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suitably restricted. In addition under some assumptions required for the applicability of
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1 Introduction

In the past thirty years, AdS backgrounds have found widespread applications in supergrav-

ity, string theory and M-theory. Following the original work of Freund and Rubin [1], AdS

backgrounds have been used in supergravity compactifications, for reviews see [2, 3] and

references within, and more recently in AdS/CFT [4]. In particular, IIB AdS backgrounds,

like AdS5 × S5, have been instrumental in the foundation of AdS/CFT correspondence.

Because of this, there is an extensive literature in constructing such IIB backgrounds and in

exploring their applications, for some selected publications see [5]–[11]. So far the construc-

tion of most supersymmetric AdS backgrounds has been based on ansatzes on either the

form of the fields, or of the Killing spinors.1 As a result, most of the investigations have not

been systematic, and to our knowledge there is no full classification of AdS backgrounds.

In this paper, we initiate the classification of all IIB AdS backgrounds by specifying

the fractions of supersymmetry preserved by such backgrounds. In a future publication, we

shall present their geometry [12]. In particular, we shall solve the KSEs of IIB supergravity

without any additional assumptions2 on the fields and Killing spinors, apart from imposing

on the former the symmetries of the AdS spaces. As a result, we identify the a priori

number of supersymmetries N preserved by these backgrounds. In particular, we show

that for AdSn ×w M
10−n,

N = 2[
n

2
] k , 2 ≤ n ≤ 4 ; N = 2[

n

2
]+1 k , 4 < n ≤ 6 , (1.1)

where k ∈ N+. To prove the above result for AdS2 backgrounds, we suitably restrict the

fields and the transverse space M8, eg M8 can be taken to be compact without boundary,

but such an assumption is not necessary for the rest of the backgrounds. Because of the

classification results of [13–16], the number of supersymmetries N are further restricted. In

particular, it is known that there are no AdS2 backgrounds with N > 26 supersymmetries.

As a result k < 14 in this case. Similar restrictions apply to the other cases and the

collected results can be found in table 1. Furthermore all solutions preserving more than

16 supersymmetries are homogenous [17].

Furthermore, we demonstrate that the the Killing spinors of AdSn ×w M
10−n back-

grounds can be identified with the zero modes of Dirac-like operators on M10−n coupled

to fluxes. For this and under suitable assumptions on M10−n, we prove new Lichnerowicz

type theorems which give a 1-1 correspondence between the solutions of the KSEs and the

zero modes of appropriate Dirac-like operators D (±). As a consequence, we find that for

AdSn backgrounds

N = 2(N− + Index(D)) , n = 2; N = ℓ(n)N− , n > 2 , (1.2)

1As in M-theory, the Killing spinors do not factorize into a product of a Killing spinor on AdS and a

Killing spinor on the transverse space.
2In the investigation that follows, we consider backgrounds up to discrete identifications.
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where D is the Dirac operator possibly twisted with a U(1)) bundle on M8, N− =

dimKerD (−) and ℓ(n) = 2[
n

2
] for 2 < n ≤ 4 and ℓ(n) = 4 for 4 < n ≤ 6. Observe

that N− is even for n = 5 and N− = 4k for n = 6.

Our AdSn results can be adapted to R
n−1,1 ×w M

10−n backgrounds in the limit that

the AdS radius goes to infinity. This limit is smooth in all our local computations but some

of the regularity assumptions needed to establish some of our global results, like the new

Lichnerowicz type theorems, are no longer valid. Nevertheless, we have solved the KSEs

and the number of supersymmetries preserved by the R
n−1,1 ×w M

10−n is

N = 2[
n

2
]k , 2 < n ≤ 4 ; N = 2[

n+1

2
]k , 4 < n ≤ 8 . (1.3)

The supersymmetries preserved by R
1,1×wM

8 backgrounds cannot be decided. This is be-

cause to show that AdS2×wM
8 preserves an even number of supersymmetries requires the

use of a maximum principle argument which may not be valid for R1,1×wM
8 backgrounds.

The results have been tabulated in table 2.

To prove our results, we have to solve the gravitino and dilatino KSEs of IIB super-

gravity for AdS backgrounds. For this, we have used the observation in [18] that all AdS

backgrounds can be described as near horizon geometries of extreme Killing horizons. This

facilitates the integrability of the KSEs along the AdS directions. First after decompos-

ing the Killing spinor as ǫ = ǫ+ + ǫ−, where Γ±ǫ± = 0 are lightcone projections, we use

the near horizon results of [19] to integrate the KSEs along two lightcone directions, see

also [20, 21]. After the integration the Killing spinors are written as ǫ± = ǫ±(η+, η−; r, u),

where (r, u) are appropriate coordinates, ǫ±|r=u=0 = η± and η± are spinors which are now

localized on the co-dimension two subspace S given by r = u = 0 which is the horizon

spatial section. To identify the remaining independent KSEs we use a key result of [19], in

which it is shown, after a rather involved argument and the use of field equations, that the

remaining independent KSEs are derived from the naive restriction of the original KSEs

on S. The final result is two sets of KSEs on S one acting on η+ and the other on η−.

Each set contains a parallel transport equation associated to the original gravitino and one

algebraic KSE associated to the original dilatino KSE. This suffices to integrate the KSEs

on AdS2 ×w M
8 along the AdS2 directions as M8 = S.

For the rest of the AdSn backgrounds, the KSEs can be integrated along all AdS

directions. For this, the Killing spinors η± are expressed as η+ = η+(σ+, τ+, x) and η− =

η−(σ−, τ−, x) where now σ± and τ± are localized onM10−n and x denotes AdS coordinates.

The independent KSEs can be organized into four sets of equations onM10−n, one for each

σ± and τ±. Each set contains three KSEs. The first two are associated to the original

gravitino and dilatino KSEs, and there is an additional algebraic KSE which arises from

the process of integrating over the remaining AdSn directions.

The counting of supersymmetries proceeds as follows. The proof that for AdS2 back-

grounds the number of supersymmetries is even and the formula in (1.2) follows from the

results of [19] on the number of supersymmetries preserved by near horizon geometries.

For this, it is required that the fields and M8 satisfy the conditions for the Hopf maximum

principle to apply. In particular, M8 can be taken to be compact and connected without

boundary, and the fields smooth.

– 3 –
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The counting of supersymmetries for the remaining AdSn, n > 2, backgrounds is done

in a different way. In particular it is observed that there are Clifford algebra operators

which intertwine between the four sets of KSEs. So given a solution in one set of KSEs, one

automatically has solutions in the other sets. After identifying all the intertwining Clifford

algebra operators for each of the AdSn backgrounds, one derives the results of (1.1). It

should be noted that for the proof of (1.1), there is no need to put any restriction onM10−n

or on the fields as is done for AdS2 case.

The proof of the formula for N in (1.2) for AdS2 backgrounds is similar to that for

near horizon geometries. As has been established in [19], this necessitates the proof of

two Lichnerowicz type theorems, one for each η± spinor. The proof of these theorems are

based on the Hopf maximum principle and a partial integration formula. A simplification

for AdS2 backgrounds is that both Lichnerowicz type theorems can be demonstrated using

only the Hopf maximum principle.

Furthermore, the proof of the formula for N in (1.2) for the remaining AdSn back-

grounds again requires the proof of four Lichnerowicz type theorems one for each of the

spinors σ± and τ±. The proof of these theorems utilizes the Hopf maximum principle on

the square of the length of the spinors σ± and τ±. Instrumental in the proof is the use of

the field equations and the choice of modified Dirac-like operators D (±) on M10−n coupled

to fluxes. These modified Dirac-like operators are constructed as an appropriate linear

combination of the Dirac operator associated with the gravitino KSEs on M10−n and the

new algebraic KSEs that arise in the analysis. It is remarkable that the zero modes of

these modified Dirac-like operators solve not only the parallel transport equation, which

is expected from the classic Lichnerowicz theorem, but also solve the two algebraic KSEs.

Note that unlike the AdS2 case, in the remaining AdSn cases, there is no contribution from

the index of the Dirac operator to N , as it vanishes.

To prove the formula (1.3) for the number of supersymmetries preserved by R
n−1,1×w

M10−n backgrounds, one takes the AdS radius to infinity. All the local computations

for AdSn backgrounds are valid in this limit and so carry through without alterations.

However, as we shall explain this is not the case for some of the global results, like the

Lichnerowicz type theorems, which require for their validity certain regularity restrictions

on the fields which are no longer valid. Another significant difference, which affects the

counting of supersymmetries, is that in the limit of infinite AdS radius the spinors σ± and

τ± are no longer linearly independent. Because of this, the counting of supersymmetries

between AdSn and R
n−1,1 backgrounds is different.

This paper is organized as follows. In section 2, we explain how the AdSn ×w M
10−n

backgrounds can be written as near horizon geometries, and summarize the key results

of [19] regarding the solution of IIB KSEs for near horizon geometries. In section 3, we

solve the KSEs for AdS2×wM
8 backgrounds and find under which conditions the number of

supersymmetries preserved is even. In section 4, we prove new Lichnerowicz type theorems

for AdS2 ×w M
8 backgrounds and identify Killing spinors with the zero modes of a Dirac-

like operator on M8. In section 5 and 6, 7 and 8, 9 and 10, 11 and 12, the KSEs are solved

and identification of Killing spinors as zero modes of Dirac-like operators onM10−n is done,

for AdS3 ×w M
7, AdS4 ×w M

6, AdS5 ×w M
5 and AdS6 ×w M

4 backgrounds, respectively,
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resulting in the proof of formulae (1.1) and (1.2). In section 13, we show that there are

no supersymmetric AdSn ×w M
10−n backgrounds for n > 6. In section 14, we prove the

formula (1.3) for Rn−1,1×wM
10−n backgrounds and in section 15, we give our conclusions.

In appendix A, we have summarized our conventions. In appendices B, C, D, E, we present

the proof of the maximum principle formulae on the length of zero modes of D (±), required

to prove the new Lichnerowicz type theorems for AdSn×wM
10−n backgrounds, 2 < n < 7.

2 AdS and near horizon geometries

2.1 Warped AdS and flat backgrounds

The warped AdS and flat backgrounds can be written universally as near horizon geome-

tries [18]. Let F , G and P be the 5-, 3- and 1-form field strengths of IIB supergravity. All

AdS backgrounds can be described in terms of the fields

ds2 = 2e+e− + ds2(S) , F = re+ ∧X + e+ ∧ e− ∧ Y + ⋆8Y ,

G = re+ ∧ L+ e+ ∧ e− ∧ Φ+H , P = ξ , (2.1)

where we have introduced the frame

e+ = du, e− = dr + rh−
1

2
r2∆du, ei = eiIdy

I , (2.2)

and

ds2(S) = δije
iej , (2.3)

is the metric on the horizon spatial section S which is the co-dimension 2 submanifold given

by the equations r = u = 0. In addition, the self-duality of F requires that X = − ⋆8 X.

The dependence on the coordinates u and r is explicitly given. ∆, h, Y are 0-, 1- and

3-forms on S, respectively, Φ, L and H are λ-twisted 1-, 2- and 3-forms on S, respectively,

and ξ is a λ2-twisted 1-form on S, where λ arises from the pull back of the canonical bundle

of the scalar manifold3 SU(1, 1)/U(1) on S. Furthermore, the Bianchi identities imply that

X = dhY −
i

8
(Φ ∧ H̄ − Φ̄ ∧H) , L = dhΦ− iΛ ∧ Φ+ ξ ∧ Φ̄ , (2.4)

and so X and L are not independent fields.

Moreover, viewing the backgrounds AdSn ×w M
10−n as near horizon geometries, the

spatial horizon sections S are S = Hn−2 ×w M10−n, ie warped products of hyperbolic

(n-2)-dimensional space with M10−n. This can be easily seen after the fields are stated

explicitly for each case below.

Although all AdS backgrounds are described by (2.1), the field dependence of individual

AdS cases differs. To address this, we shall separately state the fields in each case as follows.

3The scalar manifold can also be taken as the fundamental domain of the modular group but we shall

not dwell on this.
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2.1.1 AdS2 ×w M8

In this case M8 = S and the fields become

ds2 = 2du

(

dr + rh−
1

2
r2∆du

)

+ ds2(M9) , F = e+ ∧ e− ∧ Y + ⋆8Y ,

G = e+ ∧ e− ∧ Φ+H , P = ξ , (2.5)

where

h = −2A−1dA = ∆−1d∆ , X = L = 0 . (2.6)

Observe that dh = 0 and A is the warp factor.

2.1.2 AdS3 ×w M7

The fields are

ds2 = 2du(dr + rh) +A2dz2 + ds2(M7) , F = Ae+ ∧ e− ∧ dz ∧ Y − ⋆7Y

G = Ae+ ∧ e− ∧ dz ∧ Φ+H , P = ξ , (2.7)

where

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , X = L = 0 , (2.8)

and ℓ is the radius of AdS.

2.1.3 AdS4 ×w M6

The fields are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/ℓdx2) + ds2(M7) ,

F = A2ez/ℓ e+ ∧ e− ∧ dz ∧ dx ∧ Y + ⋆6Y ,

G = H , P = ξ , (2.9)

where

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (2.10)

2.1.4 AdS5 ×w M5

The fields are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/ℓ(dx2 + dy2) + ds2(M5) ,

F = Y
[

A3e2z/ℓe+ ∧ e− ∧ dz ∧ dx ∧ dy − dvol
(

M5
)

]

,

G = H , P = ξ , (2.11)

where

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (2.12)

– 6 –
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2.1.5 AdS6 ×w M4

The fields are

ds2 = 2du(dr + rh) +A2

(

dz2 + e2z/ℓ
( 3
∑

a=1

(dxa)2
))

+ ds2(M4) , F = 0,

G = H , P = ξ , (2.13)

where

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (2.14)

It should be noted that the warped backgrounds Rn−1,1 ×wM
10−n are included in our

analysis. They arise in the limit that the AdS radius ℓ goes to infinity. This limit is smooth

for all our field configurations presented above. However, some statements that apply for

AdS do not extend to the flat backgrounds. Because of this some care must be taken when

adapting the results we obtain for AdS backgrounds to the limit of infinite radius.

2.2 Bianchi identities and field equations

It is clear from the expressions of the fields for the AdS backgrounds in the previous section

that L = X = 0 and dh = 0. As a result, we have

dhY −
i

8
(Φ ∧ H̄ − Φ̄ ∧H) = 0, dhΦ− iΛ ∧ Φ+ ξ ∧ Φ̄ = 0 . (2.15)

Furthermore, the remaining Bianchi identities for the backgrounds (2.1) are

d ⋆8 Y =
i

8
H ∧ H̄ , dH = iΛ ∧H − ξ ∧ H̄ ,

dξ = 2iΛ ∧ ξ , dΛ = −iξ ∧ ξ̄ , (2.16)

where Λ is a U(1) connection of λ, see [19] for more details.

The independent field equations of the AdS backgrounds (2.1) are

∇̃iΦi − iΛiΦi − ξiΦ̄i +
2i

3
Yℓ1ℓ2ℓ3H

ℓ1ℓ2ℓ3 = 0 , (2.17)

∇̃ℓHℓij − iΛℓHℓij − hℓHℓij − ξℓH̄ℓij +
2i

3
(⋆8Yijℓ1ℓ2ℓ3H

ℓ1ℓ2ℓ3 − 6YijℓΦ
ℓ) = 0 , (2.18)

∇̃iξi − 2iΛiξi − hiξi +
1

24
(−6Φ2 +H2) = 0 , (2.19)

1

2
∇̃ihi −∆−

1

2
h2 +

2

3
Y 2 +

3

8
ΦiΦ̄i +

1

48
‖ H ‖2 = 0 , (2.20)

and

R̃ij + ∇̃(ihj) −
1

2
hihj + 4Y 2

ij +
1

2
Φ(iΦ̄j) − 2ξ(iξ̄j) −

1

4
Hℓ1ℓ2(iH̄j)

ℓ1ℓ2

+δij

(

−
1

8
ΦℓΦ̄

ℓ −
2

3
Y 2 +

1

48
‖ H ‖2

)

= 0 , (2.21)
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where ∇̃ and R̃ are the Levi-Civita connection and the Ricci tensor of S, respectively.

There is an additional field equation which is not independent because they follow from

those above. This is

1

2
∇̃2∆−

3

2
hi∇̃i∆−

1

2
∆∇̃ihi +∆h2 = 0 , (2.22)

which we state because it is useful in the investigation of the KSEs.

2.3 Killing spinor equations

The gravitino and dilatino KSEs of IIB supergravity [22, 23] are

(

∇M −
i

2
QM +

i

48
/FM

)

ǫ−
1

96

(

Γ/GM − 9/GM

)

C ∗ ǫ = 0 , (2.23)

/PC ∗ ǫ+
1

24
/Gǫ = 0 , (2.24)

respectively, where Q is a U(1) connection of λ.

These KSEs can be solved for the fields (2.1) along the directions u, r. For this first

decompose ǫ = ǫ++ ǫ−, where Γ±ǫ± = 0. Then a direct substitution into (2.23) and (2.24)

reveals that the Killing spinor can be expressed as

ǫ+ = φ+, ǫ− = φ− + rΓ−Θ+φ+ ; φ+ = η+ + uΓ+Θ−η− , φ− = η− , (2.25)

where η± do not depend on both u and r coordinates and

Θ± =

(

1

4
/h±

i

12
/Y

)

+

(

1

96
/H ±

3

16
/Φ

)

C ∗ . (2.26)

After some extensive computation using the field equations described in [19], one can show

that the independent KSEs for the backgrounds (2.1) are

∇
(±)
i η± = 0 , A(±)η± = 0 , (2.27)

where

∇
(±)
i ≡ ∇̃i +

(

−
i

2
Λi ∓

1

4
hi ∓

i

4
/Y i ±

i

12
Γ /Y i

)

+

(

±
1

16
Γ/Φi ∓

3

16
Φi −

1

96
Γ /H i +

3

32
/H i

)

C∗ , (2.28)

and

A(±) ≡

(

∓
1

4
/Φ+

1

24
/H

)

+ /ξC ∗ . (2.29)

It turns out that (2.27) are the restriction of (2.23) and (2.24) on the horizon section S for

ǫ given in (2.25).

Furthermore, one can show that if η− is a solution to the KSEs, then

η+ = Γ+Θ−η− , (2.30)

– 8 –
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also solves the KSEs. This is the first indication that IIB horizons exhibit supersymmetry

enhancement. Indeed if S is compact and the fluxes do not vanish, one can show [19] that

KerΘ− = {0} and so η+ given in the above equation yields an additional supersymmetry.

Although the following integrability conditions

(

1

2
∆ + 2Θ−Θ+

)

η+ = 0 ,

(

1

2
∆ + 2Θ+Θ−

)

η− = 0 , (2.31)

are implied from the (2.27) KSEs, the field equations and the Bianchi identities it is conve-

nient for the analysis that follows to include them. As we shall see, they are instrumental

in the solution of the KSEs along the AdSn directions for n > 2.

2.4 Horizon Dirac equations

Before we complete this section, we shall summarize the results of [19] on the relation

between Killing spinors and zero modes of Dirac-like operators for IIB horizons. We have

seen that the gravitino KSE gives rise to two parallel transport equations on S associated

with the covariant derivatives ∇(±) (2.28). If S± are the complex chiral spin bundles over

S, then ∇± : Γ(S±⊗λ
1

2 ) → Γ(Λ1(S)⊗S±⊗λ
1

2 ), where Γ(S±⊗λ
1

2 ) are the smooth sections

of S± ⊗ λ
1

2 . In turn, one can define the associated horizon Dirac operators

D(±) ≡ Γi∇
(±)
i = Γi∇̃i +Ψ± , (2.32)

where

Ψ± ≡ ΓiΨ
(±)
i = −

i

2
/Λ∓

1

4
/h±

i

6
/Y +

(

±
1

4
/Φ+

1

24
/H

)

C ∗ . (2.33)

Clearly the ∇± parallel spinors are zero modes of D(±). For S compact, one can also prove

the converse, ie that all zero modes of the horizon Dirac equations D(±) are Killing spinors.

Therefore, one can establish

∇(±)η± = 0 , A(±)η± = 0 ⇐⇒ D(±)η± = 0 . (2.34)

The proof of the above statement for η+ spinors utilizes the Hopf maximum principle on

‖ η+ ‖2 while for η− it employs a partial integration formula. In the former case, one also

finds that ‖ η+ ‖= const. Similar theorems have been proven for other theories in [20, 21].

3 AdS2: local analysis

3.1 Fields, Bianchi identities and field equations

For AdS2 backgrounds M8 = S and the fields on S are

ds2(S) = ds2(M8) , F̃ 3 = Y , F̃ 5 = ⋆8Y ,

G̃1 = Φ , G̃3 = H , P̃ = ξ . (3.1)

Next, we set

∆ = ℓ−2A−2 , (3.2)
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which satisfies (2.22), where ℓ is the radius of AdS2. Using these, the Bianchi identi-

ties (2.15) and (2.16) can now be written as

d(A−2Y )−
iA−2

8
(Φ ∧ H̄ − Φ̄ ∧H) = 0 ,

d(A−2Φ)− iA−2Λ ∧ Φ+A−2ξ ∧ Φ̄ = 0 , (3.3)

and

d ⋆8 Y =
i

8
H ∧ H̄ , dH = iΛ ∧H − ξ ∧ H̄ ,

dξ = 2iΛ ∧ ξ , dΛ = −iξ ∧ ξ̄ , (3.4)

respectively, where Λ is a U(1) connection of λ restricted on S.

Similarly, the field equations read as

∇̃iΦi − iΛiΦi − ξiΦ̄i +
2i

3
Yℓ1ℓ2ℓ3H

ℓ1ℓ2ℓ3 = 0 , (3.5)

∇̃ℓHℓij−iΛ
ℓHℓij+2A−1∂ℓAHℓij−ξ

ℓH̄ℓij+
2i

3
(⋆8Yijℓ1ℓ2ℓ3H

ℓ1ℓ2ℓ3−6YijℓΦ
ℓ) = 0 , (3.6)

∇̃iξi − 2iΛiξi + 2A−1∂iAξi +
1

24
(−6Φ2 +H2) = 0 , (3.7)

−A−1∇̃2A−A−2∂iA∂iA− ℓ−2A−2 +
2

3
Y 2 +

3

8
ΦiΦ̄i +

1

48
‖ H ‖2 = 0 , (3.8)

and

R
(8)
ij − 2A−1∇̃i∂jA+ 4Y 2

ij +
1

2
Φ(iΦ̄j) − 2ξ(iξ̄j) −

1

4
Hℓ1ℓ2(iH̄j)

ℓ1ℓ2

+δij

(

−
1

8
ΦℓΦ̄

ℓ −
2

3
Y 2 +

1

48
‖ H ‖2

)

= 0 , (3.9)

where R(8) is the Ricci tensor of S =M8.

3.1.1 The warp factor A is no-where vanishing

To see this, assume that A is not identically zero. Thus there is a point in M8 such that

A 6= 0. Multiplying (3.8) with A2 evaluated at a point for which A 6= 0, one finds

−A∇̃2A− ∂iA∂iA− ℓ−2 +
2

3
A2Y 2 +

3

8
A2ΦiΦ̄i +

1

48
A2 ‖ H ‖2= 0 , (3.10)

Next taking a sequence that converges at a point where A vanishes, one finds an inconsis-

tency as the term involving the AdS radius ℓ cannot vanish. Therefore there are no smooth

solutions for which A vanishes at some point on the spacetime. A more detailed argument

for this has been presented in [24].

This property depends crucially on ℓ taking a finite value. In particular, it is not valid

in the limit that ℓ goes to infinity, and so one cannot conclude that A is no-where vanishing

for Rn−1,1 backgrounds.
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3.2 Killing spinor equations

The KSEs on S = M8 are

∇
(±)
i η± = 0 , A(±)η± = 0 , (3.11)

where

∇
(±)
i ≡ ∇̃i +

(

−
i

2
Λi ±

1

2
A−1∂iA∓

i

4
/Y i ±

i

12
Γ /Y i

)

+

(

±
1

16
Γ/Φi ∓

3

16
Φi −

1

96
Γ /H i +

3

32
/H i

)

C∗ , (3.12)

and

A(±) ≡

(

∓
1

4
/Φ+

1

24
/H

)

+ /ξC ∗ . (3.13)

Furthermore, if η− is a Killing spinor, then

η+ = Γ+Θ−η− , (3.14)

is also a Killing spinor, where now

Θ± =

(

−
1

4
/∂ logA2 ±

i

12
/Y

)

+

(

1

96
/H ±

3

16
/Φ

)

C ∗ . (3.15)

It is not apparent that η+ 6= 0 as η− may be in the kernel of Θ−. To establish under which

conditions η+ 6= 0, one has to impose additional restrictions on M8. However if η+ 6= 0,

then the solutions exhibit supersymmetry enhancement.

3.3 Counting supersymmetries

The analysis so far is not sufficient to establish either the formula in (1.1) or (1.2) regarding

the number of supersymmetries N preserved by the AdS2 backgrounds. For this, some

additional restrictions on M8 are required. We shall explore these in the next section.

4 AdS2: global analysis

The main results of this section are to demonstrate that under certain assumptions, there

is a 1-1 correspondence between Killing spinors and zero modes of Dirac operators on M8

coupled to fluxes, and use this to count the supersymmetries N of AdS2 backgrounds.

Given the gravitino KSE in (3.11) and in particular the (super)covariant derivatives ∇(±),

one can construct the Dirac-like operators

D(±) ≡ Γi∇
(±)
i = Γi∇̃i +Ψ± , (4.1)

on M8, where

Ψ± ≡ ΓiΨ
(±)
i = −

i

2
/Λ±

1

4
/∂ logA2 ±

i

6
/Y +

(

±
1

4
/Φ+

1

24
/H

)

C ∗ . (4.2)

Clearly all parallel spinors η±, ie ∇(±)η± = 0, are zero modes of D(±), ie D(±)η± = 0. The

task is to prove the converse.
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4.1 A Lichnerowicz type theorem for D(+)

The proof of this converse is a Lichnerowicz type theorem and the proof is similar to that

given in [19] for horizon Dirac operators. Because of this, we shall not give details of the

proof. The novelty of this theorem is that the converse implies that the zero modes of D(+)

solve both the gravitino and dilatino KSEs. In particular, assuming that D(+)η+ = 0 and

after some algebra which involves the use of field equations, one can establish that

∇̃i∇̃i ‖ η+ ‖2 +∂i logA2 ∇̃i ‖ η+ ‖2= 2 ‖ ∇(+)η+ ‖2 + ‖ A(+)η+ ‖2 . (4.3)

It is then a consequence of the maximum principle that the only solution of the above

equation is ‖ η+ ‖= const and that η+ is a Killing spinor. In particular, this is the case

provided M8 is compact and the fields are smooth.

4.2 A Lichnerowicz type theorem for D(−)

The proof that the zero modes of D(−) are Killing spinors is similar to that for the D(+)

operator. In particular, if D(−)η− = 0, then one can show that

∇̃i∇̃i ‖ η− ‖2 +hi∇̃i ‖ η− ‖2 +∇̃ihi ‖ η− ‖2= 2 ‖ ∇(−)η− ‖2 + ‖ A(−)η− ‖2 . (4.4)

Using h = d log∆, this can be rewritten as

∇̃i∇̃i

(

∆ ‖ η− ‖2
)

− hi∇̃i

(

∆ ‖ η− ‖2
)

= 2∆ ‖ ∇(−)η− ‖2 +∆ ‖ A(−)η− ‖2 . (4.5)

The maximum principle again implies that the only solutions to this equation are those

for which ∆ ‖ η− ‖= const and η− are Killing spinors. Again this is always the case if M8

is compact and the fields are smooth. It should be noted that unlike the case of general

IIB horizons where this theorem has been proven using a partial integration formula [19],

here we have presented a different proof based on the maximum principle. The latter has

an advantage as it gives some additional information regarding the length of the Killing

spinor η−. Combining the results of this section with those of the previous one, we have

established that if M8 and the fields satisfy the requirements for the maximum principle

to apply, then

∇(±)η± = 0 , A(±)η± = 0 ⇐⇒ D(±)η± = 0 , (4.6)

and that

‖ η+ ‖= const , ∆ ‖ η− ‖= const . (4.7)

4.3 Counting supersymmetries again

The number of supersymmetries of AdS2 backgrounds is

N = N− +N+ (4.8)

where

N± = dimKer(∇(±),A(±)) . (4.9)
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Using the correspondence between the Killing spinors and zero modes of the D(±) operators

in (4.6), we conclude that

N = dimKerD(−) + dimKerD(+) . (4.10)

As for near horizon geometries [19], one can prove that dimKerD(+)† = dimKerD(−).

This is done by a direct observation upon comparing the adjoint of D(+) with D(−). As a

result for M8 compact without boundary, we find that

N = Index(D(+)) + 2dimKerD(−) = 2
(

N− + Index(D)
)

, (4.11)

where D is the Dirac operator twisted with λ
1

2 . The index of D(+) is twice the index of D

because they have the same principal symbol and D(+) acts on two copies of the Majorana-

Weyl representation of M8. This establishes both (1.1) and (1.2) for AdS2 backgrounds.

Furthermore, if M8 is compact without boundary with a η− Killing spinor, one can

explicitly construct a η+ Killing spinor by setting η+ = Γ+Θ−η−. This is because if M8 is

compact without boundary and the fluxes do not vanish, then KerΘ− = {0}. The proof of

this statement is similar to that demonstrated in [19] for near horizon geometries and so

it will not be repeated here.

We have shown that the number of supersymmetries preserved by AdS2 backgrounds

is even. Apart from this, there are additional restrictions on N . In particular, it has been

shown in [14, 15] that if a IIB background preserves more than 28 supersymmetries, N > 28,

then it is maximally supersymmetric. Moreover, the maximally supersymmetric solutions

and the solutions preserving 28 supersymmetries have been classified in [13] and [16],

respectively, and they do not include AdS2 backgrounds. From this, one concludes that

N ≤ 26. One can also adapt the proof of [17] to this case to demonstrate that all AdS2
backgrounds preserving more than 16 supersymmetries are homogeneous. This in particular

implies that the IIB scalars are constant for all these backgrounds.

5 AdS3: local analysis

5.1 Fields, Bianchi identities and field equations

The fields restricted on the spatial horizon section S = R×w M
7 are

ds2(S) = A2dz2 + ds2(M7) , F̃ 3 = Adz ∧ Y , F̃ 5 = − ⋆7 Y ,

G̃1 = AΦdz , G̃3 = H , P̃ 1 = ξ . (5.1)

Moreover, we have that h = −2
ℓdz − 2A−1dA and ∆ = X = L = 0.

Substituting these into the Bianchi identities (2.15) and (2.16), we find that

dY = −3d logA ∧ Y +
i

8

(

ΦH − ΦH
)

,

dΦ = 3Φd logA+ iΦQ− Φξ ,

d ∗7 Y = −
i

8
H ∧H ,
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dH = iQ ∧H − ξ ∧H ,

dξ = 2iQ ∧ ξ ,

dQ = −iξ ∧ ξ . (5.2)

In addition the field equations (2.17)–(2.21) give

∇iHijk = −3A−1∂iAHijk + iQiGijk + P iHijk + 4iΦYjk +
i

3
ǫjki1i2ℓ1ℓ2ℓ3Y

i1i2Hℓ1ℓ2ℓ3 ,

∇iξi = −3A−1∂iAξi + 2iQiξi −
1

24
H2 −

1

4
Φ2 ,

A−1∇2A = 2Y 2 +
3

8
‖ Φ ‖2 +

1

48
‖ H ‖2 −2ℓ−2A−2 − 2(d logA)2 ,

R
(7)
ij = 3A−1∇i∇jA+ 2Y 2δij − 8Y 2

ij

+
1

4
H(i

kℓHj)kℓ +
1

8
‖ Φ ‖2 δij −

1

48
‖ H ‖2 δij + 2ξ(iξ̄j), (5.3)

where R(7) is the Ricci tensor ofM7. From now on, ∇ will denote the Levi-Civita covariant

derivative on M10−n. The Ricci scalar of M7 is given by

R(7) = 3A−1∇2A+ 6Y 2 +
5

48
‖ H ‖2 +

7

8
‖ Φ ‖2 +2 |ξ|2

= −
6

ℓ2
A−2 − 6(A−1dA)2 + 12Y 2 + 2 ‖ Φ ‖2 +

1

6
‖ H ‖2 +2 ‖ ξ ‖2 . (5.4)

5.2 The warp factor is no-where vanishing

One of the consequences of the field equations is that the warp factor A is no-where

vanishing. One can show that this follows from the field equation (5.3) using an argument

similar to that presented for the AdS2 backgrounds.

5.3 Solution of Killing spinor equations

To integrate the KSEs along the AdS3 directions, it suffices to integrate the horizon

KSEs (2.27) along the z coordinate. For this consider first the gravitino KSE. Evaluating

the expression along the z-coordinate, we find

∂zη± = Ξ±η± , (5.5)

where

Ξ± = ∓
1

2ℓ
−

1

2
Γz /∂A±

i

4
A/Y +

(

1

96
AΓz /H ±

3

16
AΦ

)

C ∗ . (5.6)

Observe that4

Ξ+ = AΓzΘ+ , Ξ− =
1

ℓ
+AΓzΘ− . (5.7)

Next differentiating (5.5) and comparing the resulting expression with the integrability

conditions (2.31), one finds that

∂2zη± ±
1

ℓ
∂zη± = 0 , (5.8)

4The gamma matrices labeled by AdSn coordinates, like Γz, are in a frame basis.
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which can be solved to give

η± = σ± + e∓
z

ℓ τ± , (5.9)

where

Ξ±σ± = 0 , Ξ±τ± = ∓
1

ℓ
τ± , (5.10)

with both σ± and τ± z-independent spinors. The latter conditions are additional indepen-

dent algebraic KSEs.

Although we have solved along the z direction, there are potentially additional con-

ditions that can arise from mixed integrability conditions along the z-direction and the

remaining directions in S. However, it can be shown after some computation that this is

not the case. Furthermore, the dilatino KSEs in (2.27) restrict on the σ± and τ± spinors

in a straightforward manner. This completes the integration of the KSEs along all AdS3
directions. The remaining independent KSEs, which are localized on M7, are

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 ,

B(±)σ± = 0 , C(±)τ± = 0 , (5.11)

where

∇
(±)
i = ∇i +Ψ

(±)
i , A(±) = ∓

1

4
ΦΓz +

1

24
/H + /ξC∗ ,

B(±) = Ξ± , C(±) = Ξ± ±
1

ℓ
, (5.12)

and

Ψ
(±)
i = ±

1

2
∂i logA−

i

2
Qi ±

i

4

(

/ΓY
)

i
Γz ∓

i

2
/Y iΓ

z

+

(

−
1

96

(

/ΓH
)

i
+

3

32
/H i ∓

1

16
ΦΓzi

)

C ∗ . (5.13)

Therefore, there are four sets of three independent KSEs on M7. Having found a solution

to the above equations, one can substitute in (5.9) and then in (2.25) to find the Killing

spinors for the AdS3 ×w M
7 background.

5.4 Counting supersymmetries

It is straightforward to observe that if one has an either a σ− or a τ− solution, then

σ+ = A−1ΓzΓ+σ− , τ+ = A−1ΓzΓ+τ− , (5.14)

are also solutions of the independent KSEs (5.11). Conversely, if either σ+ or τ+ are

solutions, then

σ− = AΓzΓ−σ+ , τ− = AΓzΓ−τ+ , (5.15)

are also solutions to the KSEs (5.11). Therefore, we have that the number of Killing spinors

N of the AdS3 backgrounds are

N = 2
(

dimKer(∇(−),A(−),B(−)) + dimKer(∇(−),A(−), C(−))
)

= 2
(

dimKer(∇(+),A(+),B(+)) + dimKer(∇(+),A(+), C(+))
)

. (5.16)
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Thus the AdS3 backgrounds preserve an even number of supersymmetries. This proves the

formula for N in (1.1) for AdS3 backgrounds.

The number of supersymmetries N of AdS3 backgrounds are further restricted. It

follows from the results of [14–16] that there are no supersymmetric AdS3 backgrounds

preserving more than 28 supersymmetries. As a result, N ≤ 26.

6 AdS3: global analysis

The main task here is to show the formula (1.2) for counting the number of supersymmetries

of AdS3 backgrounds. For this, we have to show that there is a 1-1 correspondence between

Killing spinors and zero modes of a Dirac-like operator on M7.

6.1 A Lichnerowicz type theorem for τ+ and σ+

To prove that the zero modes of a Dirac-like operator onM7 are Killing spinors, one has to

determine an appropriate Dirac-like operator on M7. The naive Dirac-like operator which

one can construct from contracting ∇(±) with a gamma matrix is not suitable. Instead, let

us modify the parallel transport operators of the gravitino KSE as

∇̌
(+)
i = ∇

(+)
i + qΓziA

−1B(+) ,

∇̂
(+)
i = ∇

(+)
i + qΓziA

−1C(+) , (6.1)

on σ+ and τ+, respectively, where q is a number which later will be set to 1/7. It is clear

that if either σ+ or τ+ are Killing spinors, they are also parallel with respect to the above

covariant derivatives.

Since the analysis that follows is similar for σ+ and τ+, it is convenient to present it

in a unified way. For this write both (6.1) as

D
(+)
i = ∇

(+)
i + qΓziA

−1
B
(+) , (6.2)

where

B
(+) = −

c

2ℓ
−

1

2
Γz /∂A+

i

4
A/Y +

(

1

96
AΓz /H +

3

16
AΦ

)

C∗ , (6.3)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B
(+) = B(+) or

B
(+) = C(+), respectively.

Next define the modified Dirac-like operators

D
(+) ≡ Γi

D
(+)
i = Γi∇i +Σ(+) , (6.4)

where

Σ(+) =
7qc

2ℓ
A−1Γz +

1 + 7q

4
/∂ logA2 −

i

2
/Q+

3i− 7iq

4
/Y Γz

+

(

5− 7q

96
/H +

7− 21q

16
Φ

)

C ∗ . (6.5)

It turns that D (+) is suitable to formulate a maximum principle on the length square of

σ+ and τ+. In particular, suppose that χ+ is a zero mode for D (+), ie D (+)χ+ = 0, where
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χ+ = σ+ for c = 1 while χ+ = τ+ for c = −1. Then after some Clifford algebra, that is

presented in appendix B, which requires the use of field equations and for q = 1/7, one can

establish the identity

∇2 ‖χ+‖
2 + 3A−1∂iA∂i ‖χ+‖

2 = 2
∥

∥

∥
D
(+)χ+

∥

∥

∥

2

+
16

7
A−2

∥

∥

∥
B
(+)χ+

∥

∥

∥

2
+
∥

∥

∥
A(+)χ+

∥

∥

∥

2
. (6.6)

Assuming that M7 satisfies the requirements of the Hopf maximum principle, eg for M7

compact and smooth fields, the above equation implies that χ+ is a Killing spinor and that

the length ‖ χ+ ‖= const.

To summarize, we have shown that

∇
(+)
i σ+ = 0 , B(+)σ+ = 0 , A(+)σ+ = 0 ⇐⇒ D

(+)σ+ = 0 ; c = 1 ,

∇
(+)
i τ+ = 0 , C(+)τ+ = 0 , A(+)τ+ = 0 ⇐⇒ D

(+)τ+ = 0 ; c = −1 , (6.7)

and that

‖ σ+ ‖= const , ‖ τ+ ‖= const . (6.8)

6.2 A Lichnerowicz type theorem for τ− and σ−

A similar theorem to that presented in the previous section can be established for τ− and σ−
spinors. One can define the operators D(−) and D (−) and repeat the analysis. Alternatively,

one can observe that if χ+ is a zero mode of the D (+) operator, then χ− = AΓz−χ+ is a

zero mode of the D (−) operator, where χ− is either σ− or τ−. Since the same relation holds

between χ+ and χ− Killing spinors, one can establish a maximum principle for χ− spinor.

The formula is that given in (6.6) after setting χ+ = A−1Γz+χ−. Therefore provided the

requirements of Hopf maximum principle are satisfied, one establishes

∇
(−)
i σ− = 0 , B(−)σ− = 0 , A(−)σ− = 0 ⇐⇒ D

(−)σ− = 0 ; c = 1 ,

∇
(−)
i τ− = 0 , C(−)τ− = 0 , A(−)τ− = 0 ⇐⇒ D

(−)τ− = 0 ; c = −1 , (6.9)

and that

A−2 ‖ σ− ‖2= const , A−2 ‖ τ− ‖2= const , (6.10)

where

D
(−) = Γi∇i +Σ(−) , (6.11)

and

Σ(−) = −
7qc

2ℓ
A−1Γz +

−1 + 7q

4
/∂ logA2 −

i

2
/Q−

3i− 7iq

4
/Y Γz

+

(

5− 7q

96
/H −

7− 21q

16
Φ

)

C ∗ . (6.12)
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6.3 Counting supersymmetries again

The proof of the relation between Killing spinors and the zero modes of the Dirac-like

operators D (±) allows us to re-express the number of supersymmetriesN in (5.16) preserved

by AdS3 backgrounds as

N = 2
(

dimKerD
(−)
c=1 + dimKerD

(−)
c=−1

)

= 2
(

dimKerD
(+)
c=1 + dimKerD

(+)
c=−1

)

, (6.13)

which establishes (1.2) for AdS3.

7 AdS4: local analysis

7.1 Fields, Bianchi identities and field equations

The field on S are

ds2(S) = A2(dz2 + e2z/ℓdx2) + ds2(M6) , F̃ 3 = A2ez/ℓdz ∧ dx ∧ Y ,

F̃ 5 = ⋆6Y , G̃3 = H , P = ξ , (7.1)

with h = −2
ℓdz − 2A−1dA and ∆ = X = L = 0. Substituting these into the Bianchi and

field equations on S in section 2.2, the conditions reduce on M6 as follows. The Bianchi

identities give

d(A4Y ) = 0 , ∇̃iYi = −
i

288
ǫi1i2i3j1j2j3Hi1i2i3Hj1j2j3 ,

dH = iQ ∧H − ξ ∧H ,

dξ = 2iQ ∧ ξ ,

dQ = −iξ ∧ ξ . (7.2)

Therefore the Bianchi identities imply that A4Y is a closed 1-form and thatH∧H represents

a trivial cohomology class in M6.

The Einstein equation on S gives

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 −

3

ℓ2A2
− 3(A−1dA)2, (7.3)

and

R
(6)
ij − 4A−1∇i∇jA− 4Y 2δij + 8YiYj (7.4)

−
1

4
H(i

kℓHj)kℓ +
1

48
‖ H ‖2 δij − 2ξ(iξj) = 0 ,

where R(6) is the Ricci tensor of M6. The remaining field equations are

∇iHijk = −3∂i logAHijk + iQiHijk + ξiH ijk ,

∇iξi = −3∂i logAξi + 2iQiξi −
1

24
H2. (7.5)

This concludes the reduction of the Bianchi identities and field equations on M6.
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7.1.1 The warp factor is no-where vanishing

One consequence of the field equations and in particular of (7.3) is that the warp factor A

is no-where vanishing. The investigation for this is similar to that we have presented for

AdS3 and so we shall not repeat the argument here.

7.2 Solution of KSEs

The integration of the KSEs along the z-coordinate proceeds as in the AdS3. In particular

repeating the argument as in the AdS3 case, one finds that

η± = φ± + e∓z/ℓχ± , (7.6)

where

Ξ±φ± = 0 , Ξ±χ± = ∓
1

ℓ
χ± , A(±)φ± = 0 , A(±)χ± = 0 , (7.7)

and

Ξ± = ∓
1

2ℓ
−

1

2
Γz /∂A±

i

2
AΓx /Y +

1

96
AΓz /HC∗ ,

A(±) =
1

24
/H + /ξC ∗ . (7.8)

Observe that although A(+) = A(−) as operators, they act on different spaces and so we

shall retain the distinct labeling.

Next we integrate the gravitino KSE along the x AdS coordinate to obtain

η+ = σ+ −
1

ℓ
xΓxΓzτ+ + e−z/ℓτ+ , η− = σ− + ez/ℓ

(

−
1

ℓ
xΓxΓzσ− + τ−

)

, (7.9)

where

Ξ±σ± = 0 , Ξ±τ± = ∓
1

ℓ
τ± , (7.10)

and σ± and τ± depend only on the coordinates of M6. This completes the integration of

the gravitino KSE along all AdS4 directions. The dilatino KSE simply restricts on the

spinors σ± and τ±. There are no additional conditions arising from integrability conditions

between AdS4 and M6 directions.

Therefore, the remaining independent KSEs on M6 are

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 ,

B(±)σ± = 0 , C(±)τ± = 0 , (7.11)

where

∇
(±)
i = ∇i +Ψ

(±)
i , B(±) = Ξ± , C(±) = Ξ± ±

1

ℓ
, (7.12)

and

Ψ
(±)
i = ±

1

2
∂i logA−

i

2
Qi ∓

i

2

(

/ΓY
)

i
Γxz ±

i

2
YiΓxz

+

(

−
1

96

(

/ΓH
)

i
+

3

32
/H i

)

C ∗ . (7.13)

This concludes the solution of the KSEs on AdS4 and their reduction on M6.
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7.3 Counting supersymmetries

As for AdS3 backgrounds there are Clifford algebra operators which intertwine between

the different KSEs on M6. In particular observe that if σ± is a solution to the KSEs, then

τ± = ΓzΓxσ± (7.14)

is also a solution, and vice versa. Furthermore as for AdS3, if either σ− or τ− is a solution,

so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (7.15)

Similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (7.16)

From the above relations one concludes that the AdS4 ×w M
6 backgrounds preserve

N = 4 dimKer(∇(±),A(±),B(±)) = 4 dimKer(∇(±),A(±), C(±)) , (7.17)

for either + or − choice of sign. This confirms (1.1) for the AdS4 backgrounds.

The number of supersymmetries N of AdS4 backgrounds are further restricted. It is a

consequence of [13–16] that there are no AdS4 backgrounds with N ≥ 28 supersymmetries.

Therefore N ≤ 24.

8 AdS4: global analysis

8.1 A Lichnerowicz type theorem for τ± and σ±

To prove the formula (1.2) for AdS4 backgrounds, we have to demonstrate a Lichnerowicz

type theorem which states that there is a 1-1 correspondence between Killing spinors and

the zero modes of Dirac-like operators on M6 coupled to fluxes. The proof is similar to

that we have presented for the AdS3 backgrounds. However, the operators involved in the

AdS4 case are different and so the proof is not a mere repetition.

We shall present the proof of the Lichnerowicz type theorem for σ+ and τ+ spinors.

The proof for the other pair σ− and τ− follows as a consequence. It is also convenient to do

the computations simultaneously for both σ+ and τ+ spinors which from now on we shall

call collectively χ+.

To begin let us define the operator

D
(+)
i = ∇

(+)
i + qΓziA

−1
B
(+) (8.1)

where

B
(+) = −

c

2ℓ
−

1

2
Γz /∂A−

i

2
A/Y Γx +

1

96
AΓz /HC∗ (8.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B
(+) = B(+) or

B
(+) = C(+), respectively. It is clear from this that if χ+ is a Killing spinor, then it is

parallel with respect to D
(+).

– 20 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
0

Next define the modified Dirac-like operator

D
(+) ≡ Γi

D
(+)
i = Γi∇i +Σ(+) , (8.3)

where

Σ(+) =
3qc

2
A−1Γz +

1 + 6q

4
/∂ logA2 −

i

2
/Q+ (2i− 3iq) /Y Γzx +

1− q

16
/HC ∗ . (8.4)

Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford

algebra computation, which has been presented in appendix C, q = 1/3, and the use of

field equations, one can establish the identity

∇2 ‖χ+‖
2 + 4A−1∂iA∂i ‖χ+‖

2 = 2
∥

∥

∥
D
(+)χ+

∥

∥

∥

2

+
16

3
A−2

∥

∥

∥
B
(+)χ+

∥

∥

∥

2
+
∥

∥

∥
A(+)χ+

∥

∥

∥

2
. (8.5)

Assuming that the requirements of the Hopf maximum principle are satisfied, eg for M6

compact and smooth fields, the above equation implies that χ+ is a Killing spinor and that

the length ‖ χ+ ‖= const.

A similar formula to (8.5) can be established for σ− and τ− spinors. However, it is not

necessary to do an independent computation. We have seen that if σ+ and τ+ solve the

KSEs, then σ− = AΓ−zσ+ and τ− = AΓ−zτ+ also solve the KSEs. Similarly if χ+ is a zero

mode of D (+), then χ− = AΓ−zχ+ is a zero mode of D (−), where

D
(−) = Γi∇i +Σ(−) , (8.6)

and

Σ(−) = −
3qc

2ℓ
A−1Γz +

−1 + 6q

4
/∂ logA2 −

i

2
/Q− (2i− 3iq) /Y Γzx +

1− q

16
/HC ∗ . (8.7)

To summarize, we have shown that

∇
(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0 ⇐⇒ D

(±)σ± = 0 ; c = 1 ,

∇
(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0 ⇐⇒ D

(±)τ± = 0 ; c = −1 , (8.8)

and that

‖ σ+ ‖ = const , ‖ τ+ ‖ = const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2 = const . (8.9)

This concludes the proof of the 1-1 correspondence between Killing spinors and zero modes

of Dirac-like operators on M6.

8.2 Counting supersymmetries again

We are ready now to establish (1.2) for AdS4 backgrounds. Provided that the data satisfy

the requirements of Hopf maximum principle, we have that

N = 4 dimKer(∇(−),A(−),B(−)) = 4 dimKerD
(−)
c=1 , (8.10)

which applies to σ− spinors which confirms (1.2). A similar formula is valid for the three

other choices of spinors.
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9 AdS5: local analysis

9.1 Fields, Bianchi identities and field equations

The fields on the horizon section S are

ds2(S) = A2(dz2 + e
2z

ℓ (dx2 + dy2)) + ds2(M5) , G = H , P = ξ ,

F̃ 3 = e
2z

ℓ A3dz ∧ dx ∧ dy Y , F̃ 5 = −dvol(M5)Y , (9.1)

and h = −2
ℓdz − 2d logA and ∆ = X = L = 0.

Substituting the above fields into the Bianchi identities (2.15) and (2.16), we find

d(A5Y ) = 0 , dH = iQ ∧H − ξ ∧H ,

dξ = 2iQ ∧ ξ , dQ = −iξ ∧ ξ. (9.2)

Clearly, Y is proportional to A−5. Similarly, the field equations (2.17)–(2.21) give

∇iHijk = −5∂i logAHijk + iQiHijk + ξiH ijk ,

∇iξi = −5∂i logAξi + 2iQiξi −
1

24
H2 ,

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 −

4

ℓ2
A−2 − 4(d logA)2,

R
(5)
ij = 5A−1∇i∇jA+ 4Y 2δij

+
1

4
H(i

kℓHj)kℓ −
1

48
‖ H ‖2 δij + 2ξ(iξj) . (9.3)

This concludes the analysis of Bianchi and field equations.

9.1.1 The warp factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warp factor A is no-where

vanishing. The argument is based on the third field equation in (9.3).

9.2 Solution of KSEs

Substituting the fields of the previous section into the KSEs of the spatial horizon sec-

tion (2.27) and after a computation similar to that described for AdS4 backgrounds, we

find that the Killing spinors can be expressed as

η+ = σ+−
1

ℓ
(xΓx+yΓy)Γzτ++e−

z

ℓ τ+ , η− = σ−+e
z

ℓ

(

−
1

ℓ
(xΓx+yΓy)Γzσ−+τ−

)

, (9.4)

where σ± and τ± depend only on the coordinates ofM5. The remaining independent KSEs

are

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 , A(±)σ± = 0 , A(±)τ± = 0 ,

B±σ± = 0 , C±τ± = 0 , (9.5)
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where

∇
(±)
i = ∇i +Ψ

(±)
i , A(±) =

1

24
/H + /ξC∗ ,

B(±) = Ξ± , C(±) = Ξ± ±
1

ℓ
, (9.6)

and

Ψ
(±)
i = ±

1

2
∂i logA−

i

2
Qi ±

i

2
ΓiY Γxyz +

(

−
1

96
(Γ /H)i +

3

32
/H i

)

C∗

Ξ± = ∓
1

2ℓ
−

1

2
Γz /∂A±

i

2
AY Γxy +

1

96
AΓz /HC ∗ . (9.7)

This concludes the solution of the KSEs along the AdS5 directions and the identification

of remaining independent KSEs.

9.3 Counting supersymmetries

To count the number of supersymmetries preserved by AdS5 backgrounds, observe that if

σ± are Killing spinors, then

τ± = ΓzΓxσ± , τ± = ΓzΓyσ± , (9.8)

are also Killing spinors, and vice versa. As a result if σ± are Killing spinors, then σ′± =

Γxyσ± are also Killing spinors and similarly for τ±. As a result dimKer(∇(±),A(±),B(±))

and dimKer(∇(±),A(±), C(±)) are even numbers.

Furthermore, as in the previous cases, if either σ− or τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− , (9.9)

and similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (9.10)

From the above relations one concludes that the AdS5 ×w M
5 backgrounds preserve

N = 4 dimKer(∇(±),A(±),B(±)) = 4 dimKer(∇(±),A(±), C(±)) = 8k , (9.11)

for either + or − choice of sign and k ∈ N+. This confirms (1.1) for the AdS5 backgrounds.

Of course N ≤ 32, and for N = 32 the solutions are locally isometric [13] to AdS5 × S5.

10 AdS5: global analysis

10.1 A Lichnerowicz type theorem for τ± and σ±

To extend formula (1.2) to AdS5 backgrounds, we shall again prove a Lichnerowicz type

theorem which relates the Killing spinors to the zero modes of Dirac-like of operators on

M5 coupled to fluxes. The proof is similar to that we have presented in previous cases and

so we shall be brief. It suffices to prove the the Lichnerowicz type of theorem for σ+ and
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τ+ spinors as the proof for the other pair σ− and τ− follows because of the relations (9.9)

and (9.10) and the fact that these isomorphisms commute with the relevant operators.

To begin the proof, let us denote both σ+ and τ+ spinors collectively with χ+ and

define

D
(+)
i = ∇

(+)
i + qΓziA

−1
B
(+) , (10.1)

where

B
(+) = −

c

2ℓ
−

1

2
Γz /∂A−

i

2
AY Γyx +

1

96
AΓz /HC∗ , (10.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B
(+) = B(+) or

B
(+) = C(+), respectively. It is clear from this that if χ+ is a Killing spinor, then it is

parallel with respect to D.

The modified Dirac-like operator on M5 is

D
(+) ≡ Γi

D
(+)
i = Γi∇i +Σ(+) , (10.3)

where

Σ(+) =
5qc

2ℓ
A−1Γz +

1 + 5q

4
/∂ logA2 −

i

2
/Q+

5i− 5iq

2
Y Γzxy +

7− 5q

96
/HC ∗ . (10.4)

Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford

algebra computation, which has been presented in appendix D, q = 3/5, and the use of

field equations, one can establish the identity

∇2 ‖χ+‖
2 + 5A−1∂iA∂i ‖χ+‖

2 = 2
∥

∥

∥
D
(+)χ+

∥

∥

∥

2

+
48

5
A−2

∥

∥

∥
B
(+)χ+

∥

∥

∥

2
+
∥

∥

∥
A(+)χ+

∥

∥

∥

2
. (10.5)

Assuming that the Hopf maximum principle applies, eg forM5 compact and smooth fields,

the solution of the above equation reveals that χ+ is a Killing spinor and that ‖ χ+ ‖=

const.

A similar formula to (10.5) can be established for σ− and τ− spinors. In particular,

we define

D
(−) = Γi∇i +Σ(−) , (10.6)

and

Σ(−) = −
5qc

2ℓ
A−1Γz +

−1 + 5q

4
/∂ logA2 −

i

2
/Q−

5i− 5iq

2
Y Γzxy +

7− 5q

96
/HC∗ , (10.7)

where c = 1 for the σ− spinors while c = −1 for τ− spinors. As has already been mentioned,

because the relations (9.9) and (9.10) between the σ−, τ− and σ+, τ+ spinors commute with

the KSEs and the modified Dirac-like operators, it is not necessary to prove the maximum

principle independently for σ−, τ−. To summarize, we have shown that

∇
(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0 ⇐⇒ D

(±)σ± = 0 ; c = 1 ,

∇
(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0 ⇐⇒ D

(±)τ± = 0 ; c = −1 , (10.8)

and that

‖ σ+ ‖ = const , ‖ τ+ ‖ = const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2 = const . (10.9)
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10.2 Counting supersymmetries again

To establish (1.2) for AdS5 backgrounds, observe that the dimension of the kernel of D (±)

operators is even. This is because if σ± or τ± are in the kernel, then Γxyσ± or Γxyτ±
are also in the kernel. Since Γxyσ± or Γxyτ± are linearly independent of σ± and τ±, the

dimension of the kernel of D (±) is an even number.

Next, provided that the data satisfy the requirements of Hopf maximum principle, we

have that

N = 4 dimKer(∇(−),A(−),B(−)) = 4 dimKerD
(−)
c=1 , (10.10)

which applies to σ− spinors and confirms (1.2). A similar formula is valid for the three

other choices of spinors.

11 AdS6: local analysis

11.1 Fields, Bianchi identities and field equations

For AdSp, p ≥ 6, the only non-vanishing fluxes are those of the magnetic components of

the various field strengths. Since F is self-dual, F = 0 for all such backgrounds. The fields

on the horizon section S for AdS6 backgrounds are

ds2(S) = A2

(

dz2 + e
2z

ℓ

3
∑

a=1

(dxa)2
)

+ ds2(M4) , G = H , P = ξ , (11.1)

and h = −2
ℓdz − 2d logA and ∆ = X = L = 0, where x1 = x, x2 = y as for AdS5 and

x3 = w.

Substituting the above fields into the Bianchi identities (2.15) and (2.16), we find

dH = iQ ∧H − ξ ∧H , dξ = 2iQ ∧ ξ , dQ = −iξ ∧ ξ. (11.2)

Similarly, the field equations (2.17)–(2.21) give

∇iHijk = −6∂i logAHijk + iQiHijk + ξiH ijk ,

∇iξi = −6∂i logAξi + 2iQiξi −
1

24
H2 ,

A−1∇2A =
1

48
‖ H ‖2 −

5

ℓ2
A−2 − 5(d logA)2 ,

R
(4)
ij = 6A−1∇i∇jA

+
1

4
H(i

kℓHj)kℓ −
1

48
‖ H ‖2 δij + 2ξ(iξj) . (11.3)

This concludes the analysis of Bianchi identities and field equations.

11.1.1 The warp factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warp factor A is no-where

vanishing. The argument is based on the third field equation in (11.3).
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11.2 Solution of KSEs

The solution of the spatial horizon section S KSEs (2.27) reveals that

η+ = σ+ −
1

ℓ

(

∑

a

xaΓa

)

Γzτ+ + e−
z

ℓ τ+ , η− = σ− + e
z

ℓ

(

−
1

ℓ

(

∑

a

xaΓa

)

Γzσ− + τ−

)

,

(11.4)

where σ± and τ± depend only on the coordinates of M4. After taking into account all the

integrability conditions, the remaining independent KSEs are

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 , A(±)σ± = 0 , A(±)τ± = 0 ,

B±σ± = 0 , C±τ± = 0 , (11.5)

where

∇
(±)
i = ∇i +Ψ

(±)
i , A(±) =

1

24
/H + /ξC∗ ,

B(±) = Ξ± , C(±) = Ξ± ±
1

ℓ
, (11.6)

and

Ψ
(±)
i = ±

1

2
∂i logA−

i

2
Qi +

(

−
1

96
(Γ /H)i +

3

32
/H i

)

C∗ ,

Ξ± = ∓
1

2ℓ
−

1

2
Γz∂iAΓ

i +
1

96
AΓz /HC ∗ . (11.7)

This concludes the solution of the KSEs along the AdS6 directions.

11.3 Counting supersymmetries

A direct inspection of the KSEs reveals that if σ± are Killing spinors, then

τ± = ΓzΓaσ± , (11.8)

are also Killing spinors, and vice versa. As a result if σ± are Killing spinors, then σ′± =

Γabσ± are also Killing spinors and similarly for τ±. Therefore dimKer(∇(±),A(±),B(±))

and dimKer(∇(±),A(±), C(±)) are multiples of four.

Furthermore, as in the previous cases, if either σ− or τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− , (11.9)

and similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (11.10)

From the above relations one concludes that the AdS5 ×w M
5 backgrounds preserve

N = 4 dimKer(∇(±),A(±),B(±)) = 4 dimKer(∇(±),A(±), C(±)) = 16k , (11.11)

for either + or − choice of sign and k ∈ N+. This confirms (1.1) for the AdS6 backgrounds.

It turns out that there can be AdS6 backgrounds for only N = 16 as there are no such

backgrounds preserving N = 32 supersymmetries [13].
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12 AdS6: global analysis

12.1 A Lichnerowicz type theorem for τ± and σ±

As in previous cases, let us prove a Lichnerowicz type theorem for σ+ and τ+ spinors. For

this denote σ+ and τ+ collectively by χ+ and define

D
(+)
i = ∇

(+)
i + qΓziA

−1
B
(+) , (12.1)

where

B
(+) = −

c

2ℓ
−

1

2
Γz /∂AΓ

i +
1

96
AΓz /HC∗ , (12.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B
(+) = B(+) or

B
(+) = C(+), respectively. It is clear from this that if χ+ is a Killing spinor, then it is

parallel with respect to D.

The modified Dirac-like operator on M4 is

D
(+) ≡ Γi

D
(+)
i = Γi∇i +Σ(+) , (12.3)

where

Σ(+) =
2qc

ℓ
A−1Γz +

1 + 4q

4
/∂ logA2 −

i

2
/Q+

8− 4q

96
/HC ∗ . (12.4)

Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford

algebra computation, which has been presented in appendix E, q = 1, and the use of field

equations, one can establish the identity

∇2 ‖χ+‖
2 + 6A−1∂iA∂i ‖χ+‖

2 = 2
∥

∥

∥
D
(+)χ+

∥

∥

∥

2

+16A−2
∥

∥

∥
B
(+)χ+

∥

∥

∥

2
+
∥

∥

∥
A(+)χ+

∥

∥

∥

2
. (12.5)

Assuming that the Hopf maximum principle applies, eg forM4 compact and smooth fields,

the solution of the above equation reveals that χ+ is a Killing spinor and that ‖ χ+ ‖=

const.

A similar formula to (10.5) can be established for σ− and τ− spinors. In particular,

we define

D
(−) = Γi∇i +Σ(−) , (12.6)

and

Σ(−) = −
2qc

ℓ
A−1Γz +

−1 + 4q

4
/∂ logA2 −

i

2
/Q+

8− 4q

96
/HC∗ , (12.7)

where c = 1 for the σ− spinors while c = −1 for τ− spinors. Because of the relations (9.9)

and (9.10) between the σ−, τ− and σ+, τ+ spinors and the commutation of these relations

with the KSEs and the associated Dirac-like operators, it is not necessary to prove the

maximum principle independently for σ−, τ−. To summarize, we have shown that

∇
(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0 ⇐⇒ D

(±)σ± = 0 ; c = 1 ,

∇
(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0 ⇐⇒ D

(±)τ± = 0 ; c = −1 , (12.8)
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and that

‖ σ+ ‖ = const , ‖ τ+ ‖ = const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2 = const . (12.9)

12.2 Counting supersymmetries again

To establish (1.2) for AdS5 backgrounds, observe that the dimension of the kernel of D (±)

operators is multiple of 4. This is because if σ± or τ± are in the kernel, then Γabσ± or

Γabτ± are also in the kernel. Since Γabσ± or Γabτ± are linearly independent of σ± and τ±,

the dimension of the kernel of D (±) is 4k.

Next provided that the data satisfy the requirements of Hopf maximum principle, we

have that

N = 4 dimKer(∇(−),A(−),B(−)) = 4 dimKerD
(−)
c=1 = 16k , (12.10)

which applies to σ− spinors and confirms (1.2). A similar formula is valid for the three

other choices of spinors.

13 AdSn, for n ≥ 7

There are no supersymmetric AdSn, n ≥ 7 IIB backgrounds, see also [27] where this result

has been established assuming that the Killing spinors factorize. To see this first observe

that if a background preserves at least one supersymmetry, then the three-form, H, is zero.

For AdSn, n ≥ 8, this is automatically true. For AdS7, we can show this by manipulating

the algebraic Killing spinor equation,
(

/ξC ∗+
1

24
/H

)

σ+ = 0. (13.1)

We start by multiplying this by /H to convert it to an eigenvalue equation,

/ξ /HC ∗ σ+ = −
1

4
‖ H ‖2 σ+, (13.2)

and then we square the operator on the left hand side to eliminate C∗,

ξiξjΓ
ijσ+ = −

(

‖ ξ ‖2 +
1

96
‖ H ‖2

)

σ+. (13.3)

Finally, squaring this operator as well, we end up with a scalar equation

‖ ξ ‖4 − ‖ ξ2 ‖2=

(

‖ ξ ‖2 +
1

96
‖ H ‖2

)2

, (13.4)

from which we conclude that ξ2 = ξiξ
i and H are both zero.

Having shown that H = 0, the integrability condition, (2.31), reduces to
(

1

4ℓ2
+

1

4
(dA)2

)

σ+ = 0, (13.5)

which has no solution. Therefore, there are no supersymmetric AdSn backgrounds for

n ≥ 7.
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AdSn ×w M
10−n N

n = 2 2k, k < 14

n = 3 2k, k < 14

n = 4 4k, k < 7

n = 5 8k, k ≤ 4

n = 6 16

n ≥ 7 −

Table 1. The number of supersymmetries N of AdSn ×w M10−n backgrounds are given. For

AdS2 ×w M
8, one can show that these backgrounds preserve an even number of supersymmetries

provided that they are smooth and M8 is compact without boundary. For the rest, the counting

of supersymmetries does not rely on the compactness of M10−n. The bounds in k arise from the

non-existence of supersymmetric solutions with near maximal and maximal supersymmetry. For

the remaining fractions, it is not known whether there always exist backgrounds preserving the

prescribed number of supersymmetries. Supersymmetric AdSn, n ≥ 7, backgrounds do not exist.

14 Flat IIB backgrounds

Warped flat backgrounds Rn−1,1 ×w M
10−n are also included in our analysis. These arise

in the “flat limit”, ie the limit that the AdSn radius ℓ is taken to infinity. This limit is

smooth in all our computations. However, some of our results on AdSn backgrounds do not

extend to the flat backgrounds. The investigation of the KSEs is also somewhat different

from that of AdSn backgrounds.

To emphasize some of the differences between AdSn and R
n−1,1 backgrounds, it has

been known for sometime that there are no smooth warped flux compactifications in su-

pergravity [26]. To alter this either additional sources have to be added to the supergravity

equations, like brane charges, and /or consider higher order curvature corrections which

arise for example from anomaly cancellation mechanisms or α′ corrections in string theory.

In either case, the new backgrounds can be constructed as corrections to supergravity so-

lutions. Because there are different sources that can be added and we do not have control

over all higher curvature corrections, we shall mostly focus here on the supergravity limit

and explore the similarities and differences between the AdSn and R
n−1,1 backgrounds.

14.1 The warp factor is not nowhere vanishing

We have seen that the warp factor in all AdSn is no-where vanishing. This does not extend

to R
n−1,1 backgrounds because the finiteness of the AdSn radius has been essential in the

proof of the statement. In fact Amust vanish somewhere for non-trivial Rn−1,1 backgrounds

with fluxes. This follows from the results of [26] on the non-existence of smooth warped

flux compactifications in the context of supergravity. To see this, let us focus on the R
1,1

case, as the argument is similar in all the other cases. If A is no-where vanishing andM8 is

compact, an application of the maximum principle on the field equation for A (3.8) reveals
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that A is constant and the fluxes F and G vanish. Furthermore using the formula

∇2 ‖ ξ ‖2= 2(∇(iξj) − 2iΛ(iξj))(∇
(iξj) − 2iΛ(iξj)) + 6(‖ ξ ‖2)2 , (14.1)

established in [19] and upon using again the maximum principle, one can show that ξ = 0.

As a result all the form field strengths vanish which is a contradiction. From now on, we

shall assume that A is non-vanishing on some dense subset of M10−n and carry out the

analysis that follows on that subset.

14.2 Counting supersymmetries

All the local computations we have done for AdSn backgrounds extend to R
n−1,1 back-

grounds. However the statements which rely on the smoothness of the fields as well as the

non-vanishing of the warp factor have to be re-examined. In particular, the solution of

the KSEs can be carried out as has been described for AdSn. Also the various maximum

principle formulae are valid away from points where A = 0, like eg (4.3), (4.5), (6.6) and

others. However, the Hopf maximum principle cannot be applied any longer even ifM10−n

is taken to be compact. As a result there is not a straightforward relation between Killing

spinors and zero modes on Dirac-like operators onM10−n. Because of this, for the counting

of supersymmetries we shall rely on the local solution of the KSEs as presented for the

AdSn backgrounds.

14.2.1 R
1,1 backgrounds

The counting of supersymmetries for AdS2 backgrounds relies on the global properties

of M8 and the smoothness of the fields. As a result, the number of supersymmetries

preserved by R
1,1 backgrounds cannot be concluded. In particular, it is not apparent that

such backgrounds always preserve an even number of supersymmetries. Nevertheless, if η−
is a Killing spinor, so is Γ+Θ−η− on M8. Now if Ker Θ− = {0}, it is clear that there will

be a doubling of supersymmetries. In such a case, the number of Killing spinors for such

backgrounds is N ≥ 2N−, where N− is the number of η− Killing spinors.

14.2.2 R
2,1 backgrounds

Let us re-examine the solution of the KSEs. In the limit ℓ → ∞, the integrability condi-

tions (2.31) become

Θ∓Θ±η± = 0 . (14.2)

In the same limit, the solution of the KSEs (5.5) along the z-direction is

η± = σ± + zΞ±τ± , Ξ±(σ± − τ±) = 0 , (14.3)

where Ξ± = AΓzΘ±. The integrability conditions are automatically satisfied because

of (14.2). The remaining independent KSEs are

∇
(±)
i σ± = 0 , ∇

(±)
i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 , (14.4)
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where ∇(±) and A(±) are given in (5.12). τ± and σ± satisfy the same differential equations

and are not linearly independent. As a result, it suffices to consider only the σ± spinors

and set τ± = σ±. Therefore the number of supersymmetries preserved by R
2,1 backgrounds

is N = dimKer(∇(+),A(+)) + dimKer(∇(−),A(−)).

Next, it is straightforward to observe that if σ− is a solution of (5.11) in the limit

ℓ = ∞, then

σ+ = A−1ΓzΓ+σ− , (14.5)

is also a solution. Conversely, if σ+ is a solution, then

σ− = AΓzΓ−σ+ , (14.6)

is also a solution. Therefore, dimKer(∇(+),A(+)) = dimKer(∇(−),A(−)), and so the R
2,1

backgrounds preserve an even number of supersymmetries.

Observe that in general the Killing spinors can depend non-trivially on the z coordi-

nate. This is possible only if σ± /∈ KerΞ± even though it is required that σ± ∈ KerΞ2
±

because of (14.2).

14.2.3 R
3,1 backgrounds

The counting of supersymmetries of R
3,1 backgrounds is similar to R

2,1 solutions. In

particular integrating the KSEs along the z and x directions we find that

η± = σ± +A(zΓz + xΓx)Θ±τ± , Θ±(σ± − τ±) = 0 , (14.7)

with σ± and τ± both in the kernel of (∇(±),A(±)) given in (7.12) and Ξ± = AΓzΘ±.

Therefore as in the R
2,1 case these spinors are not linearly independent and so suffices to

consider σ± and set τ± = σ±. In addition if σ+ is a solution, so is Γzxσ+. This together

with the fact that if σ+ is a solution so is σ− = AΓzΓ−σ+, and vice versa if σ− is a

solution so is σ+ = A−1ΓzΓ+σ−, one concludes that R
3,1 backgrounds preserve N = 4k

supersymmetries.

Note again that the Killing spinors are allowed to depend linearly on the coordinates

of R3,1. This is the case only if τ± /∈ KerΞ± even though it is required that τ± ∈ KerΞ2
±

because of (14.2).

14.2.4 R
n−1,1, n > 4, backgrounds

As in the previous cases, one can prove that

η± = σ± +A

(

∑

µ

xµΓµ

)

Θ±τ± , Θ±(σ± − τ±) = 0 , (14.8)

in the limit ℓ → ∞, and that the only linearly independent Killing spinors are σ±, where

xµ are all the coordinates of Rn−1,1 apart from the lightcone ones u, r. Moreover, it suffices

to count the linearly independent σ+ spinors as the σ− spinors can be constructed as

σ− = AΓzΓ−σ+ from the σ+ ones, and vice versa because of the relation σ+ = A−1ΓzΓ+σ−.

Next given a σ+ Killing spinor, one can see by direct inspection of the KSEs onM10−n

that Γabσ+, a < b, are also Killing spinors, where Γa are the gamma matrices in directions
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orthogonal to +,−. It turns out that for n = 5, these are all linearly independent and

therefore these backgrounds preserve N = 8k supersymmetries.

For n = 6, apart from Γabσ+, a < b, observe that Γa1a2a3a4σ+, a1 < a2 < a3 < a4
also solve the KSEs on M4. However, there is a unique Clifford algebra elementΓa1a2a3a4 ,

a1 < a2 < a3 < a4, in this case and has eigenvalues ±1, and commutes with all the

KSEs. Now if σ+ is in one of the two eigenspaces, only four of the 7 Killing spinors

{σ+,Γabσ+|a < b} are linearly independent. Therefore the R
5,1 backgrounds preserve

N = 8k supersymmetries.

Suppose now that n = 7. Given a Killing spinor σ+, then Γabσ+ and Γa1a2a3a4σ+,

a1 < a2 < a3 < a4, are also Killing spinors. There are five Γa1a2a3a4 , a1 < a2 < a3 < a4
Clifford algebra operations in this case. Choose one, say Γ[4]. As in the previous case

σ+ can be in one of the eigenspaces of Γ[4]. In such a case, only 8 of the previous 16

Killing spinors are linearly independent. Therefore, the R6,1 backgrounds preserve N = 16k

supersymmetries. Of course as a consequence of [13] the non-trivial R
6,1 backgrounds

preserve strictly 16 supersymmetries. Furthermore adapting the analysis of section 13 in

the limit of infinite AdS radius, one finds that A must be constant, H = 0 and ξiξ
i = 0.

Next take n = 8. Given a Killing spinor σ+, then Γabσ+, Γa1a2a3a4σ+, a1 < a2 <

a3 < a4, and Γa1...a6σ+, a1 < · · · < a6 are also Killing spinors. All fifteen Γa1a2a3a4 ,

a1 < a2 < a3 < a4, Clifford algebra operators commute with the KSEs and have eigenvalues

±1. Taking a commuting pair of such operators, say Γ[4] and Γ′
[4], and choosing σ+ to lie in

a common eigenspace of both these operators, only eight of the 32 spinors mentioned above

are linearly independent. As a result, R7,1 backgrounds preserveN = 16k supersymmetries.

In fact non-trivial R7,1 backgrounds backgrounds, like the D7-brane, preserve strictly 16

supersymmetries. Again for this backgrounds A is constant and ξiξ
i = 0. Furthermore, it

can be easily seen from the results of section 13 and after taking the AdS radius to infinity

that there are no non-trivial R8,1 supersymmetric backgrounds.

It should be further noted that all Rn−1,1 with N > 16 are homogeneous spaces [17]. If

one can show that A is invariant and so constant, then the field equation of the warp factor

implies that there are no such no trivial backgrounds preserving N > 16 supersymmetries.

It is likely that this is the case for all such backgrounds for which the Killing spinors do

not exhibit a R
n−1,1 coordinate dependence.

15 On the factorization of Killing spinors

In many of the investigations of AdSn ×M10−n backgrounds in IIB and other theories, it

is assumed that the Killing spinors of the spacetime factorize into a product

ǫ = ψ ⊗ χ , (15.1)

where ψ is a Killing spinor on the AdS spaces satisfying the equation

∇µψ + λγµψ = 0 , (15.2)

and where ∇ and γµ are the spin connection and gamma matrices on AdSn, respectively.

Since we have solved the KSEs on the whole spacetime, we can now test this hypothesis.
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R
n−1,1 ×w M

10−n N

n = 2 N < 28

n = 3 2k, k < 14

n = 4 4k, k < 14

n = 5 8, 16, 24

n = 6 8, 16, 24

n = 7 16

n = 8 16

n = 10 32

Table 2. The number of supersymmetries N of R1,1×wM
10−n is not a priori an even number. The

corresponding statement for AdS2 backgrounds is proven using global considerations which are not

applicable in this case. For the rest, the counting of supersymmetries follows from the properties

of KSEs and the classification results of [13–16]. All backgrounds with n > 8 are maximally

supersymmetric and so locally isometric to R
9,1.

To do this observe that if the hypothesis is correct, then ǫ also solves (15.2). So it suffices

to substitute our Killing spinors into (15.2) to see whether they automatically satisfy it.

This computation is similar that that we have done for M-theory in [24]. It turns out that

the Killing spinors ǫ solve (15.2) iff

Γzǫ = ±ǫ . (15.3)

However our Killing spinors do not satisfy this equation. As a result the original hypothesis

is not valid in general.

To illustrate that (15.3) is restrictive, we shall test it against the supersymmetry count-

ing for the AdS5 × S5 background. It is known that this background preserves all 32 su-

persymmetries. It can be easily seen that to solve the algebraic KSEs for this background

in (9.5) for the τ+ spinor, one has to impose

Γxyτ+ = ±iτ+ . (15.4)

After choosing one of the signs, it is clear that the dimension of the space of solutions

is 8 counted over the reals. The gravitino KSE is then solved without any additional

constraints on τ+. Next using the relation between τ+, τ−, σ+ and σ− solutions to the

KSEs, we conclude that the number of Killing spinors of this background is 4× 8 = 32 as

expected. However if one also imposes the condition (15.3) on τ+, one will arrive at the

incorrect conclusion that AdS5 × S5 preserves only 16 supersymmetries.

We have seen that the spinor factorization assumption in (15.1) leads to the incorrect

counting of supersymmetries for AdS backgrounds. It is also likely that it puts additional

restrictions on the geometry of the transverse spaces M10−n. We shall investigate this in

another publication.

To continue, let us examine the factorization of the Killing spinors as in (15.1) for flat

backgrounds to see whether a similar issue arises as for the AdS. A direct inspection of
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the Killing spinors we have found in section 14.2 reveals that the Killing spinors do not

solve the KSEs on R
n−1,1 whenever they have an explicit dependence on the coordinates

of Rn−1,1. As we have already stressed, this dependence appears whenever σ± are not in

the kernel of Θ±. However it is required as a consequence of the KSEs, field equations and

Bianchi identities that Θ∓Θ±σ± = 0. Thus assuming that the Killing spinor factorize as

in (15.1) with ψ to be a constant spinor on R
n−1,1, we find that this imposes the additional

condition Θ±σ± = 0 on the Killing spinors. It is not apparent that this condition always

holds for flat backgrounds. On the other hand we are not aware of examples for which it

does not, and so the question will be investigated further elsewhere.

16 Conclusions

We have determined the a priori fractions of supersymmetry preserved by the warped

AdSn and flat backgrounds Rn−1,1 in IIB supergravity. The results are tabulated in tables

1 and 2, and in equations (1.1) and (1.3), respectively. To achieve this, we have solved

the KSEs of IIB supergravity without making any assumptions on the form of the fields

and Killing spinors, and identified the independent KSEs on the transverse spaces M10−n.

There are two ways to count the number of supersymmetries for AdSn backgrounds. One

is directly from the KSEs on M10−n and the other is from counting the zero modes of a

suitable Dirac-like operator onM10−n coupled to fluxes. For the latter, we have proven new

Lichnerowicz type theorems using the Hopf maximum principle which relates the Killing

spinors to the zero modes of the Dirac-like operator. As a consequence, we have extended

the Lichnerowicz theorem for connections with holonomy contained in a GL group.

The solution of the KSEs of Rn−1,1 backgrounds can be recovered from that of AdSn
in the limit that the AdS radius goes to infinity. The counting of supersymmetries for such

backgrounds then proceeds by counting the solutions of the KSEs on M10−n. The count-

ing of Killing spinors for R
n−1,1 backgrounds is different from that of AdSn backgrounds

because of differences in the identification of linearly independent Killing spinors. Further-

more, unlike the AdSn case, Rn−1,1 backgrounds do not satisfy the regularity assumptions

of AdSn backgrounds and so there is no corresponding counting of supersymmetries via

the counting of zero modes of Dirac-like operators.

Our result is the first step towards the classification of all AdSn and flat backgrounds

R
n−1,1 in IIB supergravity. The next step is to investigate the existence of backgrounds

for each fraction of supersymmetry preserved. We have already excluded the existence of

many cases as can be seen in tables 1 and 2. However, it is likely that further cases can be

excluded especially in the AdSn case after additional conditions are put on the transverse

space M10−n like for example compactness. The exploration of this question as well as the

geometry of all AdSn backgrounds will be presented elsewhere.

Acknowledgments

GP is partially supported by the STFC grant ST/J002798/1. JG is supported by the STFC

grant, ST/1004874/1. JG would like to thank the Department of Mathematical Sciences,

University of Liverpool for hospitality during which part of this work was completed.

– 34 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
0

A Conventions

Our form conventions are as follows. Let ω be a k-form, then

ω =
1

k!
ωi1...ikdx

i1 ∧ · · · ∧ dxik , (A.1)

and

dω =
1

k!
∂i1ωi2...ik+1

dxi1 ∧ · · · ∧ dxik+1 , (A.2)

leading to

(dω)i1...ik+1
= (k + 1)∂[i1ωi2...ik+1] . (A.3)

Furthermore, we write

ω2 = ωi1...ikω
i1...ik , ω2

i1i2 = ωi1j1...jk−1
ωi2

j1...jk−1 . (A.4)

Given a volume form dvol = 1
n!ǫi1...indx

i1 ∧ · · · ∧ dxin , the Hodge dual of ω is defined as

∗ ω ∧ χ = (χ, ω)dvol (A.5)

where

(χ, ω) =
1

k!
χi1...ikω

i1...ik . (A.6)

So

∗ ωi1...in−k
=

1

k!
ǫi1...in−k

j1...jkωj1...jk . (A.7)

In particular the (anti) self-duality of the IIB 5-form field strengths is given by

FM1...M5
= −

1

5!
ǫM1...M5

N1...N5FN1...N5
, (A.8)

eg F+−z34 = −F56789. For complex forms

‖ ω ‖2= ω̄i1...ikω
i1...ik . (A.9)

It is well-known that for every form ω, one can define a Clifford algebra element /ω given

by

/ω = ωi1...ikΓ
i1...ik , (A.10)

where Γi, i = 1, . . . n, are the Dirac gamma matrices. In addition we introduce the notation

/ωi1
= ωi1i2...ikΓ

i2...ik , Γ/ωi1
= Γi1

i2...ik+1ωi2...ik+1
. (A.11)

The rest of our spinor conventions can be found in [25].
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B AdS3: proof of the maximum principle

In this appendix, we shall derive (6.6). This involves extensive Clifford algebra manipula-

tions and the use of the field equations, in particular the scalar part of the Einstein equation

on M7. For this, we consider ‖ χ+ ‖2, assume D (+)χ+ = 0, and evaluate ∇2 ‖χ+‖
2 to find

∇2 ‖χ+‖
2 = 2

∥

∥

∥
D
(+)χ+

∥

∥

∥

2
+

1

2
R(7) ‖χ+‖

2

+ReRe
〈

χ+,
[

−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j − 14qA−1Γzi

B
(+)

]

∇iχ+

〉

+Re
〈

χ+,
[

−2
(

Ψ(+)i† + qA−1
B
(+)†Γzi

)(

Ψ
(+)
i + qA−1ΓziB

(+)
)

−2∇iΨ
(+)
i − 2Γij∇iΨ

(+)
j − 14∇i

(

qA−1Γzi
B
(+)

)]

χ+

〉

, (B.1)

where

Ψ
(+)†
i =

1

2A
∂iA+

i

2
Qi −

i

4

(

/ΓY
)

i
Γz −

i

2
/Y iΓz

+

(

−
1

96

(

/ΓH
)

i
−

9

96
/H i +

6

96
ΦΓzi

)

C∗ ,

B
(+)† = −

c

2ℓ
−

1

2
/∂AΓz +

iA

4
/Y +

(

−
A

96
/HΓz +

18A

96
Φ

)

C ∗ . (B.2)

Expanding out the third term, we find that

Re
〈

χ+,
[

−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j − 14qA−1Γzi

B
(+)

]

∇iχ+

〉

= Re

〈

χ+,

[

7qc

ℓ
A−1Γzi − (3 + 7q)∂i logA− (1 + 7q)

(

Γ/∂ logA
)i

− iQi + i ( /ΓQ)i +
−2 + 14q

2
i /Y

i
Γz +

−1 + 7q

2
i
(

/ΓY
)i
Γz

+

(
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For q = 1
7 , this term can be rewritten as
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〈
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[
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(+)
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B
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Ψ
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Combining the F-term with the bilinear part of the fourth term in (B.1), we find that
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〈
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(
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B
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Ψ
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. (B.6)

We can use the field equations and Bianchi identities to rewrite the last line of (B.1)

as

Re
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(

2
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+
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The second, fourth, and F-term part of the third term on the right side of equa-

tion (B.1) thus sum to
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Noting that

∥

∥

∥
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∥

∥
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∥
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∥

∥
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〉

(B.9)

we can now write equation (B.1) as (6.6). We also remark that the values of q for AdSn
backgrounds are given by q = n−2

10−n .

C AdS4: proof of the maximum principle

To prove (8.5), we assume that D (+)χ+ = 0 and evaluate

∇2 ‖χ+‖
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∥
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∥
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−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j

−12
q

A
Γzi

B
(+)

]
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, (C.1)
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Ψ
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i

2
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i

2
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(
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/ΓH
)

i
−

9

96
/H i

)
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B
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c
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2
/∂
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2
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A
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/HΓzC ∗ . (C.2)

Expanding the third term in (C.1), we find that
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. (C.3)

For q = 1
3 , this can be written as
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〈
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Combining the F-term with the bilinear part of the fourth term in (C.1), we find that
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Ψ
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(C.6)

We can use the field equations and Bianchi identities to rewrite the last line of (C.1)

as
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. (C.7)

The second, fourth and F-term part of the third term on the right side of equation (C.1)

thus sum to
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〉

(C.9)

we can now write equation (C.1) as (8.5).

D AdS5: proof of the maximum principle

To prove the formula (10.5), we evaluate
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∥
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Expanding the third term in (D.1), we find that
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For q = 3
5 , the above expression can be rewritten as
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Combining the F-term with the bilinear part of the fourth term of equation (D.1), we find

that
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We can use the field equations and Bianchi identities to rewrite the last line of (B.1) as
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The second, fourth and F-term part of the third term on the right side of equation (D.1)

thus sum to
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Noting that
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χ

〉

(D.9)

we can now write equation (D.1) as (10.5).

E AdS6: proof of the maximum principle

To prove (12.5), we evaluate

∇2 ‖χ‖2 = 2
∥

∥

∥
D
(+)χ

∥

∥

∥

2
+

1

2
R(4) ‖χ‖2

+Re
〈

χ,
[

−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
Γzi

B
(+)

]

∇iχ
〉

+Re
〈

χ,
[

−2
(

Ψ(+)i† +
q

A
B
(+)†Γzi

)(

Ψ
(+)
i +

q

A
ΓziB

(+)
)

−2∇iΨ
(+)
i − 2Γij∇iΨ

(+)
j − 8∇i

( q

A
Γzi

B
(+)

)]

χ
〉

, (E.1)

where

Ψ
(+)†
i =

1

2A
∂iA+

i

2
Qi +

(

−
1

96

(

/ΓH
)

i
−

9

96
/H i

)

C∗

B
(+)† = −

c

2ℓ
+

1

2
∂iAΓzi −

A

96
/HΓzC ∗ . (E.2)

Using the fact that Re
〈

φ,Γijφ
〉

= Re
〈

φ,ΓijC ∗ φ
〉

= 0, we can expand the third term

in (E.1) as

Re
〈

χ,
[

−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
Γzi

B
(+)

]

∇iχ
〉

= Re

〈

χ,

[

4cq

ℓA
Γzi −

3 + 4q

A
∂iA−

1 + 4q

A
∂jAΓij − iQi + iQjΓ

ij

+

(

−12 + 8q

96

(

/ΓH
)i
+

−12 + 24q

96
/H
i
)

C∗

]

∇iχ

〉

. (E.3)

For q = 1, the above term can be rewritten as

Re
〈

χ,
[

−4Ψ(+)i† − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
Γzi

B
(+)

]

∇iχ
〉

= −
6

A
∂iA∇i ‖χ‖

2 − Re

〈

χ,F Γi

[

Ψ
(+)
i +

1

A
ΓziB

(+)

]

χ

〉

(E.4)
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where

F =
4c

ℓA
Γz +

5

A
/∂A− i /Q+

1

24
/H C ∗ . (E.5)

Combining the F-term with the bilinear part of the fourth term in (E.1), we find that

Re

〈

χ,−2

(

Ψ(+)i† +
1

A
B
(+)†Γzi +

1

2
F Γi

)(

Ψ
(+)
i +

1

A
ΓziB

(+)

)

χ

〉

= Re

〈

χ,−2

[

3c

2ℓA
Γzi +

5

2A
∂iA−

2

A
∂jAΓij +

i

2
QjΓ

ij +

(

−
2

96

(

/ΓH
)i
−

6

96
/H
i
)

C∗

]

×

[

−
c

2ℓA
Γzi +

1

A
∂iA+

1

2A
∂jAΓij −

i

2
Qi +

(

−
2

96

(

/ΓH
)

i
+

6

96
/H
i
)

C∗

]

χ

〉

= Re

〈

χ,

[

−
6

ℓ2A2
−

11

A2
(dA)2 − 2

(

−
2

96

(

/ΓH
)i
−

6

96
/H
i
)(

−
2

96

(

/ΓH
)

i +
6

96
/H i

)

+

(

16c

96ℓA
/HΓz −

16

96A
∂iA

(

/ΓH
)i
+

i

12
Qi

(

/ΓH
)i
)

C∗

]

χ

〉

. (E.6)

Next, we use the field equations and Bianchi identities to expand the derivatives in the

fourth term on the right side of equation (E.1) as

Re

〈

χ,

[

−2∇iΨ
(+)
i − 2Γij∇iΨ

(+)
j − 8∇i

(

1

A
Γzi

B
(+)

)]

χ

〉

= Re

〈

χ,

[

5

A2
(dA)2 −

5

A
∇2A+

i

2
/dQ−

1

48
/dH C∗

]

χ

〉

= Re

〈

χ,

[

25

ℓ2A2
+

30

A2
(dA)2 −

5

48
‖ H ‖2 +ξiξjΓ

ij

+

(

−
i

12
Qi

(

/ΓH
)i
+

1

12
ξi
(

/ΓH
)

i

)

C∗

]

χ

〉

. (E.7)

The second, fourth and F-term part of the third term on the right side of equation (E.1)

thus sum to

Re

〈

χ,

[

4

ℓ2A2
+

4

A2
(dA)2 +

1

48
‖ H ‖2 + ‖ ξ ‖2 +ξiξjΓ

ij

+

(

16c

96ℓA
/HΓz −

6

96A
∂iA

(

/ΓH
)i
+

1

12
ξi
(

/ΓH
)

i

)

C∗

]

χ

〉

. (E.8)

Noting that
∥

∥

∥
B
(+)χ

∥

∥

∥

2
= Re

〈

χ,B(+)†
B
(+)χ

〉

= Re

〈

χ,

[

1

4ℓ2
+

1

4
(dA)2 +

3A2

16 · 96
H ij

kH ijℓΓ
kℓ +

A2

16 · 96
‖ H ‖2

+

(

Ac

96ℓ
/HΓz −

A

96
∂iA

(

/ΓH
)i
)

C∗

]

χ

〉

‖Aχ‖2 = Re
〈

χ,A†Aχ
〉

= Re

〈

χ,

[

‖ ξ ‖2+ξiξjΓ
ij−

3

96
H ij

kH ijℓΓ
kℓ+

1

96
‖ H ‖2+

1

12
ξi
(

/ΓH
)

iC∗

]

χ

〉

(E.9)

we can now write equation (E.1) as (12.5).
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