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1 Introduction

The 2012 discovery of the Higgs boson by the ATLAS [1] and CMS [2] experiments at

the Large Hadron Collider (LHC) brought widespread attention to the field of high energy

physics. The discovery also reaffirmed the existence of the hierarchy problem due to the

small value of the Higgs boson mass. One popular solution to the hierarchy problem is

Supersymmetry (SUSY), in which every Standard Model (SM) particle has a supersym-

metric counterpart. Since no SUSY particles have been observed, SUSY must be broken:

the SUSY partner masses are much larger than their SM analogues. However, the LHC

provides a large center of mass energy which could be high enough to produce some of these

SUSY particles. Both ATLAS and CMS have conducted extensive searches for SUSY in a

multitude of final states, with various numbers of jets, leptons, and photons. The kinematic

reach of the detectors have been exploited in order to be sensitive to high mass particles,

which may be produced with a low cross section.

Every search for SUSY consists of three pieces: 1) an event selection to maximize

sensitivity to a particular model of interest, 2) an estimation of the number of SM events

which will pass the selection for a given amount of data, and 3) a comparison of the

measured number of events in the region with the predicted number. As the data are

stochastic, the last step requires a statistical analysis which incorporates the systematic

uncertainties in the predicted event yields. For a particular statistical model of the SM

prediction, if the probability p that the measurement could have been generated from the

prediction is small, then one has evidence for SUSY. One usually converts the value p

into a Gaussian equivalent number of standard deviations and then the generally agreed

upon threshold for ‘evidence’ is 3σ and for ‘discovery’ is 5σ. However, both ATLAS and

CMS have performed many searches. In particular, each analysis usually involves many

selections and so there are hundreds of searches between the two collaborations. Statistical

fluctuations alone should then lead to several high nσ measurements. By studying the

distribution of p-values, we analyze the compatibility of the 8 TeV ATLAS and CMS SUSY

searches with the SM-only hypothesis. The procedure is similar to the analysis of the

7 TeV SUSY searches [3], with a few additions that are discussed in the analysis and

results sections.
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arXiv reference Category Note

1303.2985 Multijets
Regions orthogonal; drop those with

HT > 800 GeV due to overlap with 1402.4770

1402.4770 Multijets
Regions orthogonal; drop those with

HT ∈ [500, 800] GeV due to overlap with 1303.2985

1305.2390 Multijets Unknown correlation with 1303.2985 and 1402.4770: remove

1311.4937 One Lepton
Regions orthogonal; use the LS method

for uncertainties when given a choice

1308.1586 One Lepton
Unknown correlation with 1311.4937.

Prefer 1311.4937 as its regions are orthogonal

1212.6194 Same sign leptons SR6 ⊆ SR3 ⊆ SR4 ⊆ SR1 ⊆ SR0. Drop other regions.

1311.6736 Same sign leptons
Drop regions with ≥ 2 b-jets due to overlap with 1212.6194.

Arbitrarily pick the low pT region

1306.6643 Multileptons
Unknown overlap with 1404.5801.

Use 1404.5801 as it has more regions.

1404.5801 Multileptons Regions orthogonal.

1405.3886 Multileptons Use the two lepton OS regions only.

1405.7570 Multileptons
Use the two lepton OS regions only.

Use signal sensitive regions (as described in the text)

1312.3310 Diphoton Regions orthogonal.

Table 1. An overview of the signal regions used in the meta-analysis from 8 TeV CMS searches.

2 Constructing the dataset

Even though the 8 TeV dataset was collected in 2012, both ATLAS and CMS are continuing

to analyze the data. Most likely, searches will continue to become public until the 13 TeV

run efforts are fully operational in the beginning of 2015. Therefore, we arbitrarily cutoff

the searches considered for this analysis at the SUSY 2014 conference (July 20, 2014).

This includes 17 ATLAS papers [4–20] and 12 CMS papers [21–32]. The difficulty in

assembling the dataset for the present analysis is to understand the correlations between

measurements. The general strategy is to categorize the various searches by their selections

on jets, leptons, and photons. Two analyses which have non-overlapping requirements in

the number and properties of these objects are treated as uncorrelated. For the data, this

is an excellent assumption and only breaks down in the rare case that the data in one signal

region is used for the background estimate of another signal region. If two signal regions

are such that one is a subset of the other, then a decorrelation procedure is attempted in

order to produce two orthogonal regions. If the yields are x ± σx and y ± σy with x < y,

then the decorrelated regions have yields x ± σx and (y − x) ±
√
σ2
y − σ2

x. In all other

cases, it is not possible with the information given to determine the correlations and the

signal regions in question are simply not used. In general, if there are two analyses with

an unknown correlation, the one with more signal regions is preferred unless the one with

fewer regions already has orthogonal selections. The regions to be included where selected

before looking at any p-values in order to minimize potential biases. Tables 1 and 2 give

some summary information about the dataset construction given the general guidelines

from above. In total, there are 124 ATLAS regions and 325 CMS regions.
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arXiv reference Category Note

1308.1841 Multijets
8j80xb ⊆ 8j50xb, x ∈ {0, 1, 2}. Unknown

correlations between MΣ
J regions and others, drop

1308.2631 Multijets SRA mCT (350) ⊆ SRA mCT (300) ⊆ · · · ⊆ SRA mCT (150)

1407.0608 Multijets M3 ⊆ M2 ⊆ M1; C2 ⊆ C1

1405.7875 Multijets

2jt ⊆ 2jm ⊆ 2jl. 2jW ∩ 3j unknown, drop 2jW.

6jt ⊆ 6jm ⊆ 5j and 6jl (5j ∩ 6jl = {} once 6jm is removed).

Drop all other regions due to unknown correlations.

1406.1122 Multijets
SRA2 ⊆ SRA1; SRA4 ⊆ SRA3. Drop SRB.

SRC3 ⊆ SRC2 ⊆ SRC1

1407.0600 Multijets SR-0l-7j-C ⊆ B ⊆ A; drop 4j regions due to 4j ∩ 7j = ?

1407.0583 One Lepton

Unknown correlations between shape fit regions,

consider only tN diag (signal sensitive regions).

tN high ⊆ tN med ⊆ tightest tN diag region.

bCb high ⊆ bCb med1. Unknown relation

between bCa low and bCa med, drop low. Unknown

correlation between bCd, tNbC mix and other regions, drop

1407.0603 At Least One τ

1τTight ⊆ 1τLoose, 2τ GMSB ⊆ 2τ nGM ⊆ 2τ Incl.

Unknown overlap between 2τ bRPV and 2τ GM,

drop bRPV. τ+l bGM ⊆ τ+l mSUGRA. Unknown overlap

between τ+l GMSB and bRPV, drop bRPV

1407.0350 At least two τs
C1C1 ∩ C1N2 = ?, drop C1C1

DS-lowMass ∩ DS-highMass = ?, drop lowMass

1403.4853 Two OS Leptons

unknown correlation of L90,120 with 1403.5294, drop

unknown correlation between L110-100, drop L100

H160 orthogonal, drop MVA region

1403.5294 Two OS Leptons

Jet veto regions orthogonal to other searches, drop Zjets

m150
T2 (x) ⊆ m120

T2 (x) ⊆WWc(x) ⊆ m90
T2(x), x ∈ {SF,DF}

Overlap of WWb(x) with m90
T2(x) unknown, drop

1404.2500 Same Sign Leptons
Regions orthogonal. Drop SR3Llow/high

due to unknown overlap with 1402.7029

1403.5222 Multileptons SRxb ⊆ SRxa, x ∈ {2, 3}
1402.7029 Three Leptons Regions orthogonal except SR2τa ∩ SR2τb = ?, drop b

1405.5086 ≥ 4 Leptons SRxnoZb ⊆ SRxnoZa, x ∈ {0, 1, 2}
1310.3675 Disappearing Tracks Region inclusion by increasing pT cut

1310.6584 Out-of-time For the muon veto, inclusion by jet pT

Table 2. An overview of the signal regions used in the meta-analysis from 8 TeV ATLAS searches.

Note that OS = opposite sign.
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3 Analysis

Once the ATLAS and CMS datasets were constructed, the expected and observed distri-

butions of p-values were computed for both a Gaussian and a lognormal distribution of

the expected number of counts (the number of counts itself is assumed to be Poisson). A

p-value was assigned to each data point according to

p-value =

∫ ∞
0

φ(λ|µ, σ)P≥n(λ)dλ . (3.1)

Here, P≥n is the probability of observing n or more counts given a Poisson distribution

with parameter λ,

P≥n(λ) =
∞∑
k=n

e−λλk

k!
= 1−

n−1∑
k=0

e−λλk

k!
. (3.2)

We performed a similar analysis of deficits rather than excesses in the SUSY search regions

by replacing P≥n in (3.1) with P≤n: the probability of observing n or less counts given

a Poisson distribution with parameter λ. The function φ(λ|µ, σ) is the probability distri-

bution function of the specified random variable with mean µ and standard deviation σ.

These parameters are the expected value for the number of counts (µ) and the uncertainty

on that value (σ). For the Gaussian distribution,

φ(λ|µ, σ) =
1

Nσ
√

2π
e−(λ−µ)2/2σ2

, (3.3)

where N is a normalization constant correcting for the fact that λ cannot be negative, and

so the negative part of the distribution must be cut off. For the lognormal distribution,

whose support is R+, no such normalization constant is required,

φ(λ|µ, σ) =
1

λσ̃
√

2π
e−(lnλ−µ̃)2/2σ̃2

, (3.4)

with µ̃ := lnµ2/
√
µ2 + σ2, σ̃ :=

√
ln 1 + σ2/µ2 defined so that the lognormal distribution

is precisely the distribution of Y = eX for a Gaussian random variable X with mean µ̃ and

variance σ̃2.

One might expect the distribution of p-values defined in this way to be uniformly

distributed on the interval [0, 1] under the null hypothesis, in accordance with the usual

interpretation of p-values as the probability of observing a more significant result in pre-

cisely p× 100% of studies. However, this intuitive understanding is only correct when the

distribution is continuous [33], not in the case of Poisson distribution considered here. As

a result, we first computed the expected distribution of p-values under the null hypothesis

and then compared this with the observed distribution of p-values. The expected distri-

bution of p-values is determined by summing up the probability that each particular trial

would fall into one of ten bins, ( i
10 ,

i+1
10 ], i = 0, . . . , 9,

Pr

(
i

10
< p-value ≤ i+ 1

10

)
=

∫ ∞
0

dλfi(λ)φ(λ|µ, σ) , (3.5)

where

fi(λ) =
∞∑
m=0

[
Pr(X = m)×

{
1 if Pr(X ≥ m) ∈ ( i

10 ,
i+1
10 ]

0 otherwise

}]
. (3.6)
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Here, X ∼ Poisson(λ) is the random variable measuring the number of counts, and the ≥
in (3.6) is replaced by a ≤ when computing deficits below rather than excesses above the

expected signal.

Some of the studied signal regions had 0 expected events. There is no lognormal

distribution with a mean of 0, so these regions had to be discarded in performing the

lognormal analysis. Fortunately, this only applied to seven of the CMS signal regions and

none of the ATLAS ones. However, a fairly sizable fraction had an expected mean that was

very close to zero. For these trials, it is reasonable to suspect that neither a Gaussian with

a cutoff imposed at 0 nor a lognormal will provide a good approximation to the true error

distribution. As a double check, we repeated our analysis after removing all data points

with µ − 2σ < 0 (≈ 10% for ATLAS, 30% for CMS) . The results of this second analysis

did not differ qualitatively from the first, indicating that the results of the original analysis

are not significantly affected by the statistical modeling of these data points.

4 Results and discussion

The results of the combined ATLAS and CMS analysis are shown in figures 1–4. Figures 1–2

depict excesses above the expected signal for Gaussian and lognormal errors, respec-

tively, whereas figures 3–4 depict deficits for Gaussian and lognormal errors, respectively.

Figures 5–8 present the results of the separate analyses for the ATLAS and CMS datasets.

The left-hand side of each plot represents ATLAS data, whereas the right-hand side rep-

resents CMS data. Results of statistical analysis tests for the combined ATLAS and CMS

data are shown in tables 3–4. ATLAS results are shown in tables 5–6, while CMS results

are shown in tables 7–8.

The observed distributions for the 2014 ATLAS data look very similar to those for the

2014 CMS data. Both exhibit a lack of deficits with p < 0.1. Statistically, this shortage is

only marginally significant for ATLAS with a p-value of 0.10, indicating a lack of deficits

at a level of 1.66σ. For CMS, on the other hand, the p-value is 0.006, indicating a shortage

of deficits at a level of 2.77σ. Furthermore, the CMS dataset displays a lack of deficits with

p < 0.3 at p-value 0.0009, or equivalently a level of 3.32σ. A combined ATLAS and CMS

analysis yields a lack of deficits with p < 0.1 at a level of 3.23σ and a lack of deficits with

p < 0.3 at a level of 3.15σ in the Gaussian case and 4.10σ in the lognormal case. The data

also exhibit a statistically significant lack of p-values in the tails of the excess distribution,

though this disappears for the ATLAS data once one considers deficits instead of excesses.

The greater statistical significance for the CMS distributions compared with the ATLAS

distributions may be reflective of the fact that there were many more data points in the

CMS dataset compared with the ATLAS dataset.

It is interesting to note that the distributions observed here are somewhat different

from those observed in our analysis of the 7 TeV data [3]. That analysis also revealed

a deficit of p-values in the tails of the distribution, but there were significantly fewer p-

values < 0.1, indicating a possible overestimation of the mean background as well as the

uncertainty. Here, there is actually a slight (statistically insignificant) surplus of p-value

excesses < 0.1 in the Gaussian case, but a clear lack of p-value deficits < 0.1 in both the

– 5 –
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Figure 1. Observed (blue) vs. expected (red) distribution of p-value excesses with a Gaussian

error distribution for the combined CMS and ATLAS dataset.
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Figure 2. Observed (blue) vs. expected (red) distribution of p-value excesses with a lognormal

error distribution for the combined CMS and ATLAS dataset.

Gaussian and lognormal cases. Assuming this is a result of systematic uncertainties rather

than unusually large statistical fluctuations, it would indicate one of three things:

1. The uncertainty distributions differ significantly from Gaussian and lognormal dis-

tributions with the reported uncertainties and means.

2. The background has been underestimated as a result of biases inherent in the esti-

mation methods.

3. The background has been underestimated as a result of new physics.

The present analysis cannot distinguish between these three possibilities. At the least,

the differences indicate that the true uncertainty distributions are not well described by

Gaussian or lognormal distributions with the reported means and uncertainties. We there-

fore encourage future SUSY data searches to publish their uncertainty distributions to

ensure proper interpretation of the results and more powerful analyses of the data.
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Figure 3. Observed (blue) vs. expected (red) distribution of p-value deficits with a Gaussian error

distribution for the combined CMS and ATLAS dataset.
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Figure 4. Observed (blue) vs. expected (red) distribution of p-value deficits with a lognormal

error distribution for the combined CMS and ATLAS dataset.
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Figure 5. Observed (blue) vs. expected (red) distribution of p-value excesses with a Gaussian

error distribution for ATLAS (left) and CMS (right).
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Figure 6. Observed (blue) vs. expected (red) distribution of p-value excesses with a lognormal

error distribution for ATLAS (left) and CMS (right).
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Figure 7. Observed (blue) vs. expected (red) distribution of p-value deficits with a Gaussian error

distribution for ATLAS (left) and CMS (right).
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Figure 8. Observed (blue) vs. expected (red) distribution of p-value deficits with a lognormal

error distribution for ATLAS (left) and CMS (right).
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Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) 0.23 −0.27 0.82 0.79

Trials with p < 0.3 N(0,1) −0.57 0.31 0.57 0.75

Trials with p < 0.2 or p > 0.8 N(0,1) −5.28 −5.77 � 0.001 � 0.001

Expected vs. observed dist. χ2
9 36.18 45.74 � 0.001 � 0.001

Table 3. Results for statistical hypothesis tests on combined ATLAS and CMS excesses, under the

assumptions of Gaussian and lognormal error distributions.

Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) −3.23 −3.23 0.001 0.001

Trials with p < 0.3 N(0,1) −3.15 −4.10 0.002 � 0.001

Trials with p < 0.2 or p > 0.8 N(0,1) −3.24 −3.04 0.001 0.002

Expected vs. observed dist. χ2
9 29.04 27.11 0.0006 0.001

Table 4. Results for statistical hypothesis tests on combined ATLAS and CMS deficits, under the

assumptions of Gaussian and lognormal error distributions.

Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) 0.22 −0.11 0.83 0.91

Trials with p < 0.3 N(0,1) −0.18 0.25 0.85 0.81

Trials with p < 0.2 or p > 0.8 N(0,1) −2.55 −3.13 0.01 0.002

Expected vs. observed dist. χ2
9 13.60 17.47 0.14 0.04

Table 5. Results for statistical hypothesis tests on ATLAS excesses, under the assumptions of

Gaussian and lognormal error distributions. The distribution is significantly different from expected

due to the dearth of observed p-values between 0.9 and 1.0.

Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) −1.67 −1.66 0.09 0.10

Trials with p < 0.3 N(0,1) −0.70 −1.32 0.49 0.19

Trials with p < 0.2 or p > 0.8 N(0,1) −1.63 −1.67 0.10 0.09

Expected vs. observed dist. χ2
9 7.09 8.55 0.63 0.48

Table 6. Results for statistical hypothesis tests on ATLAS deficits, under the assumptions of

Gaussian and lognormal error distributions. The lack of p-values below 0.1 is marginally significant,

while the remainder of the tests are insignificant.
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Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) 0.13 −0.25 0.90 0.80

Trials with p < 0.3 N(0,1) −0.56 0.35 0.57 0.73

Trials with p < 0.2 or p > 0.8 N(0,1) −4.66 −4.82 � 0.001 � 0.001

Expected vs. observed dist. χ2
9 28.75 33.33 0.001 � 0.001

Table 7. Results for statistical hypothesis tests on CMS excesses, under the assumptions of Gaus-

sian and lognormal error distributions.

Quantity Dist. under H0 (T )
Test statistic (t) Pr(|T | > t)

Gaussian LN Gaussian LN

Trials with p < 0.1 N(0,1) −2.77 −2.78 0.006 0.005

Trials with p < 0.3 N(0,1) −3.32 −4.05 0.0009 � 0.001

Trials with p < 0.2 or p > 0.8 N(0,1) −2.81 −2.55 0.005 0.01

Expected vs. observed dist. χ2
9 30.09 24.39 � 0.001 0.003

Table 8. Results for statistical hypothesis tests on CMS deficits, under the assumptions of Gaussian

and lognormal error distributions.

Acknowledgments

We would like to thank Luboš Motl for his careful examination of an earlier preprint version

of the analysis. BN is supported by the NSF Graduate Research Fellowship under Grant

No. DGE-4747 and also supported by the Stanford Graduate Fellowship. TR is supported

by the NSF GRF under Grant No. DGE-1144152.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] B. Nachman and T. Rudelius, Evidence for conservatism in LHC SUSY searches, Eur. Phys.

J. Plus 127 (2012) 157 [arXiv:1209.3522] [INSPIRE].

[4] ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm

quarks or in compressed supersymmetric scenarios in pp collisions at
√
s = 8 TeV with the

ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].

– 10 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://dx.doi.org/10.1140/epjp/i2012-12157-0
http://dx.doi.org/10.1140/epjp/i2012-12157-0
http://arxiv.org/abs/1209.3522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3522
http://dx.doi.org/10.1103/PhysRevD.90.052008
http://arxiv.org/abs/1407.0608
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0608


J
H
E
P
0
2
(
2
0
1
5
)
0
0
4

[5] ATLAS collaboration, Search for supersymmetry in events with large missing transverse

momentum, jets and at least one tau lepton in 20 fb−1 of
√
s = 8 TeV proton-proton collision

data with the ATLAS detector, JHEP 09 (2014) 103 [arXiv:1407.0603] [INSPIRE].

[6] ATLAS collaboration, Search for strong production of supersymmetric particles in final

states with missing transverse momentum and at least three b-jets at
√
s = 8 TeV

proton-proton collisions with the ATLAS detector, JHEP 1410 (2014) 24 [arXiv:1407.0600]

[INSPIRE].

[7] ATLAS collaboration, Search for top squark pair production in final states with one isolated

lepton, jets and missing transverse momentum in
√
s = 8 TeV pp collisions with the ATLAS

detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].

[8] ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in

final states with at least two hadronically decaying taus and missing transverse momentum in

pp collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 1410 (2014) 96

[arXiv:1407.0350] [INSPIRE].

[9] ATLAS collaboration, Search for direct pair production of the top squark in all-hadronic

final states in proton-proton collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 09

(2014) 015 [arXiv:1406.1122] [INSPIRE].

[10] ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final

states with jets and missing transverse momentum using
√
s = 8 TeV proton–proton collision

data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].

[11] ATLAS collaboration, Search for supersymmetry in events with four or more leptons in√
s = 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 90 (2014) 052001

[arXiv:1405.5086] [INSPIRE].

[12] ATLAS collaboration, Search for supersymmetry at
√
s = 8 TeV in final states with jets and

two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035

[arXiv:1404.2500] [INSPIRE].

[13] ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in

final states with two leptons and missing transverse momentum in pp collisions at√
s = 8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

[14] ATLAS collaboration, Search for direct top squark pair production in events with a Z boson,

b-jets and missing transverse momentum in
√
s = 8 TeV pp collisions with the ATLAS

detector, Eur. Phys. J. C 74 (2014) 2883 [arXiv:1403.5222] [INSPIRE].

[15] ATLAS collaboration, Search for direct top-squark pair production in final states with two

leptons in pp collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 06 (2014) 124

[arXiv:1403.4853] [INSPIRE].

[16] ATLAS collaboration, Search for direct production of charginos and neutralinos in events

with three leptons and missing transverse momentum in
√
s = 8 TeV pp collisions with the

ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].

[17] ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp

collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584]

[INSPIRE].

[18] ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest

neutralino based on a disappearing-track signature in pp collisions at
√
s = 8 TeV with the

ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].

– 11 –

http://dx.doi.org/10.1007/JHEP09(2014)103
http://arxiv.org/abs/1407.0603
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0603
http://dx.doi.org/10.1007/JHEP10(2014)024
http://arxiv.org/abs/1407.0600
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0600
http://dx.doi.org/10.1007/JHEP11(2014)118
http://arxiv.org/abs/1407.0583
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0583
http://dx.doi.org/10.1007/JHEP10(2014)096
http://arxiv.org/abs/1407.0350
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0350
http://dx.doi.org/10.1007/JHEP09(2014)015
http://dx.doi.org/10.1007/JHEP09(2014)015
http://arxiv.org/abs/1406.1122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1122
http://dx.doi.org/10.1007/JHEP09(2014)176
http://arxiv.org/abs/1405.7875
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7875
http://dx.doi.org/10.1103/PhysRevD.90.052001
http://arxiv.org/abs/1405.5086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5086
http://dx.doi.org/10.1007/JHEP06(2014)035
http://arxiv.org/abs/1404.2500
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2500
http://dx.doi.org/10.1007/JHEP05(2014)071
http://arxiv.org/abs/1403.5294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5294
http://dx.doi.org/10.1140/epjc/s10052-014-2883-6
http://arxiv.org/abs/1403.5222
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5222
http://dx.doi.org/10.1007/JHEP06(2014)124
http://arxiv.org/abs/1403.4853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4853
http://dx.doi.org/10.1007/JHEP04(2014)169
http://arxiv.org/abs/1402.7029
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.7029
http://dx.doi.org/10.1103/PhysRevD.88.112003
http://arxiv.org/abs/1310.6584
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6584
http://dx.doi.org/10.1103/PhysRevD.88.112006
http://arxiv.org/abs/1310.3675
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3675


J
H
E
P
0
2
(
2
0
1
5
)
0
0
4

[19] ATLAS collaboration, Search for direct third-generation squark pair production in final

states with missing transverse momentum and two b-jets in
√
s = 8 TeV pp collisions with the

ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].

[20] ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities

and missing transverse momentum at
√
s = 8 TeV proton-proton collisions using the ATLAS

experiment, JHEP 10 (2013) 130 [Erratum ibid. 1401 (2014) 109] [arXiv:1308.1841]

[INSPIRE].

[21] CMS collaboration, Searches for electroweak production of charginos, neutralinos and

sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys.

J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

[22] CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp

collisions at
√
s = 8 TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].

[23] CMS collaboration, Search for anomalous production of events with three or more leptons in

pp collisions at
√
s = 8 TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].

[24] CMS collaboration, Search for new physics in the multijet and missing transverse

momentum final state in proton-proton collisions at
√
s = 8 TeV, JHEP 06 (2014) 055

[arXiv:1402.4770] [INSPIRE].

[25] CMS collaboration, Search for top squark and higgsino production using diphoton Higgs

boson decays, Phys. Rev. Lett. 112 (2014) 161802 [arXiv:1312.3310] [INSPIRE].

[26] CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp

collisions at
√
s = 8 TeV, JHEP 01 (2014) 163 [Erratum ibid. 1501 (2015) 014]

[arXiv:1311.6736] [INSPIRE].

[27] CMS collaboration, Search for supersymmetry in pp collisions at
√
s = 8 TeV in events with

a single lepton, large jet multiplicity and multiple b jets, Phys. Lett. B 733 (2014) 328

[arXiv:1311.4937] [INSPIRE].

[28] CMS collaboration, Search for top-squark pair production in the single-lepton final state in

pp collisions at
√
s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].

[29] CMS collaboration, Search for top squarks in R-parity-violating supersymmetry using three

or more leptons and b-tagged jets, Phys. Rev. Lett. 111 (2013) 221801 [arXiv:1306.6643]

[INSPIRE].

[30] CMS collaboration, Search for gluino mediated bottom- and top-squark production in multijet

final states in pp collisions at 8 TeV, Phys. Lett. B 725 (2013) 243 [arXiv:1305.2390]

[INSPIRE].

[31] CMS collaboration, Search for supersymmetry in hadronic final states with missing

transverse energy using the variables αT and b-quark multiplicity in pp collisions at√
s = 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].

[32] CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in

pp collisions at
√
s = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041]

[arXiv:1212.6194] [INSPIRE].

[33] J. Hartung, G. Knapp and B. Sinha, Statistical Meta-Analysis with Applications, John Wiley

& Sons Inc., (2008).

– 12 –

http://dx.doi.org/10.1007/JHEP10(2013)189
http://arxiv.org/abs/1308.2631
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2631
http://dx.doi.org/10.1007/JHEP10(2013)130
http://arxiv.org/abs/1308.1841
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1841
http://dx.doi.org/10.1140/epjc/s10052-014-3036-7
http://dx.doi.org/10.1140/epjc/s10052-014-3036-7
http://arxiv.org/abs/1405.7570
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7570
http://dx.doi.org/10.1016/j.physletb.2014.07.053
http://arxiv.org/abs/1405.3886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3886
http://dx.doi.org/10.1103/PhysRevD.90.032006
http://arxiv.org/abs/1404.5801
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5801
http://dx.doi.org/10.1007/JHEP06(2014)055
http://arxiv.org/abs/1402.4770
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4770
http://dx.doi.org/10.1103/PhysRevLett.112.161802
http://arxiv.org/abs/1312.3310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3310
http://dx.doi.org/10.1007/JHEP01(2014)163
http://arxiv.org/abs/1311.6736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6736
http://dx.doi.org/10.1016/j.physletb.2014.04.023
http://arxiv.org/abs/1311.4937
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4937
http://dx.doi.org/10.1140/epjc/s10052-013-2677-2
http://arxiv.org/abs/1308.1586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1586
http://dx.doi.org/10.1103/PhysRevLett.111.221801
http://arxiv.org/abs/1306.6643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6643
http://dx.doi.org/10.1016/j.physletb.2013.06.058
http://arxiv.org/abs/1305.2390
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2390
http://dx.doi.org/10.1140/epjc/s10052-013-2568-6
http://arxiv.org/abs/1303.2985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.2985
http://dx.doi.org/10.1007/JHEP03(2013)037
http://arxiv.org/abs/1212.6194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6194
http://dx.doi.org/10.1002/9780470386347
http://dx.doi.org/10.1002/9780470386347

	Introduction
	Constructing the dataset
	Analysis
	Results and discussion

