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1 Introduction

Perhaps the most successful holographic model of QCD has been the Sakai-Sugimoto

model [1, 2], defined by the physics of Nf probe D8-branes in the background dual to

the decoupling limit of Nc D4-branes compactified on a circle with antiperiodic boundary

conditions for the fermions. This model reproduces many features of real QCD, including

chiral symmetry breaking, a deconfinement transition [3, 4], and a realistic meson spectrum.

The description of baryons in the Sakai-Sugimoto model involves solitonic configura-

tions of the Yang-Mills field on the D8-brane.1 In a simplified ansatz where the Yang-Mills

field is taken to depend only on the four non-compact spatial directions in the bulk, con-

figurations with baryon charge are precisely those configurations with non-zero instanton

number for this reduced 4D Yang-Mills field [1, 5–7]. This connection between baryon

charge and bulk instanton number stems from a Chern-Simons term s tr (F ∧ F ) in the

reduced D8-brane action. Here, tr (F ∧ F ) is the instanton density for the SU(2) part of

the Yang-Mills field, and s is the U(1) part of the Yang-Mills field, dual to the baryon

current operator in the field theory.

To date, the study of baryons in the Sakai-Sugimoto model has been somewhat un-

satisfactory, for several reasons: I) While the action for the gauge field is of Born-Infeld

type, only the leading Yang-Mills terms are typically used when studying the instantons.

II) For large ’t Hooft coupling where the model can be studied most reliably, the size of

the instanton in the bulk has been argued to be much smaller than the size of the compact

directions in the bulk. In this case, the assumption that the gauge field does not depend

1Mesons correspond to pertubative excitations of the D8-branes.
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on the compact directions is questionable. III) Rather than solving the bulk equations

to determine the precise solitonic configuration of the Yang-Mills field, the form has been

taken to be that of a flat-space SO(4) symmetric instanton, with the size of the instanton

as the only free parameter.

The assumptions in I) and II) here amount to replacing the original top-down Sakai-

Sugimoto model with a phenomenological (bottom-up) holographic model that retains

many of the same successes as the Sakai-Sugimoto model. For the present paper, we

continue to make these assumptions, though we hope to relax them in future work in order

to better understand baryons in the fully-consistent top-down model. Our goal in the

present paper is to overcome the third deficiency, by setting up and solving numerically a set

of partial differential equations that determine the proper form of the soliton.2 Using these

solutions, we are able to calculate the mass and baryon charge distribution of the baryons

as a function of the model parameter γ (proportional to the inverse ’t Hooft coupling λ)

that controls the strength of the Chern-Simons term relative to the Yang-Mills term.

One motivation for our work is the work of [11], which points out that the flat-space

instanton approximation used previously does not give the correct large radius asymp-

totic behavior (known from model-independent constraints) for the baryon form factors

(computed for example in [12–14]). Via a perturbative expansion of the equations at large

radius, it was later shown [15] that by relaxing the assumption of SO(4) symmetry, the

proper asymptotic behavior can be recovered.3 Thus, we expect that by constructing and

studying the complete solutions, we can obtain a significantly improved picture of the

properties of baryons in holographic QCD.

The solutions that we find take the form of “oblate instantons”: compared with the

SO(4) symmetric configurations, the correct solutions are deformed to configurations with

SO(3) symmetry that are spread out more in the field theory directions than in the radial

direction. This shape is expected. The Coulomb repulsion between instanton charge density

at different locations (induced by the Chern-Simons coupling to the Abelian gauge field)

acts symmetrically in all directions, impelling the instanton to spread out both in the

radial and field theory directions. Gravitational forces in the bulk limit the spreading in

the radial direction, but there are no equivalent forces acting to radially compress the

instanton in the field theory directions. Thus, the instanton is oblate, compressed in one

direction relative to the other three. The anisotropy is limited by the Yang-Mills action

for the SU(2) gauge field, which in flat space is minimized (in the one-instanton sector) for

spherically symmetric configurations.

The size and anisotropy of the instantons is controlled by the parameter γ (related

to the inverse ’t Hooft coupling in the original model). For small γ, the spreading effects

of the Chern-Simons term are small, and the instantons become small and approximately

symmetrical near their core. For larger γ, the instantons become significantly larger and

more anisotropic. Using our numerics, we are able to construct solutions up to γ of order

100 and evaluate the mass and baryon charge profiles of the corresponding baryons.

2[8–10] have used a similar numerical approach in other phenomenological holographic QCD models.
3In the earlier work [16], a similar expansion was used in a phenomenological holographic QCD model.

See also [17] for a recent related study.
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While our model is not expected to quantitatively match real-world QCD measure-

ments, previous studies have found that the meson spectrum agrees reasonably well with

the spectrum in QCD for a suitable choice of the parameter γ. Thus, it is interesting to

compare the mass and size of the baryons in our model to the QCD values for the light

nucleons. Using the value γ = 2.55 that gives the best fit to the meson spectrum [13],

we find that the mass and baryon charge radius of the baryon are 1.19 GeV and 0.90 fm.

This mass is significantly closer to realistic values (∼ 0.94 GeV for the proton and neutron)

than the previous value of 1.60 GeV based on the SO(4) symmetric ansatz. The baryon

charge radius is quite similar to measured values for the size of the proton and neutron.

For example, the electric charge radius of a proton has been measured to be in the range

0.84 fm–0.88 fm [18], while the magnetic radii of the proton and neutron are listed in [18]

as 0.78 fm and 0.86 fm respectively.

An outline for the remainder of the paper is as follows: in section 2, we briefly review the

description of baryons in the Sakai-Sugimoto model and set up the problem. In section 3,

we describe our numerical approach to the equations. In section 4, we describe physical

properties of the solution, focusing on the baryon mass and the distribution of baryon

charge (charge density as a function of radius), as a function of γ. Our main results may

be found in figures 4 and 7. We conclude in section 5 with a brief discussion of directions

for future work.

Note: while this work was being completed, [19] appeared, which also presents a nu-

merical solution of the Sakai-Sugimoto NB = 1 soliton, using different methods, and which

has some overlap with this paper.

2 Baryons as solitons in the Sakai-Sugimoto model

In this section, we give a brief review of the Sakai-Sugimoto model and set up the con-

struction of a baryon in this model.

The Sakai-Sugimoto model consists ofNf probe D8 branes in the near horizon geometry

of Nc D4 branes wrapped on a circle with anti-periodic boundary conditions for the

fermions. The metric of the D4 background is [3]

ds2 =
λ

3
l2s

(
4

9
u

3
2
(
ηµνdx

µdxν + f(u)dx2
4

)
+

1

u
3
2

(
du2

f(u)
+ u2dΩ2

4

))
,

eΦ =

(
λ

3

) 3
2 u

3
4

πNc
, f(u) = 1− 1

u3
, F4 = dC3 =

2πNc

V4
ε4, (2.1)

where ε4 is the volume form on S4 and V4 is the volume of the unit 4-sphere. The direction

x4, with radius 2π, corresponds to the direction on which the D4-branes are compactified.

The u and x4 directions form a cigar-type geometry and the space pinches off at u = 1. The

four dimensional SU(Nc) gauge theory dual to this metric has a dimensionless coupling λ.

The flavor degrees of freedom are provided by Nf probe D8 branes in the back-

ground (2.1). The action for a single D8 brane is

SD8 = −µ8

∫
d9σe−Φ

√
−det(gab + 2πα′Fab) + SCS , (2.2)
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with µ8 = 1/(2π)8l9s and where SCS is the Chern-Simons term. Below, we expand this

action around a particular embedding and take the non-Abelian generalization of the result

to define the action we consider. We take the probe branes to wrap the sphere directions

and fill the 3+1 field theory directions. Then, the embedding is described by a curve x4(u)

in the cigar geometry, with boundary conditions fixing the position of the probe branes

as u→∞.

In this paper, we consider only the antipodal case, in which the ends of the probe branes

are held at opposite sides of the x4 circle. The minimum energy configuration with these

boundary conditions is that in which the probe branes extend down the cigar at constant

angle x4, meeting at u = 1. Going to the radial coordinate z defined by u3 = 1 + z2, and

expanding the action (2.2) for small gauge fields around the antipodal embedding gives the

model we consider [5]:

S = −κ
∫
d4xdz tr

[
1

2
h(z)F2

µν + k(z)F2
µz

]
+

Nc

24π2

∫
M5

tr

(
AF2 − i

2
A3F − 1

10
A5

)
, (2.3)

where κ = λNc/
(
216π3

)
, h(z) =

(
1 + z2

)−1/3
and k(z) = 1 + z2. A is a U(Nf ) gauge field

with field strength F = dA+ iA∧A. In this paper, we focus on the case Nf = 2. We split

the gauge field into SU(2) and U(1) parts as A = A+ 1
2I2Â.4

The competing forces that determine the size of the soliton are evident in the effective

action (2.3). First, the gravitational potential of the curved background will work to

localize the soliton near the tip of the cigar, at z = 0. This will be counterbalanced by

the repulsive potential due to the coupling between the U(1) part of the gauge field and

the instanton charge in the Chern-Simons term. At large λ, the effect of the Chern-Simons

term is suppressed, and the result is a small instanton, which was previously approximated

by the flat-space SO(4) symmetric BPST instanton. As discussed in [15], this approach

fails to properly describe several aspects of the baryon. Due to the curved background, the

actual solution will only be invariant under SO(3) rotations in the field theory directions.

This distinction is especially important if we wish to use this model away from the strict

large λ limit, as in that case, the soliton can become large such that the effects of the

curved background are important for more than just the asymptotics of the solution.

The most general field configuration invariant under combined SO(3) rotations and

SU(2) gauge transformations may be written as [20, 21]5

Aaj =
φ2 + 1

r2
εjakxk +

φ1

r3

[
δjar

2 − xjxa
]

+Ar
xjxa
r2

,

Aaz = Az
xa

r
, Â0 = ŝ, (2.4)

where each of the fields are functions of the boundary radial coordinate r2 = xaxa and

the holographic radial coordinate z. The ranges of these coordinates are 0 < r < ∞ and

4We define the SU(2) generators to satisfy
[
τa, τ b

]
= iεabcτ c.

5This ansatz has also been used in the study of holographic QCD in a phenomenological model [8–10]

and was applied to the Sakai-Sugimoto model in [15].
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−∞ < z < ∞. With these definitions, there is a residual gauge symmetry under which

Aµ transforms as a U(1) gauge field in the r − z plane and φ = φ1 + iφ2 transforms as a

complex scalar field with charge (−1), so that Dµφ = ∂µφ− iAµφ.

The free energy of the system is given by the Euclidean action evaluated on the solution.

Since we work at zero temperature and consider only static solutions, the mass-energy

equals the free energy, and we only pick up a minus sign from the analytic continuation.

Then, in terms of the above ansatz, the mass of the system is written as

M = MYM +MCS , (2.5)

where
∫
dtM = −S,

MYM = 4πκ

∫
drdz

[
h(z)|Drφ|2 + k(z)|Dzφ|2 +

1

4
r2k(z)F 2

µν

+
1

2r2
h(z)(1− |φ|2)2 − 1

2
r2
(
h(z)(∂rŝ)

2 + k(z)(∂z ŝ)
2
)]

(2.6)

and

MCS = −2πκγ

∫
drdz ŝ εµν [∂µ (−iφ∗Dνφ+ h.c.) + Fµν ] , (2.7)

with γ = Nc/
(
16π2κ

)
= 27π/(2λ) and Fµν = ∂µAν − ∂νAµ. For the classical solution, γ

is the only parameter in the system. It controls the relative strength of the Chern-Simons

term; a larger γ will increase the size of the soliton.

The equations of motion that follow from extremizing the mass-energy are given by

0 = Dr (h(z)Drφ) +Dz (k(z)Dzφ) +
h(z)

r2
φ
(
1− |φ|2

)
+ iγεµν∂µŝDνφ,

0 = ∂r
(
r2k(z)Frz

)
− k(z) (iφ∗Dzφ+ h.c.)− γεrz∂rŝ

(
1− |φ|2

)
,

0 = ∂z
(
r2k(z)Fzr

)
− h(z) (iφ∗Drφ+ h.c.)− γεzr∂z ŝ

(
1− |φ|2

)
,

0 = ∂r
(
h(z)r2∂rŝ

)
+ ∂z

(
k(z)r2∂z ŝ

)
− γ

2
εµν [∂µ (−iφ∗Dνφ+ h.c) + Fµν ] . (2.8)

The baryon number is given by the instanton number of the non-Abelian part of the

gauge field,

NB =
1

8π2

∫
d4x trF ∧ F

=
1

4π

∫
drdz εµν [∂µ(−iφ∗Dνφ+ h.c.) + Fµν ]

=
1

4π

∫
drdz (∂rqr + ∂zqz), (2.9)

where F is the field strength of the SU(2) gauge field A and

qr = (−iφ∗Dzφ+ h.c.) + 2Az, qz = (iφ∗Drφ+ h.c.)− 2Ar. (2.10)

Since the expression is a total derivative, the boundary conditions on our SU(2) gauge field

will set the baryon charge. We study configurations with NB = 1.
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3 Numerical setup and boundary conditions

In this section we describe our setup, including our boundary conditions, gauge fixing and

details about the numerical procedure we use.

3.1 Gauge fixing

There is a residual U(1) gauge freedom in the above ansatz, and we choose to use the

Lorentz gauge χ ≡ ∂µAµ = 0. Our gauge fixing is achieved by adding a gauge fixing term

to the equations of motion, analogous to the Einstein-DeTurck method developed in [22].

Alternatively, one can view this procedure as adding a gauge fixing term to the action, and

working in the Feynman gauge.

As a result one obtains modified equations of motion in which the principal part of

the equations is simply the standard elliptic operator ∂2
r +∂2

z . Once a solution is obtained,

one has to make sure it is also a solution to the original, unmodified equations, i.e that

χ = 0. This has to be checked numerically, but can be expected to be satisfied since χ

is a harmonic function, so with suitably chosen boundary conditions (for example such

that χ = 0 on the boundaries of the integration domain) uniqueness of solution to Laplace

equation guarantees that χ = 0. For the solutions presented here, the gauge condition is

well satisfied as the L2 norm of χ, normalized by the number of grid points N , satisfies

|χ|/N < 10−5.

3.2 Ansatz and boundary conditions

For small γ, the soliton solution is well localized near the origin (r, z) = (0, 0). For small z,

k(z) ∼ h(z) ∼ 1 and the SU(2) part of the action reduces to that of the Witten model [20]

for instantons. Then, in this regime, we expect the solution to possess an approximate

SO(4) symmetry, and thus we find it convenient to use the spherical coordinates

R =
√
r2 + z2, θ = arctan(r/z) (3.1)

for our numerical calculation. The inverse transformation is r = R sin θ, z = R cos θ.

One can show that by restricting the ansatz (2.4) to SO(4) symmetry,6 the solution can be

written in terms of two spherically symmetric functions f(R) and g(R) as

φ1 = −rzf(R), φ2 = r2f(R)− 1, Ar = −zf(R), Az = rf(R), ŝ = g(R). (3.2)

In this parametrization, the BPST instanton is given by

f(R) =
2

ρ2 +R2
, g(R) = 0, (3.3)

where ρ determines the size of the energy distribution. The non-trivial winding of the

instanton is built into the expressions in (3.2) through the appropriate factors of r and z

and the factor of 2 in the numerator of f(R) fixes the winding number to be NB = 1. The

BPST solution has a scaling symmetry in that it admits solutions of arbitrary scale ρ.

6This assumption would be valid if k and h were spherically symmetric. The Chern-Simons term does

not break the SO(4) symmetry.
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The factors of k(z) and h(z) in the Sakai-Sugimoto model break the SO(4) symmetry.

This has two effects on the SO(4) ansatz. First, the functions φ1, φ2, Ar and Az will not be

related to each other through the common function f(R). Second, the functions appearing

in the ansatz must be promoted to functions of both the radial coordinate R and the angle

θ. These considerations motivate our reduced ansatz as

φ1 = −
(
R2 sin θ cos θ

1 +R2

)
ψ1(R, θ), φ2 =

(
R2 sin2 θ

1 +R2

)
ψ2(R, θ)− 1,

Ar = −
(
R cos θ

1 +R2

)
ar(R, θ), Az =

(
R sin θ

1 +R2

)
az(R, θ), ŝ =

s(R, θ)

R sin θ
. (3.4)

In each of the non-Abelian gauge field functions we include a factor of (1 + R2)−1 such

that we may use Dirichlet boundary conditions at R = ∞ to fix the baryon number.

We rescale s by a factor of r−1 = (R sin θ)−1 in order to have better control over the

behaviour of the gauge field near the r = 0 boundary. We numerically solve for the five

functions {ψ1, ψ2, ar, az, s} on the domain (0 ≤ R < ∞, 0 ≤ θ ≤ π/2) corresponding to

(0 ≤ r < ∞, 0 ≤ z < ∞). In practice, we use a finite cutoff at R = R∞, chosen such that

the physical data extracted from the solution does not depend on it. The symmetries of

the solution around z = 0 are used to extend it to (−∞ < z ≤ 0).

In terms of the coordinates (R, θ), the baryon charge becomes

NB =
1

4π

∫
dRdθ (∂RqR + ∂θqθ) , (3.5)

where we have defined

qR = R(sin θqr + cos θqz), qθ = cos θqr − sin θqz. (3.6)

The baryon number is given by the boundary integrals

NB =
1

4π

(∫ ∞
0

dR qθ

∣∣∣
θ=0

+

∫ π

0
dθ qR

∣∣∣
R=∞

+

∫ 0

∞
dR qθ

∣∣∣
θ=π

+

∫ 0

π
dθ qR

∣∣∣
R=0

)
. (3.7)

Plugging our ansatz into qR and qθ and evaluating on the boundaries shows that the only

contribution to the winding is from the boundary at R = ∞. Thus, the baryon number

reduces to

NB =
1

2π

∫ π/2

0
dθ qR

∣∣∣
R=∞

, (3.8)

and we use boundary conditions at the cutoff R∞ to impose that NB = 1.

The boundary conditions we use are as follows. At θ = π/2 (which maps back to

z = 0), we have Neumann conditions on all the fields, as the odd/even characteristics of

the functions about z = 0 are built into the ansatz (3.4). At this boundary χ = 0 implies

∂θaz = 0 so that this boundary condition satisfies the gauge choice. To obtain boundary

conditions at θ = 0 (r = 0), we expand the equations of motion for small θ. Satisfying

these order by order in θ gives a set of conditions on the fields. A subset of these conditions

– 7 –
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that results in a convergent solution is given by7

θ = 0 : ∂θψ1 = 0, ∂θψ2 = 0, ar = ψ1, ∂θaz = 0, s = 0. (3.9)

The gauge condition at θ = 0 can be shown to be satisfied on a solution given these

boundary conditions. At the origin R = 0, a similar procedure yields

R = 0 : ∂Rψ1 = 0, ∂Rψ2 = 0, ∂Rar = 0, ∂Raz = 0, s = 0. (3.10)

We do not explicitly satisfy the gauge condition R = 0.8 At the cutoff R∞, the boundary

conditions are determined by behaviour of the gauge field Â0 and the winding number

NB = 1. As discussed below, in section 4.2, the field theory density of baryon charge

ρB(r) (defined below) is proportional to the coefficient of the z−1 falloff of the Abelian

gauge field Â0, at large z. In order to reliably calculate ρB(r), we therefore impose that s

falls off as z−1 by using the boundary condition s = −z∂zs, suitably translated into (R, θ)

coordinates, at the cutoff R∞. Since we rescaled the SU(2) gauge fields by (1 +R2)−1, we

are left with Dirichlet conditions on the other functions, giving

R = R∞ : ψ1 = ψ2 = ar = az = 2, s = −R cos2 θ ∂Rs+ sin θ cos θ ∂θs. (3.11)

Given the asymptotic boundary behavior of the fields, the gauge choice is satisfied for large

R∞. With these large R conditions, we have qR = 4 and so NB = 1, as desired.

3.3 Numerical procedure

We solve the equations of motion by using spectral methods on a Chebyshev grid, using

the Newton method to solve the resulting non-linear algebraic equations. For the results

presented here, we take the number of grid points to be (NR, Nθ) = (50, 25). We introduce

a cutoff at large R = R∞. For a large enough cutoff we can reliably read off the z−1 falloff

in order to obtain information about the baryon charge density. However, if the cutoff is

too large, the total mass-energy of the solution becomes dependent on R∞. In practice,

we take R∞ to vary with γ, such that we can compute both the mass-energy and the

baryon charge density with confidence across most of our domain. We find that while the

charge density can be computed to good accuracy for large γ, the mass-energy becomes

unreliable for γ & 70. To generate a solution, we continue the Newton method until the

residuals reach a very small value (∼ 10−9). For generic values of γ, we can solve for the

configuration from a trivial initial guess (zero for all the fields), while for very large or very

small γ, we solve by using a nearby solution as the initial guess. Finally, the convergence

of our solutions is demonstrated in figure 1.

7In practice, we use the boundary condition ∂θaz = 1
2
R∂θ∂Rψ1 during the solving procedure, as we found

empirically that this results in a more stable Newton iteration. Once the numerical procedure converges,

the solution satisfies the boundary conditions given here.
8We check that the gauge condition χ = 0 is numerically satisfied on our solutions across the domain.

See section 3.1.
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5´ 10
-6

1´ 10
-5

5´ 10
-5

1´ 10
-4

5´ 10
-4

0.001

NR

D
u

Figure 1. The convergence of the value ∆u = |u(NR)− u(NR − 2)|/NRNθ, where u(NR) denotes

the solution for the five fields {ψ1, ψ2, ar, az, s} on the grid with NR points in the R direction and

Nθ = NR/2 points in the θ direction. These runs are for γ = 10 and R∞ = 60. The dashed line is

the best linear fit, showing the exponential convergence ∆u ∝ e−0.18N .

4 Solutions

We focus on two observables of the baryon in the Sakai-Sugimoto model: the mass-energy

and the baryon charge density. We examine each of these in turn.

4.1 The mass-energy

The energy distribution of the soliton tells us how the structure is deformed as we in-

crease the repulsion of the instanton charges by tuning the coupling γ. Writing the

mass-energy as9

M =
1

4π

∫
d4x ρE(r, z), (4.1)

we plot the energy density ρE(r, z) of the soliton in figures 2 and 3. For small γ, the core

of the soliton appears spherically symmetric in the (r, z) plane. A closer inspection reveals

a skewed tail with a slower falloff of energy density in the z direction; compare figures 2a

and 3a. As we increase γ, the core of the soliton expands and deforms, smearing along

the z-axis.

In [1], the mass of the baryon was approximated as the energy of a D4 brane wrapping

the S4, giving M0 = 8π2κ. The mass of the wrapped D4 brane coincides with the mass

of a point-like SO(4) instanton at γ = 0. By allowing a finite size spherical instanton, [5]

computed a correction to this, finding

MSO(4) = M0 +

√
2

15
Nc. (4.2)

In figure 4, we plot the total mass-energy, normalized by M0, of the soliton found here

using the more general SO(3) ansatz. As γ decreases and the soliton shrinks, the effect

of the curved background becomes less important and the energy approaches that of the

9We define ρE(r, z)/4π as the integrand of equation (2.5) multiplied by a suitable Jacobian factor.

– 9 –



J
H
E
P
0
2
(
2
0
1
4
)
0
4
4

0 1 2 3 4 5
0

1

2

3

4

5  

r

energy density

 

z

50

100

150

200

(a) γ = 0.2.

0 5 10 15 20
0

5

10

15

20  

r

energy density

 

z

0.05

0.1

0.15

0.2

0.25

0.3

(b) γ = 10.

Figure 2. The energy density ρE(r, z) in the (r, z) plane. For small γ, the solution appears

approximately spherically symmetric. As the coupling γ increases, the soliton expands and deforms,

becoming elongated along z = 0.
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Figure 3. The logarithm of the energy density ρE(r, z) in the (r, z) plane, on the same domain

as the corresponding plots in figure 2. A large portion of the energy away from the soliton core is

contained in the tail at large holographic radial coordinate z and small field theory coordinate r.

point-like spherical instanton. As γ increases and the soliton becomes more deformed, the

energy of the configuration also increases. For γ > 10, we notice that the mass-energy

appears to be controlled by a power law. The best fit in this region gives M ∝ γ0.53.

By fitting the Sakai-Sugimoto model to the experimental values for the ρ meson mass

and the pion decay constant, one can fix both the parameter κ and the energy scale in the

field theory. In [13], this procedure yields κ = 0.00745 and an energy scale such that 1 in

the dimensionless units we have been using corresponds to 949 MeV. With Nc = 3, this

gives γ = 2.55. We can compare our numerical results for the baryon mass to those of the

SO(4) approximation for these values of the parameters. We find

MSO(4) ' 1.60 GeV,

MSO(3) ' 1.19 GeV. (4.3)

There is a large difference in the results of the two approaches. Interestingly, the SO(3)

result is a much better approximation of the true mass of the nucleons.
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D4 brane wrapping the sphere directions (equivalently the mass of a point-like SO(4) instanton at

γ = 0 in the effective theory). As γ decreases, the mass of the numerical solution approaches that

of the point-like instanton. For γ > 10, our results can be approximated by the relation M ∝ γ0.53.
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Figure 5. The instanton number density 1
8π2 trF ∧ F in the (r, z) plane. The distribution of the

instanton charge closely mimics the distribution of energy density, as shown in figures 2 and 3.

4.2 The baryon charge

The baryon charge in the field theory is related to the instanton number density 1
8π2 trF ∧F

in the bulk. In figures 5 and 6 we plot the instanton charge density for two representative

solutions. The result closely matches the energy density of the soliton.

The baryon charge density can be found from the baryon number current, as defined

for example in [13]:

JµB = − 2

Nc
κ
(
k(z)F̂µz

) ∣∣∣z=∞
z=−∞

. (4.4)

Writing the Abelian gauge field near the boundary as

Â0 =
Â

(1)
0 (r)

z
+ . . . , (4.5)
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Figure 6. The logarithm of the instanton number density 1
8π2 trF ∧ F in the (r, z) plane, on the

same domain as the corresponding plots in figure 5.

where . . . denotes terms at higher order in 1/z, we find that the baryon density is

ρB(r) = J0
B(r) =

Â
(1)
0 (r)

8π2γ
. (4.6)

In terms of the density, the total baryon charge is

NB =

∫ ∞
0

dr 4πr2 ρB(r). (4.7)

We fit our numerical solutions to the functional form in equation (4.5) and read off

the coefficient Â
(1)
0 (r) in order to find ρB(r). This fit is only robust up to a value of r that

depends on the coupling γ: r = r̄(γ). As demonstrated in [15], the charge density ρB(r)

decays as 1/r9. Thus the field Â0 is decaying much faster in the field theory r direction

than the holographic radial z direction. Since we solve in the coordinate R =
(
r2 + z2

)1/2
,

and choose a large cutoff R∞ such that the z falloff is reliable, we might expect the fit to

break down at some point, after ρB(r) has decayed to a very small value. Numerically, we

determine r̄(γ) as the point at which the error in the fit reaches ten times the error in the

fit at r = 0.

In figure 7, we plot the baryon charge ρB(r) up to the cutoff r̄(γ) for various values of

γ. As γ increases, the baryon density at the origin ρB(0) decreases and the charge moves

toward the tail of the distribution. In the log-log plot, the 1/r9 falloff of the charge density

can clearly be seen. Figure 8 shows the behaviour of the baryon charge density across our

entire range of γ.

As a check of our solution, we can compute NB by both formulas (2.9) and (4.7). We

find that, across the range of γ and using both formulas, NB = 1 to good precision.

Lastly, with the charge density ρB(r), we can compute the baryon charge radius

〈r2〉 =

∫ ∞
0

r2
(
4πr2ρB(r)

)
dr. (4.8)

To integrate past the cutoff r̄(γ), we approximate the tail of the distribution as ρB(r; γ) ∼
c(γ)/r9, where c(γ) is approximated from the value of the density at the integration cutoff.
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Figure 7. Left : the charge density ρB(r) for γ = 4, 12, 20, 28, from top to bottom. Right : the

same data on a log-log axis. As γ increases, the charge density becomes less peaked near the origin.

The 1/r9 falloff of ρB(r) behaviour can be seen in the tail of the charge distributions.

The baryon charge radius is plotted in figure 9. For γ > 35, the relation appears to obey

a power law, with best fit given by 〈r2〉 ∝ γ0.93.

As above, it is interesting to compare the result to that obtained from the SO(4)

approximation, evaluated at the parameters defined by the fit to meson physics. The

result is10

〈r2〉1/2SO(4) ' 0.785 fm,

〈r2〉1/2SO(3) ' 0.90 fm. (4.9)

In this model, the baryon charge radius equals the electric charge radius of the proton [13].

The result from our numerics is very close to the experimental value for the electric charge

radius of the proton, which has been measured to be in the range 0.84 fm–0.88 fm.

5 Conclusion

We have studied properties of baryons in a holographic model of QCD related to the

Sakai-Sugimoto model by simplifying the Born-Infeld part of the D8-brane action to a 5D

Yang-Mills plus Chen-Simons action for the gauge fields in the non-compact directions. By

dropping the assumption of SO(4) symmetry and finding direct solutions to the bulk field

equations for the gauge field, we have found that various properties of the baryons in the

holographic QCD model change significantly. In particular, the baryon mass gives sub-

stantially better agreement with measured values. There are several interesting directions

for future work.

Within the present model, it would be interesting to calculate other observables such

as the form-factors associated with the isospin currents (associated with the SU(2) flavor

symmetry) and compare these to results calculated using the SO(4) symmetric ansatz [13].

It would also be interesting to consider interactions between two baryons. This requires

a less-symmetric ansatz, but the numerics should still be feasible. Again, it would be

10We compare to the result from the classical analysis of the SO(4) baryon, given in equation (3.11) of [13].
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4πr2ρB(r)

)
dr as a function of γ. For γ > 35,

the relation can be approximated by 〈r2〉 ∝ γ0.93.

interesting to compare with previous results calculated assuming flat-space instanton con-

figurations [23]. For higher baryon charge, it should be feasible to consider the question

of nuclear masses as a function of baryon number, at least within the space of SO(3)-

symmetric configurations. The actual ground states for higher baryon number may not be

so symmetric however. In addition, it would be interesting to investigate solutions with a

finite baryon charge density (e.g. at finite baryon chemical potential). Such configurations

were considered with various simplifying assumptions in [24–29]. As shown in [29], these

are necessarily inhomogeneous in the field theory directions, so a numerical approach simi-

lar to the one used in this paper is likely necessary to investigate detailed properties of the

ground state at various densities.
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Finally, it is interesting to investigate effects of replacing the Yang-Mills action used

here with the full D8-brane Born-Infeld action. This is incompletely known, but one could

work for example with the Abelian Born-Infeld action promoted to a non-Abelian action

via the symmetrized trace prescription that has been shown to be correct for the F 4 terms.

While the equations in this case will be significantly more complicated, they should pose

no serious obstacle for the numerical approach that we are using. An interesting difference

between the Born-Infeld and Maxwell actions for Abelian gauge fields is that the Maxwell

action associates an infinite energy to point charges, while this energy is finite in the Born-

Infeld case. Thus, we might expect that the tendency for the instantons to spread out

is somewhat less with the Born-Infeld action. In this case, we may expect a somewhat

smaller, less massive baryon. Thus, the baryon mass in the model using the Born-Infeld

action may be even closer to the experimental value than we have found here.
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