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Abstract: Half-maximal gauged supergravity in seven dimensions coupled to n vector

multiplets contains n+3 vectors and 3n+1 scalars parametrized by R+×SO(3, n)/SO(3)×
SO(n) coset manifold. The two-form field in the gravity multiplet can be dualized to a three-

form field which admits a topological mass term. Possible non-compact gauge groups take

the form of G0×H ⊂ SO(3, n) with a compact group H. G0 is one of the five possibilities;

SO(3, 1), SL(3,R), SO(2, 2), SO(2, 1) and SO(2, 2) × SO(2, 1). We investigate all of these

possible non-compact gauge groups and classify their vacua. Unlike the gauged supergravity

without a topological mass term, there are new supersymmetric AdS7 vacua in the SO(3, 1)

and SL(3,R) gaugings. These correspond to new N = (1, 0) superconformal field theories

(SCFT) in six dimensions. Additionally, we find a class of AdS5 × S2 and AdS5 × H2

backgrounds with SO(2) and SO(2)×SO(2) symmetries. These should correspond to N = 1

SCFTs in four dimensions obtained from twisted compactifications of six-dimensional field

theories on S2 or H2. We also study RG flows from six-dimensional N = (1, 0) SCFT to

N = 1 SCFT in four dimensions and RG flows from a four-dimensional N = 1 SCFT to a

six-dimensional SYM in the IR. The former are driven by a vacuum expectation value of

a dimension-four operator dual to the supergravity dilaton while the latter are driven by

vacuum expectation values of marginal operators.
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1 Introduction

Gauged supergravities play an important role in string/M theory compactification and

gauge/gravity correspondence. Generally, a gauge supergravity theory admits many types

of gauge groups namely compact, non-compact and non-semisimple groups, and differ-

ent types of gauge groups give rise to different vacuum structures. Gauged supergravity

theories may be accordingly classified into two categories by the vacua they admit. AdS

supergravities are theories admitting a maximally supersymmetric AdS space as a vacuum

solution while those with a half-maximally supersymmetric domain wall vacuum are called

domain-wall supergravities. The former is useful in the context of the AdS/CFT corre-

spondence [1], and the latter is relevant in the DW/QFT correspondence [2, 3].

The study of N = (1, 0) superconformal field theories (SCFT) in the context of

AdS7/CFT6 correspondence has originally done by orbifolding the AdS7 × S4 geometry
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of M-theory giving rise to the gravity dual of N = (2, 0) SCFT [4–6]. And, recently, many

AdS7 solutions to type IIA string theory have been identified in [7]. These backgrounds

are dual to N = (1, 0) SCFTs in six dimensions, and the holographic study of these SCFTs

has been given in [8]. Furthermore, a number of N = (1, 0) SCFTs in six dimensions have

been found and classified in the context of F-theory in [9]. It would be desirable to have

a description of these SCFT in terms of the gravity solutions to seven-dimensional gauged

supergravity. However, it has been pointed out in [10] that AdS7 solutions found in [7]

cannot be obtained from seven-dimensional gauged supergravity.

In the framework of seven-dimensional gauged supergravity, there are only a few re-

sults in the holography of N = (1, 0) SCFTs. It has been proposed in [11] that the

N = (1, 0) SCFTs arising in the M5-brane world-volume theories should be described by

N = 2 seven-dimensional gauged supergravity and its matter-coupled version. A non-

supersymmetric holographic RG flow within pure N = 2 gauged supergravity has been

studied in [12], and recently, new supersymmetric AdS7 critical points and holographic RG

flows between these critical points have been explored in [13]. The gauged supergravity

considered in [13] is the N = 2 gauged supergravity coupled to three vector multiplets

resulting in SO(4) ∼ SU(2)× SU(2) gauge group with two coupling constants for the two

SU(2)’s. When these couplings are equal, the theory can be embedded in eleven dimensions

by using the reduction ansatz recently obtained in [14].

To find more supersymmetric AdS7 backgrounds, in this paper, we will consider the

N = 2 gauged supergravity in seven dimensions coupled to a number of vector multiplets

with non-compact gauge groups. The gauged supergravity is obtained from coupling pure

N = 2 supergravity constructed in [15] to vector multiplets [16]. Furthermore, the two-

form field in the supergravity multiplet can be dualized to a three-form field [17]. It turns

out to be possible to add a topological mass term to this three-form field resulting in a

gauged supergravity with a massive three-form field [18]. The latter differs considerably

from the theory without topological mass in the sense that it is possible to have maximally

supersymmetric AdS7 backgrounds.

We will see that there are new AdS7 critical points for non-compact gauging of the

N = 2 supergravity with topological mass term. These provide more examples of AdS7

solutions with sixteen supercharges. We will also find that some non-compact gauge groups

admit AdS5 × S2 and AdS5 ×H2 geometries as a background solution. In the context of

twisted field theories, these solutions should describe a six-dimensional SCFT wrapped on

a two-dimensional Riemann surface. In the IR, the six-dimensional SCFT would flow to

another SCFT in four dimensions. These results give new AdS5 backgrounds dual to N = 1

four-dimensional SCFTs.

The holographic study of twisted field theories has originally been applied to N = 4

SYM [19]. Until now, the method has been applied to other dimensions, see for example [20–

23]. In [23], AdS5 solutions from a truncation of the maximal N = 4 gauged supergravity

in seven dimensions have been found. These AdS5 geometries correspond to a class of

N = 1 SCFTs in four dimensions obtained from M5-branes wrapped on complex curves.

In this paper, we will give more examples of these N = 1 SCFTs by finding new AdS5

geometries with eight supercharges in the half-maximal N = 2 gauged supergravity. We
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also give some examples of RG flows from six-dimensional SCFTs to these four-dimensional

SCFTs. Furthermore, we find an RG flow from a four-dimensional N = 1 SCFT in the UV

to a six-dimensional N = (1, 0) SYM in the IR. This flow gives another example of the

flows considered in [24] in which the flows from N = 4 SYM to six-dimensional N = (2, 0)

SCFT and N = 2∗ theory to five dimensional N = 2 SCFT have been studied.

The paper is organized as follow. In section 2, we describe N = 2 gauged supergravity

in seven dimensions to set up the notation and discuss all possible non-compact gauge

groups. These gauge groups will be studied in detail in section 3, 4, 5 and 6 in which

possible vacua and RG flow solutions will be given. In section 7, we give a summary of the

results and some conclusions.

2 Seven-dimensional N = 2 gauged supergravity coupled to n vector

multiplets

In this section, we give a description of the matter-coupled minimal N = 2 gauged super-

gravity in seven dimensions with topological mass term. All of the notations are the same

as those in [18] to which the reader is referred to for further details.

A general matter-coupled theory is constructed by coupling n vector multiplets to pure

N = 2 supergravity constructed in [15]. The supergravity multiplet (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ)

consists of the graviton, two gravitini, three vectors, two spin-1
2 fields, a two-form field and

a real scalar, the dilaton. The only matter mutiplet is the vector multiplet (Aµ, λ
A, φi)

consisting of a vector field, two gauginos and three scalars. We use the convention that

curved and flat space-time indices are denoted by µ, ν, . . . and m,n, . . ., respectively. Spinor

fields, ψAµ , χA, λA, and the supersymmetry parameter εA are symplectic-Majorana spinors

transforming as doublets of the R-symmetry USp(2)R ∼ SU(2)R. From now on, the SU(2)R

doublet indices A,B = 1, 2 will be dropped. Indices i, j = 1, 2, 3 label triplets of SU(2)R.

The supergravity theory coupled to n vector multiplets has SO(3, n) global symmetry.

The n vector multiplets will be labelled by an index r = 1, . . . n. There are then n + 3

vector fields in total. Accordingly, only a subgroup G of the global symmetry SO(3, n) of

dimension dimG ≤ n + 3 can be gauged. Possible gauge groups with structure constants

f K
IJ and gauge algebra

[TI , TJ ] = f K
IJ TK (2.1)

can be gauged provided that the SO(3, n) Killing form ηIJ , I, J = 1, . . . n+ 3, is invariant

under G

f L
IK ηLJ + f L

JK ηLI = 0 . (2.2)

Since ηIJ has only three negative eigenvalues, any gauge group can have three or less

compact generators or three or less non-compact generators. It follows from (2.2) that

the part of ηIJ corresponding to each simple subgroup Gα of G must be a multiple of the

Gα Killing form. Therefore, possible non-compact gauge groups take the form of G0 ×H
with a compact group H ⊂ SO(3,n) of dimension dimH ≤ (n + 3 − dimG0) [18]. The

G0 factor can only be one of the five possibilities: SO(3, 1), SL(3,R), SO(2, 1), SO(2, 2) ∼
SO(2, 1)× SO(2, 1) and SO(2, 2)× SO(2, 1).
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Apart from the dilaton σ which is a singlet under the gauge group, there are 3n

scalar fields φir parametrized by SO(3, n)/SO(3) × SO(n) coset manifold. The associated

coset representative L = (L i
I , L

r
I ) transforms under the global SO(3, n) and the local

SO(3) × SO(n) by left and right multiplications, respectively. Its inverse is denoted by

L−1 = (LIi, L
I
r) with the relations LIi = ηIJLJi and LIr = ηIJLJr.

The two-form field Bµν can be dualized to a three-form field Cµνρ which admits a

topological mass term
h

36
εµ1...µ7Hµ1...µ4Cµ5...µ7 (2.3)

where the four-form field strength is defined by Hµνρσ = 4∂[µCνρσ].

The bosonic Lagrangian of the N = 2 massive-gauged supergravity is then given by

e−1L =
1

2
R− 1

4
eσaIJF

I
µνF

Jµν − 1

48
e−2σHµνρσH

µνρσ − 5

8
∂µσ∂

µσ − 1

2
P irµ P

µ
ir

− 1

144
√

2
e−1εµ1...µ7Hµ1...µ4ωµ5...µ7 +

1

36
he−1εµ1...µ7Hµ1...µ4Cµ5...µ7 − V

(2.4)

where the scalar potential is given by

V =
1

4
e−σ

(
CirCir −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3σ
2 C . (2.5)

The Chern-Simons term is defined by

ωµνρ = 3ηIJF
I
[µνA

J
ρ] − f

K
IJ AIµ ∧AJν ∧AρK (2.6)

with F Iµν = 2∂[µA
I
ν] + f I

JK AJµA
K
ν .

We are going to find supersymmetric bosonic background solutions, so the supersym-

metry transformations of fermions are needed. Since, in the following analysis, we will set

Cµνρ = 0, we will accordingly give the supersymmetry transformations with all fermions

and the three-form field vanishing. These are given by

δψµ = 2Dµε−
√

2

30
e−

σ
2Cγµε−

i

20
e
σ
2 F iρσσ

i (3γµγ
ρσ − 5γρσγµ) ε− 4

5
he2σγµε, (2.7)

δχ = −1

2
γµ∂µσε−

i

10
e
σ
2 F iµνσ

iγµνε+

√
2

30
e−

σ
2Cε− 16

5
e2σhε, (2.8)

δλr = −iγµP irµ σiε−
1

2
e
σ
2 F rµνγ

µνε− i√
2
e−

σ
2Cirσiε . (2.9)

The covariant derivative of ε is defined by

Dµε = ∂µε+
1

4
ωabµ γab +

i

4
σiεijkQµjk (2.10)

where γa are space-time gamma matrices.
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The quantities appearing in the Lagrangian and the supersymmetry transformations

are defined by

P irµ = LIr
(
δKI ∂µ + f K

IJ AJµ

)
LiK , Qijµ = LIj

(
δKI ∂µ + f K

IJ AJµ

)
LiK ,

Cir =
1√
2
f K
IJ LIjL

J
kLKrε

ijk, C = − 1√
2
f K
IJ LIiL

J
jLKkε

ijk,

Crsi = f K
IJ LIrL

J
sLKi, aIJ = Li ILiJ + LrILrJ ,

F iµν = L i
I F

I , F rµν = L r
I F

I . (2.11)

In the following sections, we will study all possible non-compact gauge groups G0

without the compact H factor. This is a consistent truncation since all scalar fields we

retain are H singlets. All of the solutions found here are automatically solutions of the

gauged supergravity with G0×H gauge group according to the result of Schur’s lemma as

originally discussed in [25].

Before going to the computation, we will give a general parametrization of the

SO(3,n)/SO(3) × SO(n) coset. We first introduce (n + 3)2 basis elements of a general

(n+ 3)× (n+ 3) matrix as follow

(eIJ)KL = δIKδJL . (2.12)

The composite SO(3)× SO(n) generators are given by

SO(3) : J
(1)
ij = eji − eij , i, j = 1, 2, 3,

SO(n) : J (2)
rs = es+3,r+3 − er+3,s+3, r, s = 1, . . . , n . (2.13)

The non-compact generators corresponding to the 3n scalars are given by

Y ir = ei,r+3 + er+3,i . (2.14)

The coset representative in each case will be given by an exponential of the relevant Y ir

generators.

3 SO(3, 1) gauge group

The minimal scalar coset for embedding SO(3, 1) gauge group is SO(3, 3)/SO(3)× SO(3).

We will choose the gauge structure constants to be

fIJK = −g(εijk, εrsi), i, j, r, s = 1, 2, 3 (3.1)

from which we find f K
IJ = ηKLfIJL with ηIJ = (−1,−1,−1, 1, 1, 1). Together with

the dilaton σ, there are ten scalars in this case. At the vacuum, the full SO(3, 1) gauge

symmetry is broken down to its the maximal compact subgroup SO(3). The ten scalars

transform as 1 + 1 + 3 + 5 with the first singlet being the dilaton.
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Critical point σ V0 L

I 0 −240h2 1
4h

II 2
5 ln 2 −160(2

3
5 )h2

√
3

2(2
4
5 )h

Table 1. Supersymmetric and non-supersymmetric AdS7 critical points in SO(3, 1) gauging.

SO(3)diag m2L2 ∆

1 −8 4

1 40 10

3 0 6

5 16 8

Table 2. Scalar masses at the supersymmetric AdS7 critical point in SO(3, 1) gauging.

3.1 AdS7 critical points

We now investigate the vacuum structure of the N = 2 gauged supergravity with SO(3, 1)

gauge group. We simplify the task by restricting the potential to the two SO(3) ⊂ SO(3, 1)

singlet scalars. This truncation is consistent in the sense that all critical points found on

this restricted scalar manifold are automatically critical points of the potential computed

on the full scalar manifold as pointed out in [25].

The scalar potential on these SO(3) singlets is given by

V =
1

16
e−σ−6φ

[(
1 + 8e2φ + 3e4φ − 32e6φ + 3e8φ + 8e10φ + e12φ

)
g2

−32e
5
2
σ+3φ

(
1 + e2φ + e4φ + e6φ

)
gh+ 256h2e5σ+6φ

]
. (3.2)

The scalar φ is an SO(3) singlet coming from SO(3, 3)/SO(3) × SO(3). It can be easily

checked that this potential admits two critical points at φ = 0 and

σ =
2

5
ln

g

16h
, and σ =

2

5
ln

g

8h
. (3.3)

As in the SO(4) gauging studied in [13], the second critical point is non-supersymmetric

as can be checked by computing the supersymmetry transformations of fermions. We

will shift the dilaton field so that the supersymmetric AdS7 occurs at σ = 0. This is

effectively achieved by setting g = 16h. The gauge group SO(3, 1) is broken down to its

maximal compact subgroup SO(3), so the two critical points have SO(3) symmetry. At

these critical points, the values of the cosmological constant (V0) and the AdS7 radius (L)

are given in table 1.

In our convention, the relation between V0 and L is given by L =
√
− 15
V0

. We can

compute scalar masses at the trivial critical point, σ = 0, as shown in the table 2.

In the table, we have given the representations under the unbroken SO(3) ⊂ SO(3, 1)

symmetry. The conformal dimension ∆ of the dual operators in the six-dimensional SCFT

is also given. The three scalars in the 3 representation correspondence to the Goldstone

bosons in the symmetry breaking SO(3, 1) to SO(3). These scalars correspond to marginal

– 6 –
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SO(3) m2L2 ∆

1 12 3 +
√

21

1 36 3(1 +
√

5)

3 0 6

5 0 6

Table 3. Scalar masses at the non-supersymmetric AdS7 critical point in SO(3, 1) gauging.

operators of dimension six. From the table, we see that only the operator dual to the

dilaton is relevant. The other are either marginal or irrelevant.

Unlike in the SO(4) gauging in which the non-supersymmetric AdS7 is unstable, we

find that, in SO(3, 1) gauging, it is indeed stable as can be seen from the scalar masses

given in table 3. From the table, we see that the operator dual to σ becomes irrelevant at

this critical point. We then expect that there should be an RG flow driven by this operator

from the N = 2 supersymmetric fixed point to this CFT. The gravity solution would

involve the metric gµν and σ. Since the flow is non-supersymmetric, the flow solution has

to be found by solving the full second-order field equations. In general, these equations do

not admit an analytic solution. We will not go into the detail of this flow here and will not

give the corresponding numerical flow solution. A similar study in the case of pure N = 2

SU(2) gauged supergravity can be found in [12].

3.2 AdS5 critical points

We now look for a vacuum solution of the form AdS5 × S2. In this case, an abelian gauge

field is turned on. There are six gauge fields AI , I = 1, . . . , 6, of SO(3, 1) in which the first

three gauge fields are those of the compact subgroup SO(3). We will choose the non-zero

gauge field to be A3. The seven-dimensional metric is given by

ds2 = e2f(r)dx2
1,3 + dr2 + e2g(r)(dθ2 + sin2 dφ2) (3.4)

where dx2
1,3 is the flat metric on the four-dimensional Minkowski space. The ansatz for the

gauge field is given by

A3 = a cos θdφ, F 3 = −a sin θdθ ∧ dφ . (3.5)

From the metric, we can compute the following spin connections

ωφ̂
θ̂

= e−g(r) cot θeφ̂, ωφ̂r̂ = g(r)′eφ̂,

ωθ̂r̂ = g(r)′eθ̂, ωµ̂r̂ = f ′eµ̂ . (3.6)

From SO(3, 3)/SO(3)×SO(3) coset, there are three singlets under this SO(2) ⊂ SO(3).

One of them is the SO(3) singlet mentioned before. The other two come from 3 and 5

representations of SO(3) with the former being one of the three Goldstone bosons. We can

then set up relevant BPS equations by computing the supersymmetry transformations of

ψµ, χ and λr. We will not give δψr = 0 equation here. This will give rise to the equation

for the Killing spinors as a function of r.
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We then impose the projections

γrε = ε and iγ θ̂φ̂σ3ε = ε (3.7)

where hatted indices are tangent space indices. By imposing the twist condition

ag = 1, (3.8)

we find that equation δψθ = 0 is the same as δψφ = 0. The Killing spinors are then given

by constant spinors on S2. Equations δψµ, µ = 0, 1, 2, 3 lead to a single equation for f(r).

With all these, we find the following set of the BPS equations

φ′1 =
e−

σ
2
−2φ1+2φ2−φ3

(
1 + e2φ3

) (
e2φ3 − 1

)
g

2 (1 + e4φ2)
, (3.9)

φ′2 = 0, (3.10)

φ′3 = −1

4
e−

σ
2
−2φ1−φ3−2g(r)

[
2aeσ+2φ1

(
e2φ3 − 1

)
−e2g(r)

(
2e2φ1 + e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3 − 1

)
g
]
, (3.11)

σ′ =
1

10
e−

σ
2
−2φ1−φ3−2g(r)

[
2aeσ+2φ1

(
1 + e2φ3

)
+ 64he

5
2
σ+2φ1+φ3+2g(r)

− e2g(r)
(

1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3
)
g
]
, (3.12)

g(r)′ = −2

5
ae

σ
2
−φ3−2g(r)

(
1 + e2φ3

)
+

4

5
he2σ

+
1

20
e−

σ
2
−2φ1−φ3

(
1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3

)
g, (3.13)

f ′ =
1

10
ae

σ
2
−φ3−2g(r)

(
1 + e2φ3

)
+

4

5
he2σ

+
1

20
e−

σ
2
−2φ1−φ3

(
1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3

)
g (3.14)

where φi, i = 1, 2, 3 are the three singlets from SO(3, 3)/SO(3)× SO(3). The ′ denotes d
dr .

To avoid the confusion with the gauge coupling g, we have explicitly written the S2 warp

factor as g(r).

φ2, being one of the Goldstone bosons, disappears entirely from the scalar potential

which, for these SO(2) singlets, is given by

V =
1

16
e−σ−4φ1−2φ3

[(
1 + 2e4φ1 + e4φ3 + 2e4(φ1+φ3) − 16e4φ1+2φ3 + e8φ1+4φ3

)
g2

+32ghe
5σ
2

+2φ1+φ3
(

1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3
)

+256h2e5σ+4φ1+2φ3
]
. (3.15)

When φ3 = φ1, this reduces to the SO(3) invariant potential (3.2). Equation (3.10) implies

that φ2 is a constant. We will choose φ2 = 0 from now on in order to be consistent with

the supersymmetric AdS7 critical point.
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The AdS5 × S2 geometry is characterized by the fixed point solution of g(r)′ = φ′i =

σ′ = 0. From the above equations, there is a solution only for φi = 0 and

σ =
2

5
ln

g

12h
, g(r) = −1

2
ln

g

3a
+

1

5
ln

g

12h
. (3.16)

Near this fixed point with g = 16h, we find f ∼
(

512
9

) 2
5 hr. Therefore, the AdS5 radius is

given by LAdS5 = 1
h

(
9

512

) 2
5 . At this fixed point, the projection γrε = ε is not needed, so the

number of unbroken supercharges is eight. According to the AdS/CFT correspondence, we

will identify this AdS5 solution with an N = 1 SCFT in four dimensions.

3.3 RG flows from 6D N = (1, 0) SCFT to 4D N = 1 SCFT

The existence of AdS5×S2 geometry indicates that the N = (1, 0) SCFT in six dimensions

corresponding to AdS7 critical point can undergo an RG flow to a four-dimensional N = 1

SCFT. We begin the study of this RG flow solution by rewriting the BPS equations for

φi = 0

σ′ =
2

5
e−

σ
2

(
aeσ−2g(r) + g − 16he

5σ
2

)
, (3.17)

g(r)′ =
1

5
e−

σ
2

(
g − 4aeσ−2g(r) + 4he

5σ
2

)
, (3.18)

f ′ =
1

5
e−

σ
2

(
g + aeσ−2g(r) + 4he

5σ
2

)
. (3.19)

Near the IR AdS5 fixed point, we find

σ ∼ g(r) ∼ e
(
√

7−1) r
LAdS5 ,

f ∼ r

LAdS5

. (3.20)

We then conclude that the operators dual to σ and g(r) become irrelevant in four dimensions

with dimension ∆ = 3 +
√

7. We are not able to find an analytic solution to the above

equations. We therefore give an example of numerical solutions in figure 1.

At the IR fixed point, the value of σ does not depend on a, but different values of a

give rise to different solutions for g(r). In figure 1, we have given some examples of the

g(r) solutions with three different values of a, a = 1, 2, 3 with g = 16h and h = 1. From

the solutions, we see that, at large r, g(r) ∼ r and σ ∼ 0. Furthermore, as g(r) ∼ r →∞,

we find f(r) ∼ g(r) ∼ r. The UV geometry is AdS7 corresponding to the six-dimensional

N = (1, 0) SCFT. The behavior of σ near the UV point is given by

σ ∼ e
− 4r
LAdS7 (3.21)

which indicates that the flow is driven by a VEV of a dimension-four operator.

3.4 AdS5 ×H2 geometry

We now consider a fixed point of the form AdS5×H2 with H2 being a genus g > 1 Riemann

surface. In this case, we take the metric ansatz to be

ds2 = e2f(r)dx2
1,3 + dr2 +

e2g(r)

y2
(dx2 + dy2). (3.22)
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(b) Solutions for g(r).

Figure 1. RG flow solutions from N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with the g(r) solution given for three different values of a; a = 1 (red),a = 2 (green), a = 3

(blue).

The SO(2) gauge field is then given by

A =
a

y
dx, F =

a

y2
dx ∧ dy . (3.23)

The spin connections computed from the above metric are given by

ωx̂r̂ = g(r)′ex̂, ωŷr̂ = g(r)′eŷ, ωx̂ŷ = −e−g(r)ex̂ . (3.24)

The twisted condition is still given by ga = 1. The BPS equations change by some signs,

and it is still true that the AdS5 is possible only for φi = 0. The BPS equations, for φi = 0,

are then given by

σ′ =
2

5
e−

σ
2

(
−aeσ−2g(r) + g − 16he

5σ
2

)
, (3.25)

g(r)′ =
1

5
e−

σ
2

(
g + 4aeσ−2g(r) + 4he

5σ
2

)
, (3.26)

f ′ =
1

5
e−

σ
2

(
g − aeσ−2g(r) + 4he

5σ
2

)
. (3.27)

The fixed point conditions σ′ = g(r)′ = 0 have the solution

σ =
2

5
ln

g

12h
, g(r) = −1

2
ln
[
− g

3a

]
+

1

5
ln

g

12h
. (3.28)

In this case, there is no real solution for g(r) since the twisted condition requires that

g must have the same sign as a. Therefore, we conclude that there is no supersymmetric

AdS5 ×H2 solution for SO(3, 1) gauging.

4 SL(3,R) gauge group

In this section, we consider the SL(3,R) gauge group. The minimal scalar manifold to

accommodate this eight-dimensional gauge group is SO(3, 5)/SO(3)×SO(5). The structure

constants can be obtained from the generators TI = (iλ2, iλ5, iλ7, λ1, λ3, λ4, λ6, λ8) with

I = 1, . . . , 8. λi are the usual Gell-mann matrices.
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SO(3) m2L2 ∆

1 −8 4

3 112 14

5 0 6

7 72 12

Table 4. Scalar masses at the supersymmetric AdS7 critical point in SL(3,R) gauging.

SO(3) m2L2 ∆

1 12 3 +
√

21

3 96 3 +
√

105

5 0 6

7 36 3(1 +
√

5)

Table 5. Scalar masses at the non-supersymmetric AdS7 critical point in SL(3,R) gauging.

Under SL(3,R), the adjoint representation of SO(3, 5) decomposes as

28→ 8 + 10 + 10′ .

At the vacuum, the SL(3,R) symmetry is broken down to SO(3) with the embedding 3→ 3.

Therefore, under SO(3), the 28 of SO(3, 5) further decomposes as

28→ 3 + 5 + 3 + 7 + 3 + 7 .

The fifteen scalars transform under SO(3) as 3+5+7. The other representations 3+3+7

combine into the adjoint representation of the composite local SO(3)× SO(5) symmetry.

4.1 AdS7 critical points

By computing the scalar potential, we find that there are two AdS7 critical points with

SO(3) symmetry as in the SO(3, 1) gauging for vanishing vector multiplet scalars. One

of them is supersymmetric, and the other one is non-supersymmetric. We will similarly

set g = 16h to bring the supersymmetric AdS7 to σ = 0. The characteristics of these

two critical points are the same as in SO(3, 1) gauging, so we will not repeat them here.

However, scalar masses at these two critical point are different and are given in table 4

and 5.

As in the previous case, the SO(3) singlet is the dilaton. In this case, there are five Gold-

stone bosons from the SL(3,R) → SO(3) symmetry breaking. The non-supersymmetric

AdS7 is stable as in the SO(3, 1) gauging and can be interpreted as a unitary six-dimensional

CFT. We then expect that there should be an RG flow from the supersymmetric AdS7 to

the non-supersymmetric one. As in the previous case, the flow is driven by a VEV of the

operator dual to the dilaton σ. In the IR, the operator becomes irrelevant with dimension

∆ = 3 +
√

21.
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4.2 AdS5 critical points

We now study possible AdS5 fixed points. We will turn on a gauge field of SO(2) which is

a subgroup of the compact subgroup SO(3) ⊂ SL(3,R). Among the fifteen scalars, there

are three singlets under this SO(2), and we will denote them by φi, i = 1, 2, 3. Each of the

three SO(3) representations, 3 + 5 + 7, gives one SO(2) singlet.

We again use the metric ansatz (3.4) and the gauge field A3 = a cos θdφ. With the

twisted condition ga = 1 and the projectors γrε = ε and iγ θ̂φ̂σ3ε = ε, we obtain a system of

complicated BPS equations. Since these equations might be useful for other applications,

we explicitly give them here

φ′1 =

√
3ge
−σ

2
−2φ1− 2√

3φ3

(
e4φ1 − 1

) (
e4φ2 − 1

)(
e

4φ3√
3 − 1

)
4 (1 + e4φ2)

, (4.1)

φ′2 =

√
3

4
ge
−σ

2
−2φ2− 2φ3√

3

(
1 + e4φ2

)(
e

4φ3√
3 − 1

)
, (4.2)

φ′3 =
1

16
e
−σ

2
−2φ1−2φ2− 2φ3√

3
−2g(r)

[
4
√

3aeσ+2φ1+2φ2

(
1− e

4φ3√
3

)
+geg(r)

(
3e

4φ1+4φ2+
4φ3√

3 + 3e
4φ2+

4φ3√
3 − 4

√
3e

2φ1+2φ2+
4φ3√

3 − 3e
4φ1+

4φ3√
3 − 3e

4φ3√
3

+3e4(φ1+φ2) + 4
√

3e2(φ1+φ2) + 3e4φ2 − 3e4φ1 − 3
)]
, (4.3)

σ′ =
1

20
e
−σ

2
−2φ1−2φ2− 2φ3√

3
−2g(r)

[
4aeσ+2(φ1+φ2)

(
1 + e

4φ3√
3 + 128he

5σ
2

+2φ1+2φ2+
2φ3√

3
+2g(r)

)
ge2g(r)

(√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2) −
√

3e
4φ3√

3

−
√

3e
4φ1+

4φ3√
3 − 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

)]
, (4.4)

g(r)′ = −2

5
ae

σ
2
− 2φ3√

3
−2g(r)

(
1 + e

4φ3√
3

)
+

4

5
he2σ

− 1

40
ge
−σ

2
−2φ1−2φ2− 2φ3√

3

[√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2)

−
√

3e
4φ3√

3

(
1 + e4φ1

)
− 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

]
, (4.5)

f ′ =
1

10
ae

σ
2
− 2φ3√

3
−2g(r)

(
1 + e

4φ3√
3

)
+

4

5
he2σ

− 1

40
ge
−σ

2
−2φ1−2φ2− 2φ3√

3

[√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2)

−
√

3e
4φ3√

3

(
1 + e4φ1

)
− 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

]
. (4.6)

It can be easily verified that the first three equations have a fixed point solution only when

φi = 0 for all i = 1, 2, 3. The remaining equations then reduce to the same form as in the

SO(3, 1) case. The RG flow solutions can also be studied in a similar manner, and we will

not repeat it here.
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As a final remark, we note here that similar to the previous case, it is not possible to

have an AdS5 ×H2 solution.

5 SO(2, 2) gauge group

Unlike the previous two cases, this gauging does not admit a maximally supersymmetric

AdS7. The vacuum is rather a half-supersymmetric domain wall. This is not unexpected

since the minimal superconformal algebra in six dimensions has SU(2)R R-symmetry, but

the vacuum of this gauging has only SO(2)×SO(2) symmetry. The minimal scalar manifold

for embedding this gauge group is SO(3, 3)/SO(3)× SO(3). The embedding of SO(2, 2) in

SO(3, 3) is given by the following structure constants

f K
IJ = (g1ε̄ij̄l̄η

k̄l̄, g2εr̄s̄t̄η
q̄t̄) (5.1)

with ī = 1, 2, 6, r̄ = 3, 4, 5, ηīj̄ = (−1,−1, 1) and ηr̄s̄ = (−1, 1, 1).

5.1 Domain wall solutions

The vacuum of this gauging will have SO(2) × SO(2) symmetry. Among the nine scalars

from SO(3, 3)/SO(3)× SO(3), there is one SO(2)× SO(2) singlet which will be denoted by

φ. The scalar potential for SO(2)× SO(2) singlet scalars is given by

V =
1

2
g1e
−σ + 4g1he

3σ
2

(
e−φ − eφ

)
+ 16h2e4σ . (5.2)

It can be checked that this potential does not admit any critical points unless h = g1 = 0.

The vacuum is then a domain wall.

To study the domain wall solution, we write down the associated BPS equations by

setting all the fields but the metric and scalars to zero. The metric is given by the domain

wall ansatz

ds2 = e2A(r)dx2
1,5 + dr2 . (5.3)

With the projection γrε = ε, the relevant BPS equations read

φ′ = −1

2
g1e
−σ

2
−φ
(

1 + e2φ
)
, (5.4)

σ′ =
1

5
e−

σ
2
−φ
[
g1

(
e2φ − 1

)
− 32he

5σ
2

+φ
]
, (5.5)

A′ =
1

10
e−

σ
2
−φ
[
g1

(
e2φ − 1

)
+ 8he

5σ
2

+φ
]
. (5.6)

By changing the radial coordinate from r to r̃ with the relation dr̃
dr = e−

σ
2 , it is not difficult

to find the solutions for φ, σ and A. These are given by

φ = ln

[
tan

C1 − g1r̃

2

]
, (5.7)

σ =
2

5
φ− 2

5
ln

[
16h

g1

(
4C2(1 + e2φ)− 1

)]
, (5.8)

A =
1

5
φ− 1

4
ln(1 + e2φ) +

1

20
ln
[
1− 4C2

(
1 + e2φ

)]
(5.9)

– 13 –



J
H
E
P
0
2
(
2
0
1
5
)
0
3
4

where C1 and C2 are integration constants. We have omitted the additive constant to

A since this can be removed by rescaling dx2
1,5 coordinates. According to the general

DW/QFT correspondence, this solution should be dual to a non-conformal N = (1, 0)

gauge theory in six dimensions. As r̃ → C1
g1

, the two scalars are logarithmically divergent.

After changing the coordinate from r̃ back to r, we find the behavior of φ and σ as r̃ ∼ C1
g1

,

which is equivalent to r ∼ C
g1

,

φ ∼ 5

6
ln

[
C − g1r

2

]
, σ ∼ 1

3
ln

[
C − g1r

2

]
(5.10)

where C is a new integration constant coming from solving for r̃ in term of r. After rescaling

dx2
1,5 coordinates, the metric in this limit is given by

ds2 = (C − g1r)
1
3dx2

1,5 + dr2 . (5.11)

5.2 AdS5 critical points

We now look for a vacuum solution of the form AdS5 × S2. In this case, there are two

abelian SO(2) gauge groups. The corresponding gauge fields are denoted by

A3 = a sin θdφ, A6 = b sin θdφ . (5.12)

The metric is still given by (3.4). In order to find the BPS equations, we impose the

projectors γrε = ε and iγ θ̂φ̂σ3ε = ε. The twisted condition is now given by

g1b = 1 . (5.13)

Proceed as in the previous cases but with one more gauge field, we find the following

BPS equations

φ′ =
1

2
e−

σ
2
−φ−2g(r)

[
aeσ

(
1− e2φ

)
−
(

1 + e2φ
)(

beσ + e2g(r)g1

)]
, (5.14)

σ′ =
1

5
e−

σ
2
−φ−2g(r)

[
(a− b)eσ + (a+ b)eσ+2φ

+e2g(r)
[(
e2φ − 1

)
g1 − 32he

5σ
2

+φ
]]
, (5.15)

g(r)′ =
1

10
e−

σ
2
−φ−2g(r)

[
e2g(r)

[(
e2φ − 1

)
g1 + 8he

5σ
2

+φ
]

+4(b− a)eσ − 4(a+ b)eσ+2φ
]
, (5.16)

f ′ =
1

10
e−

σ
2
−φ−2g(r)

[
e2g(r)

[(
e2φ − 1

)
g1 + 8he

5σ
2

+φ
]

+(a− b)eσ + (a+ b)eσ+2φ
]

(5.17)

where φ is the SO(2)× SO(2) singlet scalar from SO(3, 3)/SO(3)× SO(3).
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The equations φ′ = σ′ = g(r)′ = 0 admit a fixed point solution given by

φ =
1

2
ln

[√
4b2 − 3a2 − a

2(a+ b)

]
,

σ =
1

5
ln

 a2g2
1

(√
4b2 − 3a2 − a

)
32(a+ b)h2

(
2b− 3a+

√
4b2 − 3a2

)
 ,

g(r) =
1

10
ln

(a+ b)4
(
a− 2b+

√
4b2 − 3a2

)5 (
3a− 2b−

√
4b2 − 3a2

)3

1024a3g3
1h

2
(
a−
√

4b2 − 3a2
)4

 . (5.18)

It can be checked that the solution exists for g1 < 0 and a < 0 with b > −a or g1 < 0

with a > 0 and b > a. This in turn implies that g1 and b always have opposite sign in

contradiction with the twisted condition g1b = 1. Therefore, the SO(2, 2) gauging does not

admit AdS5 × S2 geometry.

However, there exists an AdS5 ×H2 geometry. In this case, we have the metric (3.22)

with the gauge fields given by

A3 =
a

y
dx, A6 =

b

y
dx . (5.19)

The twisted condition is still given by g1b = 1. The BPS equations are given

by (5.14), (5.15), (5.16) and (5.17) but with (a, b) replaced by (−a,−b). The values of scalar

fields at the AdS5 fixed point solution are real for g1 < 0 and a < 0 with b < a in compatible

with the twisted condition. Furthermore, it is not possible to have an AdS5 fixed point with

a = ±b. This rules out the possibility of AdS5 fixed point with SO(2)diag ⊂ SO(2)× SO(2)

symmetry. For a = 0, only one SO(2) gauge field turned on, it can also be checked that the

AdS5 fixed point does not exist. The b = 0 case is not possible since this is not consistent

with the twisted condition with finite g1.

5.3 RG flows from N = 1 4D SCFT to 6D N = (1, 0) SYM

According to the AdS/CFT correspondence, the existence of AdS5 fixed point implies a

dual N = 1 SCFT in four dimensions. Near this AdS5 critical point, the linearized BPS

equations give

φ ∼ σ ∼ g(r) ∼ e−
4r
L (5.20)

where L is the AdS5 radius. We see that the AdS5 should appear in the UV identified with

r → ∞. This UV SCFT in four dimensions undergoes an RG flow to a six-dimensional

N = (1, 0) SYM corresponding to the domain wall solution given by equations (5.7), (5.8)

and (5.9). In the IR, the warped factors behave as f(r) ∼ g(r) ∼ ln(C − g1r)
1
3 while the

behavior of the scalars σ and φ is given in (5.10). The flow is then driven by vacuum

expectations value of marginal operators dual to φ, σ and g(r). We give an example

of numerical flow solutions to the BPS equations in figure 2. This solution is found for

particular values of a = −1, b = −2, g = −1
2 and h = 1 which give

φ = −0.4171, σ = −1.6095, g(r) = −0.2214 (5.21)

at the AdS5 fixed point.
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(a) A solution for φ.
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(b) A solution for σ.
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(c) A solution for g(r).

Figure 2. An RG flow solution from N = 1 SCFT in four dimensions to six-dimensional N = (1, 0)

SYM.

As usual in flows to non-conformal field theories, the domain wall geometry in the IR

is singular. We have checked that the domain wall solution given in equation (5.10) gives

rise to a good singularity according to the criterion of [26]. Given the behavior of σ and φ

in (5.10), we find that the scalar potential is bounded above V → −∞. Therefore, the IR

domain wall corresponds to a physical gauge theory in six dimensions.

6 SO(2, 1) and SO(2, 2) × SO(2, 1) gauge groups

In this section, we consider the last two possible non-compact gauge groups SO(2, 1) and

SO(2, 2)× SO(2, 1). We will see that both of them admit a vacuum solution in the form of

a domain wall.

6.1 Vacua of SO(2, 1) gauging

In this case, the minimal scalar manifold is given by SO(3, 1)/SO(3). There are three scalars

in this manifold. The structure constants of the SO(2, 1) gauge group can be chosen to be

fIJK = (gε̄ij̄k̄, 0), ī = 1, 2, 4 . (6.1)

This corresponds to choosing the SO(2, 1) generators to be (T41, T42, T12) from the SO(3, 1)

generators (Tij , T4i), i, j = 1, 2, 3.

The scalar potential does not have any critical points. Therefore, we expect that the

vacuum is a domain wall. Using the domain wall ansatz for the metric and the projector

γrε = ε, we find the BPS equations for all of the four scalars

φ′1 = −
e−

σ
2
−φ1

(
e2φ1 − 1

) (
e2φ3 − 1

)
g

2 (1 + e2φ3)
, (6.2)

φ′2 = −
e−

σ
2
−φ2

(
e2φ2 − 1

) (
e2φ3 − 1

)
g

2 (1 + e2φ3)
, (6.3)

φ′3 = −1

2
e−

σ
2
−φ3

(
1 + e2φ3

)
g, (6.4)

σ′ =
1

20
e−

σ
2
−φ1−φ2−φ3

(
1 + e2φ1

)(
1 + e2φ2

)(
e2φ3−1

)
g − 32

5
he2σ, (6.5)

A′ =
1

40
e−

σ
2
−φ1−φ2−φ3

(
1 + e2φ1

)(
1 + e2φ2

)(
e2φ3−1

)
g +

4

5
he2σ . (6.6)

In these equations, φi, i = 1, 2, 3 are scalars in SO(3, 1)/SO(3).
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It is difficult to find an exact solution with all scalars non-vanishing. On the other

hand, a numerical solution could be obtained by the same procedure as in the previous

sections. Since analytic solutions might be more interesting, we consider only a domain

wall solution preserving SO(2) ⊂ SO(2, 1) symmetry. Among these φi’s, φ3 is an SO(2)

singlet. It turns out that on this scalar submanifold the solution is the same as that given

in (5.7), (5.8) and (5.9) with φ replaced by φ3.

6.2 Vacua of SO(2, 2)× SO(2, 1) gauging

The last gauge group to be considered is SO(2, 2)×SO(2, 1) ∼ SO(2, 1)×SO(2, 1)×SO(2, 1).

The minimal scalar manifold in this case is SO(3, 6)/SO(3) × SO(6) with the embedding

of SO(2, 2)× SO(2, 1) in SO(3, 6) given by the following structure constants

f K
IJ = (g1ε̄ij̄k̄η

k̄l̄, g2εr̄s̄t̄η
t̄q̄, g3ε̃ij̃k̃η

k̃l̃), ī = 1, 4, 5, r̄ = 2, 6, 7, ĩ = 3, 8, 9 . (6.7)

The Killing metrics are given by ηīj̄ = (−1, 1, 1), ηr̄s̄ = (−1, 1, 1) and ηĩj̃ = (−1, 1, 1), and

g1, g2 and g3 are gauge couplings of the three SO(2, 1) factors.

Apart from the dilaton, there are no scalars which are singlet under the maximal

compact subgroup SO(2) × SO(2) × SO(2). However, it can be shown that the potential

does not have any critical points for gi, h 6= 0. A simple domain wall solution can be

obtained by solving the BPS equations for σ and the metric. There might be other solutions

with non-vanishing scalars from SO(3, 6)/SO(3) × SO(6), but we have not found any of

them. Therefore, we will restrict ourselves to the domain wall with only σ and the metric

non-vanishing. Using the projector γrε = ε as usual, we find the following BPS equations

σ′ = −32

5
e2σh, (6.8)

A′ = =
4

5
e2σh . (6.9)

These equations can be readily solved for the solution

σ = −1

2
ln

[
64hr

5
+ C

]
, (6.10)

A =
1

16
ln

[
64hr

5
+ C

]
(6.11)

where C is an integration constant. The seven-dimensional metric is given by

ds2 = (64hr + 5C)
1
8dx2

1,5 + dr2 (6.12)

where we have rescaled the dx2
1,5 coordinates by 1

5 .

For h = 0, there is a Minkowski vacuum with V0 = 0. All scalar masses at this critical

point are given in table 6. The SO(2)3 singlet is the dilaton which is massless while the other

six massless scalars are Goldstone bosons of the symmetry breaking SO(2, 1)3 → SO(2)3.

– 17 –



J
H
E
P
0
2
(
2
0
1
5
)
0
3
4

m2 SO(2)× SO(2)× SO(2) representation

0 (1,1,1)

0 (1,1,2) + (1,2,1) + (2,1,1)

g2
1 2× (2,1,1)

g2
2 2× (1,2,1)

g2
3 2× (1,1,2)

Table 6. Scalar masses at the supersymmetric Minkowski vacuum in SO(2, 2)× SO(2, 1) gauging.

7 Conclusions

We have studied N = 2 gauged supergravity in seven dimensions with non-compact gauge

groups. In SO(3, 1) and SL(3,R) gaugings, we have found new supersymmetric AdS7

critical points. These should correspond to new N = (1, 0) SCFTs in six dimensions.

We have also found that there exist AdS5 × S2 solutions to these gaugings. The solutions

preserve eight supercharges and should be dual to some N = 1 four-dimensional SCFT with

SO(2) ∼ U(1) global symmetry identified with the R-symmetry. We have then studied RG

flows from the six-dimensional N = (1, 0) SCFT to the N = 1 SCFT in four dimensions

and argued that the flow is driven by a vacuum expectation value of a dimension-four

operator dual to the supergravity dilaton. A numerical solution for an example of these

flows has also been given. In addition, we have shown that both of the gauge groups admit

a stable non-supersymmetric AdS7 solution which should be interpreted as a unitary CFT.

This is not the case for the compact SO(4) gauging studied in [13] in which the non-

supersymmetric critical point has been shown to be unstable.

In the SO(2, 2) gauging, we have given a domain wall vacuum solution preserving half

of the supersymmetry. According to the DW/QFT correspondence, this is expected to be

dual to a non-conformal SYM in six dimensions. This SO(2, 2) gauging does not admit

an AdS5 × S2 solution but an AdS5 × H2 geometry with eight supercharges. The latter

corresponds to an N = 1 SCFT in four dimensions with SO(2)× SO(2) global symmetry.

It is likely that the a-maximization [27–29] is needed in order to identify the correct U(1)R

symmetry out of the SO(2)×SO(2) symmetry. We have studied an RG flow from this SCFT

to a non-conformal SYM in six dimensions, dual to the seven-dimensional domain wall, and

argued that the flow is driven by vacuum expectation values of marginal operators. We

have also investigated SO(2, 1) and SO(2, 2) × SO(2, 1) gaugings. Both of them admit a

half-supersymmetric domain wall as a vacuum solution. For vanishing topological mass,

the SO(2, 2)× SO(2, 1) gauging admits a seven-dimensional Minkowski vacuum preserving

all of the supersymmetry and SO(2)× SO(2)× SO(2) symmetry.

Due to the existence of new supersymmetric AdS7 critical points, the results of this

paper might be useful in AdS7/CFT6 correspondence within the framework of seven-

dimensional gauged supergravity. The new AdS5 backgrounds could be of interest in the

context of AdS5/CFT4 correspondence. RG flows across dimensions described by gravity

solutions connecting these geometries would provide additional examples of flows in twisted

field theories. It is also interesting, if possible, to identify these AdS5 critical points with

the known four-dimensional SCFTs.
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Until now, only the embedding of the SO(4) gauging of N = 2 supergravity coupled

to three vector multiplets in eleven-dimensional supergravity has been given [14]. The

embedding of non-compact gauge groups in ten or eleven dimensions in the presence of

topological mass term is presently not known. It would be of particular interest to find

such an embedding so that the results reported here would be given an interpretation in

terms of brane configurations in string/M theory.
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[20] C. Núñez, I.Y. Park, M. Schvellinger and T.A. Tran, Supergravity duals of gauge theories

from F(4) gauged supergravity in six-dimensions, JHEP 04 (2001) 025 [hep-th/0103080]

[INSPIRE].

[21] P. Karndumri and E.O. Colgáin, 3D Supergravity from wrapped D3-branes, JHEP 10 (2013)

094 [arXiv:1307.2086] [INSPIRE].

[22] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,

JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

[23] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP

06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[24] C. Hoyos, Higher dimensional conformal field theories in the Coulomb branch, Phys. Lett. B

696 (2011) 145 [arXiv:1010.4438] [INSPIRE].

[25] N.P. Warner, Some New Extrema of the Scalar Potential of Gauged N = 8 Supergravity,

Phys. Lett. B 128 (1983) 169 [INSPIRE].

[26] S.S. Gubser, Curvature singularities: The Good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

[27] K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl.

Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[28] Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733

(2006) 188 [hep-th/0507057] [INSPIRE].

[29] P. Szepietowski, Comments on a-maximization from gauged supergravity, JHEP 12 (2012)

018 [arXiv:1209.3025] [INSPIRE].

– 20 –

http://dx.doi.org/10.1088/1126-6708/2000/06/023
http://arxiv.org/abs/hep-th/0003151
http://inspirehep.net/search?p=find+EPRINT+hep-th/0003151
http://dx.doi.org/10.1007/JHEP06(2014)101
http://arxiv.org/abs/1404.0183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0183
http://dx.doi.org/10.1007/JHEP11(2014)063
http://arxiv.org/abs/1407.2762
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2762
http://dx.doi.org/10.1016/0370-2693(83)91230-3
http://dx.doi.org/10.1016/0370-2693(83)91230-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B125,41
http://dx.doi.org/10.1103/PhysRevD.32.1353
http://inspirehep.net/search?p=find+J+Phys.Rev.,D32,1353
http://dx.doi.org/10.1103/PhysRevD.38.1087
http://inspirehep.net/search?p=find+J+Phys.Rev.,D38,1087
http://dx.doi.org/10.1088/0264-9381/23/9/003
http://arxiv.org/abs/hep-th/0509203
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509203
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007018
http://dx.doi.org/10.1088/1126-6708/2001/04/025
http://arxiv.org/abs/hep-th/0103080
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103080
http://dx.doi.org/10.1007/JHEP10(2013)094
http://dx.doi.org/10.1007/JHEP10(2013)094
http://arxiv.org/abs/1307.2086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2086
http://dx.doi.org/10.1007/JHEP06(2013)005
http://arxiv.org/abs/1302.4451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4451
http://dx.doi.org/10.1007/JHEP06(2012)005
http://dx.doi.org/10.1007/JHEP06(2012)005
http://arxiv.org/abs/1203.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303
http://dx.doi.org/10.1016/j.physletb.2010.12.004
http://dx.doi.org/10.1016/j.physletb.2010.12.004
http://arxiv.org/abs/1010.4438
http://inspirehep.net/search?p=find+J+Phys.Lett.,B696,145
http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B128,169
http://arxiv.org/abs/hep-th/0002160
http://inspirehep.net/search?p=find+J+Adv.Theor.Math.Phys.,4,679
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.010
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.010
http://arxiv.org/abs/hep-th/0507057
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507057
http://dx.doi.org/10.1007/JHEP12(2012)018
http://dx.doi.org/10.1007/JHEP12(2012)018
http://arxiv.org/abs/1209.3025
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3025

	Introduction
	Seven-dimensional N=2 gauged supergravity coupled to n vector multiplets
	SO(3,1) gauge group
	AdS(7) critical points
	AdS(5) critical points
	RG flows from 6D N=(1,0) SCFT to 4D N=1 SCFT
	AdS(5) times H**2 geometry

	SL(3,mathbbR) gauge group
	AdS(7) critical points
	AdS(5) critical points

	SO(2,2) gauge group
	Domain wall solutions
	AdS(5) critical points
	RG flows from N=1 4D SCFT to 6D N=(1,0) SYM

	SO(2,1) and SO(2,2) times SO(2,1) gauge groups
	Vacua of SO(2,1) gauging
	Vacua of SO(2,2) times SO(2,1) gauging

	Conclusions

