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1 Introduction

From the early days of the black hole information paradox it has been suggested that,

in order to bring together quantum mechanics and the equivalence principle consistently,

we have to give up locality and the semiclassical description in the near horizon region.

Key ingredients in the framework, that is likely to replace them, include the principle

of holography [1, 2], complementarity [3] and strongly chaotic dynamics [4]. Recent dis-

cussions on the nature and the dynamics of microscopic degrees of freedom in the near

horizon region of black holes have, also, strengthened the conviction that semiclassical

physics is inadequate to guarantee the compatibility of the equivalence principle and quan-

tum mechanics.Therefore it seems imperative that a drastic departure from conventional,

semiclassical, physics is needed [5].

We should stress here that recent developments in string theory [6–10], which take

into account the correct definition of the black hole entropy at the quantum level, have

improved considerably our understanding of the black hole microscopic degrees of freedom.

We understand now some important quantum statistical properties, in particular, the exact

quantum entropy, for a certain class of extremal black holes.

Important issues have, yet, remained open, which dominate the recent literature. They

pertain to the description of the nature and the dynamics of the near horizon microstates.

In what follows we consider the simplest dynamical context for the discussion of the

black hole information paradox [11]. Consider two observers, one at infinity, Oa and the

other in free fall, Ob into the black hole. The question is, if there exists a unitary trans-

formation, connecting the description of a freely falling particle near the horizon by the

two observers.

In the seminal paper [12] the corresponding quantum mechanical evolution operators

have been constructed, by two, different, conformal invariant, Hamiltonians. The “first”
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Hamiltonian, which, in our case, describes the time evolution for observer Oa, has con-

tinuous spectrum, while the “second” Hamiltonian, which describes the time evolution for

observer Ob, in our case, has discrete spectrum.

There has, also, been extensive discussion in the literature, how these two descriptions

can be related to the paradox between the infinite number of states near the horizon thus

described and the finite entropy of the black hole, which is proportional to its area [13–17].

Though developments in string theory (reviewed in [6, 7]), around the same time, succeeded

in resolving the problem, of counting these states and of reproducing the thermodynamical

result for the black hole entropy, how to extend this calculation for the case of a “small”

number of microstates, i.e. for “small” black holes, remains open [6, 7].

The information paradox, in the case of extremal black holes, which have an AdS2

radial and temporal, near horizon, geometry, is expressed by the putative mismatch between

the description accessible to observer, Oa, on the boundary, using a CFT1 dynamics and

that of the, free-falling, observer, Ob, who is using the bulk, AdS2, dynamics. The resolution

of this paradox is currently the subject of intense research activity [18–23].

In the present and subsequent works we study the above issues using a space-time dis-

cretization of the near horizon geometry, AdS2 = SL(2,R)/SO(1, 1,R), of extremal black

holes. We assume it to be discrete and finite as a consequence of the finite dimension of the

Hilbert space of black hole microstates. Indeed, the existence of a finite number, of linearly

independent wavefunctions, as probes, implies a finite resolution of its spacetime geometry.

This is achieved, simply, by replacing the set of real numbers R by the set of integers modulo

N , ZN , for any positive integer N . The discretization thus replaces the continuous space-

time AdS2 by the finite arithmetic geometry, AdS2[N ] = SL(2,ZN )/SO(1, 1,ZN ) [24, 25].

This discretization, which we call “modular discretization”, has the merit of preserving

corresponding symmetry properties of the continuous, classical, space-time geometry and

provides a means of defining a consistent quantum geometry, through holography. In this

discretized setting we will construct the corresponding unitary evolution operators for the

two observers.

The discretization defines an infrared cutoff L as well as a UV one L
N . By considering

the N2 points of an L×L square lattice and lifting to the AdS2 by stereographic projection,

we obtain a spacetime discretization. It is obvious that the continuum limit can be recov-

ered by taking first the N →∞ limit at fixed L and, afterwards, the limit L→∞. It is im-

portant to stress at this point the independence of the cutoff, L from the AdS2 radius RAdS2 .

In order to describe the dynamics of probes, at both the classical and quantum level,

we use the Arnol’d cat maps, A, elements of SL(2,ZN ). They are known to possess prop-

erties of strong arithmetic chaos, ergodic mixing and locality [26–28]. These maps also

satisfy factorization properties in the discretization cutoff N , which induce fast quantum

information processing between the probe and the near horizon geometry [29, 30].

Our present work builds on our earlier work on Finite Quantum Mechanics (FQM)

where we introduced the discretized toroidal membrane, ZN × ZN [31] which elucidates

the matrix model truncation of the membrane dynamics [32, 33] rendering the discrete

membrane as a quantum phase space of finite quantum mechanics, with canonical trans-

formation group SL(2,ZN ) [34–38].
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Interestingly enough, the discretized membrane, in the black hole setting, describes

the geometry of the stretched horizon [11] and the matrix model describes the M-theoretic

dynamics of its microscopic degrees of freedom [4].

We extend these results to the case of the AdS2[N ], discrete, near horizon, bulk ge-

ometry, and the dynamics of the infalling observer, Ob, along with its associated boundary

CFT1[N ] and the observer Oa in order to obtain a holographic correspondence. In the dis-

crete case the boundary is constructed as a coset space SL(2,ZN )/BN , which is identified

with the discrete projective line, RP1
N . Here BN is the Borel subgroup of SL(2,ZN ), which

fixes the point at infinity.

The group SL(2,ZN ) plays three different roles in the present context: a)as the isom-

etry group of AdS2[N ], b) as the symplectic group of AdS2[N ] which is considered to be a

(stringy) phase space and c) as the conformal group of the boundary. (a) and (c) are the

basic reasons for the existence of the AdS2[N ]/CFT1[N ] correspondence and (b) is going

to be used for the quantization of the geometry and the dynamics.

We construct the discrete time evolution, quantum unitary maps explicitly and dis-

cuss their action on the common N−dimensional Hilbert space of both the bulk and the

boundary. The natural action of these quantum maps is realized on the set of coherent

states, appropriate for the bulk and boundary coset geometries. These states inherit classi-

cal chaotic dynamics, define isometric invariant (bulk-bulk,bulk-boundary and boundary-

boundary) propagators and are convenient for the discussion of localization problems in

the AdS/CFT correspondence, since they saturate the uncertainty relation of the UV/IR

connection [39–44].

The plan of the present work is as follows:

In section 2 we review the construction of the smooth AdS2 geometry and its boundary,

as a doubly ruled surface by rotating the light cone lines around the time-like circle. We

establish various global coordinate systems, through appropriate coset parametrizations.

More specifically we show that the light cone coordinates, on the stereographic projection

plane, parametrize holographically both the bulk and its boundary.

In order to describe the high energy dynamics for the the radial motion of probes, we

employ linear isometry maps, A ∈ SL(2,R), which are appropriate for the description of

the infalling (bulk) and static (boundary) observers.

In section 3 we motivate the introduction of the arithmetic discretization modN . We

define the Finite Quantum Mechanics for both the bulk and the boundary on the same

Hilbert space. We shall work in the Hilbert space of the metaplectic representation of

SL(2,ZN ) of dimension N for the simplest case N = p of an odd prime. In this case

ZN = Fp is the simplest Galois field.

The methods to be presented apply also for all other irreps of this group. In the case

N = p, an odd prime, the number of irreps is p+ 4. They have been worked out in detail,

using the induced representations, and the corresponding multiplicative characters of Fp,
or Fp2 [45].

The boundary is also constructed as a coset space SL(2,Fp)/Bp, which is identified

with the discrete projective line, RP1
p. Here Bp is the Borel subgroup of SL(2,Fp), which

fixes the point at infinity.
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In section 4 we explicitly construct the bulk and the boundary overcomplete set of

discrete coherent states. We discuss their basic properties as they are appropriate for the

corresponding coset geometries.

The states and the observables are also expanded on the coherent states and their time

evolution is defined through the quantum cat maps. The correlation functions of various

observables are defined, as well as the method of their evaluation.

Finally, in section 5, we exhibit the reconstruction (holography) of the bulk coherent

states from those of the boundary, via the bulk-boundary, bulk-bulk, boundary-boundary

propagators and the consequent reconstruction of the scalar bulk observables from the

boundary ones. The correlation functions of scalar observables in the bulk and the bound-

ary are connected through this holography and can be explicitly calculated.

In the last section 6 we summarize our results and their role in the context of the

problem of black hole information processing. We also comment on future work on the

complete description of finite conformal quantum mechanics on the boundary as well as on

how the scrambling time bound might be saturated [4].

2 Observers, geometry of cosets and Weyl dynamics on AdS2

Consider the dynamics of freely falling bodies, in the near horizon region of spherically

symmetric 4d extremal black holes . The geometry is known to be of the form AdS2 × S2,

where the AdS2 = SL(2,R)/SO(1, 1,R), factor describes the geometry of the radial and

time coordinates and S2 is the horizon surface. We will compare the description of high

energy radial dynamics as seen by (radial) observers(static or freely falling), for which the

transverse and longitutinal motion is decoupled.

To each of these observers corresponds a global space-time coordinate system and in

the following we shall exhibit some of them using group theory.

The AdS2 spacetime, is a one-sheeted hyperboloid defined through its global embed-

ding in Minkowski spacetime with one space — and two time-like dimensions by the equa-

tion [46, 47].

x20 + x21 − x22 = 1 (2.1)

The boundaries of AdS2 consist of two time-like disconnected circles, where AdS2

approaches, asymptotically, the light cone of M 1,2,

x20 + x21 − x22 = 0 (2.2)

AdS2 is, at the same time, the homogeneous space, SO(1, 2)/SO(1, 1). This case, is

special, in that SO(1, 2) has a double cover, SL(2,R), so we have AdS2 = SL(2,R)/SO(1, 1).

In order to establish our notation and conventions, we proceed with the Weyl con-

struction of the double covering group, SL(2,R).

To every point, xµ ∈ AdS2, µ = 0, 1, 2, we assign the traceless, real, 2× 2 matrix

M(x) ≡

(
x0 x1 + x2

x1 − x2 −x0

)
(2.3)

Its determinant is, detM(x) = −x20 − x21 + x22 = −1.
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The action of any A ∈ SL(2,R) on AdS2 is defined through the non-linear mapping

M(x′) = AM(x)A−1 (2.4)

This induces an SO(1, 2) transformation on (xµ)µ=0,1,2,

x′ ≡ L(A)x (2.5)

Choosing, as the origin of coordinates, the base point p ≡ (1, 0, 0), its stability group

SO(1, 1) is the group of Lorentz transformations in the x0 = 0 plane of M 1,2 or equivalently,

the “scaling” subgroup, D, of SL(2,R)

D 3 S(λ) ≡

(
λ 0

0 λ−1

)
(2.6)

for λ ∈ R∗.
For this choice of the stability point, we define the coset, hA, by decomposing A as

A = hAS(λA) (2.7)

Thus, we associate uniquely to every point x ∈ AdS2 the corresponding coset representa-

tive hA(x).

We introduce now, the global coordinate system, defined by the straight lines that

generate AdS2 and for which it can be checked easily that they form its complete set of

light cones.

Consider the two lines, l±(p), passing through the point p ∈M 1,2, orthogonal to the

x0 axis and at angles ±π/4 to the x1 = 0 plane. They are defined by the intersection of

AdS2 and the plane x0 = 1 cf. figure 1.

The coordinates of any point, q+ ∈ l+(p), q− ∈ l−(p) are given as, (1, µ±,±µ±),

µ± ∈ R correspondingly.

Rotating these lines, around the x0, x1 time circle, by appropriate angles φ± ∈ [0, 2π),

we can parametrize any point by their inersection, with coordinates

x0 = cosφ± − µ± sinφ±
x1 = sinφ± + µ± cosφ±
x2 = ±µ±

(2.8)

The corresponding pair of crossing lines, l±(x), define the local light cone.

Another form of the previous equation is:

eiφ± =
x0 ± ix1
1± x2

µ± = ±x2 (2.9)

The corresponding coset parametrization (group coset motion which brings the origin

to the point x) is:

h(µ±, φ±) = R(φ±)T±(µ±) (2.10)
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Figure 1. The light cone of AdS2 at p = (1, 0, 0).

where

R(φ) =

(
cosφ/2 − sinφ/2

sinφ/2 cosφ/2

)
(2.11)

and

T+(µ) = [T−(−µ)]T =

(
1 −µ
0 1

)
(2.12)

It is easy to see also, that T±(µ±), acting on the base point X(p), generate the light

cone l±(p), so we identify these one parameter subgroups with the light cones at p. At this

point we should like to pause and discuss the physical interpretation of the rotation (2.11)

and translation (2.12) groups.

Consider two observers, in the AdS2 background, one at infinity, Oa and the other

in free fall, Ob. Their corresponding classical description for a freely falling particle near

the horizon, is given by the finite group of translations, with time parameter µ for Oa —

and rotations, with time parameter φ for Ob. In the seminal paper [12] the corresponding

quantum mechanical evolution operators have been constructed in order to describe models

for confinement and asymptotic freedom, by two, different, conformal invariant, Hamiltoni-

ans. The “first” Hamiltonian, which, in our case, describes the time evolution for observer

Oa, has continuous spectrum, while the “second” Hamiltonian, which describes the time

evolution for observer Ob, in our case, has discrete spectrum.

There has been extensive discussion in the literature how these two descriptions can be

related to the paradox between the infinite number of states near the horizon thus described

and the finite entropy of the black hole, which is proportional to the area [13–17]. Though

developments in string theory (reviewed in [6, 7]), around the same time, succeeded in

resolving the problem, of counting these states and of reproducing the thermodynamical

result for the black hole entropy, how to extend this calculation for the case of a “small”

number of microstates, i.e. for “small” black holes, remains open [6, 7].
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In the next section, we shall introduce an L/N = a ultraviolet — and, at the same

time-infrared L cutoff, that will allow us to address this issue by relating this cutoff to the

dimension of the Hilbert space of states in the near horizon region.

After this intermezzo, we continue our description of AdS2 as a phase space.

We observe that the variables, φ and µ, are, in fact, Darboux coordinates with respect

to the natural SO(2, 1) invariant Poisson structure, which promotes AdS2 to a phase space.

They are conjugate variables and they parametrize the time evolution, at the quantum

mechanical level, of the two observers, Oa and Ob, thereby realizing the complementarity

of the physics they describe [3].

It is possible also to use the light cone coordinates, µ± to parametrize AdS2, thereby

eliminating the angles φ±. The corresponding cosets are:

h(µ+, µ−) = T−(µ−)T+(µ+) (2.13)

which define a global light cone coordinate system. The map between (µ+, µ−) and

(x0, x1, x2) is easily obtained:

µ+ =
x1 + x2

2
and µ− =

x1 − x2
1 + x0

(2.14)

The light cone cosets establish the causal patches of any observer on AdS2 and thus the

causal diamonds of any pair of observers [48].

For completeness, we exhibit also the standard system of hyperbolic global coordinates,

x0 = coshψ cosχ, x1 = coshψ sinχ, x2 = sinhψ (2.15)

and the corresponding coset parametrization,

h(ψ, χ) = R(χ)H(ψ) (2.16)

with

H(ψ) =

(
coshψ/2 sinhψ/2

sinhψ/2 coshψ/2

)
(2.17)

an element of the Lorentz group that acts in the x1 = 0 plane.

These coset parametrizations induce also specific metrics on AdS2. For the parametri-

zation (2.10) we obtain

ds2 = (1 + µ2)dφ2 + 2dφdµ (2.18)

Substituting in this expression µ ≡ tanσ, σ ∈ (−π/2, π/2), we obtain the Einstein strip

ds2 =
1

cos2 σ

[
−dτ2 + dσ2

]
(2.19)

with τ ≡ σ + φ ∈ R with the two disconnected boundaries at σ ≡ ±π/2.

For the standard hyperbolic global coordinate system, (ψ, χ), we obtain the metric

ds2 = − cosh2 ψ dχ2 + dψ2 (2.20)

with ψ ∈ (−∞,∞) and χ ∈ [0, 2π).

– 7 –
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Finally, for the light cone coordinates µ ≡ µ+, ν ≡ µ− of eq. (2.14) we find the metric

ds2 = −4
(
ν2dµ2 + µ2dν2 − dµdν

)
(2.21)

In the rest of this section we discuss the dynamics of probes, appropriate for the

description of the string ground state geometry.

The AdS2 coset geometry, inherits a symplectic structure and a non-degenerate Poisson

bracket from the isometry group, given by

{x0, x1} = −x2 {x1, x2} = x0 {x2, x0} = x1 (2.22)

These relations are realized, for example, in the global coordinate system (φ, µ), where the

area element is dφdµ and the coordinates φ and µ are Darboux coordinates, as

{f, g} =
∂f

∂φ

∂g

∂µ
− ∂f

∂µ

∂g

∂φ
(2.23)

The corresponding Hamilton’s equations for incompressible flows on AdS2 are,

ẋµ = {xµ, H} (2.24)

The simplest, classical, motions of probes of lowest energy, are described by the iso-

metric maps A ∈ SL(2,R).

At the level of discrete time evolution (maps), this isometric motion is parametrized

as follows: if, for instance, h(φ, µ) ∈ SL(2,R) is a coset, describing the probe’s position in

AdS2, at proper time τ , then at time τ + 1 it will evolve as

h(φτ+1, µτ+1) = Ah(φτ , µτ )(modD) (2.25)

Using the decompositions (2.7), (2.10), the parameters φA, µA, λA in can be given explicitly,

in terms of the matrix elements of

A =

(
a b

c d

)
by the expressions

cos
φA
2

=
d√

b2 + d2
sin

φA
2

=
b√

b2 + d2
µA = −ac+ bd

b2 + d2
(2.26)

λA =
1√

c2 + d2
(2.27)

Applying the above decomposition on the r.h.s. of equation (2.25) we find the l.h.s.

The corresponding Hamiltonians, to the above discrete maps A ∈ SL(2,R) must be

linear in the generators, xµ, of SL(2,R) (2.22) and they respect causality.

In our approach the AdS2 radial and time directions are treated as a “phase space”

variables, while the evolution time is determined by the group action. Noticing that the

stringy uncertainty relations are between the energy and the corresponding physical length,

or, in our case, between time and radial extent, the interpretation of AdS2 as a phase space

is suitable for strings moving on this background.

– 8 –
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It is essential for the AdS/CFT holographic correspondence to define a conformal com-

pactification of its boundary. The frequently used compactification is the conformal rescal-

ing of the metric giving rise to the Poincare patch, which covers half of the AdS2 spacetime.

Another conformal compactification, in Minkowski signature of AdS2, is obtained by

stereographic projection to the x0 = 0 plane. Any point, (ξ0, ξ1, ξ2) ∈ AdS2, is projected

through the base point p to a point on the plane x0 = 0 with coordinates (x1, x2):

x1 =
ξ1

1− ξ0

x2 =
ξ2

1− ξ0

(2.28)

Introducing the light cone coordinates of the projection plane, x± ≡ x1 ± x2, we can

parametrize AdS2 as follows

ξ1 =
x+ + x−
1 + x+x−

ξ2 =
x+ − x−
1 + x+x−

ξ0 =
x+x− − 1

1 + x+x−

(2.29)

We observe that the stereographic projection from the point p = (1, 0, 0), maps each of the

light cones, l±(p) = {(1,±µ, µ)|µ ∈ R}, to two points on the boundaries.

In order to parametrize uniquely the points on l±(p), we must use the stereographic

projection from the “antipode”, q = (−1, 0, 0). If we call the new coordinates on the x0 = 0

plane, y±, we have

ξ1 =
y+ + y−
1 + y+y−

ξ2 =
y+ − y−
1 + y+y−

ξ0 =
1− y+y−
1 + y+y−

(2.30)

This coordinate system has the same problem for the points on the light cones l±(q). We

easily check that the stereographic projection from p (resp. q) maps the light cone axes,

x+ = 0 or x− = 0 of the projective plane, x0 = 0 to l±(q) (resp. l±(p)). More generally,

the curves, on AdS2, defined by x+ = const or x− = const (correspondingly for y±) are

the light-cone straight lines, which generate AdS2.

In the overlap region, of the two coordinate systems, the transition functions are

x−y+ = 1 = x+y− (2.31)

The induced metric, in terms of x± takes the form:

ds2 = 4
dx+dx−

(1 + x+x−)2
(2.32)

and, similarly, for y±.

– 9 –
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We observe now that the induced metric is invariant under the Möbius transformations

x+ → Ax+ ≡
ax+ + b

cx+ + d

x− →
[
A−1

]T
x− ≡

dx− − c
−bx− + a

(2.33)

These transformations result from the Weyl action (2.4) as can be checked using the stereo-

graphic light cone parametrizations of AdS2 (2.29) and (2.30). We remark that the variables

(x+, x−) do not mix under the isometry group, in contrast to the other coordinate systems.

By definition the following identity holds, for any A ∈ SL(2,R):[
A−1

]T
= εAεT (2.34)

where

ε ≡

(
0 1

−1 0

)
(2.35)

Therefore, eq. (2.33) implies that (x+, x−) are conjugate variables and the stereographic

projection plane is promoted to a phase space. Indeed, the AdS2/CFT1 correspondence is

based on the fact that SL(2,R) has three different incarnations: (a) as the isometry group

of AdS2, (b) as the symplectic group of AdS2, as a phase space and (c) as the conformal,

Möbius, group of the boundary CFT1.

The variables, x±, are thus appropriate holographic variables, because the isometry

transformation group of AdS2 is reduced on them to two, conjugated, copies, of the 1d

Möbius conformal group.

We come now to the parametrization of the boundary, which is disconnected and

consists of two circles at x2 → ±∞. In the covering space the boundary is R× {1,−1}.
Because of their transformation properties, the variables x± are the most suitable to

use to define the two disconnected components of the boundary, by the branches of the

hyperbola (cf. eq. (2.29))

1 + x+x− = 0 (2.36)

This relation allows us to write x+ (resp. x−) as a Möbius transformation of the other:

x+ = − 1

x−
≡ ε · x− (2.37)

This relation is invariant under the Möbius transformations (2.33). The two components

of the boundary are, therefore, two copies of the projective line, RP1.

We notice here that the stereographic projection maps each one of the boundary com-

ponents to the two branches of the hyperbola.

The boundary can also be described as the coset space, SL(2,R)/B, where B is the

Borel subgroup of dilatations and translations,

B =

{
B(b, λ) =

(
λ b

0 λ−1

)∣∣∣∣∣λ ∈ R∗, b ∈ R

}
(2.38)

which preserves the point at infinity, (x+ =∞, x− = 0).
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For any A ∈ SL(2,R) we have the decomposition

A = R(φ)B(b, λ) (2.39)

and the elements R(φ) ∈ SO(2,R) parametrize the boundary.

It will be useful later to parametrize the bulk coset representatives, h(φ, µ) and the

boundary representatives, R(φ) by the light cone coordinates x±. The map is the following:

x+ =
1

tan φ
2

x− =
1− µ tan φ

2

µ+ tan φ
2

(2.40)

The boundary is reached when µ → ±∞. Indeed, a measure of the distance from the

boundary is

z ≡ 1 + x+x− =
2

sinφ
(
µ+ tan φ

2

) (2.41)

The coset representatives of the bulk and the boundary become functions h(x+, x−) and

R(x+) respectively. So x+ parametrizes motions parallel to the boundary and x− motions

towards the boundary.

To relate the classical action of SL(2,R) in the bulk (2.25) with the corresponding

action on the boundary, defined as

R(φτ+1) = AR(φτ ) (2.42)

we must compute the r.h.s. through the decomposition

AR(φτ ) = R(φτ+1)B(bτ+1, λτ+1) (2.43)

and mod out the Borel factor B(bτ+1, λτ+1).

Closing this section we explain in the following, why we have chosen to parametrize

the bulk - boundary geometry and dynamics by the corresponding group cosets. The basic

reason is their role in a new proposal for the holographic correspondence,which we think

presents an extension of the standard AdS2/CFT1 one.

The R(φ) coset representatives, by construction, cannot detect the distance from the

boundary, i.e. x−. Only at the quantum level, where an uncertainty relation, between x+
and x−, exists and it reflects the UV/IR connection, is it possible from the distribution of

x+ on the boundary to get information for the distribution of x− in the bulk.

The quantum mechanical states on the boundary and those in the bulk, which maxi-

mize the flow of quantum mechanical information between the bulk and the boundary, given

the coset structure of their geometries, are the corresponding coherent states (wavelets).

They form overcomplete sets of states with classical transformation properties but they

are powerful enough to describe quantum dynamics and geometry at the same time [49].

We shall present the construction of these states and their properties in the next section,

after we have introduced the modular discretization of the geometry and dynamics on AdS2.
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3 Modular discretization and quantum dynamics on AdS2[N ]

Recent discussions on the quantum black hole entropy of extremal black holes and the

AdS2/CFT1 correspondence suggest the identification of the black hole entropy with the

logarithm of the string ground state degeneracy [8–10]. This is an integer, N , fixed by the

set of the black hole’s electric and magnetic charges.

Since in the Hilbert space of the degenerate ground state, we have at most N linearly

independent wave functions, the geometry resolved by the probe is fuzzy, with resolu-

tion 1/N .

In order to model the geometry and the dynamics of black hole information processing,

we should take into account the following constraints, which have been discussed in the

literature on the black hole information paradox:

• In the vicinity of the black hole horizon, the dynamics is chaotic and strongly mixing.

Any additional bit of information, that falls into the black hole, in a very short

time, reaches (dynamic) equilibrium with the other microscopic degrees of freedom

comprising the blackhole horizon.

Furthermore, the mixing should be holographic: any subset of horizon qubits has a

coarse-grained representation of the total infalling information.

This leads to the following constraints on the geometry and the dynamics:

• Randomness, non-locality and factorization of the space-time geometry, which implies

that the total Hilbert space factorizes into a tensor product of local, coarse-grained,

Hilbert spaces [50–53].

• The dynamics should provide the fastest quantum information processing, saturating

the scrambling time bound [54–58].

We propose to model this random, non-local and factorizable geometry by a number-

theoretic discretization, that preserves the corresponding group-theoretical structure of

AdS2 spacetime. This is done by replacing AdS2 by the discrete cosets, AdS2[N ] =

SL(2,ZN )/SO(1, 1,ZN ). We thereby replace the set of real numbers, R, by the set of

integers modulo N . We call this “modular discretization”. This is a finite, random, set of

points in the embedding Minkowski spacetime M 2,1. In the mathematical literature, such

a set of points is called a finite geometry [24, 25]. Introducing appropriate length scales

and taking the large N limit we can check that the smooth geometry of AdS2 emerges.

To accommodate the above requirements on the dynamics, we employ discrete time

maps. These are the Arnol’d cat maps, A in SL(2,ZN ). These are known to exhibit strong

mixing, ergodic properties [26–28, 34, 35]., non-locality and factorization in the cutoff

discretization parameter, N [29, 38].

We restrict our construction to the case N = p prime for the technical simplicity of

the presentation of our arguments. In this case, the set of integers modulo p is the simplest

Galois field, Fp. The unitary, irreducible, representations of the isometry group of AdS2[p],

SL(2,Fp), are known [45].
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The restriction to N prime can be removed by noticing some interesting factorizations:

if N = N1N2, with N1,2 coprime, then we have [29]

SL(2,ZN1N2) = SL(2,ZN1)⊗ SL(2,ZN2) (3.1)

and

AdS2[N1N2] = AdS2[N1]⊗AdS2[N2] (3.2)

These factorizations imply that all powers of primes, 2n1 , 3n2 , 5n3 , . . ., are the building

blocks of our construction. The physical interpretation of this factorization is that the

most coarse-grained Hilbert spaces on the horizon have dimensions powers of primes.

We observe that taking tensor products over all powers of a fixed prime, p, we can

model dynamics over the p−adic spacetime, AdS2[Qp].

In order to study the finite geometry of AdS2[p], we recall the following facts about its

“isometry group”, SL(2,Fp):
The order of SL(2,Fp) is p(p2− 1). For the subgroups of rotations, R, translations, T±

and dilatations, D, the orders are p+ 1, p and p− 1 respectively. So the finite geometry of

AdS2[p] has p(p+ 1) points.

The set of points of the finite geometry of AdS2[p] is, by definition, the set of all

solutions of the equation

x20 + x21 − x22 ≡ 1 mod p (3.3)

This can be parametrized as follows:

x0 ≡ (a− b µ) mod p

x1 ≡ (b+ aµ) mod p

x2 ≡ µmod p

(3.4)

where a2 + b2 ≡ 1 mod p and a, b, µ ∈ Fp.
The points of AdS2[p] comprise the bulk-we must add the points on the boundary.

The boundary is the “mod p” projective line, RP1
p, defined as the set

RP1
p = GF ∗[p] ∪ {0,∞} (3.5)

so the number of boundary points (cosets) is p+ 1.

We shall now define the quantum mechanics of the probes of the bulk AdS2[p] and its

boundary, as well as the corresponding coherent states [49].

We start with the construction of finite quantum mechanics (FQM) in the bulk. It is

obvious that the set of the states and the set of observables should carry a representation

of the coset structure of the bulk. We choose the space of states to be the Hilbert space, of

dimension p, of the metaplectic representation of SL(2,Fp) [37]. This choice is motivated

by the fact that the spatial part of AdS2[p] is the finite field Fp, the set of values of the

space-like variable x−. The wavefunctions will be the normalized elements of the complex,

projective, space CPp−1.
In the papers [31, 37, 38] the explicit construction of the metaplectic representation of

SL(2,Fp) has been presented,as well as various sets of coherent states.
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The building blocks of the observables of FQM are two p×p, unitary, matrices, “clock”,

Q and “shift”, P , representing the “exponentials” of the position and momentum operators

(for periodic boundary conditions) [59–62]:

Qk,l = ωkδk,l, Pk,l = δk−1,l, (3.6)

k, l ∈ Fp and ω = exp(2πi/p) is the pth root of unity.

These matrices satisfy the exponentiated Heisenberg-Weyl commutation relation

QP = ωPQ (3.7)

A useful basis is provided by the magnetic translations

Jr,s = ωr·s/2P rQs, (3.8)

elements of the (finite) Heisenberg-Weyl group, where the 1/2 in the exponent is computed

mod p.

The Jr,s realize a projective representation of the translation group on the discrete

torus, Tp = Fp × Fp:
Jr,sJr′,s′ = ω(r′s−rs)/2Jr+r′,s+s′ (3.9)

are unitary

[Jr,s]
† = J−r,−s (3.10)

and periodic

[Jr,s]
p = Ip×p (3.11)

The phase factor in eq. (3.9) is a cocycle and represents the non-commutativity of the

quantized torus,Tθ (θ = 2π/p) [63, 64].

The exact quantization of Arnol’d cat maps, A ∈ SL(2,Fp), is given by unitary matri-

ces, U(A), satisfying

U(A)Jr,sU(A)† = J(r,s)A−1 (3.12)

This is the definition of the metaplectic representation of SL(2,Fp), which, in general, is

projective.

We can find a proper representation of SL(2,Fp) which, then satisfies the relation

U(A)U(B) = U(AB) (3.13)

for all A,B ∈ SL(2,Fp). This can be done because of the following theorem: every projective

representation of SL(2,Fp) can be lifted to a proper representation [65].

The proper representation that corresponds to the metaplectic one is given by the

following expression [36, 37]

[U(A)]k,l =
1
√
p

(−2c|p)

{
1

−i

}
ω−

ak2−2kl+dl2

2c (3.14)
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for c 6≡ 0 mod p and the Jacobi symbol, (−2c|p) = ±1, depending on whether −2c is

a quadratic residue mod p or not and the upper term between the brackets pertains if

p = 4k + 1, while the lower if p = 4k − 1.

In the case c ≡ 0 mod p and a ∈ F∗p, then

A =

(
a b

0 a−1

)
(3.15)

and

U(A)k,l =
(−a|p)
√
p

{
1

−1

}
ω
−ab

2
k2

p δk,a−1l (3.16)

An important application of eq. (3.14) is for the Quantum Fourier Transform (QFT). For

F =

(
0 −1

1 0

)
(3.17)

the corresponding unitary operator is given by

U(F) =
1
√
p

(−2|p)

{
1

−i

}
ωklp = (−2|p)

{
1

−i

}
F (3.18)

and

Fk,l =
1
√
p
ωklp (3.19)

is the QFT matrix.

The representation given in eq. (3.14) is reducible: it is decomposed into two, irre-

ducible, components [36]:

U(A)L,R = U(A)
Ip×p ± S

2
(3.20)

where

S = F 2 (3.21)

From eqs. (3.17) and (3.18) we deduce that

U(F4) = F 4 = Ip×p (3.22)

and, thus, the eigenvalues of S are ±1, which label the chiralities of the two irreducible

components. The dimension of the corresponding eigenspaces is (p± 1)/2.

It is possible to generalize the metaplectic representation from the discretization N = p

prime to any integer N by noting that, if N is composite, N = N1N2, with N1, N2 coprime,

for every A ∈ SL(2,ZN1N2) we obtain

A = A1 · A2 (3.23)

with Ai ∈ SL(2,ZNi), i = 1, 2.
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It can be proved that the unitary matrix U(A) of eq. (3.14) “inherits” this property

as follows

U(A) = U(A1)⊗U(A2) (3.24)

The N1N2 ×N1N2 matrix U(A) decomposes into a tensor product of an N1 ×N1 and an

N2 ×N2 unitary matrix. This leads to an acceleration of the computation of the action of

the quantum map U(A) on the Hilbert space of states, HN1N2 , from O(N2) to O(N lnN)

operations [29].

Thus, the building blocks of FQM are the Hilbert spaces of dimension N = pn, with p

an odd prime and n ∈ N.

4 The coherent states of bulk and boundary

The coherent state method selects a state, invariant under the stability group, as the ground

state, |0〉D [66, 67].

For the bulk the stability group is the scaling group, D. The corresponding quantum

map, U(D(λ)), for λ ∈ F∗p, is the circulant matrix:

U(D(λ))k,l = (−λ|p)

{
1

−1

}
δk,λ−1l (4.1)

We choose as ground state a common eigenvector of U(D(λ)) for all λ, namely

|0〉D =
1
√
p

1, 1, . . . , 1︸ ︷︷ ︸
p

 (4.2)

The coherent states for AdS2[p] are now defined as

|h〉 = U(h)|0〉D (4.3)

for all h ∈ AdS2[p] and U(h) the p× p unitary matrix constructed in eq. (3.16).

We notice here that the vacuum, |0〉D, is annihilated by the projector P− = (I −S)/2,

so it belongs to the subspace of the projector, P+ = (I + S)/2, which has dimension p+ ≡
(p+1)/2. The matrix S commutes with all matrices U(h) and this implies that the coherent

states, |h〉, also, belong to the eigenspace of P+. This is the positive chirality eigenspace. It

is possible to construct coherent states, belonging to the orthogonal eigenspace of dimension

p− = (p − 1)/2, by choosing the common eigenstate of the dilatation group among the

eigenvectors of S with opposite chirality.

We can use the parametrization of the cosets by rotations and translations in order to

obtain explicit expressions for the coherent states, |h〉:
For

h(φ, µ) =

(
a −b
b a

)(
1 −µ
0 1

)
(4.4)
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with a2+b2 ≡ 1 mod p. Using eqs. (2.40) we find the relation between a, b, µ and x±, namely

x+ =
a

b
(4.5)

x− =
a− bµ
aµ+ b

In components:

〈k|h〉 =
1
√
p

((a− bµ))|p)ω
b+µa

2(a−bµ)k
2

p =
1
√
p

((a− bµ))|p)ω
k2

2x−
p (4.6)

where k = 0, 1, 2, . . . , p − 1. The coherent states, |h〉, of the bulk, can be parametrized

therefore in terms of x± and will be denoted |x+, x−〉.
These definitions imply the classical transformation of coherent states under the isom-

etry group, namely

U(A)|h〉 = |Ah〉 (4.7)

These states form an overcomplete set of normalized states with very useful properties:

• Resolution of the identity:
1

d

∑
h

|h〉〈h| = P+ (4.8)

where d is defined

d =
∑
h

|〈h|h1〉|2 (4.9)

for any state |h1〉.

The above identity is based on the irreducibility of the metaplectic representation on

the subspace of positive chirality.

• Propagator property for the function

∆(h1, h2) = 〈h2|h1〉 (4.10)

This function has the property of a “reproducing kernel” (propagator)

∆(h1, h2) =
1

d

∑
h

∆(h1, h)∆(h, h2) (4.11)

and is invariant under the isometry group.

• For a general state |ψ〉 we have

|ψ〉 =
1

d

∑
h

|h〉〈h|ψ〉 (4.12)
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• The symbol of operators: to an operator Â we associate a scalar function Ã(h1, h2)

with

Ã(h1, h2) ≡ 〈h2|Â|h1〉 (4.13)

so that

Â =
1

d2

∑
h1,h2

Ã(h1, h2)|h2〉〈h1| (4.14)

For two operators Â, B̂ we assign as symbol of their product the expression

ÃB(h1, h2) =
1

d

∑
h

Ã(h1, h)B̃(h, h2) (4.15)

The local quantum observables, that have “nice” transformation properties, are the p× p
hermitian matrices QI(h), such that

U(A)QI(h)U(A)† = RIJQJ(Ah), I, J = 1, . . . ,dimR (4.16)

For scalar observables (scalar fields) we must have

U(A)Q(h)U(A)† = Q(Ah) (4.17)

The simplest ones are the (pure state) density matrices,

ρ(h) = |h〉〈h| (4.18)

that can be used as a basis for measurement.

For any scalar function, f(h), on AdS2[p], we can construct the quantum observable

O(f) ≡
∑
h

f(h)|h〉〈h| (4.19)

which is hermitian if f(·) is real.

The one-time-step evolution of these observables is given by

On+1(f) = U(A)On(f)U(A)† (4.20)

with initial condition On=0(f) = O(f).

We may write this relation in the following way:

On+1(f) = On
(
f ◦ A−1

)
(4.21)

The set of time correlation functions for these observables defines FQM on AdS2[p]:

G(t1, t2, . . . , tn|f1, f2, . . . , fn) =D〈0|Ot1(f1)Ot2(f2) . . .Otn(fn)|0〉D (4.22)

We shall present the bulk/boundary correspondence for the quantum map dynamics using

the parametrization of both spaces by the light cone variables, x±, of the stereographic
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projection. The coherent state |h〉 ≡ |x+, x−〉 and the action of an SL(2,Fp) group element

A will be lifted to the action of the unitary operator, U(A) as follows:

U(A) |x+, x−〉 =

∣∣∣∣ax+ + b

cx+ + d
,
dx− − c
a− bx−

〉
(4.23)

Let us now pass to the construction of the coherent states and the observables on

the boundary.

The boundary, Bd[p], of the discrete space-time, AdS2[p], is defined, in analogy with

the continuum case, by conformal compactification. In light-cone coordinates, (x+, x−), of

the projective plane, it is described as the set of points

1 + x+x− ≡ 0 mod p (4.24)

For every x+ ∈ F∗p, we have x− ≡ −x−1+ mod p. We must, also, add the points at “infinity”,

x+ = 0, x− =∞ and x+ =∞, x− = 0. So the boundary comprises the p+ 1 points

Bd[p] =
{(
x+,−x−1+

)∣∣x+ ∈ F∗p
}
∪ {(∞, 0), (0,∞)} (4.25)

The boundary set is invariant under the Möbius group, SL(2,Fp) and is the coset space

SL(2,Fp)/Bp, where Bp is the Borel subgroup, that preserves the “point at infinity”,

q = (x+ =∞, x− = 0):

Bp =

{(
λ b

0 λ−1

)∣∣∣∣∣λ ∈ F∗p, b ∈ Fp

}
(4.26)

In the p−dimensional Hilbert space of the metaplectic representation the quantum maps,

corresponding to Bp, are given as

U

[(
λ b

0 λ−1

)]
k,l

= (−λ|p)

{
1

−1

}
ω
−λb

2
k2

p δk,λ−1l (4.27)

The “vacuum” on which we define the coherent states of the boundary must be a common

eigenvector of the stability group Bp [49]. We can check from (4.27) that there is only one

such eigenvector, |0〉q:
〈k|0〉q = δk,0 (4.28)

The subgroup of SL(2,Fp), that acts transitively on the boundary is generated by the

rotation subgroup SO(2,Fp):

SO(2,Fp) =

{(
a −b
b a

)∣∣∣∣∣ a2 + b2 ≡ 1 mod p

}
(4.29)

This is an abelian, cyclic, subgroup of order p + 1, with generator that can be found by

random search [37].

The discrete coherent states of the boundary Bd[p] can now be defined as

|x+〉 = U(R(x+))|0〉q (4.30)
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From (3.14) we obtain the expression for the ground state wave function, 〈k|x+〉 as

〈k|x+〉 =
1
√
p

(−2b|p)

{
1

i

}
ω
−x+k

2

2
p (4.31)

when x+ ∈ F∗p. For the two additional points of the boundary, x+ =∞, x− = 0(then b = 0)

and x+ = 0, x− =∞ (then a = 0) the corresponding coherent states are:

• When b = 0, we need, in principle, to distinguish two cases: a = +1 and a = −1

— but, since the action of the group is projective, these lead to the same state,

|x+ =∞〉 = |0〉q, whence 〈k|x+〉 = δk,0.

• For a = 0, then b = −1, x+ = 0 The state |x+ = 0〉 leads to the constant wavefunction

〈k|x+〉 =
1
√
p

(2|p)

{
1

i

}
(4.32)

for all k = 0, 1, . . . , p− 1.

In total we get p+ 1 states, matching the number of points on the boundary.

In analogy with the bulk coherent states, we observe, that the ground state, |0〉q, of

the boundary, is annihilated by the projector (I − S)/2, as are all the coherent states,

|x+〉. Thus, these coherent states live in the eigenspace of P+ = (I + S)/2, which is

(p+1)/2−dimensional. They form an overcomplete set of states and display all the expected

features of coherent states.

Let us now turn our attention to the boundary observables. We construct the following

class of operators, which have nice transformation properties under the Möbius conformal

group and form a basis for measurement.

Using the magnetic translations, Jr,s, of the Heisenberg-Weyl group, where r, s =

0, 1, 2, . . . , p− 1, we define the operators

O(x+) =
1

p

p−1∑
s=0

Js(1,−x+) (4.33)

with x+ = 0, 1, . . . , p− 1. Their matrix elements are

[O]k,l =
1

p
ω
−x+(k2−l2)

2
p (4.34)

These operators are projectors:

O(x+)2 = O(x+) (4.35)

O(x+)† = O(x+)

and they transform conformally (for all A ∈ SL(2,ZN )):

U(A)O(x+)U(A)† = O
(
ax+ + b

cx+ + d

)
(4.36)
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For example, under the Fourier transform,

S =

(
0 −1

1 0

)

we find that

U(S)O(x+)U(S)† = O
(
− 1

x+

)
(4.37)

We use eq. (4.37) to define

O(x+ =∞) ≡ U(S)O(0)U(S)† = |0〉qq〈0| (4.38)

In the notation of eq. (4.30) the state |∞〉 is the ground state, |0〉q.
The operators O(x+) have the nice property that they are projectors on the discrete

coherent states, |x+〉. One can, indeed, check that

O(x+) = |x+〉〈x+| (4.39)

This holds for all x+ = 0, 1, 2, . . . , p− 1,∞.

The boundary observables can, therefore, be expressed in the O(x+) basis: to any

function, f : Bd[N ]→ C, we assign the observable

O(f) =
∑
x+

f(x+)O(x+) (4.40)

Their transformation properties are

U(A)O(f)U(A)† = O(f ◦ A−1) (4.41)

In this way we may establish contact between modular functions and forms of the finite

Möbius group SL(2,Fp), and conformal operators of definite conformal weight [24, 68, 69].

Once we have defined appropriate conformal operators, it is possible to calculate their

correlation functions (and the identities these satisfy) in any state. The two- and three-

point functions can be determined from conformal invariance; the higher-point functions

depend strongly on the quantum dynamics [12, 70].

In the next section we shall reconstruct bulk observables, when the boundary observ-

ables are known [71, 72].

5 AdS2[N ]/CFT1[N ] coherent state holography

In this section we present a new AdS2/CFT1 correspondence, AdS2[p]/CFT1[p], based on

the coherent states, of positive chirality, in the bulk and the boundary.A similar method

can be applied to the subspace of negative chirality.

By CFT1[p] we understand the quantum mechanics on the discrete, projective line,

RP1
p, defined by the evolution operator U(A), for A ∈ SO(2,Fp). In analogy to the conformal

quantum mechanics of ref. [12], the generator of this group corresponds to their “second”

Hamiltonian, which has discrete spectrum. From the point of view of radial observers of
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the AdS2 near horizon geometry of an extremal black hole, this evolution corresponds to

that of freely infalling observers [15–17].

To motivate the use of coherent states for the correspondence we notice the following:

The basic strength of the AdS/CFT correspondence relies on two important facts:

first, the conformal boundary completion of the AdS space-time is very specific in selecting

those boundary observables, which are appropriate for the reconstruction of those in the

bulk-and this is holography. The second one is more constraining in that the AdS/CFT

holography satisfies a new uncertainty principle, the IR/UV connection, which is a stringy

effect. The higher the energy of the probe of a system on the boundary, in order to localize

it, the bigger the distance form the boundary of the gravity dual system in the bulk. In

the language of the stringy uncertainty principle, the higher the energy of the closed string

state in the bulk, the larger the average length of the string: ∆x+∆x− ≥ 1/α′.

In the light cone coordinates, (x+, x−), on AdS2, x+ is parallel to the boundary and

x− is a measure of the distance from it. Strictly speaking, the appropriate quantity is

z ≡ 1 + x+x−, so, for fixed x+, x− → −1/x+, when z → 0.

In section 2 we observed that the variables (x+, x−) are appropriate holographic coor-

dinates for the bulk, since they transform under the isometry group by Möbius, conformal,

transformations:

x+ → Ax+ ≡
ax+ + b

cx+ + d

x− →
[
A−1

]T
x− ≡

dx− − c
−bx− + a

(5.1)

Notice that
[
A−1

]T
is the Fourier transform of A ∈ SL(2,ZN ),

[
A−1

]T
= εAεT (5.2)

So (x+, x−) are conjugate variables, similar to position and momentum. Indeed, for AdS2,

they represent time and length, promoting AdS2 into a stringy phase space. To saturate

the stringy uncertainty principle we must employ the corresponding coherent states. In

the bulk they have been defined as |x+, x−〉 and the coordinates denote the center of the

coherent state, while, on the boundary, as |x+〉.
The bulk coherent states are the discrete analogs of the well-known wavelets, used in

signal processing [73], which determine the spectrum of scales of a given signal as a function

of position.

The boundary coherent states are, also, the discrete analogs of the usual coherent

states of the harmonic oscillator (albeit on a different vacuum state) [36, 37].

We shall describe now the reconstruction method of the bulk observables (states) from

appropriate boundary ones, using the wavelet representation and its properties.

Let us choose, for any value of the variable x+, an independent variable, x−, which

takes values on the projective line, RP1
N , and define the state

|x̃−〉 ≡ F |x−〉 (5.3)
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with F the finite Fourier transform (3.19). Since |x−〉 is a boundary coherent state, we

deduce that

x̃− = − 1

x−
(5.4)

In section 4 we constructed the chiral, scalar operators, O(x+), It is obvious that the

scalar operator,

Õ(x−) ≡ O(x̃−) (5.5)

has conjugated transformation properties, i.e.

U(A)Õ(x−)U(A)† = Õ
([

(A−1
]T
x−

)
(5.6)

for any A ∈ SL(2,Fp).
We observe now that the composite operator,

O(x+, x−) ≡ O(x+)Õ(x−) (5.7)

is a scalar operator in the bulk. Indeed,

U(A)O(x+, x−)U(A)† = O(Ax+,
[
A−1

]T
x−) (5.8)

We shall use these operators to reconstruct Hermitian bulk scalar operators, so we must

symmetrize the product in (5.7).

On the boundary, the operators O(x+, x− = −1/x+) = O(x+).

The reconstruction of the bulk operators from boundary data will be described next.

The bulk/boundary correspondence in our construction is based on the fact that the Hilbert

space of the bulk coincides with the Hilbert space of the boundary and carries the positive

chirality component of the metaplectic representation of SL(2,Fp). This places constraints

on the algebra of observables on both sides of the correspondence.

Since both the bulk and boundary coherent states are overcomplete systems in the

eigenspace of P+, we get the relation

|x+, x−〉 =
1

d

∑
y+

K(x+, x−|y+)|y+〉 (5.9)

where the bulk/boundary propagator, K(x+, x−|y+), can be explicitly calculated:

K(x+, x−|y+) = 〈y+|x+, x−〉 (5.10)

From eqs. (4.6) and (4.31) we find that

K(x+, x−|y+) = ((a− bµ)|p) (−2b′|p)
(

1

2

(
y+ +

1

x−

)∣∣∣∣ p) (5.11)

In this expression

a =
x+√
x2+ + 1

b =
1√

x2+ + 1
(5.12)

µ =
x+ − x−
1 + x+x−
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for the bulk coherent states and

a′ =
2y+

1 + y2+

b′ =
1− y2+
1 + y2+

(5.13)

for the boundary ones.

The normalization constant, d, is defined through the overcompleteness relation of the

boundary coherent states ∑
y+

|y+〉〈y+| = dP+ (5.14)

Using eq. (4.31) we find that

d〈l|P+|m〉 =
∑
y+

〈l|y+〉〈y+|m〉 ⇒ d = 2 (5.15)

The range of the bulk variables, x±, is determined by the light cone parametrization of the

bulk, while the range of the boundary variable, y+ runs over the projective line, RP1
N , i.e.

y+ ∈ {0, 1, 2, . . . , p− 1} ∪ {∞}.
The correspondence between bulk/boundary observables can be constructed through

the relation

|x+, x−〉〈x+, x−| =
1

d2

∑
y+,y−

G(x+, x−|y+, y−)O(y+, y−) (5.16)

The coefficient function, G(x+, x−|y+, y−), can be determined from the bulk/boundary

propagator

G(x+, x−|y+, y−) =
K(x+, x−|y+)K∗(x+, x−| − 1/y−)

〈y+| − 1/y−〉
(5.17)

The denominator is, in fact, a boundary/boundary propagator, whereas the numerator is

the product of bulk/boundary, resp. boundary/bulk propagators.

6 Summary and conclusions

Before we summarize our results, let us review the conditions satisfied by our finite, discrete,

model of the black hole near horizon geometry for the radial and temporal directions:

• In the space of all possible finite geometries we managed to single out the proposed

type of modular discretization, by imposing the additional assumption of the existence

of a holographic correspondence, to be satisfied through the replacement of AdS2 by

AdS2[N ] and its boundary by CFT1[N ] = RP1
N .

• Indeed, the finite geometry inherits the symmetry properties of its continuous coun-

terpart (isometry group, coset structure and its quantum representations as well as

bulk-boundary correspondence) albeit in a discretized disguise.

– 24 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
9

• In the framework of the specific finite geometry it is very natural to choose as a

model for the dynamics of probes the isometry group elements which, interestingly,

possess strongly chaotic mixing properties. They are the well known Arnol’d cat

maps, defined as Möbius transformations on the stereographic lightcone plane.

• Moreover, special properties of the modular representations guarantee the factoriza-

tion with respect to the ultraviolet cut-off N . This is important for fast quantum

information processing on the near horizon region. As we plan to show in forthcoming

works the proposed framework is capable of providing an example for a mechanism

for the saturation of the fast scrambling conjecture. [4, 55, 76, 77].

In the present work we have studied the modular discretization of the AdS2 geometry,

AdS2[N ], and the ensuing classical and quantum dynamics of probes using generalized

Arnold cat maps. We have demonstrated that our toy model is successful in realizing

all of the properties which are considered key ingredients for a departure from semiclas-

sical and local physics, namely those of non-locality, chaotic dynamics and fast quantum

information processing.

With the discretization parameter, N , which provides both an ultraviolet and an in-

frared cutoff, the coset space nature of the AdS2 geometry “carries over” at the discretized

level. The corresponding, effective Planck constant, ~ = 2π/N can be identified, also, with

the non commutativity parameter of the quantum coset geometry [66, 67].

The strong arithmetic chaos of the Arnol’d cat map dynamics is inherited in a trans-

parent way by the coset quantum states, which are the coherent states of SL(2,ZN ). It is

rather interesting that there is a correspondence between the bulk and the boundary states

and observables of AdS2[N ]; the latter belong to the discrete projective line, RP1
N . In a

unique Hilbert space of finite dimension and given chirality, by using the overcompleteness

of the corresponding coherent states of the bulk and the boundary, we provided a method

to reconstruct the bulk states and observables from the corresponding boundary data. To

this end we constructed the bulk-bulk, bulk-boundary and boundary-boundary propaga-

tors, which are invariant under the isometries of AdS2[N ]. They are given by the overlap

amplitudes between the corresponding coherent states.

These propagators realize the UV/IR connection between the bulk and the boundary

scales, since the corresponding coherent states saturate the string uncertainty relation

∆x+∆x− ≥ 1/α′.

Our present work can be a basis for further extensions:

1. In the study of the AdS2[N ]/CFT1[N ] correspondence for different representations

of the discrete isometry group, SL(2,ZN ) [68, 69]. In particular, it is interesting

to study the modular discretization of the boundary conformal quantum mechanics

of ref. [12]. It requires at the group level the definition of primary operators, their

dimensions, as well as their fusion algebra.

2. Since the classical Arnol’d cat maps possess factorization in the parameter N and

strong chaotic properties by choosing N = pn where p is a prime integer, we can con-

struct the corresponding p-adic dynamics at both the classical and quantum levels.
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Indeed all of our amplitudes possess factorization properties. Therefore by taking

their infinite product over n from 1 to infinity it is possible to construct the corre-

sponding p-adic amplitude [74, 75]. In recent works by Barbón et al. [76, 77]. it has

been shown that ultrametric or p-adic structures of the Hilbert states black hole mi-

crostates which are supported by specific expander graphs guarantee the saturation

of scrambling time bound for the black hole information processing [4].

3. Since the quantum Arnol’d cat maps possess factorization in the parameter, N , and

strong chaotic properties [76, 77], they are also appropriate for the construction of

quantum circuit models of deterministic chaos for the qubit information processing

in black holes [3, 50, 51, 55, 57, 58]. In analogy with the quantum circuit realization

of Shor’s factorization algorithm [78], it is expected that quantum circuits for the

quantum Arnol’d cat maps will provide similar (exponential) improvements over their

classical factorization properties and may saturate the scrambling bound [68, 69],

as well.
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