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1 Introduction

Seiberg duality [1] is one of the most interesting properties of the supersymmetric gauge

theories since it appears from the strongly coupled dynamics which is not analyzed per-

turbatively. The Seiberg duality gives the two seemingly different descriptions to the IR

gauge dynamics. One of them sometimes is very useful and easy description for us.

Though Seiberg dualities are constructed in diverse space-time dimensions, we are

especially interested in the three- and four-spacetime dimensions because our world is 4d

and 4d physics are sometimes well-understood in terms of 3d physics (for example, see [2]).

In 4d, the Seiberg duality is first constructed in N = 1 supersymmetric gauge theory with

only the fundamental matters and it is generalized to the theory with various matter fields

(see [3] for example and references therein). Especially the 4d Seiberg duality with an

adjoint matter was studied in the presence of a superpotential for the adjoint matter [4, 5],

which is called Kutasov-Schwimmer duality (Another type of the potentail is considered

in [6]). In 3d the Seiberg duality is first studied in [7, 8] as well as the dualities for

Chern-Simons gauge theories [9–12]. The duality in [8] is now called Aharony duality and

the Chern-Simons dualities are called collectively Giveon-Kutasov dualities. The relation

between the Aharony dual and the Giveon-Kutasov dual was revealed in [13]. The ralation

between 3d and 4d dualities was previously not clear.

Recently a general procedure to obtain 3d dualities from the 4d Seiberg dualities has

been constructed [15, 16] (The reduction of the 4d Seiberg duality was first discussed

in [14]). In [15, 16], the authors claimed that it is important to consider the theory

on R3 × S1, to take into account the nonperturbative dynamics from the effect of the

compactification to R3×S1 and to take a low-energy limit with the relations E � Λ, Λ̃, 1/r

kept in order to derive the corresponding 3d duality, where Λ, Λ̃ are the dynamical scales in

the electric and magnetic sides respectively and r is the radius of the circle. As an example

they applied it to the conventional Seiberg duality [1] in which only the fundamental

matters are included. They found that the 3d SU(Nc) SQCD is dual to the U(Ñc) gauge
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theory with some fields contents. They also analyzed the dualities for the Sp(Nc) and the

SO(Nc) gauge groups.

However such a general procedure above is not directly applied to the generic Seiberg

duality in 4d since including the various matter fields, for instance an adjoint, symmetric or

anti-symmetric matters, etc., makes the structure of the Coulomb branch even complicated.

The 3d dualities with an adjoint matter are studied in [17, 18]. In [17], the dual of

the 3d N = 2 supersymmetric U(N) gauge theory with the superpotential W = TrXk+1

is constructed and it is called Kim-Park duality. This is guesses by generalization of the

Aharony duality [8]. The Aharony duality can be seen as the 3d counterpart to the 4d

conventional Seiberg duality but for the U(Nc) gauge group. The 3d SU(N) duality with an

adjoint matter is studied in [18], in which the duality is obtained by using the un-gauging

technique [15]. Although the dualities with an adjoint matter are known for 3d and 4d,

the relation between them is obscure.

In this paper the relation between the 3d and 4d dualities with an adjoint matter is

investigated especially with focus on the U(Nc) and the SU(Nc) gauge groups. We study the

Seiberg duality with an adjoint matter on R3×S1 carefully, study the non-pertubative effect

of the compacttification and derive the corresponding 3d duality by using the 4d Kutasov-

Schwimmer duality. In the U(Nc) case, we find the dual description of the Kim-Park

duality. In the SU(Nc) case we find the duality by using the mirror description [2, 19, 20].

The obtained dualities are precisely the same as one obtained by [17, 18].

The organization of this paper is as follows. In section 2 we review the basic ingredients

in 3d N = 2 gauge theories and how to generically derive the 3d dualities from the 4d

dualities. In section 3 and section 4 we consider the specific cases of the derivations of the

3d dualities from 4d with an adjoint matter for the U(N) and the SU(N) gauge groups. In

section 5 we summarize what we found and discuss the future directions and open problems.

2 Review of the 3d theories and reduction of the 4d theories

In this section we will give the basic properties of the 3d N = 2 supersymmetric gauge

theories and review how to derive the 3d dualities from 4d dualities.

The 3d N = 2 gauge theories are obtained by the dimensional reduction of the 4d

N = 1 supersymmetric gauge theories which have four supercharges. The moduli spaces

of the 3d N = 2 gauge theories are composed of the Higgs branch and the Coulomb

branch. The Higgs branch is described by the gauge singlet composite operators, mesons

and baryons which are constrained both classically and in a quantum way. If we include the

adjoint matter, the Coulomb branch which is parametrized by this adjoint squark should

be taken into account.

The additional Coulomb moduli, which are absent in the 4d N = 1 SQCD, appear due

to the adjoint scalars in the 3d vector superfield. The vector superfield in 3d contains the

adjoint scalar due to the gauge fields in 4d along the compactified direction A3 = σ. In

addition the 3d photon is dual to the real compact scalar

∂µa ∼ εµνρF νρ. (2.1)
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Thus we describe the additional Coulomb branch as the complex scalar field:

V = exp

(
2πσ

e23
+ ia

)
, (2.2)

where e3 is the 3d U(1) gauge coupling.

For the U(Nc) gauge group, it is useful to consider the specific Weyl chamber

parametrized by σ = diag(σ1, · · · , σNc), σ1 ≥ · · · ≥ σNc because the gauge invariant

description of the Coulomb branch is difficult. In this region the gauge group is generically

broken to the maximum torus U(1)Nc and its Coulomb branches are classically described

by the following set of the coordinates:

Vi ∼ exp

(
σi
g23

+ iai

)
, i = 1, · · · , Nc. (2.3)

For the SU(Nc) gauge group we similarly have

Vj ∼ exp

(
σj − σj+1

g′23
+ i(aj − aj+1)

)
, j = 1, · · · , Nc − 1, (2.4)

where g3, g
′
3 are the 3d gauge couplings for U(Nc) and SU(Nc) respectively. Due to the

quantum effect, part of these coordinates is lifted. The unlifted quantum Coulomb branch

is described by

U(Nc) :

V+ ∼ exp
(
σ1
g23

+ ia1

)
V− ∼ exp

(
σNc

g23
+ iaNc

) (2.5)

SU(Nc) : V =

Nc−1∏
j=1

Vj ∼ exp

(
σ1 − σNc

g23
+ i(a1 − aNC

)

)
. (2.6)

Note that the operator
∏
Vj is Weyl-invariant.

In the presence of the adjoint matter, we have the following independent monopole

operators [17]:

U(Nc) : Vj,± = V± (X11)
j (2.7)

SU(Nc) : Vi,j = V (X11)
i (XNcNc)

j (2.8)

where X11 and XNcNc are the diagonal components of the adoint matter field X. These

monopole operators are truncated at i, j = k−1 if the superpotential for the adjoint matter

X is included:

W = TrXk+1. (2.9)

In contrast to the 4d N = 1 SQCD, we can introduce real masses to the chiral super-

fields in addition to the complex masses. This is turned on by gauging the flavor symmetries

and adding the vevs for the adjoint scalars of the vector superfields associated with the

flavor symmetries. The mass terms for the quarks become

ψ̄ja((mreal)
i
jδ
a
b − δij〈σab 〉)ψbi , (2.10)
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where i, j are the flavor indices and a, b are the gauge indices. In the U(Nc) SQCD, since

the U(1)B baryon symmetry is gauged, then we can introduce only the real masses which

is traceless.

In order to connect the 4d dualities with the 3d dualities we need to consider the

physics on R3 × S1. Especially the topological solitons on R3 × S1 do the crucial jobs for

the low-energy dynamics connecting the 3d and the 4d theories. The instantons on R3×S1

are KK-monopoles (or these are called twisted instantons) whose fermionic zero-modes are

counted by the so-called Callias index theorem [21–23, 27] and the Atiyah-Singer index

theorem [24, 25] (or we can use the R3 × S1 index theorem [26]):

N = Ninstanton −Nmonopole (2.11)

Ninstanton = 2T (r) (2.12)

Nmonopole =
1

2

∑
w∈weights

sign (w · σ)w · g (2.13)

where Tr(T aT b) = T (r)δab, g defines the monopole charge and it is a linear combination of

the dual simple roots. The summation about w is taken over all the weights in the repre-

sentations of the field contents. These theorems constrain which types of superpotential are

generated dynamically. More concretely, if and only if the KK-monopole vertex contains

the only two fermionic zero-modes, the superpotential is generated. The superpotential

which appears around the KK-monopole typically contains the Coulomb branch coordi-

nates and some matter fields. In the next section we actually derive the non-perturbative

superpotential generated by KK-monopoles in the presence of the adjoint matter.

To obtain the 3d duality we need to take the unusual low-energy limit; E �
Λ, Λ̃, 1/r [15], where r is the size of the circle and Λ, Λ̃ are the dynamical scales in the

electric and magnetic theories respectively. In such a process we need to include the KK-

monopole induced superpotentials. These are crucial steps for obtaining the correct 3d

dualities. In the next section we perform explicitly above procedure.

3 Duality for U(Nc) SQCD with one adjoint matter

In this section we consider the duality between the U(Nc) SQCD with Nf fundmental

flavors and an adjoint matter. We first review the 4d and 3d dualities shrotly and study the

non-perturbative superpotential arising from the circle compactification of the 4d theories.

After that we will derive the 3d duality from the 4d duality with the U(Nc) gauge group.

Kutasov-Schwimmer duality. The 4d duality with an adjoint matter is known as the

Kutasov-Shiwimmer duality [4, 5]. The electric side is a four-dimensional N = 1 supersym-

metric SU(Nc) gauge theory with Nf fundamental flavors Q, Q̃ and one adjoint matter X

with the superpotential W = TrXk+1. The magnetic theory is a four-dimensional N = 1

supersymmetric SU(kNf −Nc) gauge theory with Nf flavors q, q̃, one adjoint matter Y and

singlets Mj (j = 0, · · · , k − 1) with the superpotential W = TrY k+1 +
∑k−1

j=0 Mj q̃Y
k−1−jq,

where Mj are the meson fields identified with the composite operators on the electric side

as Mj = Q̃XjQ.
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SU(Nf)L SU(Nf)R U(1)A U(1)J U(1)R
Q Nf 1 1 0 r

Q̃ 1 N̄f 1 0 r

X, Y 1 1 0 0 2
k+1

Mj Nf N̄f 2 0 2r + 2j
k+1

vj,± 1 1 −Nf ±1 −Nfr +Nf − 2
k+1(Nc − 1) + 2j

k+1

q N̄f 1 −1 0 −r + 2
k+1

q̃ 1 Nf −1 0 −r + 2
k+1

ṽj,± 1 1 Nf ±1 Nfr −Nf + 2
k+1(Nc + 1) + 2j

k+1

η := Λb 1 1 2Nf 0 2Nfr − 2Nf + 4
k+1Nc

η̃ := Λ̃b̃ 1 1 −2Nf 0 −2Nfr + 2Nf − 4
k+1Nc

Table 1. Quantum numbers of the Kim-Park duality.

We can easily obtain the U(Nc) duality by gauging the U(1)B baryon flavor symmetry.

Since the dynamics of the U(1) ⊂ U(Nc) are IR free in 4d, it does not affect the Seiberg

duality.

Kim-Park duality. The three-dimensional counterpart of the Kutasov-Schwimmer du-

ality is known as the Kim-Park duality [17]. The “electric” theory is a three-dimensional

N = 2 supersymmetric U(Nc) gauge theory with Nf fundamental vector-like matters Q, Q̃

and an adjoint matter X and with the superpotential W = TrXk+1. This theory is simply

given by the dimensional reduction of the electric side of the Kutasov-Schwimmer duality.

The “magnetic” theory is a three-dimensional N = 2 supersymmetric U(kNf − Nc)

gauge theory with Nf fundamental vector-like matters q, q̃, an adjoint matter Y , the

singlet Mj (j = 0, · · · , k − 1) and v0,±, · · · , vk−1,± and with the superpotential W =

TrY k+1+
∑k−1

j=0 Mj q̃Y
k−1−jq+

∑k−1
j=0(vj,+ṽk−1−j,−+vj,−ṽk−1−j,+), where v0,± and ṽ0,± are

the minimal bare monopole operators of electric side and magnetic side respectively. vj 6=0,±
and ṽj 6=0,± are the monopole operators dressed by the adjoint matter. The Coulomb branch

of the electric side is described by the elementary chiral superfields in the magnetic side.

The global charges are summarized as follows. This is applicable in the 4d theory

except that the U(1)A and the U(1)R symmetries are anomalous. We kept the assignment

of the R-charges generic. Note that Mj are identified with the operators in the electric side

as Mj ∼ Q̃XjQ and we listed the four-dimensional instanton factors for a later purpose.

These instantons only appear in the 4d theories. In the table we denoted b, b̃ as the one-

loop beta function coefficients on electric and magnetic sides respectively and Λ and Λ̃ are

the dynamical scales on both sides.

The superpotential induced by the Kaluza-Klein monopole. When we put the 4d

theory on the S1 × R3, we should include the additional superpotential in the low-energy

dynamics. The symmetry argument and counting the fermionic zero-modes imply that the

following superpotentials are induced by the “twisted instanton” which is usually called a
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Kaluza-Klein (KK) monopole.

Welectric =
∑

i+j=k−1
i,j=0,··· ,k−1

η vi,+vj,− (3.1)

Wmagnetic =
∑

i+j=k−1
i,j=0,··· ,k−1

η̃ ṽi,+ṽj,− (3.2)

The Kaluza-Klein monopoles has the too many fermionic zero modes to appear in the

superpotential but they does not have any fundamental quark zero-mode. This is a crucial

point for deriving the potential. This statement can be easily checked by the Callias index

theorem and Atiyah-Singer index theorem (or R3 × S1 index theorem) [21–27].

The index theorems state that the fundamental quark zero-mode is absent and only the

adjoint fermionic zero-modes contribute. Each adjoint field has two fermonic zero-modes

around the KK-monopole. Since there are two types of adjoint fermion in this theory, the

gaugino and the adjoint fermion coming from the adjoint chiral superfield X, we have the

four fermionic zero-modes. These are too many fermionic zero-modes to appear in the

superpotential.

However we have the superpotential for the adjoint matter X as W = TrXk+1, which

generates the potential

V 3 Xk−1
11 ψX,1aψX,a1, (3.3)

which is a scalar-fermion interaction. This vertex is used to contract the fermionic zero

modes arising from the adjoint field X. In the end the KK-monopole vertex has only

two fermonic zero-modes from the gauginos, which can contribute to the superpotential

like (3.1).

KK-monopole vertex : e−S0eσ+iaλ2ψ2
X → e−S0eσ+iaλ2 (X11)

k−1 (3.4)

The weak perturbation. In deriving the 3d duality, it is helpful to consider the weak

perturbation of both the theories by the potential for the adjoint matter X,Y , which

breaks the U(1)R symmetry explicitly generating a new U(1)R symmetry at low-energy.

We consider the following deformation of the superpotential [4]:

W =
k∑
j=0

sj
k + 1− j

TrXk+1−j (3.5)

The minima of the superpotential are following.

W ′(x) =
k∑
j=0

sjx
k−j = s0

k∏
j=1

(x− aj) (3.6)

– 6 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
4

When the {aj} are distinct, all the components of the adjoint field become massive (This is

easily checked by shifting the field as X → 〈X〉+δX) and the gauge symmetry is broken as

U(Nc)→ U(i1)× · · · ×U(ik),
k∑

a=1

ia = Nc. (3.7)

The low-energy effective theory is a sum of the N = 2 U(ia) theory with Nf fun-

damental quarks with no adjoint matter and no superpotential. Thus we can use the

same argument as the derivation of the duality of 3d SQCD with no adjoint matter. The

monopole operators in the electric side at high-energy vj,± (j = 0, · · · , k− 1) are correctly

describing the Coulomb branches of the U(i1) × · · · × U(ik) gauge groups at low-energy.

Then we can identify them as follows:

vj,± ∼ linear combination of vlow-energy
U(ij)

.

where vlow-energy
U(ij)

are the Coulomb branch coordinates of the U(ij) gauge groups. This weak

deformation helps us to study the duality especially on the magnetic side. This is also the

case for the SU(Nc) duality studied in section 4.

The Kim-Park dual from 4d. We will here derive the Kim-Park duality using the 4d

Kutasov-Schwimmer duality with U(Nc) gauge group. We straightforwardly construct the

duality on R3 × S1 by adding the superpotential generated by the KK-monopoles to the

4d duality. Next we do the mass deformation to the theory in order to obtain the duality

without η terms. We will show how to do it in both the electric and magnetic theories

respectively.

The electric theory. First we put the electric theory on a circle. The theory is the

U(Nc) gauge theory with the Nf fundamental matters Q, Q̃, one adjoint field X with the

superpotential W = TrXk+1 +
∑

i+j=k−1 η vi,+vj,−, which contains the non-perturbative

sperpotential from the effect of the S1-compactification (KK-monopoles). We would like

to obtain the theory without η term. Then we will start with Nf + 2 flavors and turn on

the real masses for the SU(Nf + 2)× SU(Nf + 2) flavor symmetries.

m =


0

. . .

0

m

−m

 , m̃ =


0

. . .

0

−m
m

 (3.8)

Notice that this is traceless as it should be. Integrating out the massive flavors, we obtain

at the low-energy the three-dimensional N = 2 U(Nc) gauge theory with Nf flavors and

one adjoint matter with no introduction of the Chern-Simons terms. The global charges

are precisely those of the Kim-Park duality at table 1. The monopole operators at high-

and low-energy are related via the complex mass as

V high
± = m

1/2
complexV

low
± . (3.9)
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Since we are deforming the theory without the complex masses, the superpotential of the

monopole operators (3.1) vanishes at the low-energy dynamics [2].

If we turn on the potential (3.5), then we obtain the sum of the U(ij) gauge theory

with Nf + 2 flavors and no adjoint matter at low-energy. In the presence of the real

mass deformations (3.8) we can take the low-energy limit at Q
U(ij)
Nf+1 = Q

U(ij)
Nf+2 = Q̃

U(ij)
Nf+1 =

Q̃
U(ij)
Nf+2 = 0 and obtain the sum of the U(ij) gauge theory with Nf flavors and no adjoint

matter, where QU(ij)s mean the U(ij) fundamental quarks. In the limit of sj = 0 (j 6= 0),

we expect that the U(Nc) gauge theory with Nf flavors and one adjoint field with the

superpotential W = TrXk+1 recovers.

The magnetic theory with η term. Next we will put the dual theory on a circle and

do the same deformation as the electric side. On the dual side we have the U(k(Nf + 2)−
Nc) gauge theory with the Nf + 2 fundamental matters q, q̃, one adjoint field Y and the

singlets Mj (j = 0, · · · , k−1) with the superpotential W = TrY k+1+
∑k−1

j=0 Mj q̃Y
k−1−jq+∑k−1

j=0 η̃ ṽj,+ṽk−1−j,−.

Since the real mass deformation in the electric side (3.8) is the SU(Nf +2)×SU(Nf +2)

background gauging, it is easily mapped to the ones in the dual side. The real masses in

the magnetic theory are

mdual =


0

. . .

0

−m
m

 , m̃dual =


0

. . .

0

m

−m

 . (3.10)

We need to find the correct vacuum which corresponds to the vacuum of the electric side

and take a low-energy limit. It helps us to use the weak deformation (3.5). With the

introduction of the weak deformation, the dual gauge group is broken in two steps. At first

the gauge group is broken by the deformation of the theory by W =
∑k

j=0
sj

k+1−jTrY k+1−j ;

U(k(Nf + 2)−Nc)→ U(r1)× · · · ×U(rk),

k∑
i=1

ri = kNf −Nc + 2k (3.11)

In this breaking all the components of the adjoint matter become massive and are integrated

out. At the second step, the gauge group is further broken by the vevs of the Ã3 = σ̃ adjoint

scalar field in the vector superfield. It should be noted that since the theory is precisely

the magnetic side of the Aharony duality, we should take the low-energy limit at

σ̃U(ri) part =


0

. . .

0

−m
m

 . (3.12)
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Otherwise we do not obtain the correct dual of the electric theory. This choice of the

vacuum expectation values leads to

U(k(Nf + 2)−Nc)→ U(r1)× · · · ×U(rk),
k∑

i=1

ri = kNf −Nc + 2k

→ (U(r1 − 2)×U(1)2)× · · · × (U(rk − 2)×U(1)2). (3.13)

At the low-energy the adjoint chiral superfield Y is massive and the low-energy effective

theory is the sum of the U(ri − 2) × U(1)2 theory with the fundamental matters and the

meson singlets. The fundamental matters and the mesonic fields decompose as follows.

• q̂U(ri−2)
f , ˆ̃q

U(ri−2)
f̃

(f, f̃ = 1, · · · , Nf ; i = 1, · · · , k):

U(ri − 2) fundamental quarks which are Nf flavors. f, f̃ are the flavor indices.

• qai , q̃ai (a = 1, 2 i = 1, · · · , k):

1±δa1,±δa2 representations under the gauge group U(ri−2)×U(1)2. The lower indices

indicate the corresponding U(1) charges.

• M̂j (j = 0, · · · , k − 1):

Nf × Nf mesons which come from the left-upper components of the meson chiral

superfields Mj .

• Maj (a = 1, 2; j = 0, · · · , k − 1):

Singlets coming from the Nf -th and (Nf + 1)-th components of the mesons Mj .

M1j ≡MNf+1,Nf+1, M2j ≡MNf+2,Nf+2.

We define the composite operators;

N̂ j
i := ˆ̃qU(ri−2)Y j q̂U(ri−2) (3.14)

N j
ai := q̃ai Y

jqai (3.15)

Strictly speaking, since we are in the broken phase (3.11) where we have no adjoint matter

Y , we should write Y field as the vacuum expectation value 〈Y 〉. However since we finally

take the limit where the weak deformations are switched off and we expect the adjoint

fields to recover as the massless degree of freedom, we write the adjoint matter Y naively

as the dynamical field. In what follows, since we deal with Y as the vevs, the upper indixes

of N̂ j
i , N

j
ai does not distinguish the independent chiral operators. The upper indises are

only important when turning off the weak deformations.

In addition, we define the monopole operators which describe the Coulomb branches

of (U(r1 − 2)×U(1)2)× · · · × (U(rk − 2)×U(1)2):

ˆ̃Vj,± : Coulomb branch of the U(rj+1 − 2). (j = 0, · · · , k− 1) (3.16)

ṽi,aU(1) : Coulomb branch of the U(1)2. (i = 1, · · · , k; a = 1, 2) (3.17)

Using these notations we have the superpotential at low-energy,
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W =

k∑
i=1

k−1∑
j=0

M̂jN̂
k−1−j
i +

k∑
i=1

k−1∑
j=0

M1jN
k−1−j
1,i +

k∑
i=1

k−1∑
j=0

M2jN
k−1−j
2,i +

k−1∑
j=0

η̃ ṽj,+ṽk−1−j,−

+
∑
a=1,2
i=1,··· ,k

N0
a,iṽ

i,a
U(1),+ṽ

i,a
U(1),− +

k∑
j=1

ˆ̃Vj,+ṽ
j,1
U(1),− +

k∑
j=1

ˆ̃Vj,−ṽ
j,2
U(1),+ (3.18)

where the fifth term is due to the U(1)2 dynamics. These U(1) parts are the sum of the

N = 2 supersymmetric QED with one flavor. Then we can use the dual description by the

N = 2 XYZ model with the above superpotential [2]. The sixth and seventh terms come

from the effect of the Affleck-Harvey-Witten type superpotential [28] through the breaking

of U(ri) → U(r1 − 2) × U(1) × U(1). The Coulomb branch coordinates ˆ̃Vj,± should be

identified with the monopole operators of the U(kNf −Nc) in the limit sj (j 6= 0)→ 0 and

the high-energy monopole operators ṽj,± should be identified with the linear combinations

of the monopole operators ṽj,1U(1),+, ṽ
j,2
U(1),− of the U(1)2 part at low-energy.

The equations of motion drop the second, third, fourth, and fifth terms off. Since the

U(ri−2) gauge groups are combined into the U(kNf−Nc) groups with an adjoint matter Y

in the limit of s1, · · · , sk = 0, we have the Kim-Park magnetic dual. The magnetic theory

in the end becomes the U(kNf −Nc) gauge theory with Nf flavors, one adjoint matter and

singlets Mj , vi,± with the superpotential

W = TrY k+1 +
k−1∑
j=0

Mj q̃Y
k−1−jq +

k−1∑
j=0

(vj,+ṽk−1−j,− + vj,−ṽk−1−j,+), (3.19)

where the U(1)2 Coulomb branch coordinates ṽj,1U(1),−, ṽ
j,2
U(1),+ are identified with the chiral

superfields vj,± in the Kim-Park magnetic theory and the Coulomb branch coordinates of

the U(kNf−Nc) are denoted as ṽj,±. Notice that the U(1)2 part was dualized to the theory

which only contains the chiral superfields with no gauge symmetry.

In the limit of sj (j 6= 0)→ 0, the part with U(1)2×· · ·×U(1)2 gauge symetry becomes

the U(k)×U(k) gauge theory. Each U(k) theory contains one fundamental matter and an

adjoint field. The vacuum of the theory with Nf = 1 usually has a runaway behavior [2].

In this case, however, the various terms in the superpotential may stabilize the vacuum.

In deriving the above duality we assumed that the enhancement of the gauge symmetry

to U(k) does not change the duality and the U(1) physics correctly produces the duality.

For studying the derivation of the duality without the weak deformation, it is necessary

to investigate the relation between the high- and low-energy monopole operators of the

U(k(Nf + 2)−Nc) and U(kNf −Nc)×U(k)2 gauge theories. However this relation is highly

complicated and is now unknown. This direction is left as the future work.

4 Duality for SU(Nc) SQCD with one adjoint matter

In this section we will derive the three-dimensional duality for the SU(Nc) gauge group

with one adjoint matter from reduction of the 4d duality. We will eventually obtain the
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SU(Nc) SU(Nf)L SU(Nf)R U(1)B U(1)A U(1)R
Q Nc Nf 1 1 1 0

Q̃ N̄c 1 N̄f −1 1 0

X adj. 1 1 0 0 2
k+1

Mj 1 Nf N̄f 0 2 2j
k+1

Vij 1 1 1 0 −2Nf 2Nf − 4
k+1(Nc − 1) + 2(i+j)

k+1

Λb 1 1 1 0 2Nf −2Nf + 4Nc
k+1

Table 2. Quntum numbers of the electric side.

SU(kNf −Nc) SU(Nf)L SU(Nf)R U(1)B U(1)A U(1)R
q N̄f 1 Nc

kNf−Nc
−1 2

k+1

q̃ 1 Nf − Nc

kNf−Nc
−1 2

k+1

Y adj. 1 1 0 0 2
k+1

Mj 1 Nf N̄f 0 2 2j
k+1

Ṽij 1 1 1 0 2Nf −2Nf + 4
k+1 (Nc + 1) + 2(i+j)

k+1

Λ̃b̃ 1 1 1 0 −2Nf 2Nf − 4Nc

k+1

Table 3. Quantum numbers of the magnetic side.

3d duality studied in [18] whose authors used the un-gauging techique in deriving it. The

4d Kutasov-Schwimmer duality which we employ is the same as the previous section but

we do not gauge the U(1)B flavor symmetry.

Park-Park dual from 4d. Using the 4d Kutasov-Schwimmer duality and compactifying

the both theories on S1, we first construct the duality on R3×S1. In such a process we need

to include the non-perturbative superpotential which arises from the twisted instantons.

We also need to deform both theories by the real masses to obtain the theories with no η

term.

We show the quantum numbers of the field contents in 4d theories and R3×S1 theories

in table 2,3. Since in the three-dimensional limit we have no axial anomaly, we show the

additional U(1)A symmetry in the following table. The field contents are the same as the

four dimensional ones, but in three-dimensions there are Coulomb branches which should

be naturally identified with the chiral superfields. We will use the symbol V, Ṽ for the

Coulomb branch coordinates.

The monopole operators. We consider the SU(Nc) gauge theories and the monopole

background. Let us consider the part of the Coulomb branch which is labeled by φ1 >

φ2 > · · · > φK > 0 > φK+1 > · · · > φNc , where φi are the adjoint scalar fields of the

vector superfields. In this region the Callias index theorem tells us that the numbers of

the fermonic zero-modes around the monopole-instanton are

quark zero-modes: N� =

{
1 (φK > 0 > φK+1)

0 (φi > φi+1 > 0 or 0 > φi > φi+1)
(4.1)

adj. fermion zero-modes: Nadj. = 2. (4.2)
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U(1)A U(1)R
Y1 0 −2− 2( 2

k+1 − 1) = − 4
k+1

...
...

...

YK−1 0 − 4
k+1

YK −2Nf −2− 2( 2
k+1 − 1)− 2Nf (−1) = 2Nf − 4

k+1
...

...
...

YNc−1 0 − 4
k+1

V ≡
∏Nc−1
i=1 Yi −2Nf 2Nf − 4

k+1(Nc − 1)

Table 4. Quntum numbers of the monopole operators.

Then the global charges of the monopole operators are as follows, where we use the following

notations for the bare and dressed monopole operators:

Yi ∼ exp

(
Φi − Φi+1

g2

)
(4.3)

Vij ∼ (X11)
i(XNcNc)

jV. (4.4)

The chiral superfield Φi consists of the adjoint scalar φi and the dual photon ai, defined as

Φi = φi
g23

+ iai. The tilde in the above monopole operators means that the r.h.s. of (4.3) is

only legitimate at the semi-classical domain with large φi. At the small φi, the 3d gauge

coupling has a non-trivial loop correction and the metric on the Coulomb branch becomes

intricate, so the definition of the monopole operator is involved. The powers of X11 and

XNcNc in (4.4) are truncated at O(Xk−1) due to the superpotential W = TrXk+1. The

relation of the monopole operators between the SU(Nc) and U(Nc) gauge theories with an

adjoint matter is as follows:

V = V+V− (4.5)

Vij = V+iV−j (4.6)

KK-monopole induced superpotential. By the symmetry argument we assume that

the following superpotentials are generated by the KK-monopole (twisted instanton) con-

figurations.

Wele =
k−1∑
j=0

ΛbVjk−1 =
k−1∑
j=0

ηVjk−1−j (4.7)

Wmag =

k−1∑
j=0

Λ̃b̃Ṽjk−1−j =

k−1∑
j=0

η̃Ṽjk−1−j (4.8)

The index theorem says that the fermionic zero-modes around the KK monopole solution

are too many for the KK monopole to contribute to the superpotential. However the

adjoint chiral superfield interacts via the superpotential as

W = TrXk+1. (4.9)
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This superpotential produces the following interaction.

(X11)
j ψX,1Nc (XNcNc)

k−1−j ψX,Nc1 (4.10)

Then the KK monopole vertex

e−S0eφ+iσλ2ψ2
X (4.11)

is modified into

e−S0eφ+iσλ2 (X11)
j (XNcNc)

k−1−j (4.12)

which is precisely coming from the above non-perturbative superpotential (4.7).

3d Kutasov-Schwimmer duality with no η terms. As in the U(Nc) duality, we first

construct the duality on R3 × S1. This can be easily done by including the KK-monopole

induced superpotential. Next we deform the theory by the real masses in order to obtain

the duality without η terms.

The electric side is the three-dimensional N = 2 supersymmetric SU(Nc) gauge the-

ory with Nf fundamental flavors Q, Q̃ and one adjoint field X with the superpotential

W = TrXk+1 +
∑

i+j=k−1 ηVij . The magnetic side is the three-dimensional N = 2 super-

symmetric SU(kNf − Nc) gauge theory with Nf fundamental flavors q, q̃ and one adjoint

field Y with the superpotential W = TrY k+1 +
∑k−1

j=0 Mj q̃Y
k−1−jq +

∑
i+j=k−1 η̃Ṽij .

In order to obtain the duality without the η terms we start with the Nf + 1 flavors as

the U(Nc) case. We turn on the real mass m for the last flavor in the electric theory side,

which is a background gauging of the SU(Nf + 1)× SU(Nf + 1)× U(1)B flavor symmetry.

On the dual side the corresponding real mass is given as follows.

mdual
r =


m1

. . .

m1

m2

 , m̃dual
r =


−m1

. . .

−m1

−m2

 (4.13)

m1 =
k

kNf + k −Nc
m, m2 =

Nc − kNf

kNf + k −Nc
m. (4.14)

The electric theory flows to the SU(Nc) gauge theory with Nf flavors with no η terms

since the high-energy monopole operators vanish due to the absence of the complex masses

as discussed in [15]. The quantum numbers of the electric theory are summarized in table 4,

where we kept the R-charges of the quarks as generic values.

The flow in the magnetic side is complicated and it is helpful to consider the weak

deformation of the theory. We consider the weak perturbation of the theories by

Wele =
k∑
i=0

giTrXi+1 (4.15)

Wmag =

k∑
i=0

giTrY i+1 (4.16)
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SU(Nc) SU(Nf)L SU(Nf)R U(1)B U(1)A U(1)R
Q Nc Nf 1 1 1 r

Q̃ N̄c 1 N̄f −1 1 r

X adj. 1 1 0 0 2
k+1

Mj 1 Nf N̄f 0 2 2r + 2j
k+1

Vij 1 1 1 0 −2Nf 2Nf (1− r)− 4
k+1(Nc − 1) + 2(i+j)

k+1

Table 5. Quantum numbers of the 3d SU(Nc) theory on the electric side.

where g0 is the Lagrange multiplier imposing the constraint such that TrX = 0. This

weakly perturbed theory has generically the k minima for the vevs of X. Then the gauge

symmetry is generically broken by the vevs of the adjoint field X like SU(Nc)→ SU(i1)×
SU(i2)× · · · × SU(ik)×U(1)k−1, where

∑k
j=1 ij = Nc.

In the electric side, we start with Nf + 1 flavors, take φi ≡ 2πσi = 0 and flow to the

low-energy limit with QNf+1 and Q̃Nf+1 integrated out. By tuning gi → 0 (i 6= k) we finally

obtain the SU(Nc) gauge theory with Nf flavors and an adjoint field at the low-energy. This

is a three-dimensional version of the electric theory in the Kutasov-Schwimmer duality.

In the magnetic side, W =
∑k

i=0 giTrY i+1 breaks the gauge group as SU(kNf −Nc)→
SU(n1)× · · · × SU(nk)×U(1)k−1,

∑k
i=1 ni = kNf −Nc. When we start with Nf + 1 flavors

and turn on the real masses corresponding to the electric side, we have the additional

breaking of the gauge symmetry by the vevs of Ã3 ≡ σ̃ as follows.

SU(k(Nf + 1)−Nc)→ SU(N1)× · · · × SU(Nk)×U(1)k−1

→ SU(n1)× · · · × SU(nk)× SU(p1)× · · · × SU(pk)

×U(1)k ×U(1)k−1 (4.17)

where

Ni := ni + pi (4.18)

k∑
i=i

Ni = kNf −Nc + k,

k∑
i=1

ni = kNf −Nc,

k∑
i=1

pi = k (4.19)

σ̃N1×N1 =

 a11
. . .

a1N1

 , · · · , σ̃Nk×Nk
=

 ak1
. . .

akNk

 (4.20)

where aij take the value of −m1 or −m2 and satisfy the condition that
∑

i,j aij = 0 and

the number of −m1 is kNf −Nc due to the traceless condition of the adjoint field σ̃.

We need to choose a vacuum which corresponds to the vacuum of the electric side,

which is achieved by

σ̃N1×N1 =


−m1

. . .

−m1

−m2

 , · · · , σ̃Nk×Nk
=


−m1

. . .

−m1

−m2

 . (4.21)
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It should be noted that the point σ̃ = 0 is not a vacuum because in this point all the dual

quarks are massive and there is no stable SUSY vacua. Then the gauge group is broken as

SU(k(Nf + 1)−Nc)→ SU(N1 − 1)× · · · × SU(Nk − 1)×U(1)k−1 ×U(1)×U(1)k−1.

(4.22)

Here we will investigate the U(1)2k−1 part in detail. The first U(1)k−1 corresponds to

the generators coming from the left-upper (kNf −Nc)× (kNf −Nc) part. The generator

of the second U(1) is as follows.

T =


1

1

1

−3
2

−3
2

 , TrT = 0 (4.23)

where we show the case with kNf −Nc = 3, k = 2 for simplicity. The last U(1)k−1 is the

right-lower k × k part:

T ′ =


0

0

0

1

−1

 , (4.24)

which is also the case with kNf −Nc = 3, k = 2.

In order to obtain the original SU(Nc) duality with an adjoint matter and with no

η term, we need to tune the potential as gi(i = 0, · · · , k − 1) → 0 in the electric and

magnetic sides. Thus the gauge group SU(N1−1)×· · ·×SU(Nk−1)×U(1)k−1 is expected

to recover the dual SU(kNf − Nc) gauge group with the adjoint matter in the limit of

gi(i = 0, · · · , k−1)→ 0. Before doing so, we will change the dynamics of the second U(1)k−1

to the dual description with no gauge group. Here we do not expect that the recovery of

the SU(k) gauge group from the right-lower U(1)k−1 in the limit of gi(i = 0, · · · , k−1)→ 0

modifies the low-energy duality. This is only an assumption and is not justified because

the non-diagonal components of the k× k adjoint fields become massless and these should

be taken into account to the low-energy dynamics in the limit with gi → 0. Although this

is a working assumotion, it will be found this nicely works. The theory can be seen as

SU(kNf −Nc)×U(1)×U(1)k−1 ∼= U(kNf −Nc)×U(1)k−1 gauge theory at this point.

With the limit of gi (i = k) → 0, we obtain the U(kNf − Nc) × U(1)k−1 theory whose

matter contents are as follows.

• U(kNf −Nc) fundamental matters: Nf flavors q, q̃

• U(kNf −Nc) adjoint matter: one adjoint field Y which comes from the (kNf −Nc)×
(kNf − Nc) left-upper components of the original adjoint field Y . With the weak

deformation Y should be replaced with the vacuum expectation value.
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• The singlets Mj , M̃j (j = 0, · · · , k − 1): Mj fields have the Nf ×Nf flavor indices.

On the other hand M̃j are the flavor singlets because they are originally from the

last components of the meson singlets.

• The singlets Yi (i = 1, · · · , k), which comes from the diagonal parts of the right-lower

k × k components of the adjoint field Y . These fields should be recognized as the

vacuum expectation values 〈Yi〉.

• The fields charged under the U(1)k−1, qi, q̃i (i = 1, · · · , k): we consider the gauge

group U(1)k−1 as U(1)k/U(1). In this perspective the charge assignment of qi, q̃i are

precisely the same as the 3d N = 2 mirror symmetry [2, 19]. They are also charged

under the U(1) ⊂ U(kNf −Nc).

The superpotential becomes as follows:

W = TrY k+1 +
k−1∑
j=0

Mj q̃Y
k−1−jq +

k−1∑
j=0

k∑
i=1

M̃j q̃iY
k−1−j
i qi +

k−1∑
j=0

η̃Ṽj,k−1−j , (4.25)

where Y in the superpotential should be constant vevs and Y fields are all massive. However

we loosely wrote the superpotential as presented above.

We define the new singlet fields Si :=
∑k−1

j=0 M̃jY
k−1−j
i (i = 1, · · · , k), yielding the

following superpotential.

W = TrY k+1 +

k−1∑
j=0

Mj q̃Y
k−1−jq +

k∑
i=1

Siq̃iqi +

k−1∑
j=0

η̃Ṽj,k−1−j (4.26)

The U(1)k−1 theory has the dual description by the 3d N = 2 mirror symmetry [2, 19]

due to the appearance of the superpotential W =
∑k

i=1 Siq̃iqi. The mirror theory is the

three-dimensional N = 2 supersymmetric U(kNf −Nc)×U(1)mirror gauge theory. The field

contents are summarized as follows.

• U(kNf −Nc) fundamentals: Nf flavors q, q̃.

• U(kNf −Nc) adjoint: one adjoint field Y

• The Nf ×Nf gauge singlets: Mj (j = 0, · · · , k − 1)

• U(1) N = 2 SQED with k flavors bi, b̃i (i = 1, · · · , k)

The quantum numbers of the fields are calculated by identifying the baryonic operators

betwen the electric and magnetic theories.

Bn1,n2,··· ,nk
electric ≡ Qn1

(0) · · ·Q
nk

(k−1),
k∑
j=1

nj = Nc (4.27)

Bm1,··· ,mk
magnetic ≡ V

U(1)mirror

− qm1

(0) · · · q
mk

(k−1), mj = Nf − nk+1−j (4.28)
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U(kNf −Nc)×U(1)mirror U(1)B U(1)A U(1)R

q

(
1

kNf−Nc

, 0

)
0 −1 −r + 2

k+1

q̃

(
− 1

kNf−Nc

, 0

)
0 −1 −r + 2

k+1

Y (adj., 0) 0 0 2
k+1

bi (10, 1) 0 −Nf −(r − 1)Nf − 2Nc
k+1 + 2i

k+1

b̃i (10,−1) 0 −Nf −(r − 1)Nf − 2Nc
k+1 + 2i

k+1

Mj (10, 0) 0 2 2r + 2j
k+1

V
U(1)mirror

± (1±1, 0) ∓Nc kNf (r − 1)kNf + 2kNc
k+1

Ṽ
U(kNf−Nc)
j,± (10,±1) 0 Nf (r − 1)Nf + 2

k+1(Nc + 1) + 2j
k+1

Table 6. Quntum numbers of the mirror theory.

where the magnetic baryon operators contain the Coulomb branch coordinate of the mirror

U(1)mirror because in the U(kNf−Nc)×U(1)k−1 theory, V
U(1)mirror

− is identified with N− :=

q1q2 · · · qk and the baryonic operators become Bm1,··· ,mk
magnetic = qm1

(0) · · · q
mk

(k−1)
∏k
i=1 qi, which are

the natural baryonic operators to be identified with the ones on the electric side.

The quantum numbers are summarized as follows. Actually we have an ambiguity

about the choice of the U(1)B charge to mix it with the other U(1) symmetries. The U(1)R
charges of the bi, b̃i fields are different from the conventional assignment of the mirror

symmetry. This is due to the presence of the superpotential W =
∑k−1

j=0 bj+1Ṽ
U(kNf−Nc)
k−1−j,− ,

which breaks the usual U(1)R symmetry and generates a new U(1)R symmetry at the

low-energy. Notice that the U(1)mirror symmetry is the gauging of the topological U(1)

symmetry corresponding to U(1) ⊂ U(kNf −Nc) gauge group and the U(1) ⊂ U(kNf −Nc)

symmetry is the gauging of the topological symmetry coresponding to the U(1)mirror gauge

group. Thus we have the Chern-Simons coupling between U(1)mirror and U(1) ⊂ U(kNf −
Nc).

The superpotential becomes

W = TrY k+1 +
k−1∑
j=0

Mj q̃Y
k−1−jq +

k−1∑
j=0

η̃Ṽj,k−1−j . (4.29)

The monopole operators at high-energy should be identified as follows.

Ṽj,k−1−j = bj+1Ṽ
U(kNf−Nc)
k−1−j,− , (j = 0, · · · , k − 1). (4.30)

In addition to the above superpotential we have the Affleck-Harvey-Witten type superpo-

tential [28] which is generated by the gauge symmetry breaking SU(k(Nf + 1) − Nc) →
U(kNf −Nc)×U(1)k−1 ≈

mirror
U(kNf −Nc)×U(1)mirror:

WAHW =

k−1∑
j=0

b̃j+1Ṽ
U(kNf−Nc)
k−1−j,+ (4.31)
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Putting these into the superpotential we obtain the dual (mirror) theory,

W = TrY k+1 +
k−1∑
j=0

Mj q̃Y
k−1−jq +

k−1∑
j=0

(
bj+1Ṽ

U(kNf−Nc)
k−1−j,− + b̃j+1Ṽ

U(kNf−Nc)
k−1−j,+

)
, (4.32)

where η̃ is absorbed by the field rescaling. This is precisely in accord with the result

obtained by the un-gauging technique [18].

When we derived the above duality, we used the weak perturbation, which enables us

to find the magnetic vacuum which we should take. Without this perturbation, gi → 0,

we have the SU(k) gauge dynamics instead of the U(1)k−1. The SU(k) part is a N = 2

supersymmetric SU(k) gauge theory with one fundamental flavor and one adjoint field.

Then the theory seems to have no stable SUSY vacua. However the superpotential due to

the KK-monopole would stabilizes the vacuum. In order to analyze this direction further,

we need the precise relation between the high- and low-energy monopole operators of the

SU(k(Nf + 1) − Nc) and the U(kNf − Nc) × SU(k). This is highly non-trivial and left as

the future work.

5 Summary

In this paper we derived the duality of the three-dimensional N = 2 supersymmetric

gauge theory with Nf fundamental matters and one adjoint matter with a superpoten-

tial W = TrXk+1 from the four-dimensional Kutasov-Schwimmer duality. We especially

concentrated on U(Nc), SU(Nc) gauge groups. The dualities obtained here were the ones

which are given by [17, 18]. While in [17, 18] the dualities were constructed by the gener-

alization of the Aharony duality and by the un-gauging technique respectively, we offered

the alternative derivation of these dualities in this paper. The duality for the U(Nc) with

an adjoint matter was derived in a similar way of the derivation of the Aharony duality

from the 4d U(Nc) Seiberg duality [8]. Hence, the superpotential from the KK-monopoles,

Affleck-Harvey-Witten and the XYZ model from the U(1)2 part plays a crucial role to

modify the Coulomb branch on the magnetic side. On the other hand, the SU(Nc) duality

with an adjoint matter is derived in a same way as the U(Nc) case, where we used the

N = 2 mirror symmetry which is the generalization of the duality between the SQED with

Nf = 1 and the XYZ model, which makes the Coulomb branch of the dual gauge theory

lifted together with the Affleck-Harvey-Witten type superpotential.

It would be worth analyzing the derivation in this paper without the weak perturba-

tions for the adjoint matters X and Y , in which we will have to include the dynamics of

the non-abelian gauge group SU(k) for the SU(Nc) duality and U(k)×U(k) for the U(Nc)

duality. In deriving the duality we assumed that the U(1)k−1 part does not enhance to

SU(k) in the limit of si → 0 for SU(Nc). In the U(Nc) case we relied on the similar assump-

tion. This was only the working assumption that discarding the off-diagonal part of the

adjoint fields would not be important for deriving dualities, hence it should be investigated

more carefully. It would be also worth considering other gauge groups, for example O(Nc),

SO(Nc) and Sp(2Nc) with an adjoint matter.

– 18 –
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It is important to extend the procedure of deriving the 3d dualities from 4d to the

dualities with various matter fields as [29] (See [3] for examples of the 4d dualities). In [3]

the symmetric tensor matter or anti-symmetric tensor matter are added to the 4d dualities

and the chiral theories are also considered. It is interesting to study the corresponding 3d

dualities. Although the procedure to obtain the 3d dualities is the same as ones in [15,

16, 29] and in this paper, it would be more and more subtle because the structure of the

Coulomb branch becomes complicated. To obtain the 3d dualities, it is necessary to match

the monopole operators at high- and low-energy theory when we turn on the real masses

and take the low-energy limit and it is very subtle task. This extension is left as a future

work.
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