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1 Introduction

The E-string theory is probably the simplest interacting non-gravitational theory with (1,0)

supersymmetry in six dimensions [1, 2]. The theory is obtained as the low energy theory of

an M5-brane near one of the two fixed 9-planes in the heterotic M-theory. In the Coulomb

branch it is a theory of just one tensor multiplet. Toroidal compactification of the theory

exhibits rich structures [3–5]. When compactified down to four dimensions, the low energy

effective theory is given by an N = 2 U(1) gauge theory which is fully characterized by the

Seiberg-Witten solution [5–7]. See [8–12] for recent developments.

In [13, 14] a Nekrasov-type formula for the Seiberg-Witten prepotential for the E-string

theory was proposed. It was also pointed out that the formula can be regarded as a special

case of the elliptic generalization of a certain Nekrasov partition function [15, 16]. The

Nekrasov formula for ordinary gauge theories has been proved [17, 18]. More specifically,

it has been shown that the prepotential obtained from the Nekrasov partition function is

identical to that prescribed in terms of the Seiberg-Witten curve. It is natural to expect

that the Nekrasov-type formula for the E-string theory can be proved in a similar manner.

In this paper, we follow the example of Nekrasov and Okounkov [17] and give a proof of

the Nekrasov-type formula for the E-string theory.

It is important to note that interpretation of parameters in the Nekrasov-type formula

for the E-string theory is quite different from the conventional one for ordinary gauge

theories. For instance, the parameter which represents the IR gauge coupling in the case
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of conformal gauge theories is identified with the expectation value of the Higgs field in

the low energy theory of the E-string theory. Because of this difference, a straightforward

generalization of the proof by Nekrasov and Okounkov does not work for the E-string

theory. We overcome this problem by introducing the antiderivative of the resolvent and

deriving Higgs expectation values from it.

Another nontrivial point is that the Seiberg-Witten curve obtained directly from the

Nekrasov-type formula is of genus greater than one. This is not a desired result because

the known Seiberg-Witten curve for the E-string theory is of genus one. We resolve this

mismatch by finding a simple map which transforms the former higher genus curve into

the latter elliptic curve.

We mainly consider the simplest case, namely the case where the E-string theory is

compactified on T 2 without Wilson line parameters. In this case the low energy theory

preserves the original E8 global symmetry. The proof can be generalized to the cases with

nontrivial Wilson line parameters. As an illustration, we discuss two examples which have

E7 ⊕A1 or E6 ⊕A2 as a global symmetry.

The organization of this paper is as follows. In section 2, we review the Seiberg-Witten

description and the Nekrasov-type formula for the E-string theory on R
4×T 2. In section 3,

we present our proof. In section 4, we consider the cases where E7 ⊕ A1 or E6 ⊕ A2 is a

global symmetry. Section 5 is devoted to the discussion. In appendix A, we present the

definitions of special functions and some useful identities.

2 Seiberg-Witten prepotential and Nekrasov-type formula

In this section we review the Seiberg-Witten description of the prepotential for the E-string

theory on R
4×T 2 and its Nekrasov-type expression which we will prove in the next section.

The low-energy theory of the E-string theory on R
4×T 2 is an N = 2 U(1) gauge theory

in four dimensions and admits a Seiberg-Witten description [19, 20]. The low energy ef-

fective action is fully characterized by a holomorphic function called the prepotential. The

prepotential can be expressed in terms of the Seiberg-Witten curve. For the sake of sim-

plicity here we restrict ourselves to the simplest case with trivial Wilson line parameters.

This is the case where the E8 global symmetry is kept intact under the torus compacti-

fication. We will simply call it the E8 theory hereafter. Seiberg-Witten prepotential for

this E8 theory was investigated in detail in [21]. See [8] for detailed characterization of the

prepotential including the cases with general Wilson line parameters.

The Seiberg-Witten curve for the E8 theory is given by

y2 = 4x3 −
1

12
E4(τ)u

4x−
1

216
E6(τ)u

6 + 4u5. (2.1)

Here τ is the complex modulus of the T 2 on which the E-string theory is compactified and

u is the coordinate of the Coulomb branch moduli space. E2n(τ) are the Eisenstein series

(see appendix A). In the Seiberg-Witten description, the expectation values of the Higgs

fields in the vector multiplet and the dual vector multiplet are respectively given by

ϕ(u, τ) =
i

4π2

∫

du

∮

α̃

dx

y
, ϕD(u, τ) =

i

4π2

∫

du

∮

β̃

dx

y
. (2.2)
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Here one-cycles α̃, β̃ of the elliptic curve (2.1) are chosen so that

∮

α̃

dx

y
=

2π

u
+O

(

1

u2

)

,

∮

β̃

dx

y
=

2πτ

u
+O

(

1

u2

)

(2.3)

for large u. The integration constants of the integrals in u are fixed in the way described

below. Inverting the function ϕ(u, τ) one can express ϕD as a function in ϕ and τ . The

prepotential for the E-string theory is then prescribed as

∂F0

∂ϕ
= 8π3i (ϕD − τϕ) + const. (2.4)

Here const. could be a function in τ , but is a constant with respect to ϕ. Throughout

this paper we regard τ as a fixed parameter rather than a variable. Integrating the above

expression in ϕ, one obtains the prepotential. The normalizations and the integration

‘constants’ of ϕ,ϕD and F0 are fixed so that the prepotential admits the following expansion

F0(ϕ, τ) =
∞
∑

n=1

∞
∑

k=0

Nn,k

∞
∑

m=1

1

m3
e2πim(nϕ+kτ). (2.5)

Here Nn,k are integers. The first few of them are [3]

N1,0 = 1, N1,1 = 252, N1,2 = 5130, · · ·

N2,0 = 0, N2,1 = 0, N2,2 = −9252, · · · . (2.6)

This expression reflects the fact that the prepotential can also be viewed as the BPS

partition function of the E-string theory on R
5 × S1 as well as the genus zero topological

string amplitude for the local 1
2K3. Nn,k represent multiplicities of BPS states in the

effective theory in five dimensions as well as those of rational curves in the local 1
2K3.

Next, we recall the Nekrasov-type formula proposed in [13, 14]. Let us start with

introducing some notations. Let E denote a two-dimensional torus C/(2πZ + 2πτZ) and

ωk (k = 0, 1, 2, 3) be half periods of the torus:

ω0 = 0, ω1 = π, ω2 = −π − πτ, ω3 = πτ. (2.7)

Throughout this paper the Weierstrass elliptic function ℘(z) is defined over the torus E,

i.e. ℘(z) = ℘(z; 2π, 2πτ). We let α, β denote two fundamental one-cycles of the torus E.

They are chosen in such a way that
∮

α
dz = 2ω1 = 2π,

∮

β
dz = 2ω3 = 2πτ. (2.8)

Physically, E may be understood as the dual torus of the T 2 on which the E-string theory is

compactified. Here ‘dual’ means that Wilson line parameters with respect to the directions

in the T 2 take values on E.

Let R = (R1, . . . , RN ) denote an N -tuple of partitions. Each partition Rk is a nonin-

creasing sequence of nonnegative integers

Rk = {µk,1 ≥ µk,2 ≥ · · · ≥ µk,ℓ(Rk) > µk,ℓ(Rk)+1 = µk,ℓ(Rk)+2 = · · · = 0}. (2.9)
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Here the number of nonzero µk,i is denoted by ℓ(Rk). Rk is represented by a Young diagram.

We let |Rk| denote the size of Rk, i.e. the number of boxes in the Young diagram of Rk:

|Rk| :=
∞
∑

i=1

µk,i =

ℓ(Rk)
∑

i=1

µk,i. (2.10)

Similarly, the size of R is denoted by

|R| :=
N
∑

k=1

|Rk|. (2.11)

We let R∨
k = {µ∨

k,1 ≥ µ∨
k,2 ≥ · · · } denote the conjugate partition of Rk. We also introduce

the notation

hk,l(i, j) := µk,i + µ∨
l,j − i− j + 1, (2.12)

which represents the relative hook-length of a box at (i, j) between the Young diagrams of

Rk and Rl.

We are now able to write down the Nekrasov-type formula. As discussed in [13, 14],

the formula can be expressed in several different ways. For our present purposes it is conve-

nient to express the formula as a special case of the elliptic generalization of the Nekrasov

partition function for the U(N) gauge theory with 2N fundamental matters [15, 16]

Z :=
∑

R

(

−e2πiϕ
)|R|

N
∏

k=1

∏

(i,j)∈Rk

∏2N
n=1 ϑ1

(

1
2π (ak −mn + (j − i)~), τ

)

∏N
l=1 ϑ1

(

1
2π (ak − al + hk,l(i, j)~), τ

)2 . (2.13)

Here the sum is taken over all possible partitions R (including the empty partition). A set

of indices (i, j) run over the coordinates of all boxes in the Young diagram of Rk. ϑ1(z, τ)

is the Jacobi theta function (see appendix A). For consistency we require

2
N
∑

k=1

ak −
2N
∑

n=1

mn = 0, (2.14)

where the equality should be regarded modulo periods of the torus E. To obtain the

prepotential for the E-string theory with four general Wilson line parameters, we set

N = 4, ak = ωk−1 (k = 1, 2, 3, 4), mn = −mn+4 (n = 1, 2, 3, 4). (2.15)

The Seiberg-Witten prepotential for the E-string theory is then given by

F0 =
(

2~2 lnZ
) ∣

∣

~=0
. (2.16)

The case of the E8 theory is realized by simply setting all the Wilson line parameters mn

to be zero. Actually, in this case one can simplify the expression and express Z as a sum

over three partitions [14]. More specifically, Z for the E8 theory is given by (2.13) with

N = 3, ak = ωk (k = 1, 2, 3), mn = 0 (n = 1, . . . , 6). (2.17)

We will use this simplified form in the proof below.
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An important remark is that identification of parameters for the E-string theory is

quite different from what is known for ordinary gauge theories. In the case of ordinary

gauge theories, ak represent diagonal elements of the expectation value of the Higgs field

and ϕ represents the IR gauge coupling. On the other hand, for the E-string theory ak are

set to fixed values as above and ϕ represents the Higgs expectation value. τ is the complex

modulus of the T 2 and it plays the role of the IR gauge coupling in the low energy theory

in four dimensions. Because of this difference, a straightforward generalization of the proof

by Nekrasov-Okounkov [17] does not work in the case of E-string theory. We will present

a resolution to this problem in the next section.

3 Proof

In this section we prove that the prepotential given by the Nekrasov-type formula in the

last section is equivalent to that expressed in terms of the Seiberg-Witten curve. Our

proof consists of three parts. In subsection 3.1, we first take the thermodynamic limit

of the sum over partitions (2.13) and express the prepotential as the solution of an ex-

tremum problem. In subsection 3.2, we derive the expression of the Higgs expectation

value in terms of the Seiberg-Witten curve. In subsection 3.3, we show that the prepo-

tential obtained in the thermodynamic limit is indeed equivalent to that expressed in the

Seiberg-Witten description.

In the proof below we restrict ourselves to the case of the E8 theory and eventually

set parameters to the specific values given in (2.17). However, we prolong fixing these

parameters until the very end, anticipating the generalization to the cases with nontrivial

Wilson line parameters.

3.1 Saddle point equation and resolvent

Following the example of Nekrasov and Okounkov [17], we take the thermodynamic limit

of the Nekrasov-type formula presented in the last section. What we need to do is to

consider the thermodynamic limit ~ → 0 of the sum over partitions (2.13) and evaluate

the prepotential (2.16). This problem has already been solved by Hollowood, Iqbal and

Vafa [15]. However, in addition to their results we need the precise form of the antiderivative

of the resolvent and its analytic properties, which are in fact essential to our proof. In

this subsection we present a self-contained solution to the problem with emphasis on the

new ingredients.

Let us start with introducing a function γ(z; ~) which satisfies the difference equation

γ(z + ~; ~) + γ(z − ~; ~)− 2γ(z; ~) = lnϑ1

(

z

2π

)

(3.1)

and has the expansion

γ(z; ~) =
∞
∑

g=0

~
2g−2γg(z). (3.2)
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The explicit form of γ(z; ~) is not important here. In the following we merely use the

fact that

γ′′0 (z) = lnϑ1

(

z

2π

)

, (3.3)

which can be derived immediately by expanding the above difference equation in ~.

The summand of the main formula (2.13) is expressed as a finite product over boxes

in Young diagrams. It is well known that a product of this kind can be rewritten as a

formally infinite product. In the present case, (2.13) is rewritten as

Z =
∑

R

e2πiϕ̃|R|ZR,

ZR =
N
∏

k,l=1

∞
∏

i, j = 1

(k, i) 6= (l, j)

ϑ1

(

1
2π (ak − al + (µk,i − µl,j + j − i)~)

)

ϑ1

(

1
2π (ak − al + (j − i)~)

)

×
N
∏

k=1

2N
∏

n=1

∏

(i,j)∈Rk

ϑ1

(

1

2π
(ak −mn + (j − i)~)

)

, (3.4)

where

ϕ̃ :=







ϕ if N is odd,

ϕ+
1

2
if N is even.

(3.5)

This form is more convenient for our present purposes. In the thermodynamic limit the

typical size of the partition R contributing to the sum is very large and Z may be expressed

in terms of continuous profiles of partitions. Indeed, using the difference equation (3.1),

one can verify that ZR is expressed as

ZR = exp

[

−
1

4
−

∫

dzdwf ′′(z)f ′′(w)γ(z − w; ~) +
1

2

2N
∑

n=1

−

∫

dzf ′′(z)γ(z −mn; ~) (3.6)

+
N
∑

k,l=1

γ(ak − al; ~)−
N
∑

k=1

2N
∑

n=1

γ(ak −mn; ~)

]

.

Here f(z) is the profile of the partition R

f(z) =
N
∑

k=1

[

ℓ(Rk)
∑

i=1

(

|z − ak − ~(µk,i − i+ 1)| − |z − ak − ~(µk,i − i)|
)

+ |z − ak + ~ℓ(Rk)|

]

(3.7)

and its second derivative is given by

f ′′(z) = 2
N
∑

k=1

[

ℓ(Rk)
∑

i=1

(

δ(z − ak − ~(µk,i − i+ 1))− δ(z − ak − ~(µk,i − i))
)

+ δ(z − ak + ~ℓ(Rk))

]

(3.8)
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= 2
N
∑

k=1

[

∞
∑

i=1

(

δ(z − ak − ~(µk,i − i+ 1))− δ(z − ak − ~(µk,i − i))

− δ(z − ak + ~(i− 1)) + δ(z − ak + ~i)
)

+ δ(z − ak)

]

. (3.9)

For a partition of large size f ′′(z) can be viewed as a density function. We consider the

case where f ′′(z) has N local supports respectively around z = ak (k = 1, . . . , N) and

all of them are entirely separated from each other. We let Ck denote the local support

around z = ak and C denote their union, i.e. C =
⋃N

k=1 Ck . It follows from the above

expression that

ak =
1

2

∫

Ck

zf ′′(z)dz, (3.10)

|R| =
1

4

∫

C
dzz2f ′′(z)−

N
∑

k=1

a2k
2
. (3.11)

In the thermodynamic limit, the sum over partition Z can be approximated by an

integral over the space of continuous functions f ′′

Z ≃

∫

Df ′′dNλ exp

[

1

2~2
F0 +O(~0)

]

, (3.12)

where F0 is a functional of the following form

F0[f
′′, λk] = −

1

2
−

∫

C
dzdwf ′′(z)f ′′(w)γ0(z − w) +

2N
∑

n=1

−

∫

C
dzf ′′(z)γ0(z −mn)

+ 4πiϕ̃

(

1

4

∫

C
dzz2f ′′(z)−

N
∑

k=1

a2k
2

)

+ 2
N
∑

k=1

λk

(

1

2

∫

Ck

dzzf ′′(z)− ak

)

. (3.13)

We have introduced Lagrange multipliers λk taking account of the constraints (3.10). The

integral (3.12) can be evaluated by the saddle point approximation. The prepotential (2.16)

is then given, up to a constant, by the extremum of the functional F0. Taking the variation

of F0, one obtains the saddle point equation

−

∫

C
dwf ′′(w)γ0(z − w)−

2N
∑

n=1

γ0(z −mn)− πiϕ̃z2 − λkz = 0, z ∈ Ck. (3.14)

Solving this equation with the constraints (3.10) and plugging the solution back into (3.13),

one obtains the prepotential F0.

To solve this equation, it is convenient to consider the following analytic function

Ω(z) :=

∫

C
f ′′(w)γ′′0 (z − w)dw −

2N
∑

n=1

γ′′0 (z −mn)

=

∫

C
f ′′(w) lnϑ1

(

z − w

2π

)

dw −
2N
∑

n=1

lnϑ1

(

z −mn

2π

)

(3.15)
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instead of f ′′(z) itself. We call it the antiderivative of the resolvent, as its derivative

ω(z) := Ω′(z) (3.16)

plays the role of the resolvent. Indeed, the density function f ′′ is recovered as

2πif ′′(z) = ω(z − iǫ)− ω(z + iǫ) z ∈ C. (3.17)

Here ǫ = δz is an infinitesimal deformation along the cuts, so that ±iǫ represent infinites-

imal deviations transverse to the cuts. By definition the Riemann surface of Ω(z) has

logarithmic branches. It follows that
∮

γk

ω(z)dz = 4πi,

∮

γ(n)

ω(z)dz = −2πi, (3.18)

where γk (k = 1, . . . , N) and γ(n) (n = 1, . . . , 2N) denote cycles encircling counterclockwise

the cut Ck and the pole at z = mn respectively.

In terms of Ω(z), the second derivative of the saddle point equation (3.14) is written as

1

2
(Ω(z − iǫ) + Ω(z + iǫ))− 2πiϕ̃ = 0 z ∈ C. (3.19)

Let us solve this equation. While Ω(z) has logarithmic branch points as well as square root

branch points, the following function

G(z) := eΩ(z)−2πiϕ̃ + e−Ω(z)+2πiϕ̃ (3.20)

is a meromorphic function on E. Poles at z = mn (n = 1, . . . , 2N) are the whole singu-

larities of G(z). Since (2.14) is imposed, G(z) is strictly doubly periodic. In other words,

G(z) is an elliptic function of order 2N . In terms of G(z), ω(z) is expressed as

ω(z) =
G′(z)

√

(G(z) + 2)(G(z)− 2)
. (3.21)

Since G(z)± 2 are elliptic functions of order 2N and have 2N zeros, the above expression

implies that ω(z) would generically have 4N branch points. On the other hand, in our

setup ω(z) actually has just 2N branch points. The mismatch is resolved if the function

H(z) :=
G(z) + 2

4
= cosh2

(

1

2
(Ω(z)− 2πiϕ̃)

)

(3.22)

has N zeros of multiplicity two instead of 2N simple zeros.1 The singularities of H(z) are

the single poles at z = mn (n = 1, . . . , 2N). Elliptic functions satisfying these properties

are determined as

H(z) = κ
P (z)2

Q(z)
(3.23)

1In general, there are possibilities that G+2 and G−2 have respectively N− l and l zeros of multiplicity

two (0 ≤ l ≤ N). If parameters are chosen as ak, ~ ∈ R, ϕ̃, τ ∈ iR and mn = 0, all Ck have to lie on the real

axis and expΩ(z) > 0 for any z ∈ R with z /∈ C. This means that only the solution with l = 0 is allowed

in this case. The parameter settings for the Er ⊕ A8−r (r = 8, 7, 6) theories are connected with the above

setup by a continuous deformation preserving the topology of the branch cut configuration of Ω(z). Thus,

the solution with l = 0 is singled out for these theories. (The solution with l = N is also allowed, but this

is essentially the same as the solution with l = 0.)
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with

P (z) =
N
∏

k=1

ϑ1

(

z − ζk
2π

)

, Q(z) =
2N
∏

n=1

ϑ1

(

z −mn

2π

)

, (3.24)

where κ and ζk (k = 1, . . . , N) are some constants. The locations of zeros and poles have

to satisfy

2

N
∑

k=1

ζk −
2N
∑

n=1

mn = 0. (3.25)

Here the equality should be understood modulo periods of the torus E. From (3.22) Ω(z)

is obtained as

Ω(z) = 2 ln
(

√

H(z) +
√

H(z)− 1
)

+ 2πiϕ̃. (3.26)

By taking the derivative, the resolvent is obtained as

ω(z) =
2∂z
√

H(z)
√

H(z)− 1
. (3.27)

Substituting (3.23) one can verify that this is essentially equivalent to the resolvent given

in [15].

Recall that f ′′(z) has to satisfy the constraints (3.10). In terms of the resolvent, they

are expressed as

ak =
1

4πi

∮

γk

zω(z)dz. (3.28)

These equations hold if ω(z) satisfies

ω(ak − z ± iǫ) = ω(ak + z ± iǫ) for ak + z ∈ Ck. (3.29)

This holds if the function H1/2(z) :=
√

H(z) satisfies

H1/2(ak − z) = −H1/2(ak + z) for ak + z ∈ Ck. (3.30)

By requiring this property, the values of ζk are fixed.

Let us now restrict ourselves to the E8 theory by setting parameters as in (2.17). In

this case, as we will see immediately, the condition (3.30) is satisfied with

ζk = ωk (k = 1, 2, 3). (3.31)

By substituting these data, the functions P (z), Q(z) are expressed as

P (z) = −iq−1/4
3
∏

k=1

ϑk+1

(

z

2π

)

, Q(z) = ϑ1

(

z

2π

)6

. (3.32)

The function H = κP 2/Q is then obtained as

H(z) = −
1

4
u℘′(z)2, (3.33)
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where we have used the identity (A.13) and introduced

u :=
4κ

q1/2η12
. (3.34)

Using the property ℘′(−z) = −℘′(z) and the periodicity of ℘′(z) one can verify that the

above H(z) indeed possesses the property (3.30). The resolvent for the E8 theory is then

explicitly expressed as

ω(z) =
2℘′′(z)

√

℘′(z)2 + 4u−1
. (3.35)

Using (3.17) and plugging the above solution back into (3.13), one obtains the integral

expression for the prepotential. The Riemann surface of the above resolvent ω(z) has three

cuts near z = ωk (k = 1, 2, 3). The three cuts shrink as |u| increases. In particular, when u

is sent to infinity all cuts disappear and the Riemann surface of ω(z) becomes the torus E

with complex modulus τ . This is reminiscent of the classical limit of the Seiberg-Witten

curve (2.1). Indeed, the above u is going to be identified with the coordinate of the Coulomb

branch moduli space in the Seiberg-Witten description.

3.2 Higgs expectation value and Seiberg-Witten curve

In this subsection we express ϕ in terms of the function H(z) and reproduce the Seiberg-

Witten description. To do this, we make use of the following fact

1

2π2i

∮

α
lnϑ1

(

z − w

2π

)

dz = C1(τ) mod Z, (3.36)

where C1(τ) is some function in τ . The explicit form of C1(τ) is not important. What is

crucial here is that C1(τ) is independent of w and also invariant under continuous deforma-

tion of the integration contour. This fact can be shown as follows: since the theta function

is quasi-periodic ϑ1(z + 1) = −ϑ1(z), function
1

2πi lnϑ1(
z−w
2π )2 is single-valued modulo Z

along a loop belonging to the cycle α. Recall also that the theta function is regular for

|z| < ∞, so that the integral is invariant under the continuous deformation of the loop.

Substituting (3.8) into (3.15) and using the above fact one sees that

1

4π2i

∮

α
Ω(z)dz = 0 mod Z, (3.37)

where C1’s cancel with each other. Substituting (3.26), one obtains

ϕ̃ =
i

2π2

∮

α
ln
(

√

H(z) +
√

H(z)− 1
)

dz mod Z. (3.38)

This gives an explicit expression of ϕ which is related to ϕ̃ by (3.5).

We now show that the above expression is equivalent to the known Seiberg-Witten

description of ϕ. Differentiating the above expression in u one obtains

∂ϕ

∂u
=

i

4π2u

∮

α

dz
√

1−H(z)−1
. (3.39)
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In the case of the E8 theory, it can be written as

∂ϕ

∂u
=

i

4π2u

∮

α

℘′(z)dz
√

℘′(z)2 + 4u−1
. (3.40)

The Seiberg-Witten curve should be given as the Riemann surface of the integrand. It is

made of two copies of the torus E connected with each other by three cuts near z = ωk (k =

1, 2, 3). Thus, the Riemann surface is of genus four. However, by using the identity (A.11)

and changing the variables as

℘(z) = u−2x, (3.41)

one obtains
∂ϕ

∂u
=

i

4π2

∮

α̃

dx

y
, (3.42)

where y is given by

y2 = 4x3 −
1

12
E4u

4x−
1

216
E6u

6 + 4u5. (3.43)

This is exactly the Seiberg-Witten curve (2.1) for the E-string theory! It is clear from

the definitions (2.3), (2.8) that α̃ is the image of α by the map (3.41). Thus, the above

expression for ϕ is in perfect agreement with the Seiberg-Witten description of the Higgs

expectation value (2.2).

3.3 Dual Higgs expectation value and prepotential

To complete our proof, we need to show that the prepotential obtained from the Nekrasov-

type formula is also expressed in terms of period integrals as in (2.4) with (2.2). For this

purpose we consider the contour integral of Ω(z) around the cycle β. To do this, we make

use of the modular transformation law of the theta function

ϑ1

( z

2π
, τ
)

= e3πi/4τ−1/2 exp

(

−
iz2

4πτ

)

ϑ1

(

z

2πτ
,−

1

τ

)

. (3.44)

Using this and applying (3.36) with modulus −1/τ , one can show that

1

2π2iτ

∫ z0+2πτ

z0

lnϑ1

(

z − w

2π
, τ

)

dz

= −
1

8π3τ2

∫ z0+2πτ

z0

(z − w)2dz

+
1

2π2iτ

∫ z0+2πτ

z0

lnϑ1

(

z − w

2πτ
,−

1

τ

)

dz +
3

4
−

1

2πi
ln τ

= −
1

8π3τ2

∫ z0+2πτ

z0

(z − w)2dz + C1

(

−
1

τ

)

+
3

4
−

1

2πi
ln τ mod Z

= −
1

4π2τ
w2 +

(

1

2π
+

z0
2π2τ

)

w + C2(z0, τ) mod Z, (3.45)
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where C2(z0, τ) is some function in z0 and τ . By using this together with (3.8) and (3.15),

one obtains

1

4π2iτ

∫ z0+2πτ

z0

Ω(z)dz

= −
1

8π2τ
−

∫

C
w2f ′′(w)dw +

(

1

4π
+

z0
4π2τ

)

−

∫

C
wf ′′(w)dw mod Z

=
i

8π3τ

(

∂F0

∂ϕ
+ 2πi

N
∑

k=1

a2k

)

+

(

1

2π
+

z0
2π2τ

) N
∑

k=1

ak mod Z. (3.46)

C2’s cancel with each other in the first equality. To show the second equality we use (3.10)

and (3.13) with

∂F0

∂ϕ
=

∂F0

∂ϕ

∣

∣

∣

∣

extremum

=

[

(

∂F0

∂ϕ

)

f ′′

+

(

δF0

δf ′′

)

ϕ

∂f ′′

∂ϕ

]

extremum

=

[

(

∂F0

∂ϕ

)

f ′′

]

extremum

.

(3.47)

Here (∂F0/∂ϕ)f ′′ denotes the partial derivative of F0 with respect to ϕ, holding f ′′ constant.

Let us now restrict ourselves to the E8 theory. In this case the second term of the

last line in (3.46) vanishes as we set ak = ωk (k = 1, 2, 3).2 Thus, the integral is actually

independent of z0 and is regarded as the period integral over the cycle β. To sum up, one

obtains
1

4π2iτ

∮

β
Ω(z)dz =

i

8π3τ

(

∂F0

∂ϕ
+ 2πi

3
∑

k=1

ω2
k

)

mod Z. (3.48)

On the other hand, by using (3.26) the same period integral is expressed as

1

4π2iτ

∮

β
Ω(z)dz =

1

2π2iτ

∮

β
ln
(

√

H(z) +
√

H(z)− 1
)

dz + ϕ̃

= −
1

τ
ϕD + ϕ+ const., (3.49)

where we have identified the dual Higgs expectation value ϕD as

ϕD =
i

2π2

∮

β
ln
(

√

H(z) +
√

H(z)− 1
)

dz + const. (3.50)

regarding the expression (3.38) for ϕ. Here const.’s are some functions in τ but are inde-

pendent of ϕ. By comparing these two expressions, one obtains

∂F0

∂ϕ
= 8π3i (ϕD − τϕ) + const. (3.51)

This is in perfect agreement with the Seiberg-Witten description (2.4).

2The second term in (3.46) actually vanishes not only in the E8 case but in most of the cases with

generic four Wilson line parameters (2.15). On the other hand, it does not vanish in some special cases,

such as the case of E7 ⊕ A1 symmetry, which we will study later. In these cases, the contour integral of

Ω(z) along the cycle β makes sense only up to a constant. Anyway, we will eventually show a relation up

to a constant and thus such a constant ambiguity is irrelevant.
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4 Cases with other global symmetries

The proof presented in the last section can be generalized to the cases with nontrivial

Wilson line parameters. As an illustration, we briefly discuss two examples which have

E7 ⊕A1 or E6 ⊕A2 as a global symmetry.

4.1 E7 ⊕ A1 theory

The case of E7 ⊕A1 global symmetry is realized by setting the parameters as

N = 2, ak = ωk+1 (k = 1, 2), mn = 0 (n = 1, 2, 3, 4). (4.1)

In this case, the condition (3.30) is satisfied if we choose ζk as

ζk = ωk+1 (k = 1, 2). (4.2)

The function H(z) is obtained as

H(z) =
uϑ2

3ϑ
2
4

16

℘′(z)2

℘(z)− e1
, (4.3)

where u is defined as in (3.34) but with an opposite sign and

e1 =
ϑ4
3 + ϑ4

4

12
. (4.4)

We have abbreviated ϑk(0, τ) as ϑk. Let us introduce a new variable x by

℘(z)− e1 = u−2x. (4.5)

One then obtains
∂ϕ

∂u
=

i

4π2

∮

α̃

dx

y
, (4.6)

where y is given by

y2 = 4x3 +
(

ϑ4
3 + ϑ4

4

)

u2x2 +

(

ϑ4
3ϑ

4
4

4
u−

16

ϑ2
3ϑ

2
4

)

u3x. (4.7)

This is exactly the Seiberg-Witten curve for the E7 ⊕A1 case [14].

4.2 E6 ⊕ A2 theory

The case of E6 ⊕A2 global symmetry is realized by setting the parameters as

N = 3, ak = ωk (k = 1, 2, 3), mn = −mn+3 =
2π

3
(n = 1, 2, 3). (4.8)

In this case, the condition (3.30) is satisfied if we choose ζk as

ζk = ωk (k = 1, 2, 3). (4.9)
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Let us introduce the notation

α3 := ϑ3(0, 2τ)ϑ3(0, 6τ) + ϑ2(0, 2τ)ϑ2(0, 6τ), β3 :=
η(τ)9

η(3τ)3
. (4.10)

By using the following identity

ϑ1

(

z

2π
−

1

3

)

ϑ1

(

z

2π
+

1

3

)

= −3
η(3τ)2

η(τ)6

(

℘(z)−
1

4
α2
3

)

ϑ1

( z

2π

)2
(4.11)

and (A.13), the function H(z) is obtained as

H(z) =
uβ2

3

108

℘′(z)2
(

℘(z)− 1
4α

2
3

)3 . (4.12)

Here u is given by (3.34). Let us introduce a new variable x by

℘(z)−
1

4
α2
3 =

x

u(u− 27β−2
3 )

. (4.13)

One then obtains
∂ϕ

∂u
=

i

4π2

∮

α̃

dx

y
, (4.14)

where y is given by

y2 = 4x3 + 3α2
3u

2x2 +
2

3
α3

(

β3u−
27

β3

)

u3x+
1

27

(

β3u−
27

β3

)2

u4. (4.15)

This is exactly the Seiberg-Witten curve for the E6 ⊕A2 case [14].

5 Discussion

We have proved the Nekrasov-type formula for the Seiberg-Witten prepotential for the

E-string theory on R
4 × T 2. Following the example of Nekrasov-Okounkov, we have taken

the thermodynamic limit of the Nekrasov-type formula and have determined the profile

which dominates the saddle point approximation of the sum over partitions. Due to the

difference in identification of parameters between the E-string theory and ordinary gauge

theories, the proof by Nekrasov-Okounkov cannot be straightforwardly generalized. We

have resolved this problem by considering the antiderivative of the resolvent rather than

the resolvent itself in the thermodynamic limit.

The Seiberg-Witten curve obtained directly from the Nekrasov-type formula is of genus

greater than one and is not an elliptic curve. We have found a simple transformation of

variables by means of the Weierstrass ℘-function which maps the higher genus curve to

the known elliptic Seiberg-Witten curve for the E-string theory. Such a simplification is

possible because the parameters in the Nekrasov-type formula have been chosen specifically

for the setup of the E-string theory.

As the E-string theory is one of the simplest non-Lagrangian field theories, the the-

ory is ubiquitous in the study of such theories in higher dimensions. For instance, the

five-dimensional limit of the E-string theory with E6 global symmetry is identical to the

T3 theory in five dimensions [22], for which Nekrasov-type partition functions have been

studied recently [23, 24]. We hope that investigations into Nekrasov-type formulas for the

E-string theory will shed light on the mysterious nature of non-Lagrangian field theories.
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A Conventions of special functions

The Jacobi theta functions are defined as

ϑ1(z, τ) := i
∑

n∈Z

(−1)nyn−1/2q(n−1/2)2/2, (A.1)

ϑ2(z, τ) :=
∑

n∈Z

yn−1/2q(n−1/2)2/2, (A.2)

ϑ3(z, τ) :=
∑

n∈Z

ynqn
2/2, (A.3)

ϑ4(z, τ) :=
∑

n∈Z

(−1)nynqn
2/2, (A.4)

where y = e2πiz, q = e2πiτ . We often use the following abbreviated notation

ϑk(z) := ϑk(z, τ), ϑk := ϑk(0, τ). (A.5)

The Dedekind eta function is defined as

η(τ) := q1/24
∞
∏

n=1

(1− qn) . (A.6)

The Eisenstein series are given by

E2n(τ) = 1 +
2

ζ(1− 2n)

∞
∑

k=1

k2n−1qk

1− qk
. (A.7)

We often abbreviate η(τ), E2n(τ) as η, E2n respectively.

The Weierstrass ℘-function is defined as

℘(z) = ℘(z; 2ω1, 2ω3) :=
1

z2
+

∑

(m,n)∈Z2
6=(0,0)

[

1

(z − Ωm,n)2
−

1

Ωm,n
2

]

, (A.8)

where Ωm,n = 2mω1 + 2nω3. We also introduce the following notation

ek := ℘(ωk) (k = 1, 2, 3), (A.9)

with

ω1 + ω2 + ω3 = 0,
ω3

ω1
= τ. (A.10)
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In the main text we use the following identities

℘′(z)2 = 4℘(z)3 −
π4

12ω4
1

E4℘(z)−
π6

216ω6
1

E6 (A.11)

= 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) (A.12)

=
π6

ω6
1

η12
3
∏

k=1

ϑk+1(
z
2π )

2

ϑ1(
z
2π )

2
. (A.13)
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