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1 Main method

In this short note we present a method of adding Wilson lines to already existing 5d

black string solutions in a supersymmetry preserving way. It is a well-known feature of

black string and black ring solutions in ungauged supergravity [4–6] that Wilson lines

are zero-modes of the equations of motion and supersymmetry variations, which lead to

nontrivial electric charges in the full asymptotically flat solution. This fact seems to have

been overlooked in the literature dealing with asymptotically AdS solutions in 5d gauged

supergravity [1, 2, 7–14]. Here we aim to close this gap and show that, apart from a few

subtleties, one can extend the known black string solutions in the same way. This amounts

to introducing a non-vanishing background gauge fields

AIγ = wI , (1.1)

where the direction γ is along an isometry of the solution and the index I runs over the

number of gauge fields. We will focus on black string solutions supported by magnetic

charges, whose horizons can be Riemann surfaces of any genus. One obvious choice for

γ is the direction along the black string, a circular direction in space (if we foliate the

asymptotic AdS5 appropriately). An alternative choice1 arises for black strings with a

horizon of genus g > 0, for which the direction γ can be along the Riemann surface

throughout spacetime, since there exist nontrivial one-cycles in these cases (assuming again

an appropriate foliation of AdS5). In both cases the Wilson lines (1.1) cannot be gauged

away, but only periodically identified, as wI ∼ wI + 2πn, where n ∈ Z.

The addition of these Wilson lines, trivial as it might seem, actually introduces inter-

esting features of the black string solutions. When the direction γ is taken to be along the

1We thank Nikolay Bobev for pointing out this possibility.
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string, the Wilson lines lead to nonvanishing conserved electric charges in the spacetime

due to the Chern-Simons terms present in 5d supergravity and the fact that black strings

are already supported by magnetic charge. The resulting electric charges are therefore

proportional to both the Wilson lines and the magnetic charges, similarly to the Witten

effect [15] in 4d that requires a nonvanishing theta-angle. In fact, as can be seen explicitly

by dimensional reduction [16, 17], the Wilson lines can be thought of as a 5d analogue of

the theta-angle. On the other hand, if the direction γ in (1.1) is taken along the Riemann

surface, one obtains a deformation of the original magnetically charged solution (cf. [18]

for analogous results in 7d) with no electric charges but an interesting dual field theory

interpretation discussed in section 4.

Consider the action of a generalN = 2D = 5 Fayet-Iliopoulos (FI) gauged supergravity

with an arbitrary number nv of vector multiplets.2 The bosonic fields are the metric gµν ,

nv real scalars φi, and nv + 1 U(1) gauge fields AIµ. The bosonic Lagrangian in standard

conventions [7] is given by

e−1L =
1

2
R+ g2V − 1

4
GIJFµν

IFµνJ − 1

2
Gij∂µφi∂µφj

+
e−1

48
ǫµνρσλCIJKF

I
µνF

J
ρσA

K
λ , (1.2)

with a gauge coupling constant g and a scalar potential depending on the constant FI

parameters VI and the nv + 1 sections, XI(φi), which parameterise the physical scalar

fields when the condition

V =
1

6
CIJKX

IXJXK = 1 , (1.3)

is satisfied. The Lagrangian is completely specified by the constant symmetric tensor of

coefficients CIJK . All the physical quantities in (1.2) can be expressed in terms of the

homogeneous cubic polynomial V , i.e. one can uniquely determine the scalar and gauge

field kinetic terms Gij(φ) and GIJ(φ) from the coefficients CIJK .

Let us now consider a black string that is already satisfying the equations of motion.

In the known examples in gauged supergravity [1, 2, 7, 9–14] (and similar to the ones in

ungauged supergravity [4–6]), the metric and field strengths are of the form

ds2 = f(r)2
(

−dt2 + dr2 + dz2
)

+ h(r)2 dσ2Σ , (1.4)

F I = pI VolΣ , (1.5)

and scalars φi(r). The functions f(r), h(r) are typically known only numerically and in the

limiting cases correspond to a metric interpolating between AdS3 × Σ2 near the horizon

and asymptotically locally AdS5 foliated in Rt × S1 × Σ2 coordinates.

Now we want to argue that the addition of the Wilson lines (1.1) to the gauge field

solution above immediately solves the equations of motion without changing any other

detail of the solution (no matter whether direction γ is chosen to be inside Σ2 or to

correspond to z). First note that the field strengths do not change upon the addition

2One can naturally extend the following arguments to more general theories with hypermultiplets with

virtually no difference.
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of Wilson lines, and bare gauge fields only enter in the Lagrangian (1.2) via the Chern-

Simons term

ǫµνρσλCIJKF
I
µνF

J
ρσA

K
λ .

This term does not couple with either the metric or scalars, therefore one just needs to

make sure that the Maxwell equations are satisfied to conclude that we have found a new

solution. But even this task is trivial since the Maxwell equations no longer depend on the

bare gauge fields even if the Lagrangian does.

Let us now look at supersymmetry — assuming that the starting black string did lead

to vanishing variations, we just have to make sure there are no new contributions from the

Wilson lines. The relevant gravitino and gaugino variations are

δψµ =

(

Dµ +
i

8
XI(Γµ

νρ − 4δµ
νΓρ)Fνρ

I +
1

2
gΓµX

IVI −
3i

2
gVIA

I
µ

)

ǫ, (1.6)

δλj =

(

3

8
ΓµνF Iµν∂jXI −

i

2
GjkΓµ∂µφk +

3i

2
gVI∂jX

I

)

ǫ, (1.7)

where we used XI ≡ 1
6CIJKX

JXK for brevity, ǫ is the supersymmetry parameter and Dµ

is the covariant derivative. The gaugino variation (1.7) again does not depend on the bare

gauge fields and is therefore immediately zero, while the only new term in the γ-component

gravitino variation (1.6) leads to the condition

g VIw
I = 0 . (1.8)

Note that in ungauged supergravity we have g = 0 and therefore BPS-ness is guaranteed

automatically. Here instead we need to require that the linear combination VIw
I vanishes

to guarantee supersymmetry.

We have thus shown that the addition of the nv + 1 Wilson lines (1.1) leads to a new

black string solution and furthermore that supersymmetry restricts one linear combination

of them through (1.8), adding nv new parameters to the family of magnetic BPS solutions.

When the Wilson lines are chosen to be along the Riemann surface (γ ∈ Σ2), one finds

an extended class of black string solutions, with the same charges as before and some

additional parameters.

However, if the Wilson lines are along the string direction (γ ≡ z) these additional

parameters actually correspond to electric charges due to the Chern-Simons term. The

Chern-Simons term contributes to the Maxwell equations

∂ν
(

GIJF
µνJ

)

=
1

8
e−1ǫµνρσλCIJKF

J
νρF

K
σλ , (1.9)

which lead to the following conserved electric charges

qI = − CIJKw
JpK . (1.10)

The new BPS black strings generated from the Wilson lines therefore have nv independent

electric charges.
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It is important to note that the procedure described above is the simplest one that

allows to add Wilson lines, since they are constant throughout spacetime. In analogous

examples in ungauged supergravity [4–6], the most general solution allows for extra func-

tions that reduce to constant Wilson lines at the attractor. It is an interesting problem to

consider the existence of such solutions in gauged supergravity as they would correspond

to more general electrically charged black strings.

2 Extending Benini-Bobev solutions

Following the above procedure, it is straightforward to write down a generalization of the

Benini-Bobev (BB) black strings [1, 2] that put together earlier solutions [7, 9–13]. Consider

the supergravity (1.2) with two vector multiplets (the so-called STU model), which is a

truncation of the maximal N = 8 supergravity arising from the compactification of type

IIB supergravity on S5. We have V1 = V2 = V3 = 1
3 and C123 = 1 and its permutations

as only nonvanishing components. The bosonic fields in the solution, already adding the

Wilson lines, are given by:

ds2 = e2f(r)
(

−dt2 + dz2 + dr2
)

+ e2g(r) dσ2Σ , (2.1)

F I = −pI VolΣ, AIγ = wI , (2.2)

X1 = e
−

φ1(r)
√

6
−

φ2(r)
√

2 , X2 = e
−

φ1(r)
√

6
+

φ2(r)
√

2 , X3 = e
2φ1(r)

√

6 . (2.3)

The full flow is given in terms of the functions f(r), g(r), φ1,2(r) that were found numerically

in [1, 2] and are fully determined by the magnetic charges pI (or aI in the notation of [1, 2]).

These satisfy a further constraint imposed by supersymmetry,

p1 + p2 + p3 = −κ , (2.4)

with κ = +1,−1, or 0 depending on the curvature of the Riemann surface Σ. The extra

BPS condition (1.8) for the Wilson lines now becomes

w1 + w2 + w3 = 0 . (2.5)

There are conserved electric charges when γ ≡ z, which are found from (1.10)

q1 = −
(

p2w3 + p3w2
)

, q2 = −
(

p1w3 + p3w1
)

, q3 = −
(

p1w2 + p2w1
)

. (2.6)

2.1 Near-horizon BTZ with Wilson lines

Near the horizon we can do better and write down a full analytic solution, which has the

metric in the form BTZ× Σ2:

ds2 = R2
AdS3 ds2BTZ +R2

Σ dσ2Σ , (2.7)

where we extended slightly the original solution by allowing for an (near-horizon) extremal

BTZ factor in the metric instead of AdS3,

ds2BTZ =
1

4

(

−r2 dt2 +
dr2

r2

)

+ ρ+

(

dz +

(

−1

4
+

r

2ρ+

)

dt

)2

, (2.8)
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where ρ+ is a constant that describes the mass of the BTZ black hole [19]. Locally the BTZ

and AdS3 metrics are the same, therefore the equations of motion and BPS variations are

not sensitive under this change. The solution for the gauge fields remains the same, (2.2),

while the scalars and BTZ and Σ2 radii are given explicitly in terms of the magnetic charges,

X1 =
p1

(

−p1+p2+p3
)

(p1p2p3Π)1/3
, X2 =

p2
(

p1 − p2 + p3
)

(p1p2p3Π)1/3
, X3 =

p3
(

p1 + p2 − p3
)

(p1p2p3Π)1/3
, (2.9)

R3
AdS3 =

8p1p2p3Π

Θ3
, R6

Σ =

(

p1p2p3
)2

Π
, (2.10)

with

Π =
(

p1 + p2 − p3
) (

p1 − p2 + p3
) (

−p1 + p2 + p3
)

,

Θ = 2
(

p1p2 + p1p3 + p2p3
)

−
(

(

p1
)2

+
(

p2
)2

+
(

p3
)2
)

. (2.11)

Note that for the near-horizon geometry we actually needed to allow for a BTZ metric

instead of AdS3 in order to add the Wilson lines, since pure AdS3 has a contractible cicle

at the origin r = 0. This is no longer true for the BTZ since the origin is covered by

an event horizon and thus the Wilson line never shrinks outside the horizon. The full

asymptotically AdS5 solution would then differ from the one in [1, 2], by the addition of

the extra charge described by ρ+ and it is an interesting open problem to construct such

a solution explicitly.

3 Relation to axions in 4d

In this section we give a brief discussion of the analogous situation in four dimensions,

focusing on a theory with a known gauge theory dual and an M-theory lift. As already

noted in section 3.6 of [17], the Wilson lines along the string in 5d correspond to axions in

4d. Here we show that adding electric charges to the BPS black holes of Cacciatori-Klemm

(CK) [3] in AdS4 (see also [20–25] for more details and generalizations) is in one to one

correspondence with switching on nonvanishing axions. This is the 4d analog of the Wilson

line-electric charge correspondence in 5d and is known as the Witten effect [15].

Note that if we instead consider the Wilson lines along the Riemann surface, there

is virtually no difference between the 4d and 5d solutions. The 4d gauged supergravity

equations of motion and BPS variations are also invariant under the addition of flat connec-

tions (1.1) subject to3 (1.8). Their dual interpretation is discussed in the next section. In

the remaining discussion here we therefore focus on the case of CK black holes with axions.

We consider an FI gauged theory in four dimensions with the prepotential

F =
√
X0X1X2X3 , (3.2)

and gauging

G = (0, 0, 0, 0, g1, g2, g3, g0)
T . (3.3)

3Note that in our 4d conventions the FI parameters are denoted gI , therefore strictly speaking the new

condition for BPS-ness of Wilson lines along the Riemann surface is

gIw
I = 0 . (3.1)
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In terms of the FI parameters, the AdS4 radius and the scalars at the vacuum take the form

RAdS = I4(G)
−1/4 = (4 g0g1g2g3)

−1/4 , ti
∣

∣

∞
= i

√

g1g2g3
g0

1

gi
, (3.4)

so that all axions vanish. It then follows that any nontrivial axions in a black hole solution

must vanish asymptotically and that the corresponding profile must be supported by ap-

propriate charges. Here, we used the notation I4 for the quartic invariant of very special

geometry, given explicitly by

I4(Γ) = −
(

p0q0 + piqi
)2

+
2

3
p0 cijkp

ipjpk +
2

3
q0 c

ijkqiqjqk + cijkp
jpk cilmqlqm . (3.5)

This invariant and its derivatives are crucial in the description of four dimensional black

holes, as will be made clear below.

In order to explore axionic solutions, we will consider the attractor values for the

scalars, which are parametrised by the vector

2 eψ−U Im
(

e−iαV
)

= B , (3.6)

where U and ψ parameterise the attractor geometry as

ds2 = −e2Ur2 dt2 + e−2U dr
2

r2
+ e2(ψ−U)

(

dθ2 + sin2 θdφ2
)

. (3.7)

The attractor equations that determine the scalars in terms of the gauging, G, and the

charge vector, Γ, are given by [24]

1
4 I

′
4(B,B, G) = Γ , (3.8)

along with the constraints

〈G,Γ〉 = −1 , 〈B,Γ〉 = 0 . (3.9)

In order to show the correspondence between electric charges and axions, we introduce

the following decomposition of the 2nv + 2 dimensional vector space in four subspaces, as










p0

pi

qi
q0











(+3)

(−1)

(+1)

(−3)

, (3.10)

which assigns one of the eigenvalues ±3 and ±1 to the various components of any symplectic

vector. The details of this decomposition and the concrete operators that project to the

various subspaces can be found in [26].

Clearly, the decomposition (3.10) is consistent with the quartic invariant (3.5), since

each term appearing in that expression is manifestly of total grade zero. This holds for any

combination I4(Γ1,Γ2,Γ3,Γ4), which can be nonzero only if the various vectors have appro-

priate components so that a grade zero term can be constructed. Similarly, any derivative

I ′4(Γ1,Γ2,Γ3) is nonzero only if components of eigenvalue ±3 and ±1 can be constructed.

This decomposition is particularly relevant for the gauging (3.3), which lives in the

(−3) ⊕ (+1) subspace. For nontrivial axions to appear in this basis, the vector B must

have components in both the (±1) subspaces, as is clear from the expressions for the

scalars at infinity (3.4) and can be verified directly from the explicit solution to (3.6) for

the physical dilatons and axions, see e.g. [27].
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As shown recently in [25], the general asymptotically AdS4 black hole solution can be

parametrised in terms of four vectors constructed out of the gauging and charge vectors.

In particular, we are interested in the attractor solution for B, which reads

B = a1I
′
4(G,G,G) + a2I

′
4(G,G,Γ) + a3I

′
4(G,Γ,Γ) + a4I

′
4(Γ,Γ,Γ) , (3.11)

where the constant coefficients ai are given in terms of the gaugings and charges by (A.4).

Given that the first vector in (3.11), I ′4(G,G,G) is by assumption of grade (−1)⊕ (+3)

due to (3.3), an axion free solution at the attractor can only be realised if the other three

vectors are of the same type. It is straightforward to verify that this is only possible for

〈Γ, G〉 6= 0 if Γ is of grade (−1) ⊕ (+3), i.e. purely magnetic according to (3.10), and

a2 = a4 = 0. In this case, the second constraint in (3.9) is trivially satisfied.

Turning on the remaining, electric, components of Γ along the directions (−3)⊕ (+1)

leads to all possible directions turned on in (3.11), while (3.9) becomes nontrivial. Using

the latter to fix the eigenvalue (−3) component in (3.11), we find that the nv components

of degree (+1) in the charge, i.e. the electric charges qi, are necessary and sufficient to turn

on the axions in B.

4 Dual field theory interpretation

4.1 Wilson lines along the string/axions

It is interesting to observe that the addition of Wilson lines along the string in the 5d bulk

leads to a nontrivial winding around the circle of the scalars in the boundary N = 4 SYM.

The same phenomenon was observed in the MSW theory [28] upon addition of membrane

charges (which are again Wilson lines from the black string perspective) and the situation

in our case is in complete analogy. Consider the twisted N = 4 SYM, dual to the BB black

strings. There is a non-vanishing background gauge field for the R-symmetry, so the fields

of N = 4 SYM feel the covariant derivative

Dµ = ∂µ + isω̃µ − iABµ , (4.1)

where s corresponds to the spin of the field and AB is a background U(1)3 ⊂ SO(6)R
gauge field in the Cartan subgroup that describes the magnetic flux through the Riemann

surface Σ (see [1, 2] for detailed explanation). The addition of the Wilson line means that

there is now also a constant nonvanishing ABγ on the circle of the boundary. This is a

background Wilson line, and is given by a linear combination of the values wI of the bulk

Wilson lines (1.1). In the conceptually simplest case of scalar fields (no spin connection in

the covariant derivative), the scalars can no longer be given by constant modes on S1, but

instead acquire winding numbers around the circle to cancel the background Wilson line.

Note that the black string metric remains unchanged upon the addition of Wilson lines,

and therefore the main features of the RG flow of the twisted N = 4 SYM also remain

unchanged. In particular, the central charge of the final N = (0, 2) 2d SCFT remains the

same, i.e. the number of multiplets in the IR theory is unchanged. This is not surprising as

the addition of the background Wilson line on the boundary is not related to the coupling

of the original theory to the Riemann surface that is eventually relevant for counting

the central charge [1, 2]. The Wilson lines along the string are completely decoupled from
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physics related to the internal space, so one might even think of them directly in 3d context

after compactifying the 5d supergravity on the Riemann surface [29, 30]. The situation

would then be described via the AdS3/CFT2 correspondence, see e.g. [31] for details.

We can also look more qualitatively on the dual field theory interpretation of our

results and make comparison between the field theory duals of 5d and 4d asymptotically

AdS solutions carrying magnetic charge. Switching on nonvanishing expectation values for

Wilson lines in the bulk translates into switching on an extra deformation on the boundary.

The exact same type of logic holds in the 4d bulk, where switching on axions leads to an

extra deformation related to the mass of the fermions in the dual theory. In one case we

are looking at the RG flow of twisted 4d N = 4 SYM to a 2d N = (0, 2) SCFT, while in

the other case we have the RG flow of twisted 3d ABJM theory to a N = 2 superconformal

quantum mechanics.4 Even though the dimensions do not match, a similar phenomenon

occurs, that seems to be related to the fact that both theories are twisted. In both cases

the extra deformations (from Wilson lines or axions) lead to the switch of the BPS states of

the theory from a zero to a nonzero charge. This is the case because the electric charges in

the bulk translate into U(1) charge densities of states on the boundary [31]. The fact that

in the bulk solutions Wilson lines/axions go hand in hand with electric charges was shown

to be related to the existence of magnetic charges, without which no electric charges would

exist. Magnetic charges lead to a twisting of the boundary theory as explained in [1, 2, 32].

Therefore we observe a new phenomenon on the dual field theory side: due to the twisting,

BPS states in the theory acquire U(1) charge densities upon the switch of the extra BPS

deformation from Wilson lines/axions.

4.2 Wilson lines along the Riemann surface

Putting the Wilson lines on the Riemann surface both in 4d and in 5d seems to be in com-

plete analogy to the situation in 7d, already discussed in some detail in section 4.3 of [18].

Here we just summarize briefly their main conclusion, which is that the Wilson lines in the

bulk correspond to a set of exactly marginal deformations of the boundary field theory.

Upon compactification of the N = 4 SYM or the ABJM theory on a Riemann surface,

the resulting 2d/1d superconformal theory is expected to have a space of exactly marginal

deformations. This space is locally a product of the complex structure deformations of the

Riemann surface and the space of Wilson lines for abelian global symmetries in the theory.

Equation (1.8) (or equivalently (3.1)) tells us that we cannot turn on a Wilson line for the

R-symmetry, therefore the number of Wilson lines we can switch on for N = 4 SYM is 2,

and for ABJM 3. For a Riemann surface with a genus g, the space of flat connections has

a complex dimension g, therefore we expect the total dimension of the space of marginal

deformations for Wilson lines to be 2g and 3g for the theories coming from compactification

of N = 4 SYM and ABJM, respectively. Finally note that marginal deformations keep the

central charge invariant, in accordance with the fact that the metric is unaffected by the

addition of Wilson lines.

4Strictly speaking the electric charges mean that we are looking at excited states that no longer preserve

the full superconformal symmetry. Here we refer to the underlying 2d/1d superconformal theories, which

correspond to the solutions not yet deformed by Wilson lines/axions.
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A Explicit form of the attractor solution in 4D

In this appendix we discuss briefly the explicit solution to the attractor equation (3.8),

following the method of [25]. For the convenience of the reader, we first display the explicit

form of the left hand side of (3.8) for the gauging (3.3) and the components of the vector

B defined as

B =
(

β0 , βi , βi , β0
)

T . (A.1)

With this notation, the left hand side of (3.8) reads

1
4 I

′
4(B,B, G) =



















β0 gIβI + cijk giβjβk

−βi gIβI + 2βi
∑

j 6=i β
jgj + cijk(2β0βjgk + g0βjβk)

gi β
IβI + βi g

IβI − 2βi
∑

j 6=i β
jgj − 2 gi

∑

j 6=i β
jβj

g0 β
IβI + β0 g

IβI



















, (A.2)

where we used the shorthand notation

βIβI = β0β0 + βiβi , gIβI = g0β
0 + giβ

i , (A.3)

and cijk is the completely symmetric tensor which is c123 = 1 and and vanishes when any

two indices are equal.

We will not show the solution for B in components, but rather use the basis in (3.11)

to express the full vector and give the general duality covariant solution for any charge and

gauging, by specifying the constants ai as

a1 = 6
I4(G,G,G,Γ)

2I4(Γ)− I4(G,Γ,Γ,Γ)
2I4(G)

I4(G,G,G,Γ)3
a4 ,

a2 = − I4(G,Γ,Γ,Γ)

2 I4(G,G,G,Γ)
a4 ,

a3 = −3
I4(G,G,G,Γ)

2I4(Γ)− I4(G,Γ,Γ,Γ)
2I4(G)

I4(G,Γ,Γ,Γ)I4(G,G,G,Γ)2
a4 , (A.4)

a4 =
I4(G,G,G,Γ)

2I4(G,Γ,Γ,Γ)√
b1 b2

,

b1 = −2 (〈Γ, G〉 (G,G,Γ,Γ) + 〈I ′4(G), I ′4(Γ)〉) ,
b2 = I4(G,G,G,Γ)

3I4(G,Γ,Γ,Γ)
3 + 36

(

I4(G,G,G,Γ)
2I4(Γ)− I4(G,Γ,Γ,Γ)

2I4(G)
)2
.

We stress that these expressions differ by the overall normalization, through a4, from the

attractor solution one would obtain by taking a limit of the solution given in [25] as we are

using the conventions of [24] for the attractor equations.

– 9 –
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