859 0.74744 4.36850 5

−0.80847 −0.50016− 0.16539i −0.50016 + 0.16539i 6.62545 5.34163 6

−4.94473 −0.90422 2.81138 35.70597 7.59257 7

−4.56687 −0.88866 −0.82335 0.40258 9.12855 8

−4.49000 −0.81430 2.38972 32.53964 9.43905 9

Table 2. Solutions of the BAEs (4.39)–(4.40) for N = 2, M = 2, η = 1, p+ = 0.1, p− = 0.2,

α+ = 0.3 and α− = 0.4. n indicates the number of the energy levels and En is the corresponding

eigenenergy. The energy En calculated from the Bethe roots is exactly the same to that from the

exact diagonalization of the Hamiltonian (4.42).

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

u

Λ
(1

/2
,1

) (u
) n=6

n=5

n=7
n=4

n=3

n=8

n=1

n=9

n=2

Figure 1. Λ( 1
2 ,1)(u) vs. u calculated from both the T − Q relations and exact diagonalization

of t(
1
2 ,1)(u) for N = 2, η = 1, p+ = 0.1, p− = 0.2, α+ = 0.3, α− = 0.4. The correspondence is

indicated by the number n = 1 to 9.

of boundary parameters. The results are listed in table 1 for M = 0 and table 2 for

M = 2, respectively. The eigenvalues of the Hamiltonian obtained by solving the BAEs

are exactly the same to those obtained by the exact diagonalization of the Hamiltonian.

The eigenvalues Λ( 1
2
,1)(u) of the transfer matrix t(

1
2
,1)(u) are shown in figure 1. Again, the

curves of Λ( 1
2
,1)(u) calculated from the BAEs and the T −Q relations coincide exactly with

those from the exact diagonalization of the transfer matrix t(
1
2
,1)(u). The numerical results

strongly suggest that a fixed M is enough to give the complete spectrum of the transfer

matrix.
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5 Conclusions

The spin-s XXX chain with the generic non-diagonal boundary terms specified by the

most general non-diagonal K-matrices given by (2.17)–(2.22) has been studied by the off-

diagonal Bethe anstz method. Based on the intrinsic properties of the fused R-matrices

and K-matrices, we obtain the closed operator identities (3.7) of the fundamental transfer

matrix t(
1
2
,s)(u). These identities, together with other properties (3.8)–(3.10), allow us to

construct an off-diagonal (or inhomogeneous) T − Q equation (4.1) of the eigenvalues of

the transfer matrix and the associated BAEs (4.14)–(4.15). It should be emphasized that

there are a variety of forms of the inhomogeneous T − Q relations such as (4.16), (4.19)

and (4.22). Each of them should give the complete spectrum of the transfer matrix. Taking

the spin-1 XXX chain as an example, we give the numerical evidence for two-site s = 1

case. We note that the method developed in the present paper can also be applied to the

integrable models with cyclic representations such as the lattice sine-Gordon model, the

τ2 model, the relativistic Toda chain and the chiral Potts model with generic integrable

boundary conditions.

For the spin-12 case, the Bethe states corresponding to the T −Q relation (4.16) were

constructed in [68] (also conjectured in [67]) with the helps of the SoV basis proposed in [47–

50]. It is interesting that the resulting Bethe states directly induces the homogeneous limits

of the SoV states constructed in [47–50]. Following the similar procedure, the eigenstates

for the spin-s open chains might be constructed with a similar basis proposed in [78].9
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A Proof of the inhomogeneous T − Q relation

In this appendix, we show that each solution of (3.12)–(3.17) can be parameterized in terms

of the inhomogeneous T −Q relation (4.1) with two fixed non-negative integers m and M

(taking m = M = 0 as an example).

Let us introduce a function f(u) associated with each solution Λ(u) of (3.12)–(3.17)

f(u)=Λ( 1
2
,s)(u)Q(u)−a(s)(u)Q(u−η)−d(s)(u)Q(u+η)−cu(u+η)F (s)(u), (A.1)

where the functions a(s)(u), d(s)(u), F (s)(u), c and Q(u) are given by (4.2)–(4.5) and (4.17)

respectively. It follows from its definition that the function f(u), as a function of u, is a

9Alternatively, one should take the eigenstates of an off-diagonal elements of the double-row monodromy

matrix to form a basis.
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polynomial of degree 2(2s+ 1)N + 2 with the crossing symmetry

f(−u− η) = f(u). (A.2)

This very property implies that the function can be fixed by its values at (2s + 1)N + 2

different points. It is clear from the relations (3.14) and (3.15) that

f(0) = 0, and lim
u→∞

f(u) = 0× u2(2s+1)N+2 + . . . . (A.3)

This means that it is enough to completely determine f(u) by fixing its values at other

(2s+ 1)N independent points. Thanks to the fact that Q(u) is also a crossing polynomial

(i.e., Q(−u− η) = Q(u)) of degree 4sN with a known coefficient of the term u4sN , for each

solution Λ(u) of (3.12)–(3.17) one can always choose the function Q(u) of form (4.17) such

that the following equations hold:

f(θj + (s− 1

2
− k)η) = 0, k = 0, . . . , 2s, and j = 1, . . . , N. (A.4)

Then the relations (A.2)–(A.4) leads to f(u) = 0 or that each solution of (3.12)–(3.17)

can be parameterized in terms of the inhomogeneous T −Q relation (4.16) with properly

choice of the function Q(u). In fact the conditions (A.4) are equivalent to the following

(2s + 1)N linear equations with respect to the values of Q(u) at the (2s + 1)N different

points {θj + (s− 1
2 − k)η|k = 0, . . . , 2s, j = 1, . . . , N}, namely,

B(j)X(j) = 0, j = 1, . . . , N, (A.5)

with each (2s+ 1)× (2s+ 1) matrix B(j) is given by

Λ(θj+(s− 1
2)η) −a(θj+(s− 1

2)η)

−d(θj+(s− 3
2)η) Λ(θj+(s− 3

2)η) −a(θj+(s− 3
2)η)

. . .
. . .

. . .

−d(θj−(s+ 1
2)η) Λ(θj−(s+ 1

2)η)


,

and the (2s+ 1) components vector X(j) is given by
Q(θj + (s− 1

2)η)

Q(θj + (s− 3
2)η)

...

Q(θj − (s+ 1
2)η)

 .

The conditions that the (2s+1)N linear equations (A.5) have non-zero solutions is that the

determinant of each matrix B(j) vanishes, namely, Det(B(j)) = 0. In this case, the number

of independent linear equations (A.5) is reduced to 2sN and one can always fix at most the
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2sN values10 (up to a scaling factor) of Q(u) at 2sN points among {θj + (s− 1
2 − k)η|k =

0, 1, . . . , 2s, j = 1, . . . , N}, for an example, {θj + (s− 1
2 − k)η|k = 1, . . . , 2s, j = 1, . . . , N}.

Direct calculation shows that the vanishing of the determinants of B(j) are exactly the very

identities (3.13). Therefore, each solution Λ(u) of (3.12)–(3.17) allows one to parameterize

it in terms of the inhomogeneous T − Q relation (4.16) where Q(u) can be determined

either by its values at 2sN different points via the equations (A.5) or its roots: {λj |j =

1, . . . , 2sN} in (4.17) via the associated BAEs (4.18).

One can use the similar method to check that each solution of (3.12)–(3.17) can be

also parameterized in terms of the inhomogeneous T − Q relation with other values of m

and M . In this case the degree of the corresponding function f(u) becomes (2s+ 1)N +m.

Thanks to the relation (3.12)–(3.17), besides the (2s+ 1)N conditions (A.4), one is always

able to choose its values at some extra m points to be zero such that the associated T −Q
relation is satisfied.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[67] S. Belliard and N. Crampé, Heisenberg XXX Model with General Boundaries: Eigenvectors

from Algebraic Bethe Ansatz, SIGMA 9 (2013) 072 [arXiv:1309.6165] [INSPIRE].

[68] X. Zhang, Y.-Y. Li, J. Cao, W.-L. Yang, K. Shi et al., Retrieve the Bethe states of quantum

integrable models solved via off-diagonal Bethe Ansatz, arXiv:1407.5294 [INSPIRE].

[69] L. Mezincescu, R.I. Nepomechie and V. Rittenberg, Bethe Ansatz Solution of the

Fateev-zamolodchikov Quantum Spin Chain With Boundary Terms, Phys. Lett. A 147

(1990) 70 [INSPIRE].

[70] E.C. Fireman, A. Lima-Santos and W. Utiel, Bethe ansatz solution for quantum spin 1

chains with boundary terms, Nucl. Phys. B 626 (2002) 435 [nlin/0110048] [INSPIRE].

[71] A. Doikou, Fused integrable lattice models with quantum impurities and open boundaries,

Nucl. Phys. B 668 (2003) 447 [hep-th/0303205] [INSPIRE].

[72] T. Inami, S. Odake and Y.-Z. Zhang, Reflection K matrices of the 19 vertex model and XXZ

spin 1 chain with general boundary terms, Nucl. Phys. B 470 (1996) 419 [hep-th/9601049]

[INSPIRE].

[73] R.I. Nepomechie, An inhomogeneous T-Q equation for the open XXX chain with general

boundary terms: completeness and arbitrary spin, J. Phys. A 46 (2013) 442002

[arXiv:1307.5049] [INSPIRE].

[74] L. Mezincescu and R.I. Nepomechie, Fusion procedure for open chains, J. Phys. A 25 (1992)

2533 [INSPIRE].

[75] Y.-k. Zhou, Row transfer matrix functional relations for Baxter’s eight vertex and six vertex

models with open boundaries via more general reflection matrices, Nucl. Phys. B 458 (1996)

504 [hep-th/9510095] [INSPIRE].

[76] C. Korff, PT Symmetry of the non-Hermitian XX Spin-Chain: Non-local Bulk Interaction

from Complex Boundary Fields, J. Phys. A 41 (2008) 295206 [arXiv:0803.4500] [INSPIRE].

[77] Y. Jiang, S. Cui, J. Cao, W.-L. Yang and Y. Wang, Completeness and Bethe root distribution

of the spin-1/2 Heisenberg chain with arbitrary boundary fields, arXiv:1309.6456 [INSPIRE].

[78] G. Niccoli, Form factors and complete spectrum of XXX antiperiodic higher spin chains by

quantum separation of variables, J. Math. Phys. 54 (2013) 053516 [arXiv:1206.2418]

[INSPIRE].

– 24 –

http://dx.doi.org/10.1088/1742-5468/2007/09/P09006
http://arxiv.org/abs/hep-th/0703106
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703106
http://dx.doi.org/10.1088/1742-5468/2014/05/P05015
http://dx.doi.org/10.1088/1742-5468/2014/05/P05015
http://arxiv.org/abs/1401.4901
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4901
http://dx.doi.org/10.3842/SIGMA.2013.072
http://arxiv.org/abs/1309.6165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6165
http://arxiv.org/abs/1407.5294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5294
http://dx.doi.org/10.1016/0375-9601(90)90016-H
http://dx.doi.org/10.1016/0375-9601(90)90016-H
http://inspirehep.net/search?p=find+J+Phys.Lett.,A147,70
http://dx.doi.org/10.1016/S0550-3213(02)00027-5
http://arxiv.org/abs/nlin/0110048
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B626,435
http://dx.doi.org/10.1016/j.nuclphysb.2003.07.001
http://arxiv.org/abs/hep-th/0303205
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B668,447
http://dx.doi.org/10.1016/0550-3213(96)00133-2
http://arxiv.org/abs/hep-th/9601049
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B470,419
http://dx.doi.org/10.1088/1751-8113/46/44/442002
http://arxiv.org/abs/1307.5049
http://inspirehep.net/search?p=find+J+J.Phys.,A46,442002
http://inspirehep.net/search?p=find+J+J.Phys.,A25,2533
http://dx.doi.org/10.1016/0550-3213(95)00553-6
http://dx.doi.org/10.1016/0550-3213(95)00553-6
http://arxiv.org/abs/hep-th/9510095
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B458,504
http://dx.doi.org/10.1088/1751-8113/41/29/295206
http://arxiv.org/abs/0803.4500
http://inspirehep.net/search?p=find+J+J.Phys.,A41,295206
http://arxiv.org/abs/1309.6456
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6456
http://dx.doi.org/10.1063/1.4807078
http://arxiv.org/abs/1206.2418
http://inspirehep.net/search?p=find+J+J.Math.Phys.,54,053516

	Introduction
	Transfer matrices for the spin-s XXX spin chain
	Fusion of the R-matrices and the K-matrices
	Fused transfer matrices

	Fusion hierarchy and operator identities
	Operator identities
	Functional relations of the eigenvalues

	T-Q relation
	 Eigenvalues of the fundamental transfer matrix
	Spin-1 case

	Conclusions
	Proof of the inhomogeneous T-Q relation 

