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1 Introduction

The origin of baryon asymmetry is one of the most profound puzzles in modern cosmology

and particle physics. It is well-known that baryon accounts for about 5% of the total energy

density of the Universe [1]:

nB/s = (8.6± 0.1)× 10−11 (68% C.L.), (1.1)

where nB is the number density of baryon, and s is the entropy density. The standard

model (SM) of particle physics and standard cosmology, however, do not provide any viable

mechanism to generate the observed baryon number. To be specific, three conditions known

as the Sakharov conditions [2] have to be satisfied for successful baryogenesis: (i) baryon

number violation, (ii) C and CP violation, and (iii) departure from thermal equilibrium.

These conditions require physics beyond the SM and set tight constraints on possible

scenarios for baryogenesis.

The mechanism for baryogenesis is closely related to the thermal history of the Uni-

verse. The recent observations of cosmic microwave background as well as large scale

structure of the Universe firmly support the inflationary Universe in which our Universe

experienced an accelerating cosmic expansion at an early stage of the evolution [3–7]. Thus

baryon asymmetry must be generated after inflation since otherwise the exponential ex-

pansion during inflation would completely dilute any pre-existing baryon asymmetry.

However, the history of the Universe after inflation is poorly known. The inflaton may

directly decay into the SM particles to reheat the Universe. The right amount of baryon
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asymmetry can be generated through thermal leptogenesis if the reheating temperature

is sufficiently high [8]. On the other hand, the evolution of the Universe could be more

involved. Indeed, there are many moduli fields in supergravity and superstring theories,

which may have a significant effect on the thermal history. They are known to easily dom-

inate the energy density of the Universe because the moduli fields are copiously produced

by the coherent oscillation and that their interactions are extremely weak, suppressed by

the Planck scale or Grand Unified Theory (GUT) scale. Then a huge amount of entropy is

released by the moduli decay, diluting pre-existing baryon asymmetry. As a consequence

we have two possibilities for baryogenesis. One is to create a sufficiently large amount of

baryon asymmetry before the moduli decay by, e.g., the Affleck-Dine mechanism [9, 10],

which has been extensively studied in a context of modular cosmology [11–16]. The other

is to generate baryon asymmetry after the moduli decay. This is the main focus of the

present paper.

We assume that moduli fields dominate the energy density of the Universe in the frame-

work of supergravity. After dominating the Universe, moduli decay to lighter particles in

the minimal extension of supersymmetric standard model (MSSM). The moduli decay

temperature can be higher than O(1) MeV for the moduli mass heavier than about 10 TeV

if their interactions are suppressed by the Planck mass, thus avoiding bounds from the

big bang nucleosynthesis (BBN) [17–20]. In this paper we study a baryogenesis scenario

in which the baryon asymmetry is generated through CP violating decay of gluino into

quark and squark, followed by baryon-number violating squark decay. We will introduce

renormalizable R-parity violating interactions to get the required baryon number viola-

tion. Late-time moduli decay can easily realize the out-of-equilibrium decays of gluino and

squark. On the other hand, the size of the CP phase depends on how supersymmetry

(SUSY) breaking is transmitted to the visible sector. As we will see shortly, the required

CP violation for the baryogenesis has important implications for moduli stabilization. Suc-

cessful baryogenesis is possible in moduli stabilization such that moduli-mediated SUSY

breaking is sizable, and the axionic shift symmetry associated with the modulus is broken

at least by two terms in the modulus superpotential. We will focus on mixed modulus-

anomaly mediation in the Kachru-Kallosh-Linde-Trivedi (KKLT)-type moduli stabiliza-

tion [21], as it provides a natural framework for the moduli-induced baryogenesis. We will

also show that similar baryogenesis works in other cases where the gravitino, the saxion,

or the Polonyi field dominates the Universe, and decays mainly into the SM gauge sector.

Let us mention differences of the present paper from the works in the past. Baryo-

genesis induced by a modulus-like particle has been studied since long time ago. The

gravitino-induced baryogenesis was proposed by Cline and Raby [22], followed by Moller-

ach and Roulet who studied a similar scenario where the saxion plays the role of the grav-

itino [23]. In ref. [24], baryogenesis via a hidden sector inflaton was discussed. Recently

baryogenesis via such late-decaying particles was studied in a generic way by with higher

dimension operators [25]. In those studies the origin of the CP phase was simply assumed

to be independent of the decaying particle. In the present paper we study a baryogene-

sis within a concrete moduli stabilization mechanism, where the modulus field mediates

SUSY breaking with a non-vanishing CP phase, and its decay provides out-of-equilibrium
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decays of gluino and squark. Therefore the moduli-induced baryogenesis studied in this

paper offers a realistic and self-contained scenario. Later in this paper we will revisit the

gravitino-induced baryogenesis. Here we will provide analytic formulae which can be ap-

plied to a more generic mass spectrum of superparticles. Note that it was shown that

the inflaton [26–31] as well as moduli [32–35] generically decays into a pair of gravitinos.

Therefore the gravitino-dominated Universe can be realized in a broader scenario than

originally assumed. Its cosmological and phenomenological implications have been studied

recently in ref. [36]. We will also revisit the saxion-induced baryogenesis. In ref. [23], it

was indicated that the saxion decay to gauginos is helicity-suppressed. As clearly shown

in ref. [37], however, it is not helicity-suppressed and its rate is generically comparable to

that into gauge bosons. Taking into account this fact, we will show that the saxion-induced

baryogenesis is more efficient than originally considered before.

The rest of this paper is organized as follows. In section 2 we study mixed modulus-

anomaly mediation in the KKLT-type moduli stabilization, focusing on how to obtain the

CP violation required for successful baryogenesis. We will then examine the baryogenesis

by modulus decay in section 3, and study the implications for the SUSY breaking scale and

discuss its experimental consequences. In section 4 we discuss similar baryogenesis by the

decay of the gravitino and the saxion. Section 5 is devoted to conclusions and discussion.

In this paper we take the reduced Planck mass MP ' 2.4 × 1018 GeV to be unity unless

otherwise noted.

2 Moduli stabilization

We consider the possibility that late-decaying moduli account for the observed baryon

asymmetry of the Universe. To produce baryon asymmetry, we need couplings that vio-

late both baryon number and CP. Baryon number violation arises from R-parity violating

interactions while satisfying various experimental constraints, such as neutron-antineutron

oscillation, dinucleon decay, and proton decay. The required CP violation, on the other

hand, can be induced after SUSY breaking from the R-parity violating interactions. How-

ever, generating a nonzero CP phase is nontrivial. It depends on the SUSY breaking

mechanism and the moduli stabilization.

As is well-known, anomaly mediation [38–40] (and also gauge mediation) generates

flavor and CP conserving soft SUSY breaking terms because it takes place mainly through

the SM gauge interactions. The soft terms induced by moduli F -terms are also considered

to preserve both flavor and CP. Here the flavor conservation is a result of flavor-universal

rational numbers called the modular weight, which determines the coupling between moduli

and the matter fields in visible sector [41, 42], meanwhile CP conserving soft terms are the

consequence of axionic shift symmetries associated with the moduli [43]. However, this

is true only for a simple KKLT-type moduli stabilization. It turns out that a sizable CP

violation can be obtained from the moduli sector if

• Soft SUSY breaking terms receive sizable contributions from the moduli F -terms,

and
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• Non-perturbative corrections, which generate a modulus potential and break the

axionic shift symmetry, involve at least two terms.

We will see that the KKLT scenario is a natural framework for the moduli-induced baryo-

genesis that works at low temperatures. It will be also shown in the next section that such

a sizable CP violation for baryogenesis could have interesting experimental consequences.

2.1 KKLT mechanism

In the KKLT compactification [21], all the moduli are stabilized at a phenomenologically

viable vacuum. There are three types of moduli; dilaton, complex structure moduli, and

Kähler moduli. The dilation and complex structure moduli are fixed by fluxes while obtain-

ing masses hierarchically larger than the gravitino mass. Incorporating non-perturbative

corrections to the superpotential, one can also stabilize Kähler moduli at a supersymmet-

ric anti-de Sitter (AdS) minimum. Since our vacuum is a SUSY breaking de Sitter with

a tiny cosmological constant, we introduce an anti-brane stabilized at the tip of a highly

warped throat. Then its tension provides a small positive energy to cancel the negative

cosmological constant. At the same time it explicitly breaks the N = 1 SUSY preserved

by the background geometry and fluxes. To be precise, a small vacuum shift is induced

and makes the moduli develop nonzero F -terms. Through Planck-suppressed interactions

with the moduli, sparticles then obtain the soft SUSY breaking masses as

msoft ∼
m2

3/2

(modulus mass)
, (2.1)

where m3/2 denotes the gravitino mass. Hence, if stabilized with mass much larger than

4π2m3/2, the modulus does not play an important role in generating the soft SUSY breaking

terms because they always receive anomaly-mediated SUSY breaking contribution, msoft ∼
m3/2/4π

2, in supergravity [38–40].

The stabilization of Kähler moduli can be examined within the effective theory after

integrating out the dilation and complex structure moduli as they are much heavier than

the gravitino and Kähler moduli [44, 45]. Let us consider a simple case with a single Kähler

modulus X.1 It is straightforward to generalize to a case with multi Kähler moduli. The

Kähler potential takes the no-scale form at the leading order in the α′ (the string tension)

and the string loop expansions,

K0 = −3 ln(X +X∗). (2.2)

It should be noticed that the theory possesses the axionic shift symmetry,

U(1)X : Im(X)→ Im(X) + constant. (2.3)

This shift symmetry can be explicitly broken at non-perturbative level. For example,

hidden gaugino condensation or stringy instanton effects induce non-perturbative terms in

1With an abuse of notation, we shall use the same symbol to denote both a chiral superfield and its

scalar component, unless noted otherwise.
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superpotential. Including the non-perturbative corrections, the modulus superpotential is

given by

W0 = ω0 +Wnp(X), (2.4)

where the constant term ω0 is originated from background fluxes, which is assumed to be

much smaller than order unity in the Planck unit so as to get the soft SUSY breaking

scale much lower than the Planck scale. We also note that the constant term explicitly

breaks U(1)R. The above superpotential stabilizes the modulus at a SUSY AdS minimum

satisfying

∂XW0 + (∂XK0)W0 = 0. (2.5)

Here ∂X means a partial derivative with respect to the scalar field X, i.e., ∂X ≡ ∂
∂X . Then

the modulus mass is determined by the curvature around the minimum as

mX '
∣∣∣∣〈∂XK0

∂2
XK0

∂2
XWnp

∂XWnp

〉
m3/2

∣∣∣∣ , (2.6)

where the gravitino mass is given by m3/2 = 〈eK/2W 〉 ∼ ω0, and we have used ∂XK0 =

∂X∗K0 and the SUSY condition (2.5). After adding a sequestered uplifting potential Vlift ∝
e2K0/3 to cancel the negative cosmological constant, a small vacuum shift is induced. This

vacuum shift results in a nonzero modulus F -term,

〈FX〉 ' −
2m∗3/2

〈∂2
XWnp/∂XWnp〉

, (2.7)

which is order of |m3/2|2/mX .

Let us continue to examine how the SUSY breaking is mediated to the visible sector.

The soft SUSY breaking terms receive contributions from both modulus mediation and

anomaly mediation [44–47],

−Lsoft = m2
i |φi|2 +

(
1

2
Maλaλa +Aijkyijkφiφjφk + h.c.

)
, (2.8)

where φi denotes the scalar component of the visible sector chiral superfield Φi, λa is the

gaugino, and yijk is the Yukawa coupling for the superpotential term ΦiΦjΦk. Here i, j, k

are the indices of matter fields, and a = 1, 2, 3 corresponds to the U(1)Y , SU(2)L, SU(3)C
gauge group, respectively. The mass of gaugino is obtained as

Ma(Λ) = −〈FX∂X ln g2
a(Λ)〉+

bag
2
a(Λ)

16π2
m∗3/2

=

〈
FX

X +X∗

〉
+
bag

2
a(Λ)

16π2
m∗3/2, (2.9)

when the gauge kinetic function is

fa(Λ) = kaX, (2.10)
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at the cut-off scale Λ, which we assume to be the GUT scale. ka is a positive constant.

Here we note that the gauge kinetic function is allowed to have only a term which is

linear to X (except for constant term) due to the axionic shift symmetry, i.e., eq. (2.3).

The gauge coupling reads g2
a = 1/〈Re(fa)〉, and the beta-function coefficients are given

by ba = (33/5, 1,−3) in the MSSM. On the other hand, mi and Aijk depend on the

anomalous dimension γi and the modular weight ni of φi [48, 49] that determines the

modulus dependence of the matter wave function Zi.
2 For instance, the A-parameter reads

Aijk(Λ) = 〈FX∂X ln(ZiZjZk)〉 −
γi(Λ) + γj(Λ) + γk(Λ)

16π2
m∗3/2

= (ni + nj + nk)

〈
FX

X +X∗

〉
− γi(Λ) + γj(Λ) + γk(Λ)

16π2
m∗3/2, (2.11)

where ni is a rational number of order unity, and it can have various values in the KKLT-

type moduli stabilization with anomalous U(1) gauge symmetry [50]. Low energy values of

the soft SUSY breaking parameters are determined by the renormalization group running,

and extra gauge-charged matters if they exist at an intermediate scale [51–54].

2.2 CP violation in the moduli sector

As will be shown in the next section, in order to generate sufficient baryon asymmetry

from modulus decays, the phase of the combination AijkM
∗
g̃ should be sizable, i.e.,

arg(AijkM
∗
g̃ ) 6= 0, (2.12)

where Mg̃ is the gluino mass, and hereafter Aijk denotes the soft trilinear parameter asso-

ciated with baryon-number violating superpotential terms, which will be presented soon.

In the KKLT scenario, moduli and anomaly mediations are comparable to each other,

and the relative phase between the modulus F -term and the gravitino mass is not rotated

away in the presence of two or more non-perturbative superpotential terms. This indeed

makes it as a natural framework to implement the baryogenesis in the modulus-dominated

Universe. From the relations (2.9) and (2.11), the phase is naively estimated to be

arg(AijkM
∗
g̃ ) ∼

arg(m3/2〈FX〉)
α+ α−1

, (2.13)

omitting an order unity coefficient which depends on the renormalization group running

and extra gauge-charged matter fields. The parameter α represents the ratio between

moduli and anomaly mediations,

α ≡
∣∣∣∣∣
〈

FX

X +X∗

〉−1 m3/2

4π2

∣∣∣∣∣ ≈ mX

8π2m3/2
, (2.14)

where we have used that the modulus F -term is given by eq. (2.7). The original KKLT

scenario gives α ' ln(MP /m3/2)/4π2 = O(1). It is obvious that the phase is suppressed

if one of the mediation mechanisms dominates over the other. On the other hand, the

2The expression of the scalar soft SUSY breaking terms can be found, for instance, in ref. [47].
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approximate symmetry, U(1)R and U(1)X , indicates that Wnp should include at least two

non-perturbative terms to get nonzero arg(m3/2〈FX〉). This is understood as follows.

Suppose that there is only a single non-perturbative term. One can then remove the CP

phases in the superpotential by redefining ω0 and X. However, it is not generically possible

to rotate away the CP phase(s) of additional non-perturbative term(s). That is why at

least two non-perturbative terms are needed to get a CP phase.3

Now let us estimate the CP phase more quantitatively. For this purpose, we consider

the superpotential,

W0 = ω0 −Ae−aX −Be−bX , (2.15)

with a 6= b and a ∼ b ∼ 4π2, where A and B are order unity complex constants. Here the

approximate U(1)R and U(1)X (explicitly broken by the constant and non-perturbative

terms) allow us to make ω0 and A be real and positive numbers without loss of generality,

which is the convention we will take hereafter. This explains why X is fixed at a CP-

conserving minimum with mass

mX ' 2m3/2 ln(MP /m3/2), (2.16)

in the absence of the last term in eq. (2.15), as was considered in the original KKLT

mechanism. Here we have used m3/2 ∼ ω0 and A ∼ 1. Let us now turn on the Be−bX term

with Im(B) 6= 0. Then the SUSY condition reads

aAe−aX + bBe−bX ' 3ω0

X +X∗
, (2.17)

neglecting small terms suppressed by 1/a(X + X∗) or 1/b(X + X∗). Since the right-

hand side is a real number, Im(B) 6= 0 shifts the minimum to a CP-violating one, i.e.,

〈Im(X)〉 6= 0. Using the facts that the modulus F -term is generated according to the

relation (2.7) after uplifting, and that the modulus is fixed at a〈Re(X)〉 ' ln(MP /m3/2),

we find that arg(m3/2〈FX〉) is determined by

arg(m3/2〈FX〉) ' −arg

〈
∂2
XWnp

∂XWnp

〉
, (2.18)

where the superpotential (2.15) gives

∂2
XWnp

∂XWnp
= −a− (b− a)

bBe−bX

aAe−aX + bBe−bX
. (2.19)

Therefore, the CP phase can be sizable if aAe−aX and bBe−bX are comparable to each

other in size.4 Under the assumption that |bBe−bX | . |aAe−aX |, the vacuum shift induced

3The mirage unification pattern of gaugino masses [46, 47] is violated in our baryogenesis scenario where

the CP violation results from a relative phase between the modulus F-term and the gravitino mass.
4One may consider a racetrack-type model [55] where the modulus is stabilized mainly by the competition

between two non-perturbative terms in the superpotential while the constant piece is negligibly small.

However, in this case, two approximate symmetries U(1)R and U(1)X fix the modulus near a CP preserving

minimum. Furthermore, the modulus becomes much heavier than m3/2 ln(MP /m3/2), thereby suppressing

the modulus mediation. See the relation (2.13).
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by Im(B) leads to

arg(m3/2〈FX〉) ≈
b(b− a)

a2

(
m3/2

MP

) b−a
a Im(B)

A
, (2.20)

for b similar to but larger than a. Here a/b is a rational number if the non-perturbative

terms arise from hidden gaugino condensation. For instance, the phase is around 0.05–0.1

m3/2 ∼ 104–108 GeV in the model with (b− a)/a = 1/10 for A ∼ 0.1 and Im(B) ∼ 1.

Let us close this section by briefly mentioning the SUSY breaking scale. We are

interested in the case where the CP violation in the moduli sector gives rise to a sizable

arg(AijkM
∗
g̃ ) to implement the baryogenesis. Thus, to avoid the SUSY CP problems, the

MSSM sparticles should be heavier than 1 TeV unless there is a cancellation among sparticle

contributions in the amplitudes of physical processes. We will quantitatively discuss the

constraint on the CP phase later. Heavy sparticles around over TeV scale may indicate a

little hierarchy problem regarding the Higgs boson mass. However, to put it another way,

such a large sparticle (mainly stop) mass is one of possible explanations for the 126 GeV

Higgs boson discovered at the LHC [56, 57].

3 Baryogenesis

In this section we will discuss the generation of baryon asymmetry by modulus decay.

During inflation the modulus is likely deviated from the true vacuum in the low energy,

due to the deformation of the potential through gravitational interactions with the inflaton.

After inflation ends, it starts coherent oscillation when the Hubble parameter becomes

comparable to mX with a large initial displacement of the order of the Planck scale, and

then soon dominates the energy density of the Universe. Eventually the modulus field

decays to lighter particles. The modulus decay releases a huge amount of entropy, which

would dilute any (harmful) relic of the early Universe, and reheats the Universe at the

temperature TX given by

TX '
(

90

π2g∗(TX)

)1/4√
ΓXMP , (3.1)

where g∗ is the relativistic degrees of freedom, and ΓX is the total decay width of the

modulus field. Although the late modulus decay might washout pre-existing baryon asym-

metry as well, we will show that sufficient baryon asymmetry is generated by the modulus

decay followed by the gluino decay if the R-parity is violated. Here we will also discuss the

experimental consequences of this baryogenesis scenario.

3.1 Baryon asymmetry

The modulus decays into the MSSM particles through its couplings to the visible sector.

For the case that the gauge couplings are determined by 〈X〉, the modulus X dominantly

decays into gauge boson pairs, and gaugino pairs through the interactions (written in two-

component notation) [32–35],

LX =
cag
4

(
δXrG

a
µνG

aµν − δXiG
a
µνG̃

aµν
)
− caλ

4
(δXrλaλa − iδXiλaλa + h.c.) , (3.2)
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with δXr+iδXi ≡ 〈2∂2
XK0〉1/2(X−〈X〉) being the canonically normalized fluctuation about

the vacuum. Here Gaµν is the field strength of gauge field, and the modulus couplings are

given by

cag =
√

2
∂X ln g2

a√
∂2
XK0

,

caλ = cag

(
1 +O

(m3/2

mX

))
mX , (3.3)

where the modulus coupling to gauginos has been derived by using the relation

∂XF
X∗

= −eK0/2
∂2
XW0

∂2
XK0

(
1 +O

(m3/2

mX

))
, (3.4)

evaluated at the vacuum. Then the decay rates to a gauge boson pair and a gaugino pair

are given by

Γ(X → AaAa) =
1

96π

m3
X

M2
P

, (3.5)

Γ(X → λaλa) =
1

96π

m3
X

M2
P

[
1− 4M2

a

m2
X

] [
1− 5M2

a

2m2
X

]
, (3.6)

respectively, for both the real and imaginary components of X. Here Aa denotes the gauge

boson, neglecting its mass, and we have used the gauge kinetic function fa = kaX. Under

the assumption that modulus decays into hidden sector particles are suppressed, the total

decay rate of the modulus is simply written as

ΓX '
1

4π

m3
X

M2
P

, (3.7)

neglecting the gaugino mass in the final state. Then, from eqs. (3.1) and (3.7), the reheating

temperature is estimated as

TX ' 98 GeV
( g∗

106.75

)−1/4 ( mX

108 GeV

)3/2
. (3.8)

Since the decay rate is Planck-suppressed, the reheating temperature is usually lower than

the typical SUSY breaking scale, which means that the produced sparticles are out of

equilibrium. This is an essential ingredient, i.e., for the Sakharov condition (ii), for the

baryogenesis via subsequent gluino and squark decays. It is also important that the branch-

ing fraction into a gluino pair is given by

Br(X → g̃g̃) =
Γ(X → g̃g̃)

ΓX
' 1

3
. (3.9)

Thus gluinos, whose decay is the source of the baryon asymmetry, are abundantly produced

by modulus decay.
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g̃

q̃i q̄i

q̃k

qjq̃∗j

g̃

q̃i q̄i

Figure 1. Gluino decay diagrams to a quark and a squark. The cross in the gluino line represents

a chirality flip.

For the baryogenesis we introduce the baryon-number violating renormalizable opera-

tors in addition to the MSSM superpotential WMSSM;5

Wvis = WMSSM +
1

2
λijkU

c
iD

c
jD

c
k, (3.10)

where U ci and Dc
j are the SU(2)L singlet up-type and down-type quarks, respectively, and

i, j, k are flavor indices while color indices are implicit. The other renormalizable lepton

number violating operators can be forbidden by generalized lepton parities or discrete R

symmetries [59]. From the superpotential we obtain the following Lagrangian,

L 6Rp = −λijk
(
d̃ck(ūiPLd

c
j) + ũci (d̄jPLd

c
k)
)
− λ∗ijk

(
d̃c∗k (d̄cjPRui) + ũc∗i (d̄ckPRdj)

)
+

1

2
(Aijkλijkũ

c
i d̃
c
j d̃
c
k +A∗ijkλijkũ

c∗
i d̃

c∗
j d̃

c∗
k ). (3.11)

Here the tilde denotes the scalar superpartner, and PR/L are projection operators defined

as PR/L = (1± γ5)/2 (plus for PR and minus for PL). The first line in the right-hand side

includes SUSY couplings, while the second line is the soft SUSY breaking trilinear terms,

which correspond to the second term in eq. (2.8).

The gluino mainly decays to quark and squark through the tree-level diagram in fig-

ure 1. The decay rate for g̃ → q̃iq̄i reads

Γ(g̃ → q̃iq̄i) =
αs
8
|Mg̃|(1− ri)2, (3.12)

where ri = m2
q̃i
/|Mg̃|2, neglecting the quark mass. Here αs = g2

3/4π is the strong coupling

constant, and mq̃i denotes the mass of squark in the final state. The total decay rate of

5Instead, we can consider other R-parity violating operators which break lepton number. In such a case,

nonzero lepton number would be generated in a similar manner as is illustrated in the following discussion.

Then the lepton number is converted to baryon number via the sphaleron process. See ref. [58].
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the gluino is given by the sum of all possible final sates of quark and squark,

Γg̃ =
∑
i

[Γ(g̃ → q̃iq̄i) + Γ(g̃ → q̃∗i qi)] . (3.13)

On the other hand, an asymmetry between Γ(g̃ → q̃iq̄i) and Γ(g̃ → q̃∗i qi) may be induced

at the loop level. If there exists another decay mode to q̃∗j qj , the interference between

tree and loop diagrams (figure 1) generates nonzero asymmetry via the baryon-number

violating operator given in eq. (3.11);

∆Γ(g̃ → q̃Riq̄Ri) ≡ Γ(g̃ → q̃Riq̄Ri)− Γ(g̃ → q̃∗RiqRi)

=
∑
j,k

cij
αs

32π

|λijk|2Im(AijkM
∗
g̃ )

|Mg̃|
f(ri, rj , rk), (3.14)

where

f(ri, rj , rk) = (1− ri)(1− rj)− rk ln
(
1 + r−1

k (1− ri)(1− rj)
)
. (3.15)

Here the constant cij has a nonzero value only for the process kinematically allowed: cij = 2

if the intermediate and final states (i.e., q̃∗j qj and q̃iq̄i) are both down-type (s)quarks,

and cij = 1 otherwise. In the above, we have ignored left-right mixing in the squark

sector for simplicity. It is straightforward to take into account the left-right mixing. The

function f(ri, rj , rk) behaves as f(ri, rj , rk) ' 1 when ri,j,k � 1. On the other hand, it

is possible that rk is greater than one. If rk > 1 (and ri,j � 1), then it is suppressed as

f(ri, rj , rk) ' 1/2rk. This behavior is expected because the loop diagram in figure 1 should

vanish in the limit mq̃k →∞.6

Now we discuss net baryon number generated by the gluino decay. First we write the

(s)quark number which is generated by the decay of a single gluino as

∆nq̃i = −∆nqi =
∆Γ(g̃ → q̃Riq̄Ri)

Γg̃
. (3.16)

Even though it is zero just after the gluino decay, nonzero baryon number is generated

by subsequent ∆B 6= 0 squark decay processes. Possible decay modes of the squark are

∆B = 1 processes such as q̃i → q̄j q̄k, and ∆B = 0 processes such as q̃ → χ̃0q with χ̃0

being a neutralino. Here the ∆B = 1 process also includes the case where q̃ → q̃′W/Z and

subsequently q̃′ decays to quark pairs via the baryon-number violating operator. Eventually

the net baryon number generated by a single gluino is obtained as

εB ≡
∑
i

∆nq̃i

[
Brq̃i ×

(
−2

3

)
+ (1− Brq̃i)× 1

3

]
+
∑
i

∆nqi ×
1

3

= −
∑
i

∆nq̃iBrq̃i . (3.17)

6This point was not discussed in ref. [22].
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Here Brq̃i is the branching fraction for the ∆B = 1 decay process, which can be the

dominant mode when the λijk is order unity, or it is unity when q̃i is the lightest sparticle.

Then, the baryon number density from a gluino decay is

nB = ng̃ εB

= 2nXBr(X → g̃g̃)εB

' 2

3
nXεB, (3.18)

where ng̃ and nX are the number density of gluino and the modulus, respectively, and we

have used eq. (3.9) at the last step. Under the assumption that all the energy density of

the modulus turns into radiation at its decay, i.e., ρX = mXnX ' ρR (ρR is the energy

density of radiation), the yield of baryon asymmetry is obtained as

nB
s

=
3TX
4mX

2Br(X → g̃g̃)εB. (3.19)

Let us estimate the baryon asymmetry in this baryogenesis scenario. For the estimation

of the asymmetry, we assume that only λ332 is nonzero for simplicity.7 The total decay

width of the gluino is then given by

Γg̃ ' 4nfΓ(g̃ → q̃iq̄i) '
αsnf

2
|Mg̃|. (3.20)

Here a factor four counts CP conjugate, and left-handed and right-handed fields, and nf is

the number of quark flavors to which gluino can decay. We have taken the limit ri � 1 for

the kinematically allowed decay for simplicity. In the same limit and taking nf = 6, then

the asymmetry is given by

∆Γg̃ =
∑
i

∆Γ(g̃ → q̃Riq̄Ri)

' αs
4π

|λ332|2Im(A332M
∗
g̃ )

|Mg̃|
, (3.21)

which leads to8

∆Γg̃
Γg̃
' 1

12π

|λ332|2Im(A332M
∗
g̃ )

|Mg̃|2
. (3.22)

This is the typical scale of asymmetric parameter when the gluino is much heavier than

the squarks. Furthermore taking Brt̃, b̃, s̃ = Brq̃, we get

εB ' 1.3× 10−3

(
|λ332|2 Im(A332M

∗
g̃ )/|Mg̃|2

−0.1

)(
Brq̃

0.5

)
, (3.23)

7Actually the case where only λ332 is sizable is realistic in the phenomenological point of view. One of

well-motivated scenarios is the minimal flavor violation [60].
8This expression has a different factor compared to the result given in ref. [22]. In ref. [22], it is − 1

16π

instead of 1
12π

.

– 12 –



J
H
E
P
0
2
(
2
0
1
4
)
0
6
2

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

m3/2 (GeV)

10
-12

10
-11

10
-10

10
-9

10
-8

n
B

/ s
case (i)

case (ii)

Figure 2. Baryon asymmetry generated by modulus decays as a function of the gravitino mass

for cases where (i) mt̃, b̃, s̃ = msoft, Brt̃, b̃, s̃ = 0.5 and (ii) mt̃, b̃ = msoft, Brt̃, b̃ = 0.5, where msoft =

m3/2/4π
2. For both cases, the gluino mass is taken as Mg̃ = 3msoft, and the other squark masses

are taken to be mq̃ = 6msoft. For the modulus mass, we take mX = 2m3/2 ln(MP /m3/2) following

eq. (2.16). Upper and lower bands correspond to the baryon asymmetry in case (i) and (ii),

respectively. For both cases, the CP phase is in the region, 0.01 ≤ −|λ332|2(Im(A332M
∗
g̃ )/|Mg̃|2) ≤

0.1. The observed value given in eq. (1.1) is depicted as “Planck ′13”.

which results in

nB
s
' 4.9× 10−10

( g∗
106.75

)−1/4 ( mX

108 GeV

)1/2 ( εB
10−3

)
. (3.24)

Therefore, the observed baryon asymmetry of the Universe can be obtained with O(0.1)

CP phase and O(1) baryon-number violating coupling if the modulus X has a mass around

106–108 GeV. In the later numerical calculation, we also take into account the effect of

sphaleron processes. Namely, we replace nB/s as (28/79) × nB/s when TX & 4πmW /g
2
2,

where mW is the W boson mass.

3.2 Numerical result

In this subsection we give the numerical results. Since we are considering the KKLT moduli

stabilization where the modulus and anomaly mediations give comparable contributions to

the soft SUSY breaking terms, the typical mass scale for the sparticles is given by

msoft =
m3/2

4π2
. (3.25)
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The precise sparticle mass spectrum is model-dependent, i.e., it relies on the details of

moduli stabilization and moduli couplings to the visible sector, renormalization group flow

from the cut-off scale, and presence or absence of intermediate scale gauge-charged matters.

In the following analysis we parametrize the relevant sparticle masses by msoft, and use the

relation eq. (2.16) for the modulus mass. For simplicity, we take only λ332 to be nonzero.

Let us consider the following two examples:

(i) Mg̃ = 3msoft, mt̃, b̃, s̃ = msoft, mq̃ 6=t̃, b̃, s̃ = 6msoft, Brt̃, b̃, s̃ = 0.5,

(ii) Mg̃ = 3msoft, mt̃, b̃ = msoft, mq̃ 6=t̃, b̃ = 6msoft, Brt̃, b̃ = 0.5.

For both cases we take the effective CP violation parameter to be

0.01 ≤ − |λ332|2
Im(A332M

∗
g̃ )

|Mg̃|2
≤ 0.1, (3.26)

where we have taken into account that the KKLT moduli stabilization leads to CP violation

according to eq. (2.20) and assumed |λ332| ∼ O(1). The observed baryon asymmetry given

in eq. (1.1) is drawn in the plot. The baryon asymmetry in the case (ii) is expected to

be suppressed by M2
g̃ /m

2
s̃ as we mentioned in the previous subsection. We show it as an

reference of one of the possible SUSY mass spectra.

Figure 2 shows nB/s as a function of m3/2. The baryon asymmetry from the modulus

decay is shown by the upper band for the case (i), and by the lower one for the case (ii).

We have checked the out-of-equilibrium condition for the gluino and the squark is fulfilled

in a wide range of the parameter space, such as m3/2 . 1014 GeV. One can see that, in the

case (i), the correct amount of baryon asymmetry is generated when the gravitino mass is

around 105–107 GeV, which corresponds to msoft ∼ 103–105 GeV. This is consistent with a

rough estimation given in eq. (3.24). On the other hand, in the case (ii), the suppression by

the strange squark mass makes the baryon asymmetry smaller compared to the previous

case by around an order of magnitude.9 As a consequence, a larger gravitino mass is

required to account for the baryon asymmetry of the Universe. The figure shows that the

gravitino mass should lie in the range about 107–1010 GeV.

The gravitino can be produced by the modulus decay with a branching fraction of

O(0.01). The produced gravitino acts as radiation until it decays because it is originally

produced relativistically. Thus it never dominates the Universe, and it does not cause

significant entropy production. In addition, the gravitino decay does not destroy the suc-

cessful BBN if m3/2 & 10 TeV, which is satisfied in the parameter range of our interest.

Therefore, the asymmetry generated by modulus (and subsequent sparticle) decays is not

diluted. It is also important to note that the moduli-induced gravitino problem [32–35] is

avoided in the presence of R-parity violating operators because the lightest sparticle is not

stable anymore.

9The suppression factor can be estimated as follows. Since the gluino cannot decay to strange (s)quark,

Γg̃ becomes (2/3) × Γg̃ compared to the case (i), and ∆Γg̃ becomes (1/4)(M2
g̃ /2m

2
s̃) ×∆Γg̃. This gives a

suppression factor 3/63, which is consistent with the numerical result given in figure 2.
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Finally we comment on constraints from other experiments. A large CP phase coming

from arg(AijkM
∗
g̃ ) may induce sizable electric dipole moments (EDMs) of neutron and

electron. The current experimental bounds are given by [61, 62],

dn ≤ 2.9× 10−26 e cm (90% C.L.),

de ≤ 8.7× 10−29 e cm (90% C.L.),
(3.27)

for neutron and electron EDMs, respectively. We have estimated the neutron and electron

EDM based on refs. [63–65] (see also refs. [66, 67] and ref. [68]), and found that both

constraints give a similar bound as

Im(AijkM
∗
g̃ )/|Mg̃|2 . 0.1×

( msoft

1 TeV

)2
. (3.28)

Here we have taken the universal soft SUSY breaking mass, and neglected the CP phase

from µ/Bµ term [47]. Therefore the current bound allowsO(0.1) CP phase even if sparticles

are as low as around TeV, which confirms the parametrization in the numerical calculation,

i.e., eq. (3.26). If the CP phase from µ/Bµ term is included, the bound may become

more stringent by a factor, depending on the model. In any case, it is interesting since the

parameter space we are interested in may be probed in the ongoing or future measurements

of the EDMs.

The baryon-number violating operators possibly induce neutron-antineutron (n-n̄) os-

cillation or dinucleon decay. Those experiments constrain the coupling in light flavors, such

as uds̃ (in two-component notation). However, even if λ112 is negligibly small, sizable λ332

induces uds̃-type coupling at one loop. For instance, λ332 = 1 gives a value of O(10−7)

for the light flavor coupling [69]. Thus it may constrain our baryogenesis scenario. Super-

Kamiokande experiment gives constraint on the time scale of n-n̄ oscillation and dinucleon

decay in 16O [70, 71],

τn-n̄ ≥ 2.4× 108 sec (90% C.L.),

τ(pp→ K+K−) ≥ 1.7× 1032 yr (90% C.L.).
(3.29)

We have estimated the time scale of n-n̄ oscillation and the decay rate of pp → K+K−

based on refs. [69, 72], then we found the experimental bounds above give rise to

|λ112| . 4.4× 10−3
( msoft

1 TeV

)5/6
(

250 MeV

Λ̃

)
, (3.30)

|λ112| . 3.2× 10−7
( msoft

1 TeV

)5/2
(

250 MeV

Λ̃

)5/2

, (3.31)

respectively. Here we have set Mg̃ = mq̃ = msoft for simplicity. Λ̃ is the hadronic scale used

in the evaluation of the hadronic matrix element, which has theoretical uncertainty. As it is

seen, the dinucleon decay experiment gives more stringent constraint than n-n̄ oscillation.

Especially the bound from dinucleon decay is interesting. Recall that the numerical result

implies that mq̃ ∼ O(1) TeV with λ332 ∼ O(1) leads to the right abundance of baryon (i.e.,

case(i)). This means that a part of the parameter region where our baryogenesis works

can be probed in the current or future experiments. In addition, the squark with a mass

of O(1) TeV may be discovered at the collider experiments, such as the LHC or the ILC.
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4 Other scenarios

So far we have discussed baryogenesis by the modulus decay. As it has been shown, the

KKLT scenario has important ingredients for the baryogenesis, i.e., suppressed interactions

of the moduli with the visible sector, a large enough CP phase and a large branching fraction

to gluinos in the modulus decay. Other than the KKLT scenario, there are several possible

scenarios which possess (some of) the ingredients stated above. In this section we will

discuss the gravitino- and the saxion-induced baryogenesis.

4.1 Gravitino-induced baryogenesis

The baryogenesis by the gravitino decay was originally discussed by Cline and Raby in

ref. [22]. In their work relatively low SUSY breaking scale, which is around several hundred

GeV, was studied. Recently ref. [58] pursued the gravitino-induced leptogenesis using

lepton number violating operators. Here we revisit the original case by Cline and Raby,

also considering high scale SUSY breaking region.

The gravitino is produced effectively at a high temperature. If the reheating temper-

ature after inflation is high enough, the gravitino is copiously generated, and eventually

dominates the Universe. In addition, the gravitino can also be produced by the inflaton

decay [26–31]. In the typical mass spectra given in eq. (3.25), the gravitino decays to the

MSSM particles. The total decay rate is given by

Γ3/2 =
∑
i

[
Γ(ψµ → φ̃iφi) + Γ(ψµ → ¯̃

φiφ
∗
i )
]

+
∑
a

Γ(ψµ → λaAa), (4.1)

where ψµ is the gravitino, φ̃i is the fermionic superpartner of scalar φi and10

Γ(ψµ → φ̃iφi) =
1

192π

m3
3/2

M2
P

[
1−

m2
φ

m2
3/2

]4

, (4.2)

Γ(ψµ → λaAa) =
1

32π

m3
3/2

M2
P

[
1− M2

a

m2
3/2

]3 [
1 +

M2
a

3m2
3/2

]
. (4.3)

Here we have neglected gauge boson masses. Since the decay rates are Planck suppressed

as in moduli decay, the reheating temperature is typically the same as eq. (3.8). Now let us

suppose that the gravitino decays to all MSSM particles. Then taking the large gravitino

mass limit, the total decay width is given by

Γ3/2 '
1

32π

(
1

3
N +Ng

) m3
3/2

M2
P

(4.4)

where N = 49 is the number of chiral superfields (neglecting right-handed neutrinos) and

Ng = 12 is the number of gauginos in the MSSM. Then the reheating temperature is

10We found a typo for Γ(ψµ → φ̃iφi) given in ref. [73]. We thank T. Moroi for confirming this point. For

Γ(ψµ → λaAa), we got consistent result with ref. [73], which is four times smaller than the result given in

ref. [22].
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estimated as

T3/2 ' 1.9× 102 GeV
( g∗

106.75

)−1/4 ( m3/2

108 GeV

)3/2

. (4.5)

In the gravitino decay a fair amount of gluinos is produced if it is kinematically allowed.

The branching ratio of the decay to gluino and gluon, under the assumption above, is then

Br(ψµ → g̃g) =
Γ(ψµ → g̃g)

Γ3/2
' 8

N/3 +Ng
=

24

85
. (4.6)

This large branching fraction is important for the baryogenesis. Net baryon asymmetry

from the gluino decay is then expressed as

nB
s

∣∣∣
gluino

=
3T3/2

4m3/2
Br(ψµ → g̃g)εB. (4.7)

Using eqs. (4.5) and (4.6), nB/s is estimated as

nB
s

∣∣∣
gluino

' 3.9× 10−10
( g∗

106.75

)−1/4 ( m3/2

108 GeV

)1/2 ( εB
10−3

)
. (4.8)

On the other hand, the decay modes to quark and squark are also important. In the

mass spectrum mentioned above, the branching fraction is

Br(ψµ → q̃Rq̄R) =

∑
i [Γ(ψµ → q̃Riq̄Ri) + Γ(ψµ → q̃∗RiqRi)]

Γ3/2
' 3nf
N/3 +Ng

=
9nf
85

, (4.9)

where nf is the number of quark flavors which can be produced by the gravitino decay. As

it is seen, the branching fraction can be comparable to Br(ψµ → g̃g). Note that this decay

mode has the asymmetry between its CP conjugate and itself, which is given by a similar

diagram depicted in figure 1 just by replacing the gluino with the gravitino. Therefore if

physical CP phase Im(Aijkm
∗
3/2) is nonzero, then baryon asymmetry is generated. As a

result of straightforward calculation, we get

∆Γ(ψµ → q̃Riq̄Ri) =
∑
j,k

1

256π2

|λijk|2Im(Aijkm
∗
3/2)|m3/2|

M2
P

g(ri, rj , rk), (4.10)

where

g(ri, rj , rk) = (1− ri)(1− rj) [(1− ri)(1− rj) + 6rk]

−2rk [2(1− ri)(1− rj) + 3rk] ln

[
1 +

(1− ri)(1− rj)
rk

]
. (4.11)

Here ri = m2
q̃i
/|m3/2|2. Similarly to f(ri, rj , rk), g(ri, rj , rk) approaches to unity when

ri,j,k � 1, while it is suppressed as g(ri, rj , rk) ' 1/2rk when rk > 1 and ri,j � 1 as

expected. Then net baryon number directly generated by the gravitino decay is obtained as

ε′B ≡ −
∑
i

∆Γ(ψµ → q̃Riq̄Ri)

Γ3/2
Brq̃i . (4.12)
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Now, let us consider only nonzero λ332 as in the section 3.1. In the large gravitino

mass limit, we get11

∑
i

∆Γ(ψµ → q̃Riq̄Ri) '
1

32π2

|λ332|2Im(A332m
∗
3/2)|m3/2|

M2
P

, (4.13)

which gives rise to

∑
i

∆Γ(ψµ → q̃Riq̄Ri)

Γ3/2
' 3

260π

|λ332|2Im(A332m
∗
3/2)

|m3/2|2
. (4.14)

Taking Brt̃, b̃, s̃ = Brq̃, net baryon number generated due to this process is given by

ε′B ' 5.6× 10−4

(
|λ332|2 Im(A332m

∗
3/2)/|m3/2|2

−0.1

)(
Brq̃

0.5

)
. (4.15)

Then baryon asymmetry directly generated by the gravitino decay to quark and squark is

nB
s

∣∣∣
squark

=
3T3/2

4m3/2
ε′B

' 8.3× 10−10
( g∗

106.75

)−1/4 ( m3/2

108 GeV

)1/2
(

ε′B
6× 10−4

)
. (4.16)

Therefore, it is seen that the baryon number which is resulted in the processes ψµ → q̃Rq̄R,

q̃∗RqR has the same order as gluino-mediated one.

Finally let us compare those results with ref. [22]. In their work, they took the max-

imum value for CP phase which is allowed by constraints from neutron EDM experiment

at that time. (dn ≤ 10−26 e cm was used there.) We have estimated the CP phase by fol-

lowing the way they described in their paper. Then taking Brq̃i = 1 and |λ332| = 4π × 0.1

as they did, we get

nB
s

=
nB
s

∣∣∣
gluino

+
nB
s

∣∣∣
squark

' 1.6× 10−10
( g∗

10.75

)−1/4 ( m3/2

2 TeV

)1/2

. (4.17)

This is almost consistent with ref. [22] up to O(1) factor.

4.2 Saxion-induced baryogenesis

The Peccei-Quinn (PQ) mechanism is a plausible solution to the strong CP problem, and it

predicts a pseudo Nambu-Goldstone boson, the axion [74–80], which acquires a small mass

predominantly from the QCD anomaly. The axion is stable on cosmological time scale,

thus it is a good candidate for dark matter. In the supersymmetric extension of the PQ

mechanism, its scalar partner, called saxion, remains relatively light as it acquires a mass

only from the SUSY breaking effects. In fact, it is known that the saxion tends to dominate

11In ref. [22] a factor 3
4

1
32π2 is given instead of 1

32π2 .
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the energy density of the early Universe, and it plays a similar role as the modulus. The

advantages of using the saxion as a source of the baryogenesis are two folds. First, it

necessarily couples to the QCD gauge sector in order to solve the strong CP problem, and

therefore naturally decays into gluons and gluinos. Secondly, the baryogenesis can be more

efficient because the decay temperature will be relatively high for the axion decay constant

Fa is smaller than the GUT scale.

Let us assume that the coherent oscillation of the saxion dominates the energy density

of the Universe. The amount of baryon asymmetry generated by the saxion decay depends

on the reheating temperature Ts at the saxion decay as well as the branching fraction for

the saxion decay into a gluino pair. In particular, the latter depends on the saxion coupling

to axion,

ξ

Fa
s(∂a)2, (4.18)

where s and a are the saxion and axion, respectively, and ξ is a model-dependent numerical

coefficient. In order to have a sizable branching fraction into gluino pair, and also to avoid

the overproduction of axionic dark radiation, ξ must be highly suppressed below unity since

the saxion coupling to the QCD gauge sector is one-loop suppressed for a given axion decay

constant Fa.
12 As the precise value of ξ depends on how the PQ scalars are stabilized, let

us see the axion models in some detail.

The axion models can be categorized according to whether the PQ symmetry is realized

linearly or non-linearly. For the former case, which is sometimes dubbed a field-theoretic

axion model, the axion decay constant Fa ranges from an intermediate scale up to the

GUT scale. The saxion coupling with axion depends on the stabilization mechanism. In a

model with a single PQ scalar, ξ is of order unity. One way to suppress ξ is to consider a

model with two PQ scalars S1 and S2, which have an opposite PQ charge each other, and

a U(1)PQ singlet Σ,

WPQ = λΣ(S1S2 − µ2), (4.19)

so that the PQ symmetry is broken along the F -flat direction S1S2 = µ2, which is lifted

by SUSY breaking effects. In this model, the axion decay constant is given by µ. If S1 and

S2 obtain the soft scalar masses of a similar size, then ξ is suppressed as ξ2 ∼ ∆m2
S/m

2
S ,

where m2
S is the typical size of their soft masses and ∆m2

S is the mass splitting between

them [82].

The latter case, which is called a string axion model, on the other hand, corresponds

to the case where the axionic shift symmetry of some moduli remains unbroken (except

for the QCD anomaly). The axion decay constant is then typically around MP /8π
2 unless

the Kähler metric of the saxion is hierarchically smaller than unity at the vacuum. Thus,

in this case, one needs to assume a small initial misalignment of the axion in order for the

axion relic energy density not to overclose the Universe. On the other hand, the saxion

12The branching fraction into the axions can also be suppressed by introducing a coupling of the saxion

to the Higgs fields [81] or the right-handed neutrinos [82]. The axionic dark radiation has been extensively

studied in e.g., refs. [81–87].
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coupling to axion is typically suppressed as ξ ∼ 1/8π2, and thus the branching fraction of

the saxion decay into gluino pair is naturally sizable and is comparable to that into the

axions [85]. This can be understood by noting that the coupling to the QCD gauge sector

arises at tree level in this case.

We note that the KKLT mechanism provides a natural framework to implement the

saxion-induced baryogenesis both for the field-theoretic and the string axion models. First,

the CP phase is obtained in the same way as explained in section 2. Note that the F -

term in the axion multiplet does not induce a new CP phase in the MSSM soft terms

because the soft terms generating a saxion potential depend on the moduli F -terms and

the gravitino mass. Besides, the suppression for ξ can be also implemented in both models

with the KKLT scenario. For the axion model described in eq. (4.19), let us assume that

the Yukawa couplings of S1 and S2 are small, and the PQ scalars S1 and S2 have the

same modulus dependence, i.e., the same modular weight. Since the symmetry under

interchanging between S1 and S2 is a good symmetry, then one can naturally achieve

∆m2
S � m2

S , suppressing the saxion coupling to the axion. On the other hand, in the

string axion model, the QCD axion can arise from a Kähler modulus in the KKLT scenario

with multiple Kähler moduli, if the axionic shift symmetry for the Kähler modulus is

not broken explicitly. [88, 89]. This modulus is stabilized with a mass of about
√

2m3/2

through Kähler mixing with other moduli, which are stabilized by the non-perturbative

superpotential as in the original KKLT.

In either field-theoretic axion model or string axion model, the modulus X may domi-

nate the Universe before the saxion-dominated Universe. This is because the saxion is much

lighter than the modulus. Although the modulus decay generates the baryon asymmetry

as we have described, the asymmetry is washed out by the saxion decay later. However,

the saxion decay can generate baryon asymmetry.

Now let us estimate the baryon asymmetry produced by the saxion. For simplicity we

consider the case where the axion production from the saxion decays is negligible, and the

saxion dominantly decays to a gluon pair and a gluino pair. Including the decay into the

axions does not affect our results as long as |ξ| . 1/8π2.

The saxion couplings to gluon and gluino are given (in two-component notation) by

Ls =
αs
8π

s

Fa
GµνG

µν − αs
8π

mss

Fa
(κg̃g̃ + h.c.), (4.20)

where Gµν is the gluon field strength and ms is the saxion mass, and the order unity

constant κ is determined by how the saxion is stabilized. The above couplings mediate the

saxion decay into a gluon pair and a gluino pair with

Γ(s→ gg) =
αs

32π3

m3
s

F 2
a

, (4.21)

Γ(s→ g̃g̃) =
αs

32π3

m3
s

F 2
a

[
1−

4M2
g̃

m2
s

][
|κ|2

(
1−

M2
g̃

2m2
s

)
− 2Re(κ2)

M2
g̃

m2
s

]
. (4.22)

Then the total decay rate of the saxion is given as

Γs '
αs

32π3

m3
s

F 2
a

(
1 + |κ|2

)
, (4.23)
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neglecting the gluino mass in the final state. Consequently the branching ratio for the

process s→ g̃g̃ is obtained as

Br(s→ g̃g̃) ' |κ|2
1 + |κ|2 . (4.24)

On the contrary, Br(s→ g̃g̃) ' (1+m2
s/8M

2
g̃ )−1 was given in ref. [23]. This result indicates

a chiral suppression due to the gluino mass since Br(s → g̃g̃) → 0 when Mg̃ → 0. As it

is seen, however, there is no such chiral suppression in eq. (4.24), which is already pointed

out by ref. [37]. Since |κ| is order unity, the saxion can dominantly decay into a gluino pair.

This makes the baryogenesis by the saxion decay more efficient than originally considered

in ref. [23].

After the gluino production, the same story follows as in the modulus case. In the

string axion models, the reheating temperature is similar to the modulus case, while it can

be higher in field-theoretic axion models if the axion decay constant is smaller than the

GUT scale. The reheating temperature is given by

Ts ' 0.73 GeV
( g∗

10.75

)−1/4
(

1016 GeV

Fa

)( ms

105 GeV

)3/2
, (4.25)

where we have taken κ = 1. The resultant asymmetric yield is estimated by

nB
s

=
3Ts
4ms

2Br(s→ g̃g̃)εB

' 5.4× 10−10
( g∗

10.75

)−1/4 ( ms

105 GeV

)1/2
(

1016 GeV

Fa

)(
Br(s→ g̃g̃)

1/2

)( εB
10−3

)
.

(4.26)

Thus the right amount of baryon asymmetry can be generated for the saxion mass around

103−105 GeV. On top of that, as mentioned above, the axion produced by the misalignment

mechanism contributes to the cold dark matter. This fact is especially important because

the lightest sparticle is no longer stable due to the R-parity violation.

5 Conclusions and Discussion

In this paper we have studied a baryogenesis induced by late-decaying moduli, and ex-

amined its implications for the moduli stabilization and the SUSY breaking scale. If the

branching fraction of the modulus into a gluino pair is sizable, the right amount of baryon

asymmetry can be generated through CP violating decay of gluino into quark and squark

followed by baryon-number violating squark decays. We have shown that a natural frame-

work realizing the baryogenesis is provided by the KKLT-type moduli stabilization since

sufficient CP violation is obtained from mixed modulus-anomaly mediated SUSY breaking

in the presence of two or more non-perturbative terms in the modulus superpotential. Suc-

cessful baryogenesis is possible for the gravitino mass around 105–107 GeV or equivalently

the soft SUSY breaking mass msoft ∼ 103–105 GeV (or heavier for a suppressed CP phase

or effective CP violation parameter). Such low SUSY breaking scale can be probed directly
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at the collider experiments, dinucleon decay search, and electric dipole moments of neutron

and electron. We also found that similar baryogenesis works successfully in other scenarios

where the saxion or the gravitino dominates the Universe.

Lastly let us discuss baryogenesis in a couple of other moduli stabilization and SUSY

breaking scenarios. We have mainly focused on the mixed modulus-anomaly mediation so

far, assuming a sequestered uplifting. If the uplifting is not sequestered, sfermion masses

are generically heavier than gaugino masses, then the gluino decay into quark and squark

will be kinematically forbidden. Even in such case, however, the gravitino produced by the

modulus decay will be able to generate baryon asymmetry.

The large volume scenario [90] can also lead to CP violating soft terms if one takes

the same form of the superpotential for a small 4-cycle modulus as in Eq. (2.15). However,

one cannot simply apply the moduli-induced baryogenesis discussed in the present paper

to the large volume scenario because the overall volume modulus, which has a small mass

compared to other moduli, does not appear in the visible gauge kinetic function and thus

weakly couples to gluino. In addition, the modulus decay into a pair of gravitinos is

kinematically forbidden and the decay into Higgsinos is suppressed due to the approximate

no-scale structure even in the presence of the Giudice-Masiero term [84]. Those fact indicate

much smaller amount of gluino produced by modulus decay, which suppress the resultant

baryon number.

Regarding the moduli stabilization, we note that there is a general tension between

moduli stabilization by non-perturbative effects and chirality [91]. To be specific, (a com-

bination of) the moduli XL appearing in the gauge kinetic function of the visible gauge

sector may not be stabilized by instantonic exponential terms. The saxion in the string ax-

ion model corresponds to this case, and as discussed before, it can be stabilized by another

way [88, 89] and the saxion-induced baryogenesis works. Alternatively, we may consider a

modulus field which is stabilized a la KKLT, while not appearing in the SM gauge kinetic

function. Such modulus field can still decay into gauge bosons and gauginos through the

kinetic mixing with XL. Thus the baryon asymmetry will be generated by the subsequent

gluino decay, although it may be diluted by the decay of lighter moduli XL to some extent.

Similar baryogenesis can be also realized in gravity mediation. In the gravity-mediated

SUSY breaking, the MSSM gaugino masses are generated by Planck-scale suppressed inter-

actions with an elementary gauge singlet field called the Polonyi field. Since it is a singlet

under any symmetry of the theory, there is no special point in its field space. Therefore,

during inflation, the Polonyi field is generically deviated from the true minimum, as the

effective potential for the Polonyi field during inflation is deformed by its gravitational

couplings with the inflaton. After inflation, the Polonyi starts to oscillate about the mini-

mum with an amplitude of order the Planck scale, and soon dominates the energy density

of the Universe. The Polonyi field will decay into the MSSM gauge sector, and thus the

baryogenesis by the Polonyi decay will be possible. In particular, a sizable A-term as well

as large CP phases are naturally generated in the gravity mediation, which nicely fits with

the current scenario. The resultant baryon asymmetry is similar to (3.24) if the modulus

mass is replaced with the Polonyi mass, which is order of the gravitino mass.
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[42] A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the

supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995)

747] [hep-ph/9308271] [INSPIRE].

[43] K. Choi, Small SUSY phases in string inspired supergravity, Phys. Rev. Lett. 72 (1994) 1592

[hep-ph/9311352] [INSPIRE].

[44] K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux

compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076

[hep-th/0411066] [INSPIRE].

[45] K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in

KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

[46] M. Endo, M. Yamaguchi and K. Yoshioka, A Bottom-up approach to moduli dynamics in

heavy gravitino scenario: Superpotential, soft terms and sparticle mass spectrum, Phys. Rev.

D 72 (2005) 015004 [hep-ph/0504036] [INSPIRE].

[47] K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly

mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039

[hep-ph/0504037] [INSPIRE].

[48] V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective

supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].
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