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1 Introduction

In the past thirty years, AdS backgrounds have found widespread applications in supergrav-
ity, string theory and M-theory. Following the original work of Freund and Rubin [1], AdS
backgrounds have been used in supergravity compactifications, for reviews see [2, 3] and
references within, and more recently in AdS/CFT [4]. In particular, IIB AdS backgrounds,
like AdS5 x S5, have been instrumental in the foundation of AdS/CFT correspondence.
Because of this, there is an extensive literature in constructing such I1B backgrounds and in
exploring their applications, for some selected publications see [5]-[11]. So far the construc-
tion of most supersymmetric AdS backgrounds has been based on ansatzes on either the
form of the fields, or of the Killing spinors.! As a result, most of the investigations have not
been systematic, and to our knowledge there is no full classification of AdS backgrounds.

In this paper, we initiate the classification of all IIB AdS backgrounds by specifying
the fractions of supersymmetry preserved by such backgrounds. In a future publication, we
shall present their geometry [12]. In particular, we shall solve the KSEs of IIB supergravity
without any additional assumptions? on the fields and Killing spinors, apart from imposing
on the former the symmetries of the AdS spaces. As a result, we identify the a priori
number of supersymmetries N preserved by these backgrounds. In particular, we show
that for AdS, X, M0,

N=20ElE 2<n<4; N=2E"+'k 4<n<es, (1.1)

where k € Ny. To prove the above result for AdS, backgrounds, we suitably restrict the
fields and the transverse space M®, eg M8 can be taken to be compact without boundary,
but such an assumption is not necessary for the rest of the backgrounds. Because of the
classification results of [13-16], the number of supersymmetries N are further restricted. In
particular, it is known that there are no AdSs backgrounds with N > 26 supersymmetries.
As a result k£ < 14 in this case. Similar restrictions apply to the other cases and the
collected results can be found in table 1. Furthermore all solutions preserving more than
16 supersymmetries are homogenous [17].

Furthermore, we demonstrate that the the Killing spinors of AdS, x., MP°~" back-
grounds can be identified with the zero modes of Dirac-like operators on M0~" coupled
to fluxes. For this and under suitable assumptions on M19~" we prove new Lichnerowicz
type theorems which give a 1-1 correspondence between the solutions of the KSEs and the

zero modes of appropriate Dirac-like operators 2(). As a consequence, we find that for
AdS,, backgrounds

N =2(N_ +Index(D)), n=2; N={n)N_, n>2, (1.2)

'As in M-theory, the Killing spinors do not factorize into a product of a Killing spinor on AdS and a
Killing spinor on the transverse space.
2In the investigation that follows, we consider backgrounds up to discrete identifications.



where D is the Dirac operator possibly twisted with a U(1)) bundle on M® N_ =
dim Ker2(~) and £(n) = 2[2] for 2 < n < 4 and £(n) = 4 for 4 < n < 6. Observe
that N_ is even for n =5 and N_ = 4k for n = 6.

Our AdS, results can be adapted to R*~ 1! x,, M0~ backgrounds in the limit that
the AdS radius goes to infinity. This limit is smooth in all our local computations but some
of the regularity assumptions needed to establish some of our global results, like the new
Lichnerowicz type theorems, are no longer valid. Nevertheless, we have solved the KSEs
and the number of supersymmetries preserved by the R? =51 x,, M0~ g

N=23k, 2<n<4: N=2"Fp, 4<n<s. (1.3)

The supersymmetries preserved by R x,, M8 backgrounds cannot be decided. This is be-
cause to show that AdSy x,, M® preserves an even number of supersymmetries requires the
use of a maximum principle argument which may not be valid for R"! x,, M?® backgrounds.
The results have been tabulated in table 2.

To prove our results, we have to solve the gravitino and dilatino KSEs of IIB super-
gravity for AdS backgrounds. For this, we have used the observation in [18] that all AdS
backgrounds can be described as near horizon geometries of extreme Killing horizons. This
facilitates the integrability of the KSEs along the AdS directions. First after decompos-
ing the Killing spinor as € = €4 + e_, where I';tex = 0 are lightcone projections, we use
the near horizon results of [19] to integrate the KSEs along two lightcone directions, see
also [20, 21]. After the integration the Killing spinors are written as e+ = eq(n4,n—;7,u),
where (r,u) are appropriate coordinates, € |,—,—o = n+ and 74 are spinors which are now
localized on the co-dimension two subspace S given by r = v = 0 which is the horizon
spatial section. To identify the remaining independent KSEs we use a key result of [19], in
which it is shown, after a rather involved argument and the use of field equations, that the
remaining independent KSEs are derived from the naive restriction of the original KSEs
on §. The final result is two sets of KSEs on S one acting on 74 and the other on 7_.
Each set contains a parallel transport equation associated to the original gravitino and one
algebraic KSE associated to the original dilatino KSE. This suffices to integrate the KSEs
on AdSy x.,, M?® along the AdSs directions as M® = S.

For the rest of the AdS, backgrounds, the KSEs can be integrated along all AdS
directions. For this, the Killing spinors 1y are expressed as 1y = n4 (o4, 74+, 2) and n_ =
n_(o_,7_,x) where now o+ and 74 are localized on M1°~" and x denotes AdS coordinates.
The independent KSEs can be organized into four sets of equations on M9~ one for each
o+ and 7. Each set contains three KSEs. The first two are associated to the original
gravitino and dilatino KSEs, and there is an additional algebraic KSE which arises from
the process of integrating over the remaining AdS,, directions.

The counting of supersymmetries proceeds as follows. The proof that for AdSs back-
grounds the number of supersymmetries is even and the formula in (1.2) follows from the
results of [19] on the number of supersymmetries preserved by near horizon geometries.
For this, it is required that the fields and M?® satisfy the conditions for the Hopf maximum
principle to apply. In particular, M® can be taken to be compact and connected without
boundary, and the fields smooth.



The counting of supersymmetries for the remaining AdS,,, n > 2, backgrounds is done
in a different way. In particular it is observed that there are Clifford algebra operators
which intertwine between the four sets of KSEs. So given a solution in one set of KSEs, one
automatically has solutions in the other sets. After identifying all the intertwining Clifford
algebra operators for each of the AdS,, backgrounds, one derives the results of (1.1). It
should be noted that for the proof of (1.1), there is no need to put any restriction on M19~"
or on the fields as is done for AdS5 case.

The proof of the formula for N in (1.2) for AdSs backgrounds is similar to that for
near horizon geometries. As has been established in [19], this necessitates the proof of
two Lichnerowicz type theorems, one for each ny spinor. The proof of these theorems are
based on the Hopf maximum principle and a partial integration formula. A simplification
for AdSs backgrounds is that both Lichnerowicz type theorems can be demonstrated using
only the Hopf maximum principle.

Furthermore, the proof of the formula for N in (1.2) for the remaining AdS,, back-
grounds again requires the proof of four Lichnerowicz type theorems one for each of the
spinors o4+ and 7+. The proof of these theorems utilizes the Hopf maximum principle on
the square of the length of the spinors o4 and 7+. Instrumental in the proof is the use of
the field equations and the choice of modified Dirac-like operators 2() on M0~ coupled
to fluxes. These modified Dirac-like operators are constructed as an appropriate linear
combination of the Dirac operator associated with the gravitino KSEs on M9~ and the
new algebraic KSEs that arise in the analysis. It is remarkable that the zero modes of
these modified Dirac-like operators solve not only the parallel transport equation, which
is expected from the classic Lichnerowicz theorem, but also solve the two algebraic KSEs.
Note that unlike the AdS> case, in the remaining AdS,, cases, there is no contribution from
the index of the Dirac operator to NV, as it vanishes.

To prove the formula (1.3) for the number of supersymmetries preserved by R?~11 x,,
M9~ backgrounds, one takes the AdS radius to infinity. All the local computations
for AdS,, backgrounds are valid in this limit and so carry through without alterations.
However, as we shall explain this is not the case for some of the global results, like the
Lichnerowicz type theorems, which require for their validity certain regularity restrictions
on the fields which are no longer valid. Another significant difference, which affects the
counting of supersymmetries, is that in the limit of infinite AdS radius the spinors o4 and
74 are no longer linearly independent. Because of this, the counting of supersymmetries
between AdS,, and R"~ ! backgrounds is different.

This paper is organized as follows. In section 2, we explain how the AdS,, x,, M©0~"
backgrounds can be written as near horizon geometries, and summarize the key results
of [19] regarding the solution of IIB KSEs for near horizon geometries. In section 3, we
solve the KSEs for AdSs x, M® backgrounds and find under which conditions the number of
supersymmetries preserved is even. In section 4, we prove new Lichnerowicz type theorems
for AdSs x., M® backgrounds and identify Killing spinors with the zero modes of a Dirac-
like operator on M?8. In section 5 and 6, 7 and 8, 9 and 10, 11 and 12, the KSEs are solved
and identification of Killing spinors as zero modes of Dirac-like operators on M9~ is done,
for AdSs X M", AdSy ., M8, AdSs x., M® and AdSg x,, M* backgrounds, respectively,



resulting in the proof of formulae (1.1) and (1.2). In section 13, we show that there are
no supersymmetric AdS, X, M9~ backgrounds for n > 6. In section 14, we prove the
formula (1.3) for R"~11 %, M0~ backgrounds and in section 15, we give our conclusions.
In appendix A, we have summarized our conventions. In appendices B, C, D, E, we present
the proof of the maximum principle formulae on the length of zero modes of 2+ required
to prove the new Lichnerowicz type theorems for AdS,, x,, M'9~" backgrounds, 2 < n < 7.

2 AdS and near horizon geometries

2.1 Warped AdS and flat backgrounds

The warped AdS and flat backgrounds can be written universally as near horizon geome-
tries [18]. Let F', G and P be the 5-, 3- and 1-form field strengths of IIB supergravity. All
AdS backgrounds can be described in terms of the fields

ds* = 2ete” +ds*(S), F=ret ANX+et Ae  AY +xgY,
G=re"NL+e"Ne  AN®+H, P=¢, (2.1)

where we have introduced the frame
1 . .
et =du, e =dr+rh— 57‘2Adu, el =ebdy!, (2.2)

and

ds*(S) = dije'e’ (2.3)

is the metric on the horizon spatial section S which is the co-dimension 2 submanifold given
by the equations » = w = 0. In addition, the self-duality of F' requires that X = — %xg X.
The dependence on the coordinates u and r is explicitly given. A, h, Y are 0-, 1- and
3-forms on S, respectively, ®, L and H are A-twisted 1-, 2- and 3-forms on S, respectively,
and ¢ is a A2-twisted 1-form on S, where \ arises from the pull back of the canonical bundle
of the scalar manifold® SU(1,1)/U(1) on S. Furthermore, the Bianchi identities imply that

X:mﬁ—é@AH—@AH% L=d®—iAND+END, (2.4)

and so X and L are not independent fields.

Moreover, viewing the backgrounds AdS,, x,, M9~ as near horizon geometries, the
spatial horizon sections S are S = H" 2 x,, M'~" ie warped products of hyperbolic
(n-2)-dimensional space with M19~". This can be easily seen after the fields are stated
explicitly for each case below.

Although all AdS backgrounds are described by (2.1), the field dependence of individual
AdS cases differs. To address this, we shall separately state the fields in each case as follows.

3The scalar manifold can also be taken as the fundamental domain of the modular group but we shall
not dwell on this.



2.1.1 AdS> X, M8
In this case M8 = S and the fields become
1
ds® = 2du <dr +rh — 2r2Adu> +ds?’(M?), F=e"Ae AY +xY,

G=e"Ne N®+H, P=¢, (2.5)

where

h=-24"'dA=A""dA, X=L=0. (2.6)

Observe that dh = 0 and A is the warp factor.

2.1.2 AdS3 X, M7
The fields are

ds® = 2du(dr +rh) + A%dz? +ds>(M"), F=AetAhe AdzAY —%Y
G=Ae" Ne AdzAN®+H, P=¢, (2.7)

where

2
h:—zdz—QA_ldA, A=0, X=L=0, (2.8)

and /¢ is the radius of AdS.

2.1.3 AdS4 X M6
The fields are
ds? = 2du(dr + rh) + A%(dz? + **/*dx?) + ds*(M7)

F:AQeZ/ZeJF/\e_/\dz/\dx/\Y—i—*GY,
G=H, P=¢, (2.9)

where

h:—%dz—ZA_ldA, A=0, X=L=0. (2.10)

2.1.4 AdSs5 X M?®
The fields are
ds?* = 2du(dr + rh) + A%(dz® + €2/ (da® + dy?) + ds* (M),

F=Y [ASeQZMeJr Ae” ANdz Adx Ady — dvol (MS)} ,
G=H, P=¢, (2.11)

where

h:—%dz—ZA_ldA, A=0, X=L=0. (2.12)



2.1.5 AdSg X M*
The fields are

h:—%dz—2A‘1dA, A=0, X=L=0. (2.14)

It should be noted that the warped backgrounds R~ x,, M19=" are included in our
analysis. They arise in the limit that the AdS radius ¢ goes to infinity. This limit is smooth
for all our field configurations presented above. However, some statements that apply for
AdS do not extend to the flat backgrounds. Because of this some care must be taken when
adapting the results we obtain for AdS backgrounds to the limit of infinite radius.

2.2 Bianchi identities and field equations

It is clear from the expressions of the fields for the AdS backgrounds in the previous section
that L = X =0 and dh = 0. As a result, we have

th—é@/\ﬁ—@/\H)z& dp® —iAAN®+END =0. (2.15)

Furthermore, the remaining Bianchi identities for the backgrounds (2.1) are

d*gY:%H/\FI, dH =iANNH —€AH,
dé =2iANE, dA = —iENE, (2.16)

where A is a U(1) connection of A, see [19] for more details.
The independent field equations of the AdS backgrounds (2.1) are

Vid; —iN'®; — £, + Ygl%ﬂ%fs =0, (217)

3
- ) _ 24
V Hyij — iN Hyij — W' Hyij — € Hyij + g(*gyijelngMﬂ?’ —6Y;;®) =0, (2.18)
1
Vig; — 2iNiE; — hig; + 52~ 60% + H*) =0, (2.19)
3

fv% —A - —h2 + 3Y2+ 8<1> ‘D, + = || H|*= (2.20)
and
Rij + Vhy) — h hj +4Y; + q>( — 26,5 — HMQ( H )
+34 ( — gqmp’f — g1/2 + — H H|? > (2.21)



where V and R are the Levi-Civita connection and the Ricci tensor of S, respectively.
There is an additional field equation which is not independent because they follow from
those above. This is

3

1~ . 1 -
§V2A = Gh' Vil = SAV'h + Ah? =0, (2.22)
which we state because it is useful in the investigation of the KSEs.

2.3 Killing spinor equations

The gravitino and dilatino KSEs of IIB supergravity [22, 23] are

<VM_;QM+Z8FM)€_916(F$M_9$M>C*E =0, (2.23)
PC % e+ 2—14& =0, (2.24)

respectively, where @ is a U(1) connection of .

These KSEs can be solved for the fields (2.1) along the directions u,r. For this first
decompose € = €4 +e_, where I'yex = 0. Then a direct substitution into (2.23) and (2.24)
reveals that the Killing spinor can be expressed as

=04, e-=0_+1T_O404; o4 =ny+ul'yO_n_, ¢_=n_, (2.25)
where 1+ do not depend on both w and r coordinates and
1 i 1 3
=|-ht— — W+ — . 2.2
Ot (4% 12Y> * (96H 16(13)0* (2.26)

After some extensive computation using the field equations described in [19], one can show
that the independent KSEs for the backgrounds (2.1) are

V=0, A®p. =0, (227)
where
v = Vi + ( AT %hi FoYix fQFYQ)
+<i %GF% T %@i — %FHZ- + ;H) Cx, (2.28)
and
A® = <$411¢+214H>+£0*' (2.29)

It turns out that (2.27) are the restriction of (2.23) and (2.24) on the horizon section S for
€ given in (2.25).
Furthermore, one can show that if n_ is a solution to the KSEs, then

Ny =T 01—, (2.30)



also solves the KSEs. This is the first indication that IIB horizons exhibit supersymmetry

enhancement. Indeed if S is compact and the fluxes do not vanish, one can show [19] that

Ker®_ = {0} and so 7+ given in the above equation yields an additional supersymmetry.
Although the following integrability conditions

1 1

are implied from the (2.27) KSEs, the field equations and the Bianchi identities it is conve-
nient for the analysis that follows to include them. As we shall see, they are instrumental
in the solution of the KSEs along the Ad.S,, directions for n > 2.

2.4 Horizon Dirac equations

Before we complete this section, we shall summarize the results of [19] on the relation
between Killing spinors and zero modes of Dirac-like operators for IIB horizons. We have
seen that the gravitino KSE gives rise to two parallel transport equations on S associated
with the covariant derivatives V(&) (2.28). If S* are the complex chiral spin bundles over
S, then V* : F(Si@))\%) — F(A1(8)®Si®)\%), where F(Si®)\%) are the smooth sections
of S* @ \3. In turn, one can define the associated horizon Dirac operators

pH =1iv® =1y, 4 oF (2.32)

where

, 1, 1, 1
vE =gl = —%A:thiéyjt (i 4<I>+24H>C* . (2.33)

Clearly the V* parallel spinors are zero modes of D&). For S compact, one can also prove

the converse, ie that all zero modes of the horizon Dirac equations D*) are Killing spinors.

Therefore, one can establish
Ve =0, A®pL =0« DHpL =0. (2.34)

The proof of the above statement for n, spinors utilizes the Hopf maximum principle on
| no ||? while for _ it employs a partial integration formula. In the former case, one also
finds that || 74 ||= const. Similar theorems have been proven for other theories in [20, 21].

3 AdS-: local analysis

3.1 Fields, Bianchi identities and field equations
For AdS; backgrounds M® = S and the fields on S are

ds*(S) = ds*(M?®), FP=Y, FP = 4gY |

Gl'=o, G =H, P=c¢. (3.1)

Next, we set
A=(72472, (3.2)



which satisfies (2.22), where ¢ is the radius of AdS;. Using these, the Bianchi identi-
ties (2.15) and (2.16) can now be written as

Ly iA2 L
d(A7?Y) — (PANH—-®ANH) =0,
A(AT20) —iATPAND + A2END =0, (3.3)
and
d*ng%H/\I:I, dH =iANNH —€ANH,
¢ = 2iIANNE, dA = —iENE, (3.4)

respectively, where A is a U(1) connection of A restricted on S.
Similarly, the field equations read as

. . 9
Vid; — iNiD; — £1d; + gnl@gsff’ﬁ‘fﬂs ~0, (3.5)

= , - = 21
V' Hpij—iA Hyij+2A710" AHpij €' Hyijt < (xsYigo o, H 0 = 6Y3500°) = 0, (3.6)

- . . 1
Vig; — 2iNig + 2A L0 AL + ﬂ(—6<1>2 +H* =0, (3.7)
3

. . 2 1
—ATIVZA - AT20'A0A — 17PAT 4 g1/2 + gqﬂ@i + 5 | H|*=0, (3.8)

and

(8) 1 2 1o = s 1 T
1. -, 2 1

il — =0 — Y24 — |H|? ) = .

sy - o = Svie Lym P ) <0 @9

where R®) is the Ricci tensor of S = M8,

3.1.1 The warp factor A is no-where vanishing

To see this, assume that A is not identically zero. Thus there is a point in M?® such that
A # 0. Multiplying (3.8) with A? evaluated at a point for which A # 0, one finds
=2 i 2, 2,000 3 o4z Lo 2
— AV A - 0"A0;A -/ +§AY +§A<I><I>i+4—8A | H||*=0, (3.10)

Next taking a sequence that converges at a point where A vanishes, one finds an inconsis-
tency as the term involving the AdS radius ¢ cannot vanish. Therefore there are no smooth
solutions for which A vanishes at some point on the spacetime. A more detailed argument
for this has been presented in [24].

This property depends crucially on ¢ taking a finite value. In particular, it is not valid
in the limit that ¢ goes to infinity, and so one cannot conclude that A is no-where vanishing
for R»~1! backgrounds.

,10,



3.2 Killing spinor equations

The KSEs on S = M8 are

V=0, A®n =0, (3.11)
where
) = . _EA.ilA—l A i .iip .
VI = ik (- pAE jAT0AT Y 2 T,
+ iim» i@-—iPHJFEH- Cx (3.12)
16T a6 T 96 izl )u ‘
and ) .
(#) = - il 1
A _<¢4¢>+24H>+gc*. (3.13)
Furthermore, if n_ is a Killing spinor, then
Ny =101, (3.14)
is also a Killing spinor, where now
6L = —lalogAQj:iY + iﬁiicp C (3.15)
4 12 96 16 ' '

It is not apparent that 14 # 0 as 7— may be in the kernel of ©_. To establish under which
conditions 7, # 0, one has to impose additional restrictions on M®. However if 1, # 0,
then the solutions exhibit supersymmetry enhancement.

3.3 Counting supersymmetries

The analysis so far is not sufficient to establish either the formula in (1.1) or (1.2) regarding
the number of supersymmetries N preserved by the AdS, backgrounds. For this, some
additional restrictions on M?® are required. We shall explore these in the next section.

4 AdS,: global analysis

The main results of this section are to demonstrate that under certain assumptions, there
is a 1-1 correspondence between Killing spinors and zero modes of Dirac operators on M
coupled to fluxes, and use this to count the supersymmetries N of AdSy backgrounds.
Given the gravitino KSE in (3.11) and in particular the (super)covariant derivatives V&),
one can construct the Dirac-like operators

PH =1iv® =1y, 4 oF (4.1)
on M8, where

. 1 : 1, 1
vE =i = —%Ai (Plog A%+ éY+ <i i MH)C* . (4.2)

Clearly all parallel spinors 74, ie V&4 = 0, are zero modes of D& ie D&y, = 0. The
task is to prove the converse.

— 11 —



4.1 A Lichnerowicz type theorem for D(*)

The proof of this converse is a Lichnerowicz type theorem and the proof is similar to that
given in [19] for horizon Dirac operators. Because of this, we shall not give details of the
proof. The novelty of this theorem is that the converse implies that the zero modes of D)
solve both the gravitino and dilatino KSEs. In particular, assuming that D(+)77+ =0 and
after some algebra which involves the use of field equations, one can establish that

Vi [ P +87log A2 Vi | oy [P=2 || VP |12+ | A |2 (4.3)

It is then a consequence of the maximum principle that the only solution of the above
equation is || n4 ||= const and that 7y is a Killing spinor. In particular, this is the case
provided M? is compact and the fields are smooth.

4.2 A Lichnerowicz type theorem for D(~)
The proof that the zero modes of D) are Killing spinors is similar to that for the D(+)
operator. In particular, if D(-)_ = 0, then one can show that

VVilln- 12 +0V5 o= P +V0hi (- 1P=2 (| VOno 2 + (| A 7. (44)
Using h = dlog A, this can be rewritten as

VA = P) = BVi(A - ?) =28 | Vo [P +A | AT |2 (4.5)

The maximum principle again implies that the only solutions to this equation are those
for which A || _ ||= const and 1_ are Killing spinors. Again this is always the case if M8
is compact and the fields are smooth. It should be noted that unlike the case of general
IIB horizons where this theorem has been proven using a partial integration formula [19],
here we have presented a different proof based on the maximum principle. The latter has
an advantage as it gives some additional information regarding the length of the Killing
spinor n—. Combining the results of this section with those of the previous one, we have
established that if M?® and the fields satisfy the requirements for the maximum principle
to apply, then

VEn =0, A®ny =0« DHyy =0, (4.6)

and that
| n4+ ||=const, A n— ||= const. (4.7)

4.3 Counting supersymmetries again

The number of supersymmetries of AdSs backgrounds is
N=N_+ Ny (4.8)

where

Ni = dim Ker(V®), A®)y (4.9)
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Using the correspondence between the Killing spinors and zero modes of the D(+) operators
in (4.6), we conclude that

N = dim KerD™) + dim KerD™H) . (4.10)

As for near horizon geometries [19], one can prove that dimKer DY) = dim Ker D),
This is done by a direct observation upon comparing the adjoint of D) with D(-). As a
result for M?® compact without boundary, we find that

N = Index(D™) + 2dim KerD™) = 2(N_ + Index(D)), (4.11)

where D is the Dirac operator twisted with Az. The index of D™ is twice the index of D
because they have the same principal symbol and D) acts on two copies of the Majorana-
Weyl representation of M®. This establishes both (1.1) and (1.2) for AdSs backgrounds.

Furthermore, if M?® is compact without boundary with a n_ Killing spinor, one can
explicitly construct a 7, Killing spinor by setting 7, = I';y ©_n_. This is because if M® is
compact without boundary and the fluxes do not vanish, then Ker®_ = {0}. The proof of
this statement is similar to that demonstrated in [19] for near horizon geometries and so
it will not be repeated here.

We have shown that the number of supersymmetries preserved by AdSs backgrounds
is even. Apart from this, there are additional restrictions on N. In particular, it has been
shown in [14, 15] that if a IIB background preserves more than 28 supersymmetries, N > 28,
then it is maximally supersymmetric. Moreover, the maximally supersymmetric solutions
and the solutions preserving 28 supersymmetries have been classified in [13] and [16],
respectively, and they do not include AdSy backgrounds. From this, one concludes that
N < 26. One can also adapt the proof of [17] to this case to demonstrate that all AdS,
backgrounds preserving more than 16 supersymmetries are homogeneous. This in particular
implies that the IIB scalars are constant for all these backgrounds.

5 AdS;s: local analysis

5.1 Fields, Bianchi identities and field equations

The fields restricted on the spatial horizon section S = R x,, M" are

ds*(S) = A%dz? +ds*(M7), F3=Adz\Y, F°=—xY,
G! = Addz, G3=H, Pl=¢. (5.1)

Moreover, we have that h = —%dz —2A47'dAand A=X =L =0.
Substituting these into the Bianchi identities (2.15) and (2.16), we find that

dY = ~3dlog ANY + < (BH — ®H) |
d® = 3®dlog A+ idQ — BE,

d*7Y:—%H/\F,
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dH =iQN NH —¢NH,

d§ =2iQ N &,

dQ = —iE NE. (5.2)

In addition the field equations (2.17)-(2.21) give
ViHijr = —3A 0" AH;j; +iQ"Giji, + P'Hyjp + 4i®Yj, + %ejkil%gzggY“i?HMzZB :
Vig; = —3A L0 AL + 2iQ%¢; — i[ﬂ - iqﬂ,
ATIV2A =2v? 4 g | @ || +£ | H||? —2072472 — 2(dlog A)?,
R = 3471V, VA +2Y2%6;; — 82
b HS e 5 1@ 12 65— o2 | B I 6+ 2665, (53)

where R(" is the Ricci tensor of M7. From now on, V will denote the Levi-Civita covariant
derivative on M19~". The Ricci scalar of M” is given by

5 7
R =3A71V24 + 6Y2 + s | H |2 +3 | ® |2 +2]¢?

82

5.2 The warp factor is no-where vanishing

6 1
=—— A2 _6(A A +12Y2 + 2 @ |2 +5 | H |2 +2)€)?. (5.4)

One of the consequences of the field equations is that the warp factor A is no-where
vanishing. One can show that this follows from the field equation (5.3) using an argument
similar to that presented for the AdSs backgrounds.

5.3 Solution of Killing spinor equations

To integrate the KSEs along the AdSs directions, it suffices to integrate the horizon
KSEs (2.27) along the z coordinate. For this consider first the gravitino KSE. Evaluating
the expression along the z-coordinate, we find

OzMt = Exnt, (5.5)
where
By = i—lr(zﬁAifzaxY’jL iArHiiAé C x (5.6)
ST T 4 96 " T 16 ' '
Observe that* 1
E+ - AFZ®+ 5 E, - E + AFZ(“), . (57)

Next differentiating (5.5) and comparing the resulting expression with the integrability
conditions (2.31), one finds that

1
O £ 502 =0, (5.8)

4The gamma matrices labeled by AdS, coordinates, like T',, are in a frame basis.
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which can be solved to give
Ny =o0stelity, (5.9)

h
where 1

Exox =0, Eime=F,7, (5.10)
with both o4 and 74 z-independent spinors. The latter conditions are additional indepen-
dent algebraic KSEs.

Although we have solved along the z direction, there are potentially additional con-
ditions that can arise from mixed integrability conditions along the z-direction and the
remaining directions in §. However, it can be shown after some computation that this is
not the case. Furthermore, the dilatino KSEs in (2.27) restrict on the o4 and 74+ spinors
in a straightforward manner. This completes the integration of the KSEs along all AdSs
directions. The remaining independent KSEs, which are localized on M7, are

Vo, =0, v =0,
A(i)ai =0, .A(i)T:t =0,
BHo, =0, cHry =0, (5.11)
where
1 1
Vgi) - Vz + \Ij(i) ) A(i) = :FZ(I)FZ + ﬂH + ZC*,
1
B&H) =g, , cH) ==z, + 7 (5.12)
and

1 3 1
+ (g (O, + % 1G0T ) O (5.13)

Therefore, there are four sets of three independent KSEs on M. Having found a solution
to the above equations, one can substitute in (5.9) and then in (2.25) to find the Killing
spinors for the AdS3 x4, M7 background.

5.4 Counting supersymmetries

It is straightforward to observe that if one has an either a o_ or a 7_ solution, then
o, =AT.T,o_, 7.=A"T.'y7_, (5.14)

are also solutions of the independent KSEs (5.11). Conversely, if either o4 or 71 are
solutions, then
o_=Al'"I'_o,, 717-=Al,T_74, (5.15)

are also solutions to the KSEs (5.11). Therefore, we have that the number of Killing spinors
N of the AdS3 backgrounds are

N = 2(dim Ker(V(™), A7) B 4+ dim Ker(V(f),A(f),C(f)))
= 2(dim Ker(VH), A BH)) 4 dim Ker(VH, A (D)) . (5.16)

,15,



Thus the AdSs3 backgrounds preserve an even number of supersymmetries. This proves the
formula for NV in (1.1) for AdSs backgrounds.

The number of supersymmetries N of AdS3 backgrounds are further restricted. It
follows from the results of [14-16] that there are no supersymmetric AdSs backgrounds
preserving more than 28 supersymmetries. As a result, N < 26.

6 AdS;s: global analysis

The main task here is to show the formula (1.2) for counting the number of supersymmetries
of AdSs backgrounds. For this, we have to show that there is a 1-1 correspondence between
Killing spinors and zero modes of a Dirac-like operator on M”.

6.1 A Lichnerowicz type theorem for 7, and o4

To prove that the zero modes of a Dirac-like operator on M7 are Killing spinors, one has to
determine an appropriate Dirac-like operator on M”. The naive Dirac-like operator which
one can construct from contracting V) with a gamma matrix is not suitable. Instead, let
us modify the parallel transport operators of the gravitino KSE as

Vi = v 4 g, A iB),
VI = v gratie®) (6.1)

)

on o4 and 74, respectively, where ¢ is a number which later will be set to 1/7. It is clear
that if either o or 71 are Killing spinors, they are also parallel with respect to the above
covariant derivatives.

Since the analysis that follows is similar for o4 and 7, it is convenient to present it
in a unified way. For this write both (6.1) as

DY = v 4 gr, A 1B (6.2)
where .
B = — S _p gt bay s (Larg 3 a0) ox (6.3)
20 2 4 96 16 ’
and ¢ = 1 when acting on o, and ¢ = —1 when acting on 7, ie either B(H) = B or

B() = ¢, respectively.
Next define the modified Dirac-like operators

2 =1DP =iy, + 20| (6.4)
where
2 = %A—lrz + 1T g 10g 42 - 5@+ Si=Tia ;”qyrz
5—1Tq 7—21q
o . .
+< oo M+ )C* (6.5)

It turns that 21 is suitable to formulate a maximum principle on the length square of
o, and 7. In particular, suppose that x is a zero mode for 21, ie 2(t)x, = 0, where
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X+ = o4 for ¢ = 1 while x4 = 74 for ¢ = —1. Then after some Clifford algebra, that is
presented in appendix B, which requires the use of field equations and for ¢ = 1/7, one can
establish the identity

. 2
V2 a2 + 34710740 x4 ? = 2D x4 |
16 2 2
N o0
Assuming that M7 satisfies the requirements of the Hopf maximum principle, eg for M7
compact and smooth fields, the above equation implies that x4 is a Killing spinor and that

the length || x4+ ||= const.
To summarize, we have shown that

V(+)a+ = O, B(+)O'+ = 0, A(+)U+ =0 .@(+)U+

vr, —o), cHr =0, AN, =0 = 2H 7 =0; c=-1, (6.7)

I
]
)

I
—_

|| o4 ||=const, || 74 ||= const. (6.8)

6.2 A Lichnerowicz type theorem for 7— and o_

A similar theorem to that presented in the previous section can be established for 7— and o_
spinors. One can define the operators D(—) and 2(~) and repeat the analysis. Alternatively,
one can observe that if x4 is a zero mode of the 2(t) operator, then y_ = AI',_y4 is a
zero mode of the 2() operator, where y_ is either o_ or 7_. Since the same relation holds
between y; and x_ Killing spinors, one can establish a maximum principle for y_ spinor.
The formula is that given in (6.6) after setting x; = AT, x_. Therefore provided the
requirements of Hopf maximum principle are satisfied, one establishes

vio = 0, BSe_ =0, Ao =0e= 2)s_=0; c=1,
v = 0, = 0, A =0« 9 =0; c=-1, (6.9)

and that
A7% | o_ ||’=const, A% 7_ ||*= const, (6.10)
where
2 =1V, + ) (6.11)
and
_ Tqc 147 1 31— Tt
(- — _14¢ 4 q 2 q
) 2§A7rz+7 y @log A 2@ 1 YT,
—q —<«lq
— P . 12
+< Ty T )0* (6.12)
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6.3 Counting supersymmetries again

The proof of the relation between Killing spinors and the zero modes of the Dirac-like
operators 2(F) allows us to re-express the number of supersymmetries NV in (5.16) preserved

by AdS3 backgrounds as

N

2 (dim Ker .@C(;% + dim Ker 95;11)
= 2(dim Ker .@c(g + dim Ker 9(211) , (6.13)

C

which establishes (1.2) for AdSs.

7 AdSy: local analysis

7.1 Fields, Bianchi identities and field equations
The field on S are
ds*(S) = A%(dz? + e¥/*da?) + ds*(MS) F3 = A% dz Ndz N Y
F® = %Y, G*=H, P=¢, (7.1)
with h = —%dz —2A7'dA and A = X = L = 0. Substituting these into the Bianchi and

field equations on S in section 2.2, the conditions reduce on M6 as follows. The Bianchi
identities give

d(AY) =0, VY= —ﬁei”ﬂ”m”ngisﬁjmjs :
dH =iQNH —¢ANH,
d§ =2iQ N E,
dQ = —iE NE. (7.2)

Therefore the Bianchi identities imply that A*Y is a closed 1-form and that HAH represents
a trivial cohomology class in M®.
The Einstein equation on S gives

3

1
o242, b 2 ol A=l AN2
ATIVRA =Y g | H | 5 — 347 dA)?, (7.3)
and
Rz(?) — 4A71ViVjA — 4Y2(5,'j + 8Y;Y; (7.4)
Lo kg 1 2 €
1 H Hype + 9 1|7 635 — 28¢5 = 0,

where R is the Ricci tensor of M. The remaining field equations are
VZHZJ].C = —367' IOgAHijk + ZQszk + fzﬁ”k s
. . . 1
Vi, = —30'log A& + 2iQ'¢; — ﬂHQ. (7.5)

This concludes the reduction of the Bianchi identities and field equations on M?®.
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7.1.1 The warp factor is no-where vanishing

One consequence of the field equations and in particular of (7.3) is that the warp factor A
is no-where vanishing. The investigation for this is similar to that we have presented for
AdS3 and so we shall not repeat the argument here.

7.2 Solution of KSEs

The integration of the KSEs along the z-coordinate proceeds as in the AdSs. In particular
repeating the argument as in the AdS3 case, one finds that

L= s+ e Yy (7.6)
where 1
Sx¢r =0, Eixz =F X, AF gy =0, Ay, =0, (7.7)
and
=, = 21£ 2r LHA+ AFwY +3 AFZHC*
AF) = ﬂH—i-{C * (7.8)

Observe that although AT = A() as operators, they act on different spaces and so we
shall retain the distinct labeling.
Next we integrate the gravitino KSE along the # AdS coordinate to obtain

1 1
Ny =04 — ZxPxFZTJ,_ +e My, n_=o_+ ez/€< — Za:FxFZJ_ + 7'_> , (7.9)

where 1
Eiai = 0, EiTi = :FZTi, (710)

and o4 and 74 depend only on the coordinates of M. This completes the integration of
the gravitino KSE along all AdSy directions. The dilatino KSE simply restricts on the
spinors o4+ and 74+. There are no additional conditions arising from integrability conditions
between AdSy and M directions.

Therefore, the remaining independent KSEs on M?° are

Vgi)ai =0, Vgi)Ti =0,
AF s =0, AH =0,
BHoy =0, CHr =0, (7.11)
where
VW _vipu® | BE =, c® g, 4 % , (7.12)
and

v = %ai log A — QHF (F/Y ); szi%YiFm
1

This concludes the solution of the KSEs on AdS; and their reduction on M.
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7.3 Counting supersymmetries

As for AdS3 backgrounds there are Clifford algebra operators which intertwine between
the different KSEs on M. In particular observe that if o is a solution to the KSEs, then

7+ =104 (7.14)

is also a solution, and vice versa. Furthermore as for AdSs, if either o_ or 7_ is a solution,
so is
o4 = A*1F+FZU_ s T+ = A71F+FZT_ . (715)

Similarly, if either o or 7 is a solution, so is
o-=Al'_T,o4, 717-=Al_T,74. (7.16)
From the above relations one concludes that the AdSy x,, M backgrounds preserve
N =4 dimKer(VH) A BH)) = 4 dim Ker(VH |, AF) By (7.17)

for either + or — choice of sign. This confirms (1.1) for the AdSy backgrounds.

The number of supersymmetries N of AdSy backgrounds are further restricted. It is a
consequence of [13-16] that there are no AdSy backgrounds with N > 28 supersymmetries.
Therefore N < 24.

8 AdS,: global analysis

8.1 A Lichnerowicz type theorem for 7+ and o4

To prove the formula (1.2) for AdS, backgrounds, we have to demonstrate a Lichnerowicz
type theorem which states that there is a 1-1 correspondence between Killing spinors and
the zero modes of Dirac-like operators on MY coupled to fluxes. The proof is similar to
that we have presented for the AdSs backgrounds. However, the operators involved in the
AdSy case are different and so the proof is not a mere repetition.

We shall present the proof of the Lichnerowicz type theorem for o, and 7, spinors.
The proof for the other pair o_ and 7_ follows as a consequence. It is also convenient to do
the computations simultaneously for both o, and 74 spinors which from now on we shall
call collectively x .

To begin let us define the operator

D = v 4 1,4 1B (8.1)
where 1 ) 1
H-_° = ! -

B 5 QFZ&}A QAYTQ; +3 GAFZHC* (8.2)

and ¢ = 1 when acting on o, and ¢ = —1 when acting on 7, ie either B(H) = B or

B() = C(H), respectively. It is clear from this that if x4 is a Killing spinor, then it is
parallel with respect to D).
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Next define the modified Dirac-like operator
2 =DM =iy, 4+ =) (8.3)

Next suppose that . is a zero mode of 2(t) ie 2(*)x, = 0. Then after some Clifford
algebra computation, which has been presented in appendix C, ¢ = 1/3, and the use of
field equations, one can establish the identity

V2 |Ixpl]? + 447107 A0 || x4 || = 2 “D(+)X+“2
» HB(JF)XJFHZ . HA(JF)XJer ‘ (8.5)

Assuming that the requirements of the Hopf maximum principle are satisfied, eg for M5
compact and smooth fields, the above equation implies that x4 is a Killing spinor and that
the length || x4+ ||= const.

A similar formula to (8.5) can be established for o_ and 7_ spinors. However, it is not
necessary to do an independent computation. We have seen that if o, and 74 solve the
KSEs, then 0 = AI'_,0, and 7 = Al'__7 also solve the KSEs. Similarly if x is a zero
mode of 2(t), then y_ = AT'_, x4 is a zero mode of 2(7), where

20) =TV, + (), (8.6)

3qc
2/

To summarize, we have shown that

) .
5() — 39 yoap T+6(]alog A2 - %@ (20 — 3iq)YTuu + —HC (8.7)

Vgi)ai:(), BHo, =0, Aoy = 0= 9Fo. =0; c=1,

Vi =0, ®r=0, AP =0e=9Hr=0; c=-1, (88)
and that
| o4 || = const, || 7+ || = const,
A7% | o_ ||*> = const, A72 || 7_ ||? = const . (8.9)

This concludes the proof of the 1-1 correspondence between Killing spinors and zero modes
of Dirac-like operators on M9,

8.2 Counting supersymmetries again

We are ready now to establish (1.2) for AdSy backgrounds. Provided that the data satisfy
the requirements of Hopf maximum principle, we have that

N =4 dimKer(V™), A By = 4 dim Ker.@( % , (8.10)

which applies to o_ spinors which confirms (1.2). A similar formula is valid for the three
other choices of spinors.
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9 AdSs: local analysis

9.1 Fields, Bianchi identities and field equations
The fields on the horizon section S are
ds2(S) = A%(d22 + et (da? + dy?)) + ds2 (M), G=H, P=¢,

F3=eTABdzndrAdyY F% = —dvol(M®)Y , (9.1)

and h = —2dz — 2dlog A and A= X = L =0.
Substituting the above fields into the Bianchi identities (2.15) and (2.16), we find
d(A°Y) =0, dH =iQANH —¢NH,
dé =2iQ NE, dQ = —iE NE. (9.2)

Clearly, Y is proportional to A=°. Similarly, the field equations (2.17)-(2.21) give

ViHi = —50'log A Hyjy, +iQ' Hyjy, + € Hyjy, ,
; ) . 1
Vig; = 50 log A& +2iQ'¢; — 5 H,
ATIV2A = 4Y? + % | H ||? —%A‘Q — 4(dlog A)?,
R = 5A7IV,V;A +4Y?%5;

1 — 1 _
+1H(ikeHj)kf 18 | H [|* 655 + 28¢5 - (9.3)
This concludes the analysis of Bianchi and field equations.

9.1.1 The warp factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warp factor A is no-where
vanishing. The argument is based on the third field equation in (9.3).

9.2 Solution of KSEs

Substituting the fields of the previous section into the KSEs of the spatial horizon sec-
tion (2.27) and after a computation similar to that described for AdSy backgrounds, we
find that the Killing spinors can be expressed as

1 z z 1
Ny = 04— Z(me+yI‘y)FZT++e_?T+ , N—=o0_+er (— E(:L‘Fw—l—yl“y)l“za, —|—7'> , (9.4)

where o4 and 74 depend only on the coordinates of M°. The remaining independent KSEs
are

Vo, =0, V=0, APor=0, AHr =0,
BfoL =0, CEre =0, (9.5)
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where

vE — v, 0®) A®) = H 4 O,
B&H) ==, , cH ==, + % , (9.6)
and
v = ilai log A — Qz + F YFW + ( 916( H)i + ;’25{7) Cx
Bt = 21£ 2r JA £ AYPMJr o Lar JHC k. (9.7)

This concludes the solution of the KSEs along the AdS5 directions and the identification
of remaining independent KSEs.

9.3 Counting supersymmetries

To count the number of supersymmetries preserved by AdSs backgrounds, observe that if
o+ are Killing spinors, then

T+ =1Tp04, 174 =I.Tyo4, (9.8)

are also Killing spinors, and vice versa. As a result if oy are Killing spinors, then o/, =
T, 0+ are also Killing spinors and similarly for 7. As a result dim Ker(V*), A®) B))
and dim Ker(V®), A& ¢H)) are even numbers.

Furthermore, as in the previous cases, if either o_ or 7_ is a solution, so is
o, =AT,T.0., 7.=A"TT.7_, (9.9)
and similarly, if either o4 or 74 is a solution, so is
o-=AlT,op, 7-=Al_T,7. (9.10)
From the above relations one concludes that the AdSs x,, M® backgrounds preserve
N =4 dimKer(VH), A®) BH)) = 4 dim Ker(VH), A®) cH)) = 8k | (9.11)

for either + or — choice of sign and k € N;. This confirms (1.1) for the AdSs backgrounds.
Of course N < 32, and for N = 32 the solutions are locally isometric [13] to AdS5 x S°.

10 AdSs: global analysis

10.1 A Lichnerowicz type theorem for 7+ and o4

To extend formula (1.2) to AdSs backgrounds, we shall again prove a Lichnerowicz type
theorem which relates the Killing spinors to the zero modes of Dirac-like of operators on
M5 coupled to fluxes. The proof is similar to that we have presented in previous cases and
so we shall be brief. It suffices to prove the the Lichnerowicz type of theorem for o, and
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74+ spinors as the proof for the other pair o_ and 7_ follows because of the relations (9.9)
and (9.10) and the fact that these isomorphisms commute with the relevant operators.

To begin the proof, let us denote both o, and 7y spinors collectively with y, and
define

DY = v 4 qr, a1 BH) (10.1)

where 1
BH = - ° _lpga- fAYF . — AT, 10.2
and ¢ = 1 when acting on o4 and ¢ = —1 When acting on 7, ie either B(H = Bt or

B(+) = C(H), respectively. It is clear from this that if x4 is a Killing spinor, then it is
parallel with respect to D.
The modified Dirac-like operator on M?° is

9 =Y =TV, + £ | (10.3)

where

aqc 51 — 91q
»H) = 2= A7,
20 + 2

Next suppose that y4 is a zero mode of 2(t), ie 2(t)x, = 0. Then after some Clifford

1+ 5¢

) 7T—95
Jlog A — %c,zg + YT .0y + Tqﬁc £, (10.4)

algebra computation, which has been presented in appendix D, ¢ = 3/5, and the use of
field equations, one can establish the identity

. 2
V2 el + 54710 40, x| = 2||p) x|
2 2

+%A*2HIB(+)X+H +HA<+)X+H . (10.5)

Assuming that the Hopf maximum principle applies, eg for M° compact and smooth fields,
the solution of the above equation reveals that y. is a Killing spinor and that || x4 [|=
const.

A similar formula to (10.5) can be established for o_ and 7_ spinors. In particular,

we define
2 =1V, + )| (10.6)
and
n() = —%A’lfz b g0 42 f@ 5“’Yrmy 1o 5qHC (10.7)
where ¢ = 1 for the o_ spinors while ¢ = —1 for 7_ spinors. As has already been mentioned,

because the relations (9.9) and (9.10) between the o_, 7 and o4, 74 spinors commute with
the KSEs and the modified Dirac-like operators, it is not necessary to prove the maximum
principle independently for o_,7_. To summarize, we have shown that

Vz(‘i)ai =0, BHo, =0, AF oy = 0= 9H gy =0; c=1,
Vir =0, ®rn=0, AP =0e=9H=0; c=-1, (108)
and that

| o4 || = const, | 74 || = const,

A2 || o_ ||* = const, A% || 7_ ||* = const . (10.9)
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10.2 Counting supersymmetries again

To establish (1.2) for AdSs backgrounds, observe that the dimension of the kernel of 2(+)
operators is even. This is because if o4 or 74+ are in the kernel, then I'yyor or I'yy7t
are also in the kernel. Since I'yyo4+ or I'y, 74+ are linearly independent of o4 and 74, the

()

dimension of the kernel of 2'*) is an even number.

Next, provided that the data satisfy the requirements of Hopf maximum principle, we
have that

N =4 dimKer(V), A0, B)) = 4 dim Ker2D) | (10.10)

C

which applies to o_ spinors and confirms (1.2). A similar formula is valid for the three
other choices of spinors.

11 AdSe: local analysis

11.1 Fields, Bianchi identities and field equations

For AdS,, p > 6, the only non-vanishing fluxes are those of the magnetic components of
the various field strengths. Since F is self-dual, F' = 0 for all such backgrounds. The fields
on the horizon section S for AdSg backgrounds are

3
ds*(S) = A* (dz2 tet Z(dx“)2> +ds* (MY, G=H, P=¢, (11.1)

a=1

and h = —%dz —2dlogA and A = X = L = 0, where ' = 2,22 = y as for AdSs and

2133:7.11.

Substituting the above fields into the Bianchi identities (2.15) and (2.16), we find
dH =iQANH —ENH, dé=2iQNE, dQ = —ié NE. (11.2)
Similarly, the field equations (2.17)—(2.21) give
V'Hijp = —60"log A Hiji + iQiHijk1+ §'Hijp
Vig; = —60'log A& + 2iQ¢; — ﬂH2,
1 5
ATIWPA = — | H | =5 A7 = 5(dlog A)®

VA = | H -2 A7 —5(dlog A,

RY = 647'v,v;4

)

1 — 1 —
+ZH(ZMH3')M - ZS H H ”2 51‘]’ + 2§(i§j) . (11'3)
This concludes the analysis of Bianchi identities and field equations.

11.1.1 The warp factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warp factor A is no-where
vanishing. The argument is based on the third field equation in (11.3).
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11.2 Solution of KSEs
The solution of the spatial horizon section & KSEs (2.27) reveals that

(— 2<;xafa)f‘za_ + r_> ,

(11.4)
where o+ and 74+ depend only on the coordinates of M*. After taking into account all the

I

1 2
N+ =04 — £<Zmafa>rﬂ++ez7—+, n-=o0_+e
a

integrability conditions, the remaining independent KSEs are

Vl(»i)ai =0, Vgi)ri =0, A(i)ai =0, A(i)ri =0,
Bfo. =0, Ctr. =0, (11.5)
where
v = v, A®) = H 4O,
B® ==, , CH ==, + % , (11.6)
and
() 1 ) 1 3
U = £-0;log A — -Q; — o (TH )i + S H; ;
i p¥11o8 2Q+< g (TH)i+ gyt ) C
_ 1 1 i 1
This concludes the solution of the KSEs along the AdSg directions.
11.3 Counting supersymmetries
A direct inspection of the KSEs reveals that if o+ are Killing spinors, then
e =T.Thoy, (11.8)

are also Killing spinors, and vice versa. As a result if o4 are Killing spinors, then o/, =
[ypo+ are also Killing spinors and similarly for 7.. Therefore dim Ker(V(i),A(i), B(i))
and dim Ker(V®, A& ¢(#)) are multiples of four.

Furthermore, as in the previous cases, if either o_ or 7_ is a solution, so is

o, =AIT.o_, 7.=A"'T I.7_, (11.9)
and similarly, if either o or 74 is a solution, so is
o-=Al'_T,op, 717-=Al'_T,7}. (11.10)
From the above relations one concludes that the AdSs x,, M® backgrounds preserve
N =4 dimKer(VF), A& BH)) = 4 dim Ker(VH), A& cH)) = 16k, (11.11)

for either + or — choice of sign and k € N4. This confirms (1.1) for the AdSs backgrounds.
It turns out that there can be AdSg backgrounds for only N = 16 as there are no such
backgrounds preserving N = 32 supersymmetries [13].
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12 AdSe: global analysis

12.1 A Lichnerowicz type theorem for 7 and o4

As in previous cases, let us prove a Lichnerowicz type theorem for o4 and 74 spinors. For
this denote o4 and 74 collectively by x4+ and define

D) = v 4T, A B (12.1)
where
B =~ < _Lp gariy iAFZHC*, (12.2)
20 2 96
and ¢ = 1 when acting on o, and ¢ = —1 when acting on 7, ie either B(H = B(H) or

B(H) = C(H), respectively. It is clear from this that if X+ is a Killing spinor, then it is
parallel with respect to ID.
The modified Dirac-like operator on M* is

9 =Y =TV, + £ | (12.3)
where 9 144 . 8_4
() — %A—lrz + 9100 A2 — %@ + The . (12.4)

Next suppose that x. is a zero mode of 2 je @(+)X+ = 0. Then after some Clifford
algebra computation, which has been presented in appendix E, ¢ = 1, and the use of field
equations, one can establish the identity

. 2
V2 el + 64710740, x> = 2||p) x|

116472 HIB%HBHHQ + HA<+>X+H2 . (12.5)

Assuming that the Hopf maximum principle applies, eg for M* compact and smooth fields,
the solution of the above equation reveals that x4 is a Killing spinor and that || x4+ ||=
const.

A similar formula to (10.5) can be established for o_ and 7_ spinors. In particular,

we define
2 =1V, + ) (12.6)
and 2 1+4 | 84
n-) — _EA—lpz g log A2 — v — 12.
; +——dlog 5@+ g5 MO, (12.7)
where ¢ = 1 for the o_ spinors while ¢ = —1 for 7_ spinors. Because of the relations (9.9)

and (9.10) between the o_,7_ and o4, 74 spinors and the commutation of these relations
with the KSEs and the associated Dirac-like operators, it is not necessary to prove the
maximum principle independently for o_, 7. To summarize, we have shown that

V0. =0, BWoi=0, AWsi=0e=9Ho =0 =1,

Vil =0, ®rn=0, ABr=0e 9 =0; c=-1, (128)
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and that

o || = const, I 74 || = const,
A2 || o_ ||* = const, A™% || 7_ ||* = const. (12.9)

12.2 Counting supersymmetries again

To establish (1.2) for AdSs backgrounds, observe that the dimension of the kernel of 2(+)
operators is multiple of 4. This is because if o4 or 74 are in the kernel, then I',y04 or
['4p7+ are also in the kernel. Since I'ypo4+ or g7+ are linearly independent of o4 and 7,
the dimension of the kernel of 23 is 4k.

Next provided that the data satisfy the requirements of Hopf maximum principle, we
have that

N =4 dimKer(V), A, BO)) = 4 dimKer2'") = 16k, (12.10)

which applies to o_ spinors and confirms (1.2). A similar formula is valid for the three
other choices of spinors.

13 AdS,,forn >7

There are no supersymmetric AdS,,, n > 7 IIB backgrounds, see also [27] where this result
has been established assuming that the Killing spinors factorize. To see this first observe
that if a background preserves at least one supersymmetry, then the three-form, H, is zero.
For AdS,,, n > 8, this is automatically true. For AdS;, we can show this by manipulating
the algebraic Killing spinor equation,

1
§Cx+—H o, =0. (13.1)
24
We start by multiplying this by M to convert it to an eigenvalue equation,
1
fﬁc* T+="3 I H |[? o4, (13.2)
and then we square the operator on the left hand side to eliminate Cx,
Z Tij 2, 1 2
&Gi&iMor =— ([ €]l +36 | H ") o (13.3)
Finally, squaring this operator as well, we end up with a scalar equation
1 2
Ll =€ = (Ne P +g5 I HIP) (13.9

from which we conclude that €2 = &¢% and H are both zero.

Having shown that H = 0, the integrability condition, (2.31), reduces to

(422 + i(dA)2> oy =0, (13.5)

which has no solution. Therefore, there are no supersymmetric AdS,, backgrounds for
n>"T.
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AdS,, Xy MO N
n=2 2k, k < 14
n=3 2k, k < 14
n=4 4k, k<7
n=>5 8k, k<4
n==06 16
n>"7T —

Table 1. The number of supersymmetries N of AdS, x, M©°~" backgrounds are given. For
AdSy x., M8, one can show that these backgrounds preserve an even number of supersymmetries
provided that they are smooth and M?® is compact without boundary. For the rest, the counting
of supersymmetries does not rely on the compactness of M'9~". The bounds in k arise from the
non-existence of supersymmetric solutions with near maximal and maximal supersymmetry. For
the remaining fractions, it is not known whether there always exist backgrounds preserving the
prescribed number of supersymmetries. Supersymmetric AdS,,, n > 7, backgrounds do not exist.

14 Flat IIB backgrounds

Warped flat backgrounds R® 5! x,, M9~ are also included in our analysis. These arise
in the “flat limit”, ie the limit that the AdS,, radius ¢ is taken to infinity. This limit is
smooth in all our computations. However, some of our results on AdS,, backgrounds do not
extend to the flat backgrounds. The investigation of the KSEs is also somewhat different
from that of AdS,, backgrounds.

To emphasize some of the differences between AdS, and R"~'! backgrounds, it has
been known for sometime that there are no smooth warped flux compactifications in su-
pergravity [26]. To alter this either additional sources have to be added to the supergravity
equations, like brane charges, and /or consider higher order curvature corrections which
arise for example from anomaly cancellation mechanisms or o corrections in string theory.
In either case, the new backgrounds can be constructed as corrections to supergravity so-
lutions. Because there are different sources that can be added and we do not have control
over all higher curvature corrections, we shall mostly focus here on the supergravity limit
and explore the similarities and differences between the AdS,, and R*~!! backgrounds.

14.1 The warp factor is not nowhere vanishing

We have seen that the warp factor in all AdS,, is no-where vanishing. This does not extend
to R"~ 1! backgrounds because the finiteness of the AdS,, radius has been essential in the
proof of the statement. In fact A must vanish somewhere for non-trivial R~ 1! backgrounds
with fluxes. This follows from the results of [26] on the non-existence of smooth warped
flux compactifications in the context of supergravity. To see this, let us focus on the R!
case, as the argument is similar in all the other cases. If A is no-where vanishing and M3 is
compact, an application of the maximum principle on the field equation for A (3.8) reveals
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that A is constant and the fluxes F' and G vanish. Furthermore using the formula
V2 € 11P=2(V g — 2iA6€5) (V) — 2iA€7) +6(]) € |%), (14.1)

established in [19] and upon using again the maximum principle, one can show that £ = 0.
As a result all the form field strengths vanish which is a contradiction. From now on, we
shall assume that A is non-vanishing on some dense subset of M1'9~" and carry out the
analysis that follows on that subset.

14.2 Counting supersymmetries

All the local computations we have done for AdS,, backgrounds extend to R"~b! back-
grounds. However the statements which rely on the smoothness of the fields as well as the
non-vanishing of the warp factor have to be re-examined. In particular, the solution of
the KSEs can be carried out as has been described for AdS,,. Also the various maximum
principle formulae are valid away from points where A = 0, like eg (4.3), (4.5), (6.6) and
others. However, the Hopf maximum principle cannot be applied any longer even if M 10—
is taken to be compact. As a result there is not a straightforward relation between Killing
spinors and zero modes on Dirac-like operators on M19~". Because of this, for the counting
of supersymmetries we shall rely on the local solution of the KSEs as presented for the
AdS,, backgrounds.

14.2.1 R! backgrounds

The counting of supersymmetries for AdSy backgrounds relies on the global properties
of M® and the smoothness of the fields. As a result, the number of supersymmetries
preserved by RM! backgrounds cannot be concluded. In particular, it is not apparent that
such backgrounds always preserve an even number of supersymmetries. Nevertheless, if 7_
is a Killing spinor, so is ', ©_n_ on M8. Now if Ker ©_ = {0}, it is clear that there will
be a doubling of supersymmetries. In such a case, the number of Killing spinors for such
backgrounds is N > 2N_, where N_ is the number of 7_ Killing spinors.

14.2.2 R?! backgrounds

Let us re-examine the solution of the KSEs. In the limit ¢ — oo, the integrability condi-
tions (2.31) become
O:04n+ =0. (14.2)

In the same limit, the solution of the KSEs (5.5) along the z-direction is
Nt =04+ 25474, Eix(ox—71)=0, (14.3)

where =1 = AI',©.. The integrability conditions are automatically satisfied because
of (14.2). The remaining independent KSEs are

Vgi)ai =0, vz(-i)T:t =0,
AF oL =0, AF L =0, (14.4)
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where V(&) and A®) are given in (5.12). 7+ and oy satisfy the same differential equations
and are not linearly independent. As a result, it suffices to consider only the o4 spinors
and set 7+ = o+. Therefore the number of supersymmetries preserved by R?! backgrounds
is N = dimKer(V®), AH)) 4 dimKer(V(~), A)).
Next, it is straightforward to observe that if o_ is a solution of (5.11) in the limit
{ = oo, then
o, =A"T.I,0o_, (14.5)

is also a solution. Conversely, if o is a solution, then
o =Al.T o4, (14.6)

is also a solution. Therefore, dimKer(V(*), A®)) = dimKer(V(~), A)), and so the R*!
backgrounds preserve an even number of supersymmetries.

Observe that in general the Killing spinors can depend non-trivially on the z coordi-
nate. This is possible only if o+ ¢ Ker =4 even though it is required that oy € Ker =%
because of (14.2).

14.2.3 R3:! backgrounds

The counting of supersymmetries of R3! backgrounds is similar to R?! solutions. In
particular integrating the KSEs along the z and x directions we find that

N =0y + AL, +20;)04L7L, Oi(or —74) =0, (14.7)

with o1 and 7o both in the kernel of (V&) A®)) given in (7.12) and E4 = AT',0..
Therefore as in the R*! case these spinors are not linearly independent and so suffices to
consider o4+ and set 74 = o1. In addition if o4 is a solution, so is I',,04. This together
with the fact that if o is a solution so is o = AI',I'_oy, and vice versa if o_ is a
solution so is 0, = A7, T o_, one concludes that R*! backgrounds preserve N = 4k
supersymmetries.

Note again that the Killing spinors are allowed to depend linearly on the coordinates
of R, This is the case only if 7+ ¢ KerZ1 even though it is required that 74 € Ker =%
because of (14.2).

14.2.4 R" bl n > 4, backgrounds

As in the previous cases, one can prove that

Ny =04+ + A(Zx“r“) O, @:I:(O':t — T:t) =0, (14.8)
o

in the limit ¢ — oo, and that the only linearly independent Killing spinors are o, where
z# are all the coordinates of R*~b! apart from the lightcone ones u, . Moreover, it suffices
to count the linearly independent o spinors as the o_ spinors can be constructed as
o_ = AT'.T'_o, from the o ones, and vice versa because of the relation o, = A7, o_.

Next given a o Killing spinor, one can see by direct inspection of the KSEs on M10—"
that I'ypo4, a < b, are also Killing spinors, where I', are the gamma matrices in directions
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orthogonal to 4+, —. It turns out that for n = 5, these are all linearly independent and
therefore these backgrounds preserve N = 8k supersymmetries.

For n = 6, apart from ['yp04, a < b, observe that 'y 40030,0+, a1 < a2 < a3 < ay4
also solve the KSEs on M*. However, there is a unique Clifford algebra elementI'y, aya50a,,
a1 < az < az < a4, in this case and has eigenvalues +1, and commutes with all the
KSEs. Now if oy is in one of the two eigenspaces, only four of the 7 Killing spinors
{04, Tapoy|a < b} are linearly independent. Therefore the R>! backgrounds preserve
N = 8k supersymmetries.

Suppose now that n = 7. Given a Killing spinor oy, then I'yyor and I'y 4pa3a40+,
a1 < az < a3 < aq, are also Killing spinors. There are five I'y,goa3a04, 01 < a2 < a3 < ag
Clifford algebra operations in this case. Choose one, say I'yy). As in the previous case
o4+ can be in one of the eigenspaces of I'ly. In such a case, only 8 of the previous 16
Killing spinors are linearly independent. Therefore, the R%! backgrounds preserve N = 16k
supersymmetries. Of course as a consequence of [13] the non-trivial R%! backgrounds
preserve strictly 16 supersymmetries. Furthermore adapting the analysis of section 13 in
the limit of infinite AdS radius, one finds that A must be constant, H = 0 and &£ = 0.

Next take n = 8. Given a Killing spinor o4, then I'yyoy, Toja0aza,.04, a1 < a2 <
a3 < a4, and 'y, o504, a1 < --- < ag are also Killing spinors. All fifteen 'y 405045
a1 < as < ag < ay, Clifford algebra operators commute with the KSEs and have eigenvalues
+1. Taking a commuting pair of such operators, say I'yy; and F’[ 4] and choosing o to lie in
a common eigenspace of both these operators, only eight of the 32 spinors mentioned above
are linearly independent. As a result, R"! backgrounds preserve N = 16k supersymmetries.
In fact non-trivial R”! backgrounds backgrounds, like the D7-brane, preserve strictly 16
supersymmetries. Again for this backgrounds A is constant and &¢& = 0. Furthermore, it
can be easily seen from the results of section 13 and after taking the AdS radius to infinity
that there are no non-trivial R®! supersymmetric backgrounds.

It should be further noted that all R~ with N > 16 are homogeneous spaces [17]. If
one can show that A is invariant and so constant, then the field equation of the warp factor
implies that there are no such no trivial backgrounds preserving N > 16 supersymmetries.
It is likely that this is the case for all such backgrounds for which the Killing spinors do
not exhibit a R*~b! coordinate dependence.

15 On the factorization of Killing spinors

In many of the investigations of AdS,, x M9~ backgrounds in IIB and other theories, it
is assumed that the Killing spinors of the spacetime factorize into a product

e=Y®Y, (15.1)

where 1) is a Killing spinor on the AdS spaces satisfying the equation
Vb + Ayt = 0, (15.2)

and where V and v, are the spin connection and gamma matrices on AdS,, respectively.
Since we have solved the KSEs on the whole spacetime, we can now test this hypothesis.
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R 5, M10—7 N
n= N <28
n=3 2k, k < 14
n=4 4k, k < 14
n=>5 8,16, 24
n==~6 8,16, 24
n = 16
n=3~8 16
n =10 32

Table 2. The number of supersymmetries N of R x,, M19~™ is not a priori an even number. The
corresponding statement for AdSs backgrounds is proven using global considerations which are not
applicable in this case. For the rest, the counting of supersymmetries follows from the properties
of KSEs and the classification results of [13-16]. All backgrounds with n > 8 are maximally
supersymmetric and so locally isometric to R%:t.

To do this observe that if the hypothesis is correct, then € also solves (15.2). So it suffices
to substitute our Killing spinors into (15.2) to see whether they automatically satisfy it.
This computation is similar that that we have done for M-theory in [24]. It turns out that
the Killing spinors e solve (15.2) iff

I.e = *e. (15.3)

However our Killing spinors do not satisfy this equation. As a result the original hypothesis
is not valid in general.

To illustrate that (15.3) is restrictive, we shall test it against the supersymmetry count-
ing for the AdSs x S° background. It is known that this background preserves all 32 su-
persymmetries. It can be easily seen that to solve the algebraic KSEs for this background
in (9.5) for the 74 spinor, one has to impose

Tyyry = +iT . (15.4)

After choosing one of the signs, it is clear that the dimension of the space of solutions
is 8 counted over the reals. The gravitino KSE is then solved without any additional
constraints on 7. Next using the relation between 7., 7, o4 and o_ solutions to the
KSEs, we conclude that the number of Killing spinors of this background is 4 x 8 = 32 as
expected. However if one also imposes the condition (15.3) on 7, one will arrive at the
incorrect conclusion that AdSs x S° preserves only 16 supersymmetries.

We have seen that the spinor factorization assumption in (15.1) leads to the incorrect
counting of supersymmetries for AdS backgrounds. It is also likely that it puts additional
restrictions on the geometry of the transverse spaces M'°~". We shall investigate this in
another publication.

To continue, let us examine the factorization of the Killing spinors as in (15.1) for flat
backgrounds to see whether a similar issue arises as for the AdS. A direct inspection of
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the Killing spinors we have found in section 14.2 reveals that the Killing spinors do not
solve the KSEs on R"~1! whenever they have an explicit dependence on the coordinates
of R* 11 As we have already stressed, this dependence appears whenever o4 are not in
the kernel of ©,. However it is required as a consequence of the KSEs, field equations and
Bianchi identities that ©+0+04+ = 0. Thus assuming that the Killing spinor factorize as
in (15.1) with ¢ to be a constant spinor on R"~11 we find that this imposes the additional
condition ©Lo4+ = 0 on the Killing spinors. It is not apparent that this condition always
holds for flat backgrounds. On the other hand we are not aware of examples for which it
does not, and so the question will be investigated further elsewhere.

16 Conclusions

We have determined the a priori fractions of supersymmetry preserved by the warped
AdS,, and flat backgrounds R?~b! in IIB supergravity. The results are tabulated in tables
1 and 2, and in equations (1.1) and (1.3), respectively. To achieve this, we have solved
the KSEs of IIB supergravity without making any assumptions on the form of the fields
and Killing spinors, and identified the independent KSEs on the transverse spaces M0~
There are two ways to count the number of supersymmetries for AdS,, backgrounds. One
is directly from the KSEs on M9~ and the other is from counting the zero modes of a
suitable Dirac-like operator on M19~" coupled to fluxes. For the latter, we have proven new
Lichnerowicz type theorems using the Hopf maximum principle which relates the Killing
spinors to the zero modes of the Dirac-like operator. As a consequence, we have extended
the Lichnerowicz theorem for connections with holonomy contained in a GL group.

The solution of the KSEs of R?~b! backgrounds can be recovered from that of AdS,,
in the limit that the AdS radius goes to infinity. The counting of supersymmetries for such
backgrounds then proceeds by counting the solutions of the KSEs on M'°~". The count-
ing of Killing spinors for R"~!! backgrounds is different from that of AdS,, backgrounds
because of differences in the identification of linearly independent Killing spinors. Further-
more, unlike the AdS,, case, R~ 5! backgrounds do not satisfy the regularity assumptions
of AdS,, backgrounds and so there is no corresponding counting of supersymmetries via
the counting of zero modes of Dirac-like operators.

Our result is the first step towards the classification of all AdS,, and flat backgrounds
R?~L1 in IIB supergravity. The next step is to investigate the existence of backgrounds
for each fraction of supersymmetry preserved. We have already excluded the existence of
many cases as can be seen in tables 1 and 2. However, it is likely that further cases can be
excluded especially in the AdS, case after additional conditions are put on the transverse
space M'0~" like for example compactness. The exploration of this question as well as the
geometry of all AdS,, backgrounds will be presented elsewhere.

Acknowledgments

GP is partially supported by the STFC grant ST/J002798/1. JG is supported by the STFC
grant, ST/1004874/1. JG would like to thank the Department of Mathematical Sciences,
University of Liverpool for hospitality during which part of this work was completed.

— 34 —



A Conventions

Our form conventions are as follows. Let w be a k-form, then

1

a ﬁ%‘l...ikdwil Ao Ada'™ (A.1)
and
1 . .

dw = 00 Wiy iy da™ A A dat (A.2)

leading to
(dw)il---ik+1 = (k -+ 1)8[i1wi2...ik+1] . (A3)

Furthermore, we write

w? = wn...ikwilmik ) wi21i2 = wi1j1---jk—1wi2jlmjk71 . (A.4)

Given a volume form dvol = %eiln_indxil A -+ Adz', the Hodge dual of w is defined as

xw A X = (x,w)dvol (A.5)
where
1 o
(x,w) = gXil...ikwll'"zk : (A.6)
So
1 .
* Wity =y Citein” 7 Wi - (A7)

In particular the (anti) self-duality of the IIB 5-form field strengths is given by

1
Fu v = _5€M1...M5N1"'N5FN1...N5 ; (A.8)

eg Fy_,34 = —Fsg789. For complex forms
| w |P= @iy g™ (A.9)

It is well-known that for every form w, one can define a Clifford algebra element ¢/ given
by

(/} = wil_”ikFil'“ik s (AlO)

where I'", i = 1,...n, are the Dirac gamma matrices. In addition we introduce the notation
(/]h = wi1i2...ikri2"'ik , F¢i1 — I‘iliz...ik+1wi2mik+l _ (A.ll)

The rest of our spinor conventions can be found in [25].
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B AdS;: proof of the maximum principle

In this appendix, we shall derive (6.6). This involves extensive Clifford algebra manipula-
tions and the use of the field equations, in particular the scalar part of the Einstein equation
on M7. For this, we consider || y ||, assume 2(*)y, = 0, and evaluate V2 ||x||* to find

Ve P = 2 DO + S RO I ?
+ ReRe <><+, [—4\1/(+>i* — 2 _orug(h) 14qA—1rziIBa<+>] VZ-X+>
4 Re <><+, [—2 (\IAW + qATIBOT r) (q/§+) n qA_lFZZ-IBB(JF))
—2viet) —oriv et 1y, (qA—lrziBH))} X+> , (B.1)
where

\I,(Jr)T _ L&A + %Qi _ i (F/Y),Fz — Ey’if‘z

Y
b (=g (D), — oM+ oot ) O
96 96 ’
1 184
]BS(+)T:—QC€—2$AFZ+Z4Y+< o =+ 55 )C*- (B.2)

Expanding out the third term, we find that
Re <X+, [—4\1/<+>“ — 20D o) 14qA—1r“'B<+>] v,-x+>

= Re <X+, {MCAlI‘Z" — (3+79)0"log A — (1 + 7q) (T@log A)i

12
VR i T2+ Mg 1+7
— Q"+ (TQ) +quyr i (ty)'T
—6+ 14 6 +42q . ; 60 252 .
+< oG =) + o T =5 q@F”) C*] Vm>- (B.3)

For q = %, this term can be rewritten as

Re <X+, [—4\1:<+>“ —2uH) ot 14qA—1rziB(+>] vl-x+>
= —30'log AV |[x+]* + Re (x1, FT'Vix )

= —30'log AV |[x+]* — Re <X+7]'Ti [ St ﬁrzzB( )] ><+>7 (B.4)
where . .
F = %A‘lfz + 2@ log A — i) + <24ﬁ + 4<I>FZ> Cx. (B.5)

Combining the F-term with the bilinear part of the fourth term in (B.1), we find that

A 1 1 A
_ (it L = gH)ip= . - Fri +) . (+)
Re <X+> 2 <\If + 7AIB§ =+ .7:F > <\I/ + 7AFzzIBB ) X+>

B¢ i 100 13 P 3iyi
= Re (a2 | S50 Jfota - 15 roay+ Sy - v,
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40A™% T 7TATT T 144 2@ v
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2 o),k (= (o), St - goar) o)
_ __8 _ 17 _@—4.i_£6__2_12
= e <X+’[ Az A S T ATOAY - Sy v Y
3 2 1 %
@ P T — 288M g
7
+<12QZ (Fﬂ) 42€A A(‘)ZA (Fﬂ) + YHz z— 7&4 >C*:|X+> . (B6)

We can use the field equations and Bianchi identities to rewrite the last line of (B.1)
as

. L. 2 X
Re <X+, [—2V2\Ill(.+) — Qr‘wvi\pgﬂr) ) v (AFZZB(+)>:| X+>

2 2 i o i 1

2 A2

+mﬁﬁ— *Hﬁ - *HU ij

+< 0. (ThT) + (ﬂ)) ] +>. (B.7)

The second, fourth, and F-term part of the third term on the right side of equa-
tion (B.1) thus sum to

46 3 o
—Re (x| g + gpla? - 472 - 2 @ P T

4 4 49
Re <X+, [W ot g(aA? - oy - S ataay - Lyt e
+3 @ﬁFﬁ | €7 +&€,T7 + mmﬁ —~ —H i - H”ﬁ
+12‘HH2+<42€A ‘m‘“( )’ + 56O
+77 YHF 7£A >C*] > (B.8)

Noting that

HB(H“HQ _ <X+,B(+)TB(+)X+>
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we can now write equation (B.1) as (6.6). We also remark that the values of ¢ for AdS,

backgrounds are given by ¢ = 1’6‘7%.

C AdS,: proof of the maximum principle

To prove (8.5), we assume that 2(t)y, = 0 and evaluate

V2 x4 ]* =2 HD(JF)XJFW + %R(G) 411
+ Re <x+, [—4\1/(”“ — 29 _opifyH)
—12%?1153(*)} Vixt)
+Re <><+, [—2 (xp(”” + %BH)T r) (wf )t %inlﬂ%(”)
—2viel —oriv, el 12y, (%F“’B(“ﬂ X+> . (C.1)

wﬁ”ziﬁﬁ+3@—3ﬁnx

1 1 9
M- 3 (O0), o+ (=g (D), = gt ) O

A
(G0 ) _ 2 hr?
B % 2&} AT, er %HF Cx. (C.2)
Expanding the third term in (C.1), we find that

Re <x+, [—4\IJ<+>“ — 29 _opiiglt) 12%rzila%<+)} Vz’X+>

i 1 7 . i . i
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+< R gy m?ﬁﬁ(%}vM+>. (C3)

For ¢ = %, this can be written as

Re (x4, |40 — 20 _opiig(*) 12%1““15%(”] Vix+)

4 7 )
= =" AVi x4 |* + Re (x4, FT'Vix+ )
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) 1

where
_ 71"2
7= (A

Combining the F-term with the bilinear part of the fourth term in (C.1), we find that
Re { yi,—2 (@i 4 LBH—)TFZ%' + lfri gt 4 LF B )y
" 3A VS -
i

9C i iq
_R6<X+’ [GEAP +6A8A 3A

2wy <_ (T - 24Hi> c*]

X[ GECAF“Jr 3A0A T 6A (r94), - 2Qi_§iYiF“
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8 8t
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= Re <X+’ [_ 3242 3A2 3
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We can use the field equations and Bianchi identities to rewrite the last line of (C.1)

as
Re <X+7 [—QVi\IIEJ“) — QFijvi\Ijg"') . v <jrziB(+)>] X+>
1
— 92 B 1
= Re <X+7 <A2 (dA)? AV A+ d)Q 2iVYiT,, 48d,HC*) X+>

9 2 2 | 7 Tij
1 _ o
+ mHilléis Hj1j2j3rz”223]1]2]3

+ <—1Z‘2Qi (TH)' + 112€Z(FH)Z> C*] X+> :

The second, fourth and F-term part of the third term on the right side of equation (C.1)

(C.7)

thus sum to
4 4 8l 82c 4
Re<X+, [362142 3A2(dA) ——Y@Al“m—i— YT —|—3
2 Ty o = ] - 2
+ €1 +&i€,T 864%? méf H I +12 I |
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Noting that

2 11 iA_ zAc A?
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e P = Re (1€ 12 461 - LA + e (TR Cx ) (©9)

we can now write equation (C.1) as (8.5).

D AdSj5: proof of the maximum principle

To prove the formula (10.5), we evaluate

Ve P = 2 B[+ 5RO fxal?
+ Re <><+, [—4\1%*)“ — 29 _oriiy(H)
10 APZZBH)} V@-x+>
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Expanding the third term in (D.1), we find that
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For ¢ = %, the above expression can be rewritten as
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where
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Combining the F-term with the bilinear part of the fourth term of equation (D.1), we find
that
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We can use the field equations and Bianchi identities to rewrite the last line of (B.1) as
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The second, fourth and F-term part of the third term on the right side of equation (D.1)
thus sum to
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Noting that
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we can now write equation (D.1) as (10.5).

E AdSg: proof of the maximum principle

To prove (12.5), we evaluate

V2l = 2 [pOx| + SR x 2
+Re (x, [—4@“” — 2w gt S%MB(“} Vix)
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TR gg AL°C (E.2)

Using the fact that Re <¢, Fij¢> = Re <¢, I'JC gb> = 0, we can expand the third term
n (E.1) as
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For ¢ = 1, the above term can be rewritten as
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where 4 5 1
c.. 5 . 1
7Ar +AaA Z@+24HC*. (E.5)

Combining the F-term with the bilinear part of the fourth term in (E.1), we find that
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Next, we use the field equations and Bianchi identities to expand the derivatives in the
fourth term on the right side of equation (E.1) as
. , 1 .
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The second, fourth and F-term part of the third term on the right side of equation (E.1)
thus sum to
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Noting that
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we can now write equation (E.1) as (12.5).
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