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1 Introduction: anomaly meditation in its various guises

It has been known for some time that gaugino masses can arise in theories of low energy

supersymmetry breaking, even when there is no coupling of the Goldstino (longitudinal

component of the gravitino) to the gauge multiplet [1–3]. More precisely, such masses

occur in cases where they cannot be understood as arising from local terms in a super-

symmetric effective action; there are contributions to these masses even in theories in

which no field with a non-zero F component couples to the appropriate W 2
α. These terms

are gaugino bilinears multiplying the superpotential, and indeed arise in the absence of

supersymmetry breaking for theories in AdS space. This phenomenon has been dubbed

“anomaly mediation.” As explained in [4], however, there is no anomaly associated with

these couplings. Rather, these terms are contact terms required by supersymmetry. They

can be understood in a variety of ways. In some cases they arise with suitable regula-

tors [1]. They can also be obtained by manipulating the conformal compensator of certain

supergravity formalisms [2, 3]. In a more broadly-applicable field theoretic approach, they

can be associated with supersymmetric completions of non-local couplings [4–7]. In certain

circumstances, they are associated with local interactions [4].

To further elucidate this phenomenon, in the present paper we extend the arguments

of [4] to broader classes of theories. In particular, in ref. [4], a simple argument for the

gaugino mass was given for U(1) theories, with charged fields φ±, and superpotential

independent of φ+φ−,

W =W0. (1.1)
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In this case, the theory has a flat direction (neglecting gravitational strength interac-

tions) with

|φ+| = |φ−| = v. (1.2)

In this direction, the gauge group is Higgsed, and there is one light chiral field, which we

can take to be the gauge invariant combination φ+φ−. We can study the 1PI action for

the (heavy) gauge field. This action is local, since there are no couplings of the form V LL,

V denoting the vector fields, and L the light chiral field. In the global limit, at one loop,

the effective action includes a term:

Γ1PI = −
1

32π2

∫

d2θd4x(τ − log(φ+φ−))W 2
α. (1.3)

In a supergravity theory, this modification of the gauge coupling function, f leads to a term:

Lλλ = λλ

(

∂f

∂φ+

∂K

∂φ∗+
W ∗

0 + (φ+ → φ−)

)

(1.4)

=
1

16π2
W ∗

0 λλ ,

precisely the anomaly-mediated expression for this case. Everything in this analysis is

completely local. The term is also independent of v, and so survives into the unbroken

phase. Some regulators (Pauli Villars) generate this term automatically; using a regulator

which does not generate this term (as, for example, is the case for dimensional regulariza-

tion), then it is necessary to add it as a finite counter term. The treatment here, first of

the global limit and then of gravitational corrections, is justified by the smallness of the

gravitational coupling relative to gv.1

While the analysis has the virtue of locality, and the field-independence of the contact

term reproduces the contact term in the massless theory, it would be interesting to see

the term arise in a Wilsonian context. In this note, we consider more general theories,

surveying the general case of non-Abelian theories with multiple flavors. In an SU(N)

theory, for example, if supersymmetry is unbroken or the breaking is small, the behavior of

the theory and even the questions one asks, are sensitive to the number of flavors. For Nf =

N − 1, in the Higgs phase the 1PI action is local, and one can repeat the argument of [4].

For Nf < N − 1, the theory exhibits gaugino condensation and the “anomaly mediated”

interaction is responsible for a term in the potential required by local supersymmetry. For

Nf ≥ N , the 1PI action is no longer local. This can be addressed by gauging some of the

flavor symmetry. In general, there remain some light U(1) gauge bosons, which can be

described by a Wilsonian effective action. For these, local supersymmetry requires gaugino

contact terms with coefficients precisely of the anomaly-mediated form.

We note that recently refs. [6, 7] have analyzed anomaly mediation in detail and demon-

strated that there are several distinct mechanisms at work, physically separable by the

1 In the unbroken phase, it has been shown in [8] that infrared contributions in AdS space exactly cancel

the contact term, leaving the gaugino massless if supersymmetry is unbroken. We will study the contact

term but have in mind the physically relevant case where SUSY breaking lifts AdS to flat space, in which

case the boundary contribution is not present.
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goldstino coupling to the supercurrent. The gaugino mass contributions we will identify

correspond to pure gravitino mediation in the language of [6, 7], although as we will see

the issue of the goldstino coupling is somewhat subtle. The masses we study are bulk

AdS masses, which are equivalent to the flat-space masses when the SUSY-breaking is

sequestered from the visible sector (see also footnote 1.) We would also like to draw atten-

tion to ref. [9], which demonstrated the equivalence of the original discussion of anomaly

mediation in [2] and the perspective of [4] and this work.2

In the next section, we consider U(1) theories with multiple chiral fields. These fields

already raise issues of locality, which can be solved by introducing additional U(1)s. Once

the 1PI action is local, we directly recover the anomaly-mediated expression. In section 3,

we turn to non-Abelian gauge theories, in which the gauge group is completely Higgsed on

the moduli space. We will see that it is not always true that the effective action is local,

and will deal with this by gauging some of the flavor symmetry. In the resulting cases, there

are frequently unbroken U(1) symmetries, and for these, the gaugino counterterm can be

understood in a Wilsonian language. In section 4, we consider theories with Nf < N − 1,

again in the presence of a small constant in the superpotential,W0. At low energies, there is

an additional, dynamical contribution to the superpotential. The corresponding correction

to the potential, linear in W0, is generated by the gaugino contact term. We demonstrate

how this arises both for the Nf = 0 and Nf 6= 0 cases. We also study the term linear in

the superpotential and bilinear in the gravitino, which we will refer to as the “gravitino

mass term.” In the final section, we summarize and conclude.

2 U(1) theories with more than one flavor

We can complicate the problem of [4] by considering two pairs of charged fields coupled

to the vector multiplet. We now have a more interesting set of flat directions, but the

main point is that the vector multiplet couples to a pair of massless charged chiral fields

as in the Coulomb phase. As a result, the 1PI action is no longer local, and we cannot

infer the form of the full action so simply. The 1PI action includes the local piece of [4],

as well as a non-local term of the form described in [5]. We can modify the system so as

to achieve locality in two ways. First, we can introduce a mass for one of the fields. This

eliminates one of the flat directions, and leaves us with the result for the contact term as in

the single pair case. This is just the statement that massive fields do not contribute to the

gaugino contact term. But a more interesting infrared regulator is provided by introducing

an additional U(1), under which we can take the fields to be:

φ++, φ
−
+, χ

+
−, χ

−
−, (2.1)

where superscripts refer to the charge under the first U(1), subscripts charge under the

second. Then, for example, there is a flat direction with all fields having equal vev. There

are two massless fields, which one can think of as:

L1 = φ++χ
−
− , L2 = φ−+χ

+
−. (2.2)

2For a differing interpretation that disagrees with ours, see [10, 11].

– 3 –



J
H
E
P
0
2
(
2
0
1
4
)
0
6
9

The two heavy fields are the Higgs fields of the two U(1)s. There are no couplings of the

form VaLiLj , where Va denote the two vector fields, and as a result, the contributions to

the 1PI action are infrared finite. Indeed, the gauge coupling function has the form:

f = g−2(M)−
1

8π2
log(L1L2/M

4). (2.3)

From this we obtain the λλ contact term:

Lλλ =
1

8π2
W ∗

0 + c.c.. (2.4)

This can be generalized to N pairs of fields, again yielding the expected anomaly-

mediated form. The U(1) case is rather simple, but we will see similar phenomena in

non-Abelian theories.

3 SU(N) with Nf ≥ N − 1

It is interesting to extend this analysis to non-Abelian theories. In particular, consider an

SU(N) theory with Nf flavors. If Nf ≥ N − 1, there are directions in which the gauge

symmetry is completely Higgsed. But, except for the case Nf = N − 1, there are massless

fields with couplings to the vector fields, as in the U(1) example above, and the 1PI effective

action is non-local. In the case Nf = N − 1, we can compute the effective action, which

now contains:

Γ = −
1

32π2

∫

d2θ

(

τ −
2N + 1

(2N − 2)
log(det(Q̄Q))

)

W 2
α. (3.1)

This leads to a term:

Lλλ =
(2N + 1)

16π2
λλW0 (3.2)

as expected from the usual anomaly-mediated formula.

For Nf > N − 1, the 1PI action contains local terms and non-local interactions (in

superspace). Both contribute to the gaugino bilinear. But we can regulate the infrared as

in the Abelian case by gauging some of the flavor symmetry. In particular, we can gauge

the SU(NF ) symmetry. Using the symmetries, the Q and Q̄ fields can be brought to the

form with

|v̄a|
2 = |va|

2 . (3.3)

Consider, first, the case Nf = N . Then the gauge symmetry is broken, for general va,

to U(1)N−1. There are N light chiral multiplets in these vacua; there are no couplings of

the form V LL, so the effective action for the light vector multiplets is local. For, say, the

SU(N), there is a term:

Γ = −
1

32π2

∫

d2θ

(

τ −
2N

(2N)
log(det(Q̄Q))

)

W 2
α. (3.4)
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This leads to the anomaly-mediated mass term,

Lλλ =
1

2

2N

16π2
λλW ∗

0 . (3.5)

There is a similar gaugino bilinear contact term for the SU(NF = N) gauge group. We

find it remarkable that in this case anomaly mediation is described by a Wilsonian effec-

tive action.

There are, however, two puzzles regarding eq. (3.5). The first is that the scales set by

the va are supersymmetric thresholds, and typically supersymmetric thresholds shift the

gaugino masses so that they satisfy

mλ ∝ βIR , (3.6)

where βIR is the beta function of the infrared effective theory. Therefore, below the scale

of the smallest vev, we might expect N − 1 gauginos with vanishing anomaly-mediated

masses, because their beta functions vanish in the IR theory. But we have just found

eq. (3.5) contributes to the light gaugino masses.

The resolution of the puzzle can be understood both in the effective and microscopic

theories. From the IR perspective, the mechanism is that of deflected anomaly media-

tion [12]. For simplicity, let us take N = 2, so that there are two light singlets and one

light U(1). The singlets (call them Xi) have couplings to W 2
α:

(Q̄Q)ii → v2i + vi(δQi + δQ̄i) + . . .

≡ v2i + viXi + . . . ,
∫

d2θ log(det(Q̄Q))W 2
α →

∫

d2θ(Xi/vi)W
2
α + . . . (3.7)

The Xi also have linear terms in the Kähler potential:

K = Q†
iQi + Q̄†

i Q̄i → viXi + c.c.+ . . . (3.8)

The linear terms generate an FXi
,

FXi
∼ viW0 , (3.9)

which provides a gaugino mass through the coupling of eq. (3.7). Therefore, from the IR

perspective, the spectrum simply does not look anomaly-mediated; rather, it looks gauge-

mediated, with masses mysteriously correlated with the cosmological constant.

In the microscopic theory, the question is why the supersymmetric threshold corrections

did not keep the light gaugino masses on the anomaly-mediated trajectory. One way to

understand this is to recall how decoupling works in the simple U(1) theory with a large

superpotential mass for the charged matter fields,

W =W0 +mφ+φ− . (3.10)
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As reviewed in [4], the F -term scalar potential contains B-term interactions between W0

and φ±:

V ∼ −mm3/2(φ+φ− + c.c.) . (3.11)

When φ± are integrated out at m, B-term insertions in the threshold correction to the

gaugino mass generate the m-independent shift

mλ =
1

16π2
m3/2 . (3.12)

This contribution exactly cancels an equal-and-opposite contribution from the regulator

(e.g. Pauli-Villars fields). However, the essential point is that in supergravity, B-terms are

not generated by D-terms. Supersymmetric mass thresholds that originate in the D2 part

of the supergravity potential, as in the microscopic N = Nf theory on the Higgs branch,

do not provide a threshold correction to mλ at leading order in W0. Therefore, in such

cases the light and heavy gauginos receive equal masses from the regulator, proportional

to the beta function of the UV theory.

The second puzzle concerns the goldstino couplings. The XW 2
α interaction contains a

goldstino coupling, which is not expected in strict gravitino mediation [6, 7]. The resolution

is that the microscopic theory breaks SUSY by a small amount FQ ∼ vW0. This F -term

does not give masses to the gauginos at first order inW0 and zeroth order in v/Mp (therefore

gravitino mediation really is the source of the masses), but it does imply that there will

be a goldstino effective coupling with coefficient mλ/FQ ∼ 1/v. In the IR effective theory,

the gaugino counterterm and the goldstino coupling combine to give the local effective

superfield coupling XW 2
a . As explained above, in the IR the gaugino mass is provided by

FX/v ∼ W0, even though diagrams involving FQ were not the source of the mass in the

UV theory.

As an aside, it should be noted that there is a gauge-invariant description of the

unbroken symmetry, in terms of operators

Wab̄Q
a
fQ

b̄
f̄δ

ff̄ (3.13)

and additional operators constructed with Wf,f̄ and ǫ tensors.

Now consider Nf = N + 1. Here the low energy group is U(1)N−1. There are only N

light chiral fields, for general choice of the Q and Q̄ vev’s. Repeating the analysis leading to

eq. (3.5) leads to the bilinear contact term expected from the anomaly mediation formula.

In the case Nf > N + 1, the low energy gauge group is U(1)N−1 × SU(Nf − N).

There are no chiral fields transforming under the SU(N − NF ). In this sector, gaugino

condensation occurs and there is a mass gap; again the very low energy theory consists of a

set of massless U(1)s and N chiral fields. Constructing the effective action yields, for each

of the U(1)s,

Γ = −
1

32π2

∫

d2θ

(

τ −
(3N −Nf )

2Nf
log(det(Q̄Q))

)

W 2
α. (3.14)

where the determinant is in the SU(N) indices. Again, we obtain the anomaly-mediated

formula, proportional to the beta function of the UV theory above the scale of the va. The

– 6 –



J
H
E
P
0
2
(
2
0
1
4
)
0
6
9

splitting between the gaugino and gauge boson masses is the same for the light and heavy

gauginos for the reason discussed previously: from the point of view of the IR effective

theory, there is a singlet coupling to W 2
α that takes the light gauginos off the anomaly-

mediated track; from the point of view of the microscopic theory, the gaugino masses

are all anomaly-mediated, but thresholds that change the beta functions do not change

the masses.

One can ask about the gaugino condensate. In particular, this should lead to an

effective superpotential at low energies, and correspondingly there should be a negative

contribution to the cosmological constant, and a mass-like term for the gravitino. Such

terms, in this context and for theories with SU(N) gauge groups and Nf < N − 1, will be

the subject of the next sections.

4 Low energy effective lagrangian: theories of gluino condensation

In theories with 0 ≤ Nf < N − 1, the gauge symmetry is not completely broken at general

points on the classical moduli space; in the remaining theory, there is a mass gap and

gaugino condensation occurs. At lower energies, one should have a supergravity theory,

with chiral fields if Nf > 0. We first demonstrate that, in a pure gauge theory (i.e. no chiral

fields), accounting for the full supergravity potential requires the presence of precisely the

contact terms expected from anomaly mediation. We then consider the more general case.

4.1 Pure gauge theory: gaugino condensation

In a pure gauge theory coupled to supergravity, with no other degrees of freedom, it makes

sense to consider an effective low energy theory well below the scale of the confining gauge

theory. If we include in the pure gauge theory a constant superpotential W0, in the low

energy theory, we should be able to identify the term

−3WnpW
∗
0 + c.c. (4.1)

in the potential, where Wnp is the nonperturbatively generated superpotential, as well as

the term

(W0 +Wnp)ψµσ
µνψν (4.2)

for the gravitino.

The first of these terms requires adding the “anomaly-mediated” gaugino mass coun-

terterm to the high-energy theory:

Lλλ =
1

2

b0
16π2

W ∗
0 λλ , b0 ≡ 3N (4.3)

From the relation between the nonperturbative superpotential in the effective theory and

the gaugino condensate,

〈λλ〉 = −
32π2

N
Wnp, (4.4)

we see that we immediately recover eq. (4.1). Note that the factor of 3 in b0 is crucial.

– 7 –
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There should be one other term linear in the dynamical superpotential. The term

Lψψ ∼Wnpψµσ
µνψν (4.5)

will be discussed in section 5.

Finally, it should be stressed that the action under consideration is Wilsonian; we have

properly integrated out massive, high energy degrees of freedom, to obtain an effective

action for the light fields (the graviton supermultiplet, as well as the Goldstino, in the case

that supersymmetry is broken). It should also be stressed that this analysis, in the spirit

of [4], can be viewed as a derivation of the anomaly mediated result for this theory. If

one works with a regulator which does not generate the gaugino bilinear, supersymmetry

requires that one add it as a counterterm.

4.2 Nf < N − 1

For 0 < Nf < N − 1, on the moduli space the gauge group is not completely higgsed.

In general, the low energy theory is a pure gauge theory with N − Nf colors, along with

a set of light chiral multiplets (pseudomoduli), neutral under the gauge group. The non-

perturbative superpotential takes the form:

Wnp =
Λ

3N−Nf

N−Nf

det(Q̄Q)
1

N−Nf

. (4.6)

As a result, the potential, at low energies,

V = |
∂W

∂Qf
+
∂K

∂Qf
W |2 + (Q→ Q̄)− 3|W |2 (4.7)

contains a term:

W ∗
0Wnp(−3−

2Nf

N −Nf
) =

−3N +Nf

N −Nf
W ∗

0Wnp. (4.8)

Gaugino condensation in the SU(N −Nf ) group is the origin of Wnp,

Wnp = −
N −Nf

32π2
〈λλ〉 , (4.9)

so the microscopic theory must contain

Lλλ =
3N −Nf

32π2
λλW ∗

0 + c.c.. (4.10)

This is the anomaly-mediated gaugino mass counterterm. It is proportional to the beta

function of the microscopic theory, instead of the beta function of the low-energy effective

theory as one might otherwise expect, for the reasons discussed in section 3. Again, it is

worth stressing that this analysis is strictly Wilsonian, and it is again clear that supersym-

metry and gauge invariance require the presence of the gaugino bilinear.

– 8 –
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4.3 Small quark masses

A further test of these ideas is provided by considering theories with small quark masses.

For Nf < N and small quark masses, instead of describing a system with a pseudomoduli

space, one has supersymmetric (AdS) vacuua. Taking for the (classical) superpotential:

W = mf Q̄fQf (4.11)

withmf small compared to the dynamical scale of the theory, one can compute a dynamical

contribution to the superpotential, as in eq. (4.6). At the supersymmetric stationary point,

mf Q̄fQf =
1

N −Nf
Wnp (no sum over f) (4.12)

Then

〈W 〉 = (
Nf

N −Nf
+ 1)Wnp = −

N

32π2
〈λλ〉. (4.13)

Now turning on a small constant in the superpotential, the term linear in W0 in the

microscopic theory (before including the counterterm) is:

LW0
=W ∗

0

(

−3mf Q̄fQf +
∂W

∂Qf

∂K

∂Q∗
f

+
∂W

∂Q̄f

∂K

∂Q̄∗
f

)

+ c.c.

=W ∗
0

(

−mf Q̄fQ
)

+ c.c. (4.14)

Adding the counterterm,

δLλλ =
3N −Nf

32π2
W ∗

0 λλ+ c.c. (4.15)

yields precisely

δV = −3W ∗
0W + c.c.. (4.16)

So again we see that supersymmetry requires the counterterm.

5 The gravitino bilinear

In the theories with Nf < N − 1, there should be an additional term in the low energy

effective action linear in Wnp:

Lψψ = −eK/2Wψµσ
µνψν . (5.1)

This term requires a strong coupling analysis and we will content ourselves with some

heuristic remarks. First, we choose a gauge

σ̄µψµ = 0. (5.2)

– 9 –
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(We are using the spinor conventions of Wess and Bagger). Then eq. (5.1) becomes

Lψψ = −eK/2 1

2
Wψµψµ. (5.3)

Roughly speaking, to account for this coupling, we are looking for terms in the action of

the form

L ∼ λ̄λ̄ψµψµ (5.4)

These can arise from the two sources:

Lψψλλ =
1

8
Refψµσ

ρσσµλ̄(ψρσσλ̄− ψσσρλ̄) + h.c. (5.5)

and

LψλF =
i

4
Refψµσ

ρσσµλ̄Fρσ + h.c. , (5.6)

where f is the gauge coupling function. Eq. (5.5) reduces to

Lψψλλ = −
1

4
Ref〈λ̄λ̄〉ψψ (5.7)

If we work perturbatively to second order in LψλF , the exchange of the gauge field also

yields an effective λ̄λ̄ψψ interaction. At large q2, q2 ≫ Λ2 for the gravitino, we can give

an (again heuristic) justification of this calculation. In the ψψ two-point function, there is

a term

〈Refψµ(x)σ
ρσσµλ(x)Fρσ(x)Refψν(y)σ

γδσνλ(y)Fγδ(y)〉 . (5.8)

Taking x→ y and using the operator product expansion, one obtains a contribution

1

8
Ref〈λ̄λ̄〉ψψ . (5.9)

Combining eqs. (5.7) and (5.9),

mψ =
1

4
Ref〈λ̄λ̄〉 . (5.10)

We need to understand at what scale to evaluate the function f , and to determine its value.

Again, we can give a heuristic computation, in this case using the Veneziano-Yankielowicz

Lagrangian. We present the Lagrangian in a somewhat different form than is standard,

which allows more immediate connections to the gaugino contact terms. We take S =W 2
α

and treat it as an elementary chiral field. For W (S), we take:

W =
1

4
(τS +

N

8π2
S logS/M3) (5.11)

whereM is a UV cutoff and the microscopic theory is pure SU(N). This is slightly different

than the original presentation by VY, but, like theirs, it properly respects the discrete

symmetries (and an R symmetry under which the spurion, τ , transforms). In this form,

– 10 –
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the action has precisely the structure of the holomorphic effective action, evaluated at the

scale S. The stationary point is:

S = Λ3e−1 , Λ =Me−8π2τ/N . (5.12)

At the minimum,

〈W 〉 = −
N

32π2
〈S〉. (5.13)

At this point, f = − N
8π2 . So eq. (5.10) indeed becomes

mψ = 〈W 〉 . (5.14)

The VY superpotential is often presented in a different fashion, and understanding the

connections is instructive. In particular, one often sees

W = N(S log(S/Λ3) + S). (5.15)

This leads to

〈W 〉 = −N〈S〉 (5.16)

in which case S must be identified with 1

32π2W
2
α. Instead, we consider

W =
N

8π2
(S log(S/Λ3) +mS) (5.17)

With Λ =Me−
8π2τ
N this is the superpotential of eq. (5.11), with a change of the coefficient

of the S term. This does not alter 〈W 〉, which is independent of τ , and can therefore be

viewed as a finite coupling redefinition (change of scheme). The basic results of this section

are, from this perspective, scheme independent.

6 Conclusions

Surveying SU(N) gauge theories with different numbers of flavors provides insight into the

necessary presence of bilinear gaugino counterterms in the Lagrangian of supersymmetric

theories, the phenomenon known as “anomaly mediation.” We have extended the arguments

of [4] that such counterterms, rather than indicating an anomaly, are required by local

supersymmetry. By examining phases of the theories where local, low energy effective

actions (often Wilsonian) are available, we have shown that the gaugino bilinears or their

remnants are easily identified.
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