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1 Introduction

Much work has been done in recent years exploring strongly coupled CFTs with U(1)

global symmetry and their associated conserved currents via the gauge/gravity relationship.

These systems have a rich variety of physically relevant phenomena to condensed matter,

such as superfluidity, non-Fermi liquids, fractional quantum Hall effect etc. Less explored

are strongly coupled CFTs with a local U(1) gauge symmetry. Such theories can also be

tackled using the gauge/gravity duality if they live in (2 + 1) dimensions. In fact, as shown

in [1], given any CFT with a global U(1) charge there is a well defined procedure generated

by an element of SL(2,Z) to turn it into a CFT with a local U(1) gauge symmetry, which

also has a conserved current. An example of a phenomenologically relevant model with

such a conformal gauge field is given by the large charge limit of zero temperature (2 + 1)-

dimensional QED.1

1In condensed matter physics one application of QED2+1 and its cousins can be seen in the two-

dimensional SU(Nf ) Heisenberg spin model (and variants) on a square lattice where the effective Hamilto-

nian turns out to be the fermionic term of lattice QED2+1 [2].
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Given a holographic description of a CFT with a global U(1) current one can find a

holographic description of the SL(2,Z) transformed field theory and compute correlation

functions of the transformed conserved current. Thus we can describe using holographic

techniques field theories whose field content has some matter coupled to a dynamical gauge

field (in the sense that the gauge field is integrated over in the path integral) but with no

Maxwell term. We can however add a Chern-Simons’ term by an appropriate SL(2,Z)

transformation. Using such gravitational duals we can begin to study properties of these

theories at finite temperature and density, i.e. we can study strongly coupled “real” plasma

physics in (2 + 1) dimensions.

A second application of (2+1)-dimensional gauge theories in condensed matter physics

concerns the appearance of “anyons”, particles whose statistics interpolate between Bose-

Einstein and Fermi-Dirac, which may be useful in understanding the quantum Hall effect.

A simple model of such systems is given by a Chern-Simon’s gauge theory with charged

matter. The sourced Chern-Simon’s equations of motion, with level K, attach magnetic

flux to an electrically charged particle. Hence a point particle with charge e sourcing the

current also carries (2π)/K units of magnetic flux. Moving one such point particle around

another leads to an Aharanov-Bohm phase ∆θ = e2

K where ∆θ is the exchange phase angle.

We see that it is Chern-Simon’s level dependent and potentially neither integer nor half-

integer. This leads to the unusual statistics of these anyonic particles [3, 4]. A holographic

model for an anyonic superconductor which bears some resemblence to our system has

recently been investigated [5].

1.1 SL(2,Z) transformation of a CFT

Let us start with a (2 + 1)-dimensional CFT which has a conserved current Jµ that can

couple to a background source Aµ. We can define another CFT also with a conserved

current by an SL(2,Z) transformation of the original theory using the prescription we shall

now review [1, 6, 7]. First note that SL(2,Z) is generated by an S-transformation and

a T -transformation. The S-transformed CFT is obtained by including the background

field Aµ in the path integral, but with no kinetic term. A new conserved current in this

CFT is 1
2π

∫
εµνρ∂

νAρ, which can be coupled to some new background vector field Cµ,

thus defining a new generating functional. A T -transformation is induced by adding to

the theory a Chern-Simon term for the background field. The S-transformation and the

T -transformation do not commute. The U(1) current in the CFT and the Hodge dual of

the background field strength transform as a doublet under the SL(2,Z) transformation.

Given the above we can readily determine the transformation of the two point function

between the CFTs. Assuming SO(2) rotational invariance, the general expression for the

current-current correlator in a finite temperature CFT is

〈Jµ(p)Jν(−p)〉 =
√
p2
[
C(L)(p)P

(L)
µν + C(T)(p)P

(T )
µν

]
+W (p)Σµν (1.1)

where the functions C(T), C(L) and W are scale invariants and the tensor structures dis-

played above are defined in terms of the Minkowski metric ηµν , spatial metric δij , momen-
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tum pµ = (ω, ki) and p2 = −ω2 + ~k2 by

Pµν = ηµν − pµpν/p2 − P (T )
µν , P

(T )
tt = P

(T )
ti = 0 , P

(T )
ij = δij − kikj/~k2 ,

Σµν = 2
(
P (L)

) α

[µ

(
P (T )

) β

ν]
εαβγp

γ . (1.2)

The parity violating projector, Σ, corresponds to a contact term ambiguity in the definition

of two point functions that must be specified to completely define the (2 + 1)-dimensional

field theory of a conformal U(1) current [8].

Under the S-transformation the two point function has of course the same form,〈
J∗µ(p)J∗ν (−p)

〉
=
√
p2
[
C∗(T)P

(L)
µν + C∗(L)P

(T )
µν

]
+W ∗Σµν (1.3)

but with new scalar functions: C∗(L), C
∗
(T ),W

∗. These are given in terms of the original

scalars by

C∗(L) =
C(L)

(2π)2
(
C(L)C(T ) +W 2

) , C∗(T ) =
C(T )

(2π)2
(
C(L)C(T ) +W 2

) ,
W ∗ = − W

(2π)2
(
C(L)C(T ) +W 2

) , (1.4)

Under a T -transformation however only the parity violating scalar is altered,

W ∗ = W +
1

2π
, (1.5)

where we have normalised our currents suitably, leaving the other functions untouched.

1.2 Bulk formalism

The procedure of using holographic techniques to describe a theory with a dynamical gauge

field based on the holographic description of a theory without a dynamical gauge field is

called alternative quantisation. The reason is that the bulk description of the theories is

the same but the quantisation procedure (i.e which fluctuations we quantise and which we

treat as sources) changes.

The usual boundary condition (Dirichlet) imposed on the gauge field in AdS4 stems

from using a bulk action which after holographic renormalization and imposing the equation

of motion has the property that

δSD =

∫
boundary

JµδAµ (1.6)

where Jµ = δSD
δAµ(∞) is interpreted as a conserved current in the CFT. Consistency of

the variational principle (equivalently requiring no flux through the time-like boundary at

infinity) requires imposing the condition that Aµ is fixed at the boundary. However this

“normal quantisation” procedure is not the only consistent boundary condition one can

impose on a gauge field in AdS4. Both independent solutions of the equation of motion for

the bulk gauge field are normalisable modes, and one can consider the theory with other
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boundary conditions (which again guarantee that no information is lost through time like

infinity) [9, 10].

Since ∂µJµ = 0 one can write Jµ = 1
2π εµρν∂

ρvν , where vν is defined up to gauge

transformations. Also it is convenient to define Bµ ≡ 1
2π εµρν∂

ρAν . The most general

boundary condition comes from the action

Sgeneric = SD +
1

2π

∫
boundary

[a1εµρνA
µ∂ρvν + a2εµρνA

µ∂ρAν + a3εµρνv
µ∂ρvν ] . (1.7)

Now the variation of the action takes the form

δSgeneric =

∫
boundary

(asJµ + bsBµ)(csδv
µ + dsδA

µ) (1.8)

where

asds = 1 + a1 , bscs = a1 , bsds = 2a2 , ascs = 2a3 . (1.9)

Evidently asds − bscs = 1 and so form a SL(2,R) matrix. The new boundary condition

requires csv
µ + dsA

µ to be fixed, or in gauge invariant form

B∗µ = csJµ + dsBµ = fixed, → δB∗µ = 0 (1.10)

and the new current is just

J∗µ = asJµ + bsBµ . (1.11)

The S-transformation is given by setting as = ds = 0 and bs = −cs = 1. The T -

transformation has as = bs = ds = 1 and cs = 0. It is sometimes easier to take derivatives

with respect to the gauge invariant combination (1.10). The resulting objects are cor-

relation functions of a gauge dependent quantity, but acting on it with an appropriate

derivative operator gives the current correlation functions. Note that if the bulk theory

has only integer electric and magnetic charges (which is what happens in string theory),

for consistency the SL(2,R) transformations must be restricted to a subset SL(2,Z), acting

on appropriately normalised quantities.

From equation (1.10) we see that the new current, J∗µ, is a current of particles car-

rying (with respect to the original definition) for each unit of the original charge, cs/ds
units of the original magnetic flux. This is precisely the realisation of anyons described in

the introduction.

In this paper we explore theories which are connected to part of the phase space of

the D3/D5 system through an SL(2,Z) transformation. More specifically we look at this

theory as the original theory at finite density and temperature and use a SL(2,Z) transfor-

mation to explore possible phenomena. For the pure S-transformation we prefer to view the

transformed theory as the original theory but coupled to a gauge field without a Maxwell

term. We then holographically compute the field strength correlation function and inter-

pret the quasi-normal modes as the spectrum of electromagnetic excitations (transverse)

or plasmon excitations (longitudinal) in a finite temperature plasma of particles charged

under a U(1) gauge field and also strongly interacting via an SU(Nc) gauge field. For
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a more general SL(2,Z) transformation we prefer to view the transformed theory as just

another finite temperature CFT with a conserved charge carried by some excitations. In

this case we holographically compute the current correlation functions and extract from

them the collective excitations, conductivites etc. As explained above, after the SL(2,Z)

transformation, the charge carrying excitations are anyons. The new background charge

density and magnetic field depend on the actual SL(2,Z) transformation we have used.

2 Holographic model

We will use as our bulk theory the D3/D5 brane system where the D5-branes are probes

of the background given by Nc D3-branes at finite temperature. The contribution of a

D5-brane to the bulk action is

S(0) = −TD5

∫
d6ξ
√
−det (g + F ) (2.1)

where ξ are the embedding coordinates, TD5 the tension of the D5 brane and F the U(1)

world-volume field strength. We have absorbed a factor of 2πα′ into the field strength

compared to the usual definition and thus it is dimensionless. As the D5 brane is treated

as a probe we neglect its back-reaction upon the bulk metric which we must specify. We

take the metric g to be

ds2 = gtt(r)dt
2 + gxx(r)

(
dx2 + dy2 + dz2

)
+ grr(r)dr

2 + `2ds2S5 ,

= −r
2

`2
f(r)dt2 +

r2

`2
(
dx2 + dy2 + dz2

)
+
`2

r2
dr2

f(r)
+ `2ds2S5 , (2.2)

f(r) = 1−
r4H
r4

.

where r = rH = πT`2 with ` the AdS radius. We now choose ` ≡ 1. The embedding

we will consider is the usual massless black hole embedding with some background U(1)b
charge, carried by bosonic and fermionic excitations, also considered recently in [11]. The

embedding is determined by the gauge field configuration since the scalar profiles are all

trivial. It is well understood and we simply record the relevant results here, namely, the

bulk U(1) field strength is given by [12, 13],

F = dA =
d
√
grr|gtt|√
g2xx + d2

dr ∧ dt , (2.3)

where d ≡ 〈J
t〉
N5

, N5 = 4
√
λ

(2π)3
Nc, and

〈
J t
〉

=
δS(0)

δA′t
. (2.4)

This embedding has been proposed as the thermodynamically preferred state of the system

for all values of d (see [14, 15] for some controversy in the regard) and corresponds to the

decoupling limit of the brane embedding displayed in table 1. The current displayed above
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t x y z X1 X2 X3 X4 X5 X6

Nc D3 × × × ×
Nf D5 × × × × × ×

Table 1. The embeddings of the D3 and D5 branes in ten dimensional Minkowski space.

does not have the correct length dimension to be a current due to our normalisation of A

in (2.1). Subsequently the physical charge density is (2πα′) dN5.

Now we turn to gauge fluctuations about the background fieldA in (2.3). The boundary

theory corresponding to (2.2) and (2.3) has explicit spatial SO(2) rotation invariance and so

all choices of the direction of spatial momentum for our fluctuation are equivalent. As such

we shall turn on momentum in the x direction, which perturbatively breaks this SO(2),

and then Fourier decompose our fluctuation a,

aµ(r, x) =

∫
dωdk

(2π)2
aµ(r, k) exp (−iωt+ ikx) , (2.5)

where our transform conventions are as displayed. The quadratic action in terms of these

fluctuations, S(2), and the resulting equations of motion are straightforward to obtain but

unilluminating, so we will omit them. We will record the equation for ar, which in ar = 0

gauge is a constraint on the other bulk fluctuations,

ω a′t + u(r)2k a′x = 0 , (2.6)

where

u(r)2 ≡ |gtt|grr −A
′2
t

grrgxx
=
|gtt|gxx
g2xx + d2

. (2.7)

With our choice of momentum, the gauge-invariant fluctuations are ay itself and also the

bulk electric field (in Fourier space) [16]

Ex(r, ω, k) ≡ k at(r, ω, k) + ω ax(r, ω, k) , (2.8)

which is dual to the operator

JE ≡ k J t + ω Jx . (2.9)

In terms of these gauge-invariant fluctuations, using eq. (2.6) and performing an

integration-by-parts, we can write the quadratic action S(2) as

S(2) =
N5

2

∫
dr
dωdk

(2π)2
|gtt|

u(r)g
1/2
rr g

1/2
xx

(2.10)

×
[

1

ω2 − u(r)2k2
|E′x|2 −

grr
|gtt|
|Ex|2 − |a′y|2 +

grr
|gtt|

(
ω2 − u(r)2k2

)
|ay|2

]
,

– 6 –
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where Ex and ay are generically complex. The equations of motion that follow from S(2) are

E′′x +

[
∂r log

(
|gtt|g−1/2rr

(ω2 − u(r)2k2)u(r)g
1/2
xx

)]
E′x +

grr
|gtt|

(
ω2 − u(r)2k2

)
Ex = 0 , (2.11a)

a′′y +

[
∂r log

(
|gtt|g−1/2rr

u(r)g
1/2
xx

)]
a′y +

grr
|gtt|

(
ω2 − u(r)2k2

)
ay = 0 . (2.11b)

These match the equations of motion in refs. [11, 17–19]. Notice in particular that the

bulk equations of motion for Ex and ay are decoupled and degenerate to the same equation

when k is taken to zero (i.e. when the perturbation is homogeneous and thus respects SO(2)

spatial rotation invariance).

2.1 Alternative quantisation

Under a general SL(2,Z) transformation the appropriate quasi-normal mode boundary

condition2 can be written in terms of the bulk fields and a single parameter, which we will

label as n, as

lim
r→∞

[
r2δFrµ −

n

2
εµνρδF

νρ

]
= 0 . (2.12)

Of course there is an appropriate SL(2,Z) only for particular values of n but we will com-

pute as though it were a continuous parameter since the actual values corresponding to an

SL(2,Z) parameter depend on the precise value of N5. The spectrum of the quasi-normal

modes, which are the poles of the retarded Green’s function, are given by finding the nor-

malisable modes relative to the boundary condition (2.12) which only occur for particular

pairs (ω, k). Thus the spectrum of the quasi normal modes depends only on the choice

of n and not on the precise SL(2,Z) transformation. If we wish to compute the current

two-point function however we need to completely specify the actual transformation.

Turning now to correlation function in order to compute the current-current correlator

one needs to take derivatives of the on shell action with respect to the boundary conditions

〈J∗µJ∗ν 〉 =
δ2S

δ(csvµ + dsAµ)δ(csvν + dsAν)
. (2.13)

In the treatment of the fluctuation analysis this is actually computed by

δJ∗µ
δ(csvν + dsAν)

. (2.14)

However in the fluctuation analysis the boundary condition is given in terms of gauge

invariant quantities δB∗µ = δ(csJµ + dsBµ).

Let a∗ be such that B∗µ = 1
2π εµνρ∂

νaρ∗. Using the chain rule

δJ∗µ
δ (a∗)ν

=
δJ∗µ

δ (B∗)ρ
δ (B∗)ρ

δ (a∗)ν
(2.15)

2This is a slight abuse of standards as quasi-normal mode typically refers to the normal quantisation

condition.
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and that with the kinematics p = (ω, k, 0), B∗x and B∗t are not independent, we get that

〈J∗µ(p)J∗y (−p)〉 = − iω
2π

δJ∗µ(p)

δ (B∗(p))x
, 〈J∗µ(p)J∗x(−p)〉 =

iω

2π

δJ∗µ(p)

δ (B∗(p))y
,

〈J∗µ(p)J∗t (−p)〉 = − ik
2π

δJ∗µ(p)

δ (B∗(p))y
,

where we have defined εtxy ≡ 1. These equations allow us to compute the current two point

function from the fluctuation analysis.

For low momentum and frequency it is often possible to solve (2.11a) and (2.11b) an-

alytically. When this is not possible or unenlightening we shall resort to numerics. We

now layout the numerical procedure [20] used to determine solutions to the bulk equa-

tions satisfying the mixed quantisation conditions.3 We shall employ the notation of [11].

Eqs. (2.11a) and (2.11b) are second-order, hence for each field, Ex and ay, we need two

boundary conditions to specify a solution completely. On the black hole horizon, a solution

for Ex or ay looks like a linear combination of in-going and out-going waves, with some

normalizations. The prescription for obtaining the retarded Green’s function requires that

we choose our normalisations to remove any outgoing modes [21–24]. Let

~V (r, ω, k) ≡

(
Ex(r, ω, k)

ay(r, ω, k)

)
(2.16)

and at large r identify

~V (r, ω, k) = ~V (0)(ω, k) +
1

r
~V (1)(ω, k) +O−2(r) . (2.17)

For mixed quantisation a boundary condition is given by fixing the combination (2.12).

Using the relationship of (2.6) we find that (2.12) can be written in our current notation,

N5

[(
1/p2 0

0 1

)
~V (1)(ω, k) + in

(
0 1

1 0

)
~V (0)(ω, k)

]
= ~Vb = fixed (2.18)

to some value, denoted ~Vb, at the boundary. The first component of ~Vb is equal to B∗x and B∗t
when multiplied by ω and −k respectively. For numerical purposes however it is preferable

to fix all our boundary conditions at the future black hole horizon. The second boundary

condition is then the normalisation of the ingoing wave at the horizon. The two ways to

fix boundary conditions are related to each other by a change of basis transformation. The

vector of near-horizon normalization factors, ~Vnh, is, when the temperature is non-zero,

~Vnh ≡ lim
r→rH

exp

(
iω

∫
dr
√
grr/|gtt|

)
~V (r, ω, k). (2.19)

Notice that ~Vnh is constant, independent of r, ω, and k. On the right-hand-side of eq. (2.19),

the exponential factor is designed to cancel the exponential factor that represents an in-

going wave at the future horizon.

3In this section we shall only display an explicit expression for the boundary source term and not the

one-point functions. However when we reach section 4 we will show how the Green’s function, and thus the

one point functions, are obtained from our procedure.
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We now pick two convenient values of ~Vnh and solve the equations for each of these

choices. This provides us with a basis of solutions in terms of which we can write any

solution. The typical choices we have used in our numerics are: ~V
(1)
nh = (1, 0)T and ~V

(2)
nh =

(0, 1)T . Let us call the corresponding solutions ~V (1) and ~V (2) and use them to define a

matrix P (r, ω, k) by

P (r, ω, k) ≡
(
~V (1)(r, ω, k), ~V (2)(r, ω, k)

)
. (2.20)

Using this matrix we can write any solution to the equations of motion with initial condition
~Vnh at the horizon as

~V (r, p) = P (r, p) ~Vnh. (2.21)

In terms of the bulk to boundary propagator P and the near horizon vector ~Vnh we have

~Vb = N5 lim
r→∞

[(
1/p2 0

0 1

)(
−r2P ′(r, ω, k)

)
+ in

(
0 1

1 0

)
P (r, ω, k)

]
~Vnh .

The limiting case of n = ∞ is the normal quantisation condition [11] while n = 0 is the

S-transform quantisation.

We call any solution to the bulk equations with ~Vb = 0 and complex frequency a

quasi-normal mode. For a non-trivial solution with ~Vb ≡ 0 and ~Vnh 6= 0 it must be the case

that [20]

lim
r→∞

det

[(
0 1

1/p2 0

)(
−r2P ′(r, ω, k)

)
+ inP (r, ω, k)

]
= 0 (2.22)

which places a constraint on ω and k yielding the dispersion relation of the mode.4 If we

are interested in only normal or alternate boundary conditions we can take the limiting

value of this expression. Setting n → ∞ requires we set the determinant of P to zero

which is entirely standard. However, when we set n = 0, it is very important to include the

matrix prefactor to P ′. It ensures that drEx is replaced by drax or drat when searching for

the quasi-normal mode and cancels out an illusory light-like pole which would otherwise

dominate the spectrum. Finally, we note that on setting k = 0 the equations of motion

degenerate into a single expression and thus finding the quasi-normal modes means solving

a single equation equivalent to solving the boundary condition given by the upper or lower

row of the above matrix.

We note that it will be useful throughout the remainder of the paper to set some

conventions. A variable x normalised by temperature will be denoted x̃. The object x is

evaluated in normal quantisation while, the quantity x∗ is calculated using S-transform

quantisation. Finally if x carries the sub- or superscript n, e.g. xn, it is determined by

imposing mixed quantisation conditions.

4Note that the constraint for finding quasi-normal modes, as we have written it, is blind to poles at zero

momentum and frequency.
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Figure 1. The lowest lying quasi-normal modes of the transverse excitation for d̃ = 0 (top and

bottom left), d̃ = 2/10 (bottom middle) and d̃ = 5 (top and bottom right). The upper diagrams

are the momentum complexification of the Green’s function at two choices of d̃ while the lower set

of figures show the frequency complexification for three choices of d̃. For all figures we have chosen

signs such that positive frequencies correspond to real parts of the dispersion relation. The red dots

are numerical data while the blue dotted lines are the analytic expressions in (3.1). In the bottom

right figure we also include a blue line with gradient 1 for comparison.

3 A strongly coupled (2+1)-dimensional plasma

In this section we consider the effects of gauging the external source vector field, A(0), in

the absence of parity violation. We then employ this gauge field to probe properties of

the finite density system. We compute various features from the two-point function of two

U(1) gauge operators such as the penetration length and the Debye mass, as well as the

dispersion of the electromagnetic waves propagating in the plasma.

The currents are related to the field strength by Jµ = 1
2π εµνρ∂

νAρ. At zero temperature

where CL = CT = const, one finds that for a wave vector in the x direction, the only poles

are lightlike and in the Fxy and Fty correlators with no poles in the Ftx correlator. This

is what we expect in the vacuum for an electromagnetic wave. Given this identification,

and also to agree with condensed matter literature, at non-zero temperature we shall refer

to the longest lived quasi-particle excitations in the transverse electric field correlator as

the photon. The longest lived mode in the longitudinal electric field correlator at finite

temperature will be called the plasmon.

3.1 The photon

We shall begin by describing the lowest lying poles in the transverse electric field correlator,

organised by increasing d̃ = d/(πT )2. In figure 1 we display the lowest lying modes in this

correlator at d̃ = 0, d̃ = 2/10 and d̃ = 5. We display both the case where ω̃ = ω/(πT )

is chosen to be real and the case where k̃ = k/(πT ) is chosen to be real. The first choice

represents the dispersion of electromagnetic waves in the plasma in response to an incident
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Figure 2. Left: the logarithm of the low frequency penetration depth normalised by the square-

root of frequency against ln(d̃) in a thermal strongly coupled (2 + 1)-dimensional field theory with

background charge d̃. Red dots are numerical data while solid blue lines are analytic expressions.

The blue line is obtained by solving (3.1) for k(ω) with k complex and isolating the imaginary part

of the dispersion relation. Right: the cross-over momentum against logarithm of the density. Red

dots are numerical data while solid blue lines are analytic expressions.

wave or due to time periodic phenomena. The second choice gives the excitations that

arise when a spatially periodic phenomena occurs in the plasma.

Let us describe the behaviour of the dominant mode for real values of k. For all d̃ the

hydrodynamical mode, the mode for which ω̃(k̃ → 0) → 0, is dominant for small k̃ or ω̃.

As k̃ is increased there is a transition to a mode with both real and imaginary parts for ω̃,

with Re(ω̃) ∼ k̃ and Im(ω̃)→ 0 for large k̃. This mode may look like a massive mode if d̃

is large enough. This can also be seen in the representaion using real ω̃.

The dispersion relation of the hydrodynamical mode can be solved for analytically in

a small frequency and momentum analysis. This mode, for all values of d̃ is the dominant

one for small ω̃ and k̃. It satisfies the dispersion relation

Γ−1ω + ik2 +O(ω2, ωk2, k4) = 0 , Γ =
1√

1 + d̃2
2F1

[
1

4
,
1

2
,
5

4
;−d̃2

]
, (3.1)

for sufficiently small ω̃ and k̃. An important physical quantity that can be obtained from

this dispersion relation is the penetration length δp(ω̃) which measures how far the elec-

tromagnetic wave will penetrate the plasma. It is defined as 1/Im[k̃(ω̃)] where ω̃ is chosen

to be real. This is compared to numeric data in figure 2. The analytic calculations are

given in appendix A. We note that at low frequency the penetration depth decreases as

∼ d̃−3/4 for d̃ & 1 and is roughly constant for d̃ . 1. The penetration depth at arbitrary

frequency, in other words outside the low frequency regime, can be obtained numerically

as the imaginary parts of the real frequency dispersion relations. Examples for d̃ = 0 and

d̃ = 5 are given in figure 1.

As described above eventually the hydrodynamical mode ceases to be dominant and

is overtaken by a mode which is approximately linear in k̃. We have tracked the crossing

point in k̃ for 1/10 ≤ d̃ ≤ 100 as shown in figure 2. We note at large d̃ the position

of the crossover in k̃ grows as ∼ 0.54d̃1.26. We do not expect the numbers displayed in

this expression to have any element of universality and have simply recorded them for
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Figure 3. The real (upper half) and imaginary (lower half) parts of the lowest quasi normal

frequency ω̃(k̃ = 0) as a function of ln d̃.

posterity. Indeed, we should expect them to depend strongly on the matter content of

the bulk theory. However, the existence of the cross-over behaviour above should be more

general and indeed has been seen often in the normally quantised system [11].

3.2 Plasma oscillations

We now turn to the plasmon. This is an excitation which is a collective excitation of the

plasma and thus vanishes at strictly zero temperature and zero density. The behavior of

the leading excitation i.e. that with the smallest imaginary part, changes as we change

d̃. In figure 3 we give the quasi normal mode at zero momentum behavior as we change

d̃. As d̃ increases two purely imaginary modes (at k̃ = 0) come together and become a

complex mode with a decreasing imaginary part and increasing real part as d̃ grows. At

even larger d̃ two complex poles merge to become two other complex modes (at k̃ = 0)

where the leading tends to having an almost constant real part as d̃ grows. In figure 4 we

look at what happens to these poles as one changes k̃. At small d̃ the purely imaginary

mode comes together with another purely imaginary mode and becomes a complex mode

with Re(ω̃) ∼ k̃ at large k̃. At approximately ln(d̃) = −2.5 there is only a complex mode

for k̃ ≥ 0 which again has Re(ω̃) ∼ k̃ at large k̃, and an increasing mass with increasing

d̃. At an even larger d̃, for small k̃ the dominant mode has an almost constant Re(ω̃), but

at larger k̃ the dominant mode switches to a mode with Re(ω̃) ∼ k̃. As d̃ is increased the

range of k̃ where the almost constant mode is the dominant one increases, but eventually

at large enough k̃ another mode comes up from the complex plane to dominate which has

Re(ω̃) ∼ k̃.

3.2.1 Debye length

Now we turn to computing the Debye mass. This can be defined using the zero frequency

electrostatic two point function. At zero frequency we find

1

k2
〈Ex(0, k)Ex(0,−k)〉 = 〈A0(0, k)A0(0,−k)〉, (3.2)

and we note that the Fourier transform of this time component of the two point function will

give the potential between two static point charges. Our system has conformal invariance
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Figure 4. The lowest lying quasi-normal modes of the longitudinal excitation for real k̃ and complex

ω̃. Displayed are d̃ = 0 (top left) , d̃ = 2/10 (top right), d̃ = 5 (bottom left) and d̃ = 50 (bottom

right). The red dots are numerical data.

at zero temperature and thus 〈A0(0, k)A0(0,−k)〉 ∼ 1/k̃ for k̃ � 1. Hence the correlator

begins as ∼ 1/r in vacuum but, as turning on temperature introduces a length scale, it

becomes exponentially decaying at large r for non-zero T . We call the d̃ dependent length

scale in the exponential the “Debye length”. In summary at finite temperature the potential

between static charges for our system will be

V (r) ∼


1

r
,

r

rH
� 1√

1

r
exp (−mDr) ,

r

rH
� 1

.

The Debye length of our system is defined by mD
πT = m̃D = −Im[k̃(0)] where k̃(ω̃)

is the position of the lowest pole in the longitudinal correlator for real frequencies. This

is displayed on the left of figure 5. We have checked numerically that the pole is simple

and paired (i.e. there exists a second imaginary pole with opposite sign). On the right of

figure 5 we also give the two point function of the zero component of the gauge field at

zero frequency and real momenta.

4 Anyonic fluids

We now turn to the more general boundary condition of (2.12) labelled by n. The conserved

charge is just the anyon number. The quasi-normal mode computation is insensitive to the

actual SL(2,Z) transformation since it only depends on ds/cs = 2πN5n. So the following

results for the quasi-normal modes and their properties are true whenever ds/cs has a

particular value. However it is useful to have in mind a particular transformation when
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Figure 5. Left: a plot of the logarithm of the Debye mass against the logarithm of charge density.

The red dots are numerical data while the solid blue line is a fit to the large density behaviour.

Right: the Fourier transform of the electrostatic potential as a function of k̃ at d̃ = 0. Dashed blue

lines are fits at small k̃, ∼ 1
k̃2+m̃2

and at large k̃ ∼ 1/k̃.

describing the results. So we will imagine that we are using the SL(2,Z) transformation

TLSTK , with (K and L are integer)

as = −L, bs = 1−KL, cs = −1, ds = −K (4.1)

and so our parameter n in (2.12) takes the value n = K
2πN5

. This means that the ground

state of our system has 〈J̃∗t 〉 = N5d̃L and B̃∗t = N5d̃. As such our results are relevant for a

thermal anyonic fluid at temperature T and anyon density 〈J∗t 〉 in a magnetic field (2πB∗t )
whenever the filling fraction ν = 〈J∗t 〉/ (2πB∗t ) is equal to an integer L. In particular when

L = 0 this fluid consists of an equal number of anyons and anti-anyons in a background

magnetic field.

As we change n from zero we will get different finite temperature anyonic fluids at the

same density in the same background magnetic field. However the fermionic and bosonic

excitations of the original D3/D5 system are changed into anyonic excitations by a phase

∼ 1/n . We will treat n as a continuous parameter but of course it can only take certain

values. Thus the change of properties as we change n indicates how the behaviour of the

fluid depends on statistics of the theory’s excitations. In order to avoid clutter we will

label from now on b̃∗ ≡ B
∗
t
N5

.

4.1 Anyon correlator

The pole structure of the correlators will be dependent on b̃∗ and n. Turning n from

small to large switches the pole structure from alternate quantisation (n = 0) to normal

quantisation (n =∞) . The behaviour for various b̃∗ is displayed in figure 6. Not displayed

in this figure is small b̃∗ . 1/10 where there is little difference between n = 0 and n =∞.

In this ultra low b̃∗ regime two purely imaginary modes come together at k̃ ∼ 0.6 and

form a complex mode which asymptotes to having the light-like behaviour that governs

the system at large k̃. As such we shall only further describe intermediate (b̃∗ ∼ 1/10) and

high (b̃∗ � 1/10) values of b̃∗.

At b̃∗ ∼ 1/10 and n = 0 the behaviour of the lowest lying poles is slightly more

complicated than the b̃∗ . 1/10 case. There is a purely dissipative hydrodynamical mode,
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Figure 6. Various plots of poles in the anyon current correlator. We have selected signs such that

positive frequencies correspond to the real part of the dispersion relation for the displayed modes

while negative frequencies give imaginary parts. Red dots represent numerical data while blue lines

represent anayltic formulae. The top row has b̃∗ = 2/10 and n = 0, 1, 100 (from left to right) while

the bottom row has b̃∗ = 5 and n = 0, 5, 100 (again from left to right). In the bottom left there is

a dashed blue line of gradient 1, and in the bottom middle and right there are two lines of gradient

1 and 1/
√

2 respectively.

but instead of the purely imaginary mode below it, there is a complex mode starting at

k̃ = 0. As k̃ increases it separates into two purely imaginary modes. One of these remains

imaginary and sinks lower into the complex plane for the values of k̃ examined. The

other combines with the hydrodynamical mode to become a complex mode which then

asymptotes to a light-like pole. As n is increased the splitting of the complex mode starts

at smaller k̃ and as n → ∞ the complex mode disappears and becomes two imaginary

modes. All this is shown in the top of figure 6.

At larger b̃∗ & 1/10 the change in behaviour with n is different. At n = 0 the low-lying

spectrum consists of a purely imaginary (diffusive) pole that descends deep into the complex

frequency plane with increasing k̃ and a massive complex mode. For some finite k̃ this

complex pole, which asymptotes to a light-like behaviour at large k̃, has smaller imaginary

part than the diffusive pole and governs the late time behaviour. As n is increased a

region of finite extent in k̃ appears where the complex mode has a real part with gradient

≈ ±1/
√

2. This looks like a massive zero sound mode for the anyons. At larger k̃ there is

a kink and the dispersion then becomes light-like. The range of k̃ for which the zero sound

mode behaviour is seen increases with increasing n and b̃∗. For any given b̃∗ there is an n

small enough where this behaviour is absent and similarly for a given n > 0 there is a small

enough b̃∗ where no zero sound behaviour is seen, but rather just a lightlike pole. For a

fixed b̃∗ large enough for zero sound to exist as we increase n the mass of the zero sound

mode decreases. For larger n at small enough k̃ the lower mode is still complex. However

at some small value of k̃ it splits into two imaginary modes, one of which sinks deeper into

the complex plane while the other joins up with the hydrodynamical mode as k̃ increases.

All this is seen in the bottom row of figure 6.
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As a final comment on the pole structure we note that the emergence of the massive

pole at non-zero b̃∗, figure 1, is similar to what is seen in the normally quantised D3/D5

and D3/D7′ systems at finite density and magnetic field [11, 25]. For vanishing magnetic

field in that system the collisionless mode (whether it be zero sound at large d̃ or light-like

at small d̃) has a massless dispersion relation after the cross-over. When the magnetic field

is non-zero it acquires a small mass but the system has sufficient thermal energy to excite

this mode regardless so we still see the purely imaginary diffusion pole connect up with

a pole from deeper in the complex plane to become complex. As magnetic field increases

further the mass of the mode becomes too large to be overcome by thermal effects and the

diffusion poles ceases to connect with another pole and simply sinks lower into the complex

plane as k̃ increases. Now at some value of k̃ the collisionless pole has a smaller imaginary

part than the diffusion pole and instead governs the late time behaviour of the system.

See [11, 25] for further discussion.

4.1.1 Diffusion constant

A feature that is common to perturbations of interacting thermal systems by conserved

current operators is the existence of a diffusion regime at sufficiently long-times and low

momenta. This regime is governed by the behaviour of poles close to the origin.

The diffusion constant of the anyon current as a function of n is computed in ap-

pendix A, and the result is

D̃n =

(
b̃2∗ + 1

) (
n2 + 2

)
2F1

[
−1

4 , 1,
1
4 ;−b̃2∗

]
−
(

2b̃2∗ + n2 + 2
)

2b̃2∗

(
b̃2∗ + n2 + 1

) . (4.2)

Note that for a given b̃∗ it has a maximum value at n = 0 and thus anyons are much

less efficient at depositing charge into the ground state. Here we have an infinite class

of diffusion constants for differing types of anyonic excitations. The analytic expression

for the diffusion constant at various choices of n against numerical data is depicted in

figure 7. Notice also that the above behaviour with n makes the normal quantisation

diffusion something of a denegerate case. For sufficiently large b̃∗, except when n =∞, the

diffusion constant tends to the S-transform diffusion constant.

4.1.2 Conductivities

At zero temperature, density and magnetic field the current correlator obtained from gaug-

ing the external source when the original theory contains a non-zero Chern-Simon’s number

takes the form〈
J∗µ(p)J∗ν (−p)

〉
=

1

(2π)2N5

[√
p2
(

1

1 + n2

)
Pµν +

(
n

1 + n2

)
Σµν

]
. (4.3)

We see that in the large n limit the correlator is vanishing unless we rescale with n2.

This scaling reproduces the two point function of the currents in normal quantisation

with Chern-Simon’s level n. In the numerics, at large n, ω̃ and k̃, we expect our anyon
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Figure 7. Left: the diffusion constant of the anyonic current at various n against ln |b̃∗|. The

lines have increasing n from bottom to top. Red dots represent numerical data while blue lines are

from analytic formulae. The uppermost solid blue line is the diffusion constant as n→∞ and the

lowermost solid blue line is the n = 0 case. Right: the diffusion constants for the anyonic current

against ln(n). Starting on the vertical axis and proceeding from the least negative curve to the

most negative they have values of b̃∗ = 1, 2, 3, 4, 5. The analytical formulae for the solid blue lines

are given in (4.2).

correlators to have vanishing residues but a non-trivial pole structure. In particular, the

large frequency AC conductivities should tend to zero for increasing n.

To extract the AC conductivities of our theory we will need to numerically compute

the Green’s function. The two point function is given in terms of the matrix P (r, p) by

Gn(p) =
1

(2π)2N5
lim
r→∞

{(
0 −ω
1 0

)
P (r, p)

×

[(
1/p2 0

0 1

)(
r2

`
P ′(r, p)

)
+ in

(
0 1

1 0

)
P (r, p)

]−1(
0 1

ω 0

)}

=

(
〈J∗x(p)J∗x(−p)〉 〈J∗x(p)J∗y (−p)〉
〈J∗y (p)J∗x(−p)〉 〈J∗y (p)J∗y (−p)〉

)
. (4.4)

If the reader would prefer components with t as opposed to x they need only replace

the explicit factors of ω by −k. The AC conductivities are related to the mixed Green

function Gn by

σn(ω) =
1

iω
Gn(ω,~0) =

(
σ
(L)
n (ω) σ

(H)
n (ω)

−σ(H)
n (ω) σ

(L)
n (ω)

)
(4.5)

where the transverse and longitudinal conductivities are equal due to rotation invariance.

The DC conductivity is given by the ω → 0 limit of the above expression.

As a cross-check of the numeric results obtained from this expression, given the

transformation formulae of appendix A, we can obtain the conductivities of the TLSTK-

transformed system from the original system. The blue “analytic” lines of figure 8 are

obtained via this transformation of the original system AC conductivities. The DC con-
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Figure 8. Figures comparing analytic expressions for the longitudinal (and transverse) and Hall

conductivities for the anyonic fluid at background magnetic field b̃∗. Red dots represent numerical

data while the solid blue lines are analytical formulae. Left: the real part of the longitudinal AC

conductivity at b̃∗ = 10 against ω̃ for three values of n. The plot with the largest range has n = 0,

that with the smallest n = 2 and the intermediate line has n = 1. Right: the real part of the AC

Hall conductivity at b̃∗ = 10 against ω̃ for three values of n. The plot with the largest range has

n = 1, that with the smallest n = 3 and the intermediate line has n = 2. The n = 0 line would lie

along the horizontal axis.

ductivities of the transformed system can be obtained analytically and they are

(2π)2σ(L)n =
1

N5


√

1 + b̃2∗

1 + n2 + b̃2∗

 , (2π)2σ(H)
n =

1

N5

(
n

1 + n2 + b̃2∗

)
+ (2π)L . (4.6)

The DC and AC conductivities of the original system are outlined in appendix B.

Note that the anyonic fluid system has a b̃∗ dependent Hall conductivity, which does

not vanish at b̃∗ = 0. Multiplying the DC conductivities by n2 and taking n �
√

1 + b̃2∗
the longitudinal anyon conductivity of (4.6) takes the n = 0 value. Similarly the Hall

conductivity tends to n when L = 0. The necessity of the n2 prefactor in obtaining the

normal quantisation conductivities is a manifestation of the fact that the Green’s function

of the STK system are not equal to that of the normally quantised system in the large n

limit despite having exactly the same pole structure. This difference is due to a difference

in residues.

In figure 8 we display the real parts of the frequency dependent generalisation of

these expressions for L = 0 i.e. the zero anyon density fluid. The finite L system is

given by shifting the horizontal axis of the Hall conductivity vertically by an integer times

by 2πN5. The imaginary parts of the conductivities can be recovered via the Kramers-

Kronig relations. We see that as we increase n for a fixed b̃∗ the peak in the longitudinal

conductivity, which should be thought as the shifted Drude peak, shrinks and moves closer

to small ω̃. If instead we fix n and increase b̃∗ we find that the location of the peak moves

towards large ω̃ roughly like b̃
1/3
∗ . At zero b̃∗ the AC conductivities are independent of

the frequency.

Another interesting feature of these expressions is that, for a given b̃∗, the longitudinal

conductivity is always maximised by n = 0 while the Hall conductivity is maximized at
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some non-zero value of n. Consider any O(2) invariant (2 + 1)-dimensional field theory

with matter fields coupled to an external gauge field. Regardless of the matter content,

when we perform an STK transformation we will find there exists an ncrit. where the Hall

conductivity is maximized for fixed values of the background parameters. We can even

determine its value to be ncrit. = ±σ(L). Moreover at this value of n the longitudinal and

Hall conductivities will be equal. For n > ncrit. the Hall conductivity is larger than the

longitudinal conductivity and vice versa for n < ncrit.. In our case ncrit. = ±
√

1 + b̃2∗.

5 Discussion

We have considered the alternative quantisation of the D3/D5 system and used it to explore

properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The

S-transform of the D3/D5 system was used as a model for charged matter interacting with

a U(1) gauge field in the large coupling regime. We computed the dispersion relationship

of the propagating electromagnetic modes as the density and temperature are changed and

found a mode at large densities with momentum independent behaviour for a large range

of momentum. This mode we identified as the plasmon. Additionally we calculated the

Debye length in this model.

We then considered a more general SL(2,Z) transformation yielding a strongly inter-

acting anyonic fluid. We studied its transport properties as functions of the statistics of the

anyons and the background magnetic field. In particular we have demonstrated how to cal-

culate the diffusion constant for any anyonic fluid obtained by an SL(2,Z) transform given

the diffusion constant of the original system. At large magnetic field we found modes in

the spectrum which gain a mass that are qualitatively similar to those seen in the normally

quantised D3/D5 system at finite density for sufficiently large magnetic field.

One of the more interesting outcomes from our investigation is the fate of zero sound

as the statistics of our fluid changes. For sufficiently large b̃ and n we found a zero sound

mode which is the analogue of zero sound in [17]. As we tune n down the statistics of

our theory changes from that of fermions and bosons to anyons. This results in the zero

sound region disappearing from the excitation spectrum of our theory. It would also be

interesting to understand this effect at weak coupling.

There are several avenues for future study that could provide interesting insight into the

nature of anyons at strong coupling. For example it would be interesting to understand the

nature of the anyonic fluid at zero magnetic field. To do this in our model requires that we

generalise our embedding to include a background magnetic field. Such backgrounds [26–

29], and their normal quantisation perturbations [11, 30], are well understoood. This

generalisation to our results will follow soon.
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A Diffusion constants calculation

In the introduction we considered the decomposition of a two point function of currents into

particular tensor structures P(L), P(T) and Σ. Subsequently we reviewed how normal and

alternative quantisation of a bulk gauge field relate the decomposition of the current-current

correlator to two point function of field strengths. This perscription (1.4) is completely

generic as it relies only upon symmetries of the theory. However, it is more interesting

to understand how physical parameters like the conductivities map onto eachother. In

this appendix we shall determine the mappings between physical observables such as the

conductivity tensor and hydrodynamic5 transport coefficients.

We begin by isolating the DC and AC conductivities. Taking the spatial momentum

to zero our decomposition of the normal quantisation two point function implies〈
Ji(ω,~0)Jj(−ω,~0)

〉
= ±iω

[
C(L)(ω,~0)δij +W (ω,~0)εij

]
,〈

Jt(ω,~0)Ji(−ω,~0)
〉

=
〈
Ji(ω,~0)Jt(−ω,~0)

〉
= 0 ,

〈
Jt(ω,~0)Jt(−ω,~0)

〉
= 0 , (A.1)

where i, j are spatial indices and ωεij := εµνρp
ρ. The AC conductivities are then defined by

σij(ω) =
1

iω
〈Ji(ω)Jj(−ω)〉 =

[
C(L)(ω,~0)δij +W (ω,~0)εij

]
,

σ(L) = σ(T) = C(L)(ω,~0) , σ(H)(ω) = W (ω,~0) , (A.2)

with the DC conductivities being given by the zero frequency limit of these expressions.

DC conducitivities will be denoted by dropping the frequency dependence e.g. σ(L) is the

DC longitudinal conductivity while σ(L)(ω) is the AC longitudinal conductivity. For the

S-transform of the normal quantisation system the decomposition into longitudinal, trans-

verse and Hall conductivities is identical. The conductivities in the S-transformed system

are related to those of the original system by

σ∗(L)(ω) =
1

(2π)2
σ(L)(ω)

σ2(L)(ω) + σ2(H)(ω)
, σ∗(H)(ω) = − 1

(2π)2
σ(H)(ω)

σ2(L)(ω) + σ2(H)(ω)
, (A.3)

which we calculated by using the maps in (1.4). If W = 0 in the original theory then to

compute the STK transformed conductivites we set σ(H) = K/(2π). Similarly to compute

the TLSTK conductivities from those of the STK we need only shift the Hall conductivity

5Strictly the formalism we consider is not hydrodynamics but simply a long wavelength and low frequency

expansion as the total (background+brane) stress tensor does not participate in the leading dynamics of

the probe brane due to taking the probe limit. Additionally we only consider solving the linearised charge

conservation equation while fluid dynamics proper is the study of non-linear solutions to this equation.
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by L/(2π). As a limiting case of the STK transformed system notice that when K → 0

we have (2π)2σ(L)(ω) = 1/σ∗(L)(ω) and σ(H)(ω) = σ∗(H)(ω) = 0. We have analytically

calculated the values of the DC conductivities for our system and they are given in (B.1)

for the normally quantised system, (A.10) for the S transformed system and (4.6) for the

STK transformed system.

Now we consider small frequencies and small but non-zero momentum. Current conser-

vation and Einstein’s relation indicate that the longitudinal part of the Green’s functions

for current-current correlators have the form

C(L) =
k̃σ(L)

iω̃ − D̃k̃2
, C∗(L) =

k̃σ∗(L)

iω̃ − D̃∗k̃2
=

C(L)

(2π)2
(
C(T)C(L) +W 2

) . (A.4)

These relationships can be implied simply by considering a plane wave solution to the

charge equation where ω ∼ k2, k � 1. The final equality for C̃∗ simply repeats the

relationship of (1.4). Using the definition of D and D∗ we can eliminate C(T) and C∗(T)

from our two-point functions. In particular, eliminating C(T), we find

C(T) =
1

k̃σ(L)

[
iω̃ −Hk̃2

]
, H = D̃∗ +

W 2

σ2(L)

(
D̃∗ − D̃

)
or D̃∗ =

H + D̃
(
W
σ(L)

)2
1 +

(
W
σ(L)

)2 , (A.5)

where H is some number which we can obtain from the normal quantisation two-point

function and it is not to be confused with a diffusion constant. It is clear that, because

we are working in a small frequency and momentum regime, only the constant part of W ,

equal to the DC Hall conductivity σ(H), can enter into defining D̃∗.

So far we have simply eliminated C
(∗)
(T ) from the correlators at low frequency and

momentum. This exercise is particularly useful for understanding the effect of an STK

transformation on the normally quantised system. We remind ourselves that adding a

Chern-Simon’s term to the initial theory only affects W (1.5). As C(T) (and subsequently

H) in (A.5) is independent of performing the TK-transformation but W is shifted the dual

diffusion must also shift to compensate for the change. In particular the new diffusion

constant, denoted Dn, is given by

D̃∗ → D̃n =

D̃∗
(

1 +
(
σ(H)

σ(L)

)2)
− D̃

(
σ(H)

σ(L)

)2(
1−

(
2πσ(H)+K

2πσ(H)

)2)
1 +

(
2πσ(H)+K

2πσ(L)

)2 , (A.6)

where n = K
2πN5

. There are several interesting limits of this expression. As a consistency

check notice that for K → ∞ we recover D̃ while for K = 0 we find D̃∗. If D̃∗ = D̃, for

example when the theory is S-duality invariant, then W and K drop out of the expression

and it reduces to an K-independent constant D̃. Finally, if σ(H) = 0 for our theory prior

to acting with STK we find

D̃n =
D̃∗ + D̃

(
K

2πσ(L)

)2
1 +

(
K

2πσ(L)

)2 . (A.7)

– 21 –



J
H
E
P
0
2
(
2
0
1
4
)
0
9
0

As an application of the maps in (A.5) we shall now outline the calculation of the al-

ternate quantisation diffusion constant from the transverse part of the normal quantisation

two-point function. Letting ω ∼ k2, k → εk, ε� 1 we find that the near horizon expansion

of the ay field is

ay(r) = aneary

[
1− iε2 ((5d2 + (π`T )4)ω + 2i` (πT`)3 k2)

8 (πT`)2
(
d2 + (πT`)4

) (
r − πT`2

)
− i ε

2ω

4πT
ln
(
r − πT`2

)
+O

(
(r − πT`2)2, (r − πT`2) ln(r − πT`2), ε4

) ]
while at the boundary we identify

ay(r) = a(0)y + 〈Jy〉
`

r
+O2

(
`

r

)
. (A.8)

We expand the ay(r) equation of motion in a power series in small frequencies and momenta

and solve the resultant equation of motion order by order matching to the near horizon

expansion. Expanding the subsequent expression for ay(r) near the boundary allows us to

identify the two-point function as

〈Jy(p)Jy(−p)〉 = N5k

 iω −
(

πT`√
d2+(πT`)4

2F1

[
1
4 ,

1
2 ,

5
4 ;−d2`4

r4

])
k2`

(πT`)2√
d2+(πT`)4

(
1 +

a
(1,0)
y

a
(0,0)
y

ω`+
a
(0,2)
y

a
(0,0)
y

k2`2
)
k

 , (A.9)

where a
(1,0)
y /a

(0,0)
y and a

(0,2)
y /a

(0,0)
y are ω and k independent constants that we will have

no use for in the paper so we do not record them. They can be solved for from the near

horizon boundary conditions. Given that W = 0 we use (A.5) to identify

σ∗(L) =
1

(2π)2N5

√
1 + d2/(πT`)4

, D̃∗ =
(πT`)2√
d2 + (πT`)4

2F1

[
1

4
,
1

2
,
5

4
;− d2

(πT`)4

]
,

(A.10)

with the alternate Hall conductivity vanishing.

B Normal quantisation data

The results in this section are well known and we simply discuss them for the purposes

of comparison. Consider the normally quantised system with non-zero background charge

density d at non-zero temperature. We can probe the system by perturbing the U(1)

charge vector about it’s background value of 〈J t〉 ∝ d̃. Let the perturbation be spatially

homogeneous then the DC conductivity calculated from the retarded two-point function of

two such charge currents is given by

σ(L) = N5

√
1 + d̃2 (B.1)

In figure 9 we display the AC conductivites which should be compared with figure 8.
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Figure 9. Figures comparing analytic expressions for σ̃(L) and σ̃(T) associated with spatially

homogeneous gauge perturbations in a thermal strongly coupled (2 + 1)-dimensional field theory

with background charge d̃. Red dots are numerical data. Left: the frequency dependent real parts

of σ̃(L) and σ̃(T). The horizontal line is d̃ = 0 while along the vertical axis the highest line is d̃ = 10

while the middle line is d̃ = 2. Right: the frequency dependent imaginary parts of σ(L) and σ(T).

The line with the greatest range is d̃ = 10, that along the axis is d̃ = 0 while the remaining line

is d̃ = 2.

Now consider spatially inhomogeneous perturbations. At d̃ = 0 the lowest lying poles

are given exactly by the d̃ = 0 subfigure of fig 1. Increasing d̃ to any non-zero value it

is known [11] that for small enough k̃ the picture remains similar to d̃ = 0 where two

imaginary modes combine into a complex mode that becomes light-like at large k̃. One of

these imaginary modes is diffusive for sufficiently small k̃ with a diffusion constant

D̃ =
1

2d̃2

[
1−

√
1 + d̃2 2F1

[
−3

4
,
1

2
,
1

4
;−d̃2

]]
. (B.2)

The cross-over from diffusive to collisionless behaviour occurs for progressively lower values

of k̃ as d̃ increases. The absolute value of frequency where this cross-over happens is given by

|ω| ∼ 0.3(πT/
√
d)2 for sufficiently large d̃ [11]. Further for sufficiently large d̃ a new regime

appears as a remenant of a sound-like mode which dominates the late time behaviour of the

system at zero temperature and non-zero density [11]. This mode has the well known [17]

dispersion relation:

ω(k) = ± 1√
2
k − i d

1/2

4µT=0
k2 +O3 (k) , µT=0 =

Γ (1/4) Γ (5/4)

Γ(1/2)
d1/2 . (B.3)

The presence of this new regime can be identified by an additional kink in the real part of

the dispersion relation ω̃(k̃) with k̃ is real.
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