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Abstract: We explore simple but novel bouncing solutions of general relativity that avoid

singularities. These solutions require curvature k = +1, and are supported by a negative

cosmological term and matter with −1 < w < −1/3. In the case of moderate bounces

(where the ratio of the maximal scale factor a+ to the minimal scale factor a− is O(1)), the

solutions are shown to be classically stable and cycle through an infinite set of bounces. For

more extreme cases with large a+/a−, the solutions can still oscillate many times before

classical instabilities take them out of the regime of validity of our approximations. In this

regime, quantum particle production also leads eventually to a departure from the realm

of validity of semiclassical general relativity, likely yielding a singular crunch. We briefly

discuss possible applications of these models to realistic cosmology.
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Two questions have recurred often in theoretical cosmology [1–9]: 1) is the Universe

eternal or did it have a beginning at some definite time in the past?, and 2) is it possi-

ble to make Universes with one or more “bounces” where the scale factor crunches and

then bangs?1

The answers to these two questions are deeply intertwined with the subject matter

of the singularity theorems of Penrose and Hawking (discussed comprehensively in [10]).

These theorems show that, given an energy condition of the form

Tµνv
µvν ≥ 1

2
Tvµv

µ (0.1)

for a suitable class of vectors vµ, where Tµν is the stress-energy tensor of the sources

supporting the Universe, one can prove that the Universe must be geodesically incom-

plete (“singular”). Even in scenarios where the current ΛCDM cosmology was preceeded

by a phase of slow-roll inflation [11–13], with eternal inflation occurring on even larger

scales, it is striking [14] that the initial singularity remains, independent of the energy

condition assumed.

It is instructive to discuss which energy conditions need to be assumed to prove exis-

tence of a cosmological singularity for the FLRW cosmologies

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

)
. (0.2)

For k = −1, 0 the only condition that must be assumed is the null energy condition (NEC),

i.e. eq. (0.1) where vµ is a future-pointing null vector field. The NEC is reasonable and in

agreement with the known macroscopic matter and energy sources in our Universe.2

For k = +1, however, the strong energy condition (SEC) (where vµ in (0.1) is future-

pointing timelike) must be assumed.3 This condition is violated by macroscopic sources

in our world, as well as in many completely consistent theoretical toy models. Our goal is

to explore the two questions above for k = +1 Universes with sources satisfying the NEC

(but violating the SEC). We will find that one can make classical cosmologies that live

eternally, undergoing an infinite sequence of non-singular bounces, and remaining within

the regime of validity of general relativity. When the ratio between maximal and minimal

scale factors is not too large, these cosmologies are stable to small perturbations. When the

ratio is large, we instead find both classical and quantum pathologies; classically there are

growing modes (which can be tuned away), and quantum mechanically, particle production

backreacts significantly, likely causing a singular crunch.

1We discuss solutions where the universe is parametrically larger than the Planck length. Ambitious

models with crunches require a boundary condition at the singularity provided by the unknown high energy

theory [23, 24]. More recent works on related ideas that also analyze perturbations around the bounce

include [28, 29].
2Interesting cosmological scenarios which attain a smooth bounce by violating the NEC can be found

in [30].
3More generally, the power of the singularity theorems is that they apply for much less symmetric space-

times than those allowed by the FLRW ansatz. In these generic cases as well, the SEC must be assumed to

prove a theorem. So our results for k = +1 FLRW may be reflective of phenomena that can occur in less

symmetric space-times.
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Solutions. The FRW equations for the metric eq. (0.2) are

ȧ2

a2
=

8π

3
Gρ− k

a2
,
ä

a
= −4π

3
G (ρ+ 3p) (0.3)

where ρ is the energy density and p is the pressure. We want oscillatory solutions, namely

those with two extrema (ȧ = 0) such that at the smaller (where a ≡ a−) ä > 0, and at the

larger (where a ≡ a+) ä < 0. It is easy to see that these requirements, along with the NEC,

only allow solutions for a when there is positive curvature, k = +1. The minimal model

which oscillates has three components: positive curvature, a negative cosmological constant

(energy density = Λ < 0), and a “matter” source with equation of state in the range

p = wρ, − 1 < w < −1/3 (0.4)

(we will see later that this must not be a perfect fluid). For this content the energy density

is ρ = Λ + ρ0 a
−3(1+w) where ρ0 is a constant parametrizing the density of the “matter”.

Then the solution to eqs. (0.3) is oscillatory.

In the special case that w = −2
3 these equations just describe a constrained simple

harmonic oscillator and the solution (setting k = +1) is4

a =
ρ0

2|Λ|
+ a0 cos (ωt+ ψ) (0.5)

where ψ is an arbitrary phase and

ω ≡
√

8π

3
G|Λ| , a0 ≡

1

2|Λ|

√
3Λ

2πG
+ ρ2

0. (0.6)

This requires ρ2
0 ≥ 3

2π
|Λ|
G for positivity of the radicand. Note that the Universe is static

when this condition is saturated, though this requires a fine-tuning. In the opposite limit,
ρ20
Λ → ∞, the ratio of the maximum to the minimum sizes a+/a− of the Universe goes

to infinity.

It is useful to switch to conformal time η, where dη2 = dt2/a(t)2. Defining

γ ≡ 3|Λ|
2πGρ2

0

(0.7)

the solution for the scale factor (0.5) becomes

a(η) =
1

ω

√
γ

1−
√

1− γ cos(η)
. (0.8)

Here ω is the frequency of oscillations given in (0.5), and we have set ψ = 0. Notice that

γ ≈ 4a−/a+ for small γ.

4Note added: shortly after the first version of this pa- per appeared, we learned of the related works [15,

16] where the same solution is described at the homogeneous level. These authors did not discuss the

stability questions raised by multiple bounces.
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Stability. There are several simple stability issues we discuss here. (See e.g. [17, 18] for

a discussion of the corresponding stability issues in the Einstein static Universe.) First of

all, the “matter” source in eq. (0.4) may itself present dangers. In fact the canonical source

which behaves this way, a perfect fluid, would present a serious problem. To see this, recall

that for scalar perturbations, one considers a more general metric

ds2 = a(η)2
[
−(1 + 2Φ(η, x))dη2 + (1− 2Ψ(η, x))dΩ2

3

]
. (0.9)

For perfect fluids, Φ = Ψ, δp = c2
sδρ, and

Ψ′′ + 3H(1 + c2
s)Ψ

′ +
[
2H′ + (1 + 3c2

s)(H2 − k)
]

Ψ

−c2
s∇2

S3Ψ = 0 . (0.10)

The derivatives are with respect to conformal time, and H = a′/a. As is clear from the

sign of the ∇2
S3 term in (0.10), if c2

s < 0, high-momentum modes are unstable.

Now, a perfect fluid with w < −1/3 would have negative c2
s. However, as explained

in [19], one can find matter sources supporting equations of state of the form (0.4) but with

c2
s > 0 (and in fact comparable to the speed of light), if one considers a “solid” with elastic

resistance to shear deformations. A canonical example which they discuss is a frustrated

network of domain walls, which in the leading approximations gives precisely the simple

w = −2
3 case. For our purposes, the crucial point is simply that once we have achieved c2

s

sufficiently positive, it is easy to check that the scalar perturbations above are stable.

In addition to the above scalar perturbations, we need to consider tensor perturbations.

These are governed by an equation whose form is identical to that of (0.13) below, and

will be analyzed there. Next, homogenous but anisotropic perturbations are given by the

Bianchi type IX metric [20, 21] ds2 = −dt2 +
∑3

i=1 a
2
i (t)σ

2
i , where σi are the Maurer-

Cartan forms on S3. It is useful to parametrize the ai by an overall a(t) and two ‘shape’

deformations β±(t),

a1 = a e
β++β−

2 , a2 = a e
β+−β−

2 , a3 = a e−β+ . (0.11)

Linearizing the FRW equations for β± � 1 then obtains

β′′± + 2Hβ′± + 8kβ± = 0 . (0.12)

These modes will be analyzed momentarily.

Another potential source present in our Universe is gravity itself, e.g. a produced gas

of gravitons. The dynamics of massless particles may be described by a probe scalar field,

with equation of motion

φ′′ + 2Hφ′ −∇2
S3φ = 0 . (0.13)

Interestingly, because of the periodicity of a, (0.10) and (0.13) can be recast as a Schrödinger

problem in a particular 1d periodic potential.

The three types of perturbations (0.10), (0.12) and (0.13) have a similar structure; in

fact, the anisotropic perturbation (0.12) is just a particular case of (0.13). Tensor modes

– 4 –
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of the metric are also described by eq. (0.13). We denote a generic linearized mode by u,

and expand in spherical harmonics, ∇2
S3ul = −l(l + 2)ul. We now summarize the results

of our numerical analysis of perturbations.

There are three regimes of momenta where we will find different behaviors. It is

important to distinguish Universes with γ ∼ O(1) from those with γ � 1; we describe the

behavior in both limits.

• l = 0 homogeneous mode: shifting such a mode should be analogous to shifting the

homogeneous mode of the scale factor, which would simply move us in the space of

periodic solutions and lead to a linear growth of the perturbation in naive pertur-

bation theory (since e.g. two sinusoidal functions with slightly different frequency

will perturbatively grow apart at a linear rate, as they get out of phase). This is

borne out by the numerics for both γ � 1 and γ ∼ 1. So what looks like a growing

perturbation is likely just a failure of perturbation theory.

• modes with momentum 2 ≤ l . 1√
γ on the S3: these are long enough to detect the

difference between our cosmology and Minkowski space. For γ ∼ 1, i.e. a Universe

“quivering” around a mean size, they are oscillatory and stable. In contrast, for γ �
1, they can be unstable; we shall discuss bounds derived from their behavior below.

• modes with l � 1√
γ : these have small enough wavelength that they should barely

detect the departures of our metric from flat space. As expected, they behave like

typical Minkowski space scalar field modes for times smaller than the period of os-

cillation of the Universe, for both γ � 1 and γ ∼ 1.

The l = 1 mode is special. The perturbations governed by (0.13) are stable for γ ∼ 1;

on the other hand, the gravitational instabilities sourced by (0.10) are always unstable for

l = 1. For the case of a single-component perfect fluid, on which we have focused so far,

this mode is absent from the physical spectrum: ∂iΨl=1 generates a global rotation on the

S3 and hence is pure gauge. However, in multi-component systems there will generically be

entropy perturbations; these contribute an inhomogeneous term to (0.10) and can source

a physical l = 1 mode. We find that the corresponding metric scalar mode Ψl=1 grows for

all γ, unlike the case of modes with l ≥ 2.5

However, even in these cases the l = 1 mode may be absent due to different mechanisms.

A simple variant of our setup would be to orbifold the S3 by a freely acting group in

order to project out this mode. Orbifolding does not change the equations of motion

but will project out modes from the spectrum. Further, non-gravitational damping must

be included. Collisionless damping (free streaming) occurs at a rate proportional to the

frequency ωk of the mode. There is a range of γ for which the l = 1 mode predicted

by (0.10) is completely killed by free streaming. The other fluids in the setup, including

the domain wall network, may also have other collisional forms of damping that can reduce

5The metric scalar perturbations are classified as adiabatic (curvature) or entropy (isocurvature). The

later are described by (0.10) plus an inhomogeneous term, and satisfy the initial condition Ψ = Ψ′ = 0.

This term can act as a source of Ψl=1, which grows exponentially for all γ.

– 5 –
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Figure 1. Massless scalar field evolution in conformal time, for different values of momenta. The

first plot shows the homogeneous (l = 0) solution with γ = 10−5. The second plot corresponds to

l = 2 and γ = 0.225; three cycles are included, showing the exponential growth in the amplitude.

The third plot has l = 45 and γ = 0.01, and shows a single cycle. The initial conditions are φ(0) = 0

and φ′(0) = 1. The exponential growth whose beginning is shown in the middle figure would not

be present for γ ∼ 1.

the growth of this mode. In what follows we will assume that the l = 1 growing mode

is absent.

To summarize, the Universes with γ ∼ 1 are classically stable at the linearized level

and live forever. The Universes with γ � 1 suffer from exponential growth (as a function of

cycle number) of the finite momentum modes with l� 1√
γ . We show the numerical analysis

of the modes of eq. (0.13) in figure 1 for all three regimes of momenta and various values of

γ. The metric scalar perturbations Ψ behave in a qualitatively similar way, although they

exhibit a faster growth rate due to the gravitational backreaction included in eq. (0.10).6

Classical and quantum destruction of the Universe. For γ ∼ 1, the Universes we

are studying are classically stable. For γ � 1, the exponential growth of the modes with

0 < l < 1√
γ clearly indicates that we should expect such a Universe to have a bounded

lifetime. Can we tune this to allow a large number of oscillations within our regime of

computational control?

The cross-over from exponential to oscillatory behavior in the numerical solutions at

l ∼ lc = 1√
γ , together with basic attempts to fit the growing solutions, suggest a rough

form for the growing modes

ul(N) ∼ u0 exp

(
c

√
1− l2

l2c
×N

)
(0.14)

where c ∼ O(1), and ul(N) denotes the value of the lth momentum mode after N os-

cillations, with starting vev u0. We will compute when these modes grow sufficiently to

dominate the energy density, thus altering our solution. The ratio at a− of the energy

density in the scalar perturbation to the domain wall network is given by∑
l

a2l(l + 2)u2
l

a3ρ0
∼ 1

M2
P

∫ lc

dl l2u2
l . (0.15)

6As a check we note that the homogeneous equation can be solved exactly, exhibiting the expected linear

growth. The other behaviors are similarly as one expects, and the crossover between the linearly growing,

exponentially growing, and well-behaved short-wavelength modes occurs smoothly, giving no indication of

numerical glitches.
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Using (0.14), and evaluating the resulting integral in a saddle-point approximation, we find

the dominant l is l2saddle ∼ l2c/N , and the energy ratio is thus

εu
ρ
∼ l2c

u2
0

M2
P

exp (O(N)−O(logN)) . (0.16)

So, backreaction from the classical scalar field becomes important after a number of cycles

Nc given by

Nc ∼ log

(
M2
Pγ

3/2

u2
0

)
. (0.17)

Classically, by tuning u0 to be small, we can obtain an arbitrarily large lifetime even for

the systems with γ � 1.

Quantum mechanics is expected to induce an RMS value of u0, preventing a classical

tune from saving the Universe for γ � 1. Consider the scalar field (0.13). To quan-

tize the field, we impose canonical commutation relations on the canonically normalized

scalar χ ≡ a(η)φ,

[χ(θ), ∂ηχ(θ′)] = iδ(3)(θ − θ′) , (0.18)

where θ coordinatizes the three-sphere. This implies that in the instantaneous ground state

characterizing the scalar at a time when the Universe has scale factor a, a2φ2
0 ∼ 1. Now

a+ = 2
ω
√
γ and a− =

√
γ

2ω . We may choose, as our initial quantum state, the instantaneous

vacuum associated to any value of the scale factor. Choosing, for instance, the “natural”

quantum vacuum associated with a = a+ (where the Universe is large and smooth and we

have a natural expectation for the vacuum state), gives φ0 ∼ ω
√
γ. This gives a bound on

the number of cycles

Nc ∼ log

(
MP
√
γ

ω2

)
. (0.19)

This can be made parametrically large for small values of Λ.

For γ ∼ 1 the solutions to (0.13) are oscillatory, so the RMS values for various fields

induced by quantum mechanics will not cause instabilities. Hence for these values of γ, the

universe is stable against perturbative classical and quantum instabilities.

Non-linear instabilities. The above analysis of stability has been performed at the

linear level. One may ask if this stability would persist at the non-linear level. Non-linear

interactions could cause the oscillating scale factor to excite higher energy modes of the

system. Such excitations will lead to the continuous production of entropy, destroying the

periodic nature of the solution, potentially leading to a crunch initiated by the produced

entropy. In the context of the present work, this discussion is pertinent in the case γ ∼ 1

where we have stability at the linear level. While there are non-linear couplings between the

oscillating scale factor and higher energy excitations, these couplings result in excitations

only when the higher energy excitations are sufficiently close to an integer multiple of the

frequency of the oscillating scale factor [25]. A priori, the higher energy excitations in this

system are not integer multiples of the oscillating scale factor. Hence it is possible that

the system could be completely stable at the non-linear level. It is also possible, however,

– 7 –
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that a linear combination of these higher energy excitations may be sufficiently close to

an integer multiple of the frequency, resulting in continuous excitation of such modes and

entropy production.

In general this is a difficult question, as evidenced by the fact that the non-linear

stability of Minkowski space was only recently established [27]. Such an analysis is thus

beyond the scope of this work. We point out though that the case of the oscillating

universe with γ ∼ 1 is quite different from typical thermodynamic systems where we

expect continuous entropy production. In a typical thermodynamic system, there are a

large number of modes that are roughly degenerate with some initial excitation. Due to

this large degeneracy, it is relatively easy to satisfy the conditions necessary for efficient

excitation of other modes through non-linear interactions. In the case of the oscillating

universe with γ ∼ 1, however, the modes that can be excited by such non-linear couplings

are at higher energy. Furthermore, as the degeneracy of the modes increases, so does their

energy, in contrast with typical thermodynamic systems where there are a large number of

low energy modes. We are unaware of concrete arguments that establish the generation of

entropy in systems that share the spectrum of this oscillating universe. One might expect

such high energy modes to decouple from the low frequency excitations of the scale factor,

potentially leading to an eternal universe.

Nonperturbative instabilities. Another class of instabilities arise from nonperturba-

tive processes, such as tunneling to other vacua, black hole nucleation and/or collapse of

the domain wall network. Therefore, we may expect a finite (but exponentially long) life-

time from nonperturbative instabilities, even in perturbatively stable models. An example

of such an instanton was found in [26], following the first version of our work. Assuming

that the classical theory is valid for arbitrarily small scale factors, they constructed a Eu-

clidean solution where the simple harmonic universe with γ ∼ 1 tunnels to a → 0 with

a rate P ∼ exp(−3/(16G2|Λ|)). In this case, the universe would be metastable, with an

exponentially long lifetime.

However, it is important to stress that the instanton of [26] is singular, and both its

existence and the predicted value of the decay rate may depend on physics at some UV (or

even the Planck) scale. Furthermore, it is not clear whether this solution gives the leading

contribution to the decay rate. Although we may expect that there are nonperturbative

instabilities, a full analysis will require a concrete (possibly UV-complete) model for the

simple harmonic universe, which would be an interesting direction for future work.

Conclusions and questions. Our model with γ ∼ 1 seems to provide an example of

an eternal universe without singularities. This universe is both classically and quantum

mechanically stable against small perturbations at linearized level. It avoids many prob-

lems with eternal bouncing cosmologies [28–33]. Possibly, however, the background “solid”

could have microscopic dynamics that produce entropy, leading to a singularity even in

our seemingly eternal models. This is an interesting, but model-dependent, question. We

have focused on model-independent bounds here. This raises the question, can we prove a

‘quantum singularity theorem’ that applies to closed Universes, without assuming unphys-

ical energy conditions?

– 8 –
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The cyclic nature of these cosmologies strongly suggests searching for exactly periodic

quantum states in our geometry. Could some of these special quantum states be eternal, and

provide “natural” boundary conditions for certain closed cosmologies, in analogy with [22]?

Can we embed realistic ΛCDM cosmologies, with a preceding phase of inflation, into

the expansion phase of one of our cycles in the γ � 1 case? This would require a transition

from radiation/matter dominance during expansion to curvature/“solid” dominance near

the following bounce. Given their relative scalings with a, this may require the radiation

and matter modes to be “Higgsed” above a large energy scale. As we have seen, such a

universe with γ � 1 appears unstable. However, we were maximally pessimistic in ignor-

ing free streaming; could this effect vitiate the growth of inhomogeneous perturbations?

Alternatively, for the stable, eternal γ ∼ 1 cosmologies, can we envision a Universe which

begins in such a phase, persists there for a long period, and then transitions to a real-

istic inflationary Universe [34]? Could either of these possibilities demonstrate that our

observed universe might not have emerged from an initial singularity [35]?
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